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Abstract
Genomic analyses often involve scanning for potential transcription-factor (TF) binding sites
using models of the sequence specificity of DNA binding proteins. Many approaches have been
developed to model and learn a protein’s binding specificity, but these methods have not been
systematically compared. Here we applied 26 such approaches to in vitro protein binding
microarray data for 66 mouse TFs belonging to various families. For 9 TFs, we also scored the
resulting motif models on in vivo data, and found that the best in vitro–derived motifs performed
similarly to motifs derived from in vivo data. Our results indicate that simple models based on
mononucleotide position weight matrices learned by the best methods perform similarly to more
complex models for most TFs examined, but fall short in specific cases (<10%). In addition, the
best-performing motifs typically have relatively low information content, consistent with
widespread degeneracy in eukaryotic TF sequence preferences.

Accurate modeling of the sequence specificities of TFs is a central problem in understanding
the function and evolution of genomes. Ideally, sequence specificity models should predict
the relative affinity (or dissociation constant) for different individual sequences, and/or the
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probability of occupancy at any position in the genome. The major paradigm in modeling TF
sequence specificity is the position weight matrix (PWM) model1-3. PWMs represent the
DNA sequence preference of a TF as an N by B matrix, where N is the length of the site
bound by the TF, and B is the number of possible nucleotide bases (i.e. A, C, G or T). Each
position provides a score for each nucleotide representing the relative preference for the
given base. PWM models provide an intuitive representation of the sequence preferences of
a TF, including the exact position it would bind the DNA, and involve relatively few
parameters. However, recent studies suggest that shortcomings of PWMs, including their
inability to model variable gaps, capture dependencies between the residues in the binding
site or account for the fact that TFs can have more than one DNA-binding interface, can
make them inaccurate4-9. Alternative models have been developed that extend the PWM
model by considering the contribution of combinations of nucleotides, e.g. dinucleotides or
combinations of multiple motifs4, 6, 7, 10. As another alternative, k-mer–based
approaches7, 11 assign a score to every possible sequence of length k, and hence make no
assumptions about position dependence, variable gap lengths or multiple binding motifs. To
our knowledge, the relative efficacies of these approaches have not been systematically
compared.

A major difficulty in studying TF-DNA binding specificity, and therefore in the evaluation
of models for representing this specificity, has been scarcity of data. The process of training
and testing models benefits from a large number of unbiased data points. In the case of TF
DNA-binding models, the required data are the relative preference of a TF for a large
number of individual sequences. Ideally, such data should be obtained in an in vitro setting,
as many confounding factors can influence the binding of a transcription factor in vivo (e.g.
chromatin state, TF concentration or interactions with cofactors). Methods for measuring in
vitro binding specificity include (HT)-SELEX/SELEX-seq12-15, HiTS-FLIP8, mechanically
induced trapping of molecular interactions (MITOMI)9, 16, cognate site identifier17, bacterial
one-hybrid18 and protein binding microarrays (PBMs)19.

PBMs have enjoyed increasingly widespread use owing to the ease, accessibility and
relatively high information content of the assay. Raw PBM data consists of a score (i.e.
fluorescence signal intensity) representing the relative preference of a given TF to the
sequence of each probe contained on the array. PBM data represents specificity (i.e. how
strongly a given TF binds to a given sequence, relative to all other sequences), as opposed to
binding affinity (i.e. how strongly a TF binds to a single sequence); as argued by Stormo and
Zhao20, specificity is the more important measure, because in vivo, the TF must be able to
distinguish its functional sites from all accessible sequences in the genome. A typical
universal PBM is designed using a de Bruijn sequence, such that all possible 10-mers, and
32 copies of every non-palindromic 8-mer are contained within ~40,000 60-base probe
sequences (each containing either 35 or 36 unique bases) on each array, offering an unbiased
survey of TF sequence specificities19. Constructing arrays with different de Bruijn
sequences, each capturing the sequence specificities of the same TF to entirely different sets
of sequences, provides a means to test the relative performance of various algorithms for
modeling and predicting TF sequence specificities, because models can be learned from one
array and tested on the other7, 19. Here we present an evaluation of 26 different algorithms
for modeling the DNA sequence specificity of a diversity of TFs, using two PBM array
designs for each TF.

RESULTS
The DREAM5 challenge

The DREAM5 TF challenge21-23 formed the original basis for the analyses presented here.
The challenge used PBM data to test the ability of different algorithms to represent the
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sequence preferences of TFs (here, ‘algorithm’ refers to the combination of data pre-
processing, TF sequence specificity model, training and scoring). Briefly, we generated
PBM data measuring the DNA sequence preferences of 86 mouse TFs, taken from 15
diverse TF families (Supplementary Table 1). All TFs were assayed in duplicate on two
arrays with independent de Bruijn sequences (denoted ‘ME’ and ‘HK’). In the DREAM5
challenge, the sequences of both arrays were made known, but only a subset of the PBM
data was provided to participants, and the teams submitted predictions on the held-out array
data. For 20 TFs, array intensity data was provided from both array types, in order for the
participants to calibrate and test their algorithms. For 33 TFs, intensity data were provided
only from the ME type of array; data for the remaining 33 TFs were only provided for HK
type of array. Given the output of probe intensities of one PBM array type, the challenge
consisted of predicting the probe intensities of the second array type.

The probe intensity predictions from each participant were then evaluated using five criteria
(i.e. scores) that assess the ability of an algorithm to either predict probe sequence intensities
or assign high ranks to preferred 8-mer sequences. These criteria, and a combined score that
summarizes the performance of each algorithm, are described in Supplementary Note 1.
Briefly, the k-mer-based method of Team_D11 outperformed all other algorithms, with
algorithms ranked two through five performing similarly to each other (Supplementary
Table 2). Of note, the top five teams represent a wide range of sequence specificity models
(Table 1), suggesting that the algorithm, its implementation and its scoring system might be
of greater importance than the type of model employed.

The DREAM5 outcome, and feedback from participants and others, led us to revisit and
investigate several aspects of the results. First, we wanted to revisit the evaluation criteria.
Second, we wanted to account for the possibility that microarray data pre-processing might
have an effect on the final performance of a model or algorithm, as it clearly did for Team
D11. Third, we wanted to incorporate published algorithms that were not represented in the
challenge, including three biophysical energy-based algorithms, BEEML-PBM24, 25,
FeatureREDUCE (TRR and HJB, manuscript in preparation) and MatrixREDUCE26, as well
as two statistical algorithms, RankMotif++27 and Seed-and-Wobble19. We also wanted to
examine the impact of dinucleotide-based PWM models and ‘secondary motifs’, which can
model proteins with multiple modes of binding DNA7. Here, we include 15 published and
unpublished algorithms, in addition to 11 algorithms submitted as part of the original
challenge (Table 1). Fourth, we wished to examine whether the results we obtained for in
vitro data were supported by in vivo analyses and alternative in vitro assays.

Revised evaluation criteria
We considered two general issues in revisiting the evaluation criteria. The first is that,
ideally, a representation of DNA sequence preference (e.g. a PWM) should output a number
that reflects relative preference to a given sequence20. Most of the algorithms we considered
aim to do this. In such cases it is reasonable to score using Pearson correlation. We note,
however, that other models are intended to discriminate bound from unbound sets of
sequences, or to represent the best binding sequences. In addition, microarray data can be
subject to noise and saturation effects. In such cases it is appropriate to ask whether highly
bound sequences can be discriminated from unbound sequences, which can be measured by
the area under the receiver operating characteristic (AUROC).

The second issue is whether scoring should be based on predicting the 35-mer probe
intensities, or their transformations into 8-mer values (we refer to full probe sequences as
35-mers, since each 60 base probe sequence contains 35 unique bases). The original
DREAM competition included both. There are arguments for and against both7, 19, 24 and
our comparisons to independent data did not support either as being superior overall

Weirauch et al. Page 3

Nat Biotechnol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Supplementary Note 2). In addition, the 8-mer values can be derived by different means;
one previous study7 directly predicted values for the test 8-mers with PWMs, whereas
another24 first scored the test 35-mer scores and then converted these to 8-mer scores. We
found that the latter approach24 results in dramatically improved correlations to the
measured test 8-mer Z-scores (Supplementary Note 2), suggesting that previous conclusions
regarding secondary motifs, which were derived using the former approach7, should be
revisited (see below). Using the latter procedure24, the correlations obtained for 8-mers and
for 35-mers on the same array scale with each other almost perfectly, whether the 35-mers
are scored with PWMs or with 8-mers (Supplementary Note 2). The only significant
difference we have observed between scoring 35-mers or 8-mers is that ‘secondary motifs’
appear to confer a slight advantage when scoring 8-mers, but not 35-mers (see below).

In the evaluations below, we use two criteria that are based on prediction of 35-mer
intensities (which was the original DREAM5 challenge), but acknowledge that the data may
be noisy and semi-quantitative: (i) Pearson correlation between predicted and actual probe
intensities (in the linear domain), and (ii) the AUROC of the set of positive probes, where
positive probes are defined as those with actual intensities greater than 4 standard deviations
above the mean probe intensity for the given experiment (average of 350 probes per
experiment, out of ~40,000 probes total) (Fig. 1). We calculate a normalized score in which
the top performing algorithm for the given evaluation criterion receives a 1, and all other
algorithms receive scores proportional to the top algorithm. The final score for an algorithm
is the average of its two normalized scores. We also report the Pearson correlation between
measured and predicted 8-mer scores, and the AUROC of positive 8-mers, where positive 8-
mers are defined as those with associated E-scores > 0.45 in the actual experiment,
following Berger et al.28, although these are not used to gauge the efficacy of algorithms or
models.

Results of new evaluations
In the revised evaluations, we used the 35-mer scores from the DREAM challenge directly
for eight of the algorithms. For the top three algorithms in the initial DREAM challenge that
take less than 24 CPU hours to run per experiment (originally ranked 1, 3 and 4), as well as
the algorithms BEEML-PBM24, FeatureREDUCE (manuscript in prep), RankMotif++27

Seed-and-Wobble19 and five simple algorithms we implemented to provide a baseline
(PWM_align, PWM_align_E, 8mer_max, 8mer_sum and 8mer_pos), we constructed a
training dataset from the combination of pre-processing steps that resulted in the best final
score for the given algorithm (Supplementary Note 3). Algorithms that were not subjected to
the pre-processing analysis may perform better in practice. We scored all 26 algorithms
across our panel of 66 mouse TFs (see Supplementary Table 3 for all evaluation scores of
each algorithm on each TF).

The results of our revised evaluation scheme produce similar rankings to those of the
DREAM challenge, with the algorithm of Team_D again performing best among the
original challenge participants (Table 2). Final performance was robust to the choice of
evaluation criteria (Supplementary Fig. 1). Overall, the highest scoring algorithm is
FeatureREDUCE, which combines a dinucleotide model in a biophysical framework with a
background k-mer model explicitly intended to capture PBM-specific biases. In general, k-
mer and dinucleotide-based algorithms scored highest, although some PWM-based
algorithms produced competitive results. Overall, it is notable that the specific algorithm is
still more important than the type of sequence specificity model used by the algorithm. For
example, BEEML-PBM, a published PWM-based algorithm, receives a better final score
than three k-mer based algorithms. Furthermore, algorithms based on the same sequence
specificity model type (e.g., PWM, dinucleotides or k-mers) do not necessarily produce
similar probe intensity predictions (Supplementary Fig. 2).
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Algorithm performance varied substantially across the 66 TFs (Fig. 2a). The quality of the
underlying experimental data appears to be the major factor in the overall ease of predicting
probe intensities for a given TF, as opposed to inherent differences between TF families in
the difficulty of modeling DNA sequence preferences (Fig. 2b and Supplementary Note 4).
For example, TFs that were harder for most algorithms to model tended to have lower
correlation between the 8-mer Z-scores of their training and test arrays, and fewer 8-mer E-
scores > 0.45 on their training arrays.

To further examine the relative performance of the k-mer, dinucleotide and PWM models,
we compared the final scores produced by the single algorithm from each model category
that performed best for each TF. On average, the best k-mer-based algorithm outperformed
the best dinucleotide or PWM algorithm, but this is largely due to large differences in a
handful of specific TFs (Fig. 2b, c and see below). Algorithms based on dinucleotides
performed substantially worse on these harder to model TFs, suggesting that they might be
overfitting to array-specific noise. The best PWM-based algorithm performs comparably to
the best k-mer-based algorithm for the majority of TFs (Fig. 2c), with a median difference of
only 0.014. PWM algorithms, in fact, performed slightly better than k-mer based algorithms
for 18 TFs (Fig. 2c). However, of the five cases in which the final score for the best of one
model type beats the best of the other type by greater than 0.10, all but one favor k-mer
algorithms (Fig. 2c). The majority of TFs showing substantial improvement with the k-mer
model contain C2H2 zinc finger arrays, which, depending on which C2H2 fingers are
engaged, may have different binding modes; there is previous evidence for such phenomena
both in vivo and in vitro7, 29. However, some of these C2H2 zinc fingers present a challenge
for all sequence specificity models, perhaps owing to the small number of sequences they
preferentially bind (Fig. 2 and Supplementary Note 4).

Despite the fact that more complicated algorithms produce higher scores, the results of these
analyses suggest that the PWM model can accurately capture the sequence preferences for
most TFs. Nevertheless, we observed a wide range in PWM-based algorithm performance
across the 66 TFs (Fig. 2a). The fact that the two highest-scoring PWM-based algorithms,
Team_E and BEEML-PBM (Table 2), both model PBM-specific effects suggests that their
high scores might not be solely due to superior PWMs. We performed a series of analyses
aimed at isolating the predictive ability of the PWMs produced by all of the PWM-based
algorithms. Those produced by BEEML-PBM were the most accurate of all of the
algorithms; the high performance of Team_E is due to its extensive modeling of PBM
background effects, and not due to the quality of its PWMs (Supplementary Note 5). We
also found this to be the case for predicting in vivo TF binding (see below).

Analysis of dinucleotide matrices and secondary motifs
Numerous studies have called into question the accuracy of the assumption inherent to the
PWM model that bases are independent, and instead propose the use of dinucleotide
dependencies to model TF binding. To quantify the relative accuracies of the dinucleotide
and PWM models, we compared the performance of two of the top algorithms,
FeatureREDUCE and BEEML-PBM, both of which can be run using either type of model.
Both performed better overall when using the dinucleotide model (Table 2), although the
difference was not dramatic, and certain TFs benefit more than others (Supplementary Table
4; median improvement of 0.019 and 0.006, respectively). In general, an overall
improvement is not surprising because the dinucleotide model has more parameters.
Importantly, we note that the degree of improvement is poorly correlated between
FeatureREDUCE and BEEML-PBM, and negatively correlated with how well each
performs using only a mononucleotide PWM (Supplementary Fig. 3), suggesting that much
of the improvement may be due to poorly fit mononucleotide PWMs. Of the six cases in
which a dinucleotide model results in an improvement of greater than 5% in the final score
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for both FeatureREDUCE and BEEML-PBM, five are among the TFs for which it appears
to be difficult to learn a PWM (Fig. 2). These observations suggest that there are relatively
few cases in which there are bona fide dinucleotide interactions that have a major impact on
model performance.

Secondary motifs would represent alternative binding modes for a TF that are also not
possible to capture with a single PWM7. The previously claimed widespread prevalence of
secondary motifs7 was recently contested by the finding that a single BEEML-PBM PWM is
more predictive than two PWMs derived by Seed-and-Wobble24, using the same data set
used to support the original claim7. To more directly examine the importance of secondary
motifs, we identified secondary motifs in both the PBM data of this study and that of the
previous study7. We discovered secondary motifs using the residuals of the primary motif
probe signal intensity predictions for both BEEML-PBM and FeatureREDUCE, used
regression on the training data to assign weights to the two motifs and evaluated their impact
on the overall performance of each algorithm (Online Methods). Overall, the performance of
both BEEML-PBM and FeatureREDUCE was in fact slightly weakened using this scheme
(Table 2).

Because the decreased performance might be due to probe-level noise drowning out the
comparatively weaker secondary motif signal, we evaluated the performance of the
secondary motifs using 8-mer scores, using the newer 8-mer scoring procedure24 (Online
Methods). Under this scoring scheme, secondary motifs provided a slight increase in overall
performance (2–8% improvement in average correlation) (Supplementary Table 5).
However, examination of secondary motif performance for each TF revealed that secondary
motifs substantially increase performance only in specific cases (Supplementary Table 6).
Moreover, as in the case of dinucleotide-based models, the degree of improvement is poorly
correlated between FeatureREDUCE and BEEML-PBM, and again correlates negatively
with how well each algorithm scores using only a mononucleotide PWM (Supplementary
Fig. 3). Manual inspection of these examples revealed that improvement can typically be
attributed to either the identification of a minor variation on the primary motif, a ‘second
chance’ after producing an inaccurate motif on the first attempt, or by the identification of
the second half-site for a TF that can bind DNA as a homodimer (Supplementary Note 6).
We did identify several instances of what appear to be alternative binding modes, including
three examples capturing the classic TAATA and ATGCWWW sequences of Pou
+Homeodomain TFs, and extensions of primary motifs (e.g. extending the consensus
sequence of Nr5a2 from AAGGTCA to TCAAGGTCA), indicating that our methodology
can detect bona fide cases of secondary motifs (Supplementary Note 6). Nonetheless, it
appears as if the major benefit of secondary motifs is to make up for shortcomings in the
initial motif-finding process.

In vitro–derived PWMs accurately reflect in vivo binding
We next asked whether conclusions reached using in vitro data also apply to TF binding in
vivo. The sequence specificity of a TF is only one of several factors that determine where it
binds in vivo (others include cofactors and DNA accessibility); nonetheless, motifs
consistent with those obtained in vitro can often be derived directly from in vivo data7, 30, 31,
indicating that the intrinsic sequence specificity of TFs is a major factor in controlling its
DNA binding in vivo. We obtained publicly available ChIP-seq data for five of the mouse
TFs whose DNA sequence preferences were measured using PBMs in this study, and ChIP-
exo data from four yeast TFs whose preferences have been measured using PBMs in other
studies. We then learned PWMs from the PBM data using each algorithm, and gauged their
ability to accurately distinguish ChIP-seq and ChIP-exo bound sequences from control
sequences. We also learned PWMs from the same in vivo data by running ChIPMunk32 and
MEME-Chip33, methods that have been specifically tailored for motif discovery from ChIP-
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seq data, in a cross validation setting. We evaluated each algorithm with AUROCs, which
here measure the ability of a given algorithm to assign higher scores to positive (bound)
sequences relative to control (random) sequences (Online Methods).

All PWM-based algorithms could discriminate ChIP-seq and ChIP-exo peaks from control
sequences to some degree, as evidenced by the fact that the average AUROC scores of all
algorithms exceed the random expectation of 0.5 (Fig. 3). Conversely, the algorithms that
performed best in our in vitro evaluations (FeatureREDUCE and Team_D, which both
incorporate k-mer sequence specificity models) perform poorly (Team_D) or substantially
worse (FeatureREDUCE) in nearly all cases analyzed (as does the simple 8mer_sum
algorithm, see Fig. 3). Likewise, the dinucleotide versions of BEEML-PBM and
FeatureREDUCE do not improve upon their PWM-based counterparts. The performance of
the k-mer and dinucleotide-based in vitro-learned models on in vivo data could be due to a
combination of modeling probe-specific effects such as GC content, and complications
arising from biases in genomic nucleotide content relative to PBM probe sequences. Indeed,
the 8mer_sum_high algorithm, which only incorporates 8-mers with Z-scores higher than 3
(a cutoff that likely excludes PBM-specific background noise), performs substantially better
than the 8mer_sum algorithm, which incorporates scores across the entire range of k-mer
values (Fig. 3).

Overall, PWMs produced by the FeatureREDUCE_PWM algorithm perform best on in vivo
data (Fig. 3). Notably, FeatureREDUCE_PWM performs similarly to ChIPMunk, and out-
performs the MEME-Chip algorithm, despite the fact that the latter algorithms learn their
PWMs from the ChIP-seq data, and should thus incorporate features unique to in vivo data,
such as nucleotide bias. All of our conclusions were robust to a variety of positive and
negative sequence settings (Supplementary Table 7). Thus, at least for the nine TFs we
examined here, in vitro–derived PWMs are in general better than in vitro–derived k-mer and
dinucleotide models, and similar to in vivo-derived PWMs, in terms of predicting bound
versus unbound ChIP-seq and ChIP-exo sequences.

Accurate prediction of data from alternative in vitro assays
Finally, we examined how well PBM-derived motifs, with or without dinucleotides,
secondary motifs or k-mers, could predict data for 24 TFs that have been assayed using the
MITOMI9, 16 or HiTS-FLIP technologies8, all of which also have PBM data available from
other studies7, 31, 34. We trained the best-performing FeatureREDUCE algorithm on the
PBM data in each of its possible settings: PWM only, dinucleotides, dinucleotides+k-mers
and two PWMs (secondary motifs). We then compared the ability of each model to predict
the values produced by the other technology.

The inclusion of features beyond mononucleotide PWMs had limited impact for the majority
of these 24 TFs (Supplementary Note 7). We note, however, that we were able to detect
specific examples where more complicated models provided an increase in performance
across platforms (Supplementary Note 7). For example, k-mers and secondary motifs both
improve cross-platform performance for Cbf1. This finding confirms that PBMs are capable
of detecting cases where more complicated binding modes exist, and that these models are
capable of improving predictive performance on other data sources. Taken together, these
results are consistent with our findings that PWMs work well for most TFs, although certain
TFs require more complicated models.

DISCUSSION
This study has several major conclusions that have broad implications for the representation
of sequence specificity of DNA-binding proteins. We note that the exact conclusions
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reached depend on both the TFs used for evaluation and the evaluation criteria, a fact that
likely accounts for the ongoing controversy in this area. However, our general conclusions
are robust to changes in the PBM scoring procedure. In addition, our conclusion that well-
implemented PWMs can perform as effectively as more complicated models in most cases is
supported by cross-technology analysis of in vitro data and by analysis of in vivo data.

Our first major conclusion is that, when testing on PBM data, k-mer based models score best
overall. Other approaches can perform nearly as well, however, and details of
implementation, such as parameter estimation techniques, can be as important to the
performance of an algorithm as the underlying model. Indeed, the algorithms that produce
the most predictive PWMs, FeatureREDUCE_PWM and BEEML-PBM, which both learn
PWMs in an energy-based framework (Supplementary Note 8), perform similarly to more
complicated models for the majority of TFs, supporting the contention that imperfections in
motif derivation (and scoring) underlie most of the apparent superiority of k-mer scoring
that we previously reported7, 24. PWMs consistently fared poorly in ~10% of the TFs,
relative to k-mer-based sequence specificity models; however, many of these cases are
characterized by having few high-scoring 8-mers (Fig. 2b and Supplementary Note 4). Thus,
the scarcity of the data itself may limit the ability of algorithms to learn a PWM.
Modification of the algorithms may help improve these cases.

The fact that incorporation of dinucleotide interactions improves the performance of both
BEEML-PBM and FeatureREDUCE, but for different sets of TFs, suggests that the need for
these extensions to mononucleotide PWM is driven more by the algorithm than by a
property of the TF. Dinucleotide interactions clearly do exist25 and were highlighted in
previous analyses using MITOMI9, HiTS-FLIP8 and PBM19 data. However, these studies
did not specifically ask how much of the overall variation in the data (e.g. using Pearson
correlation) is accounted for by mononucleotide versus dinucleotide PWMs. We also note
that more complex models can be more prone to learning platform-specific noise. At present
it is not clear what the best approach is for different platforms; resolving the source and
relative contribution of complexities in DNA-binding data would benefit from analysis of
the same TFs on multiple high-resolution platforms.

One striking outcome of our study is that the appearance and information content of a motif
has little bearing on its accuracy: the motifs produced by BEEML-PBM and
FeatureREDUCE_PWM—two of the highest-scoring PWM algorithms—are, in general,
those with the lowest information content (Box 1 and Supplementary Fig. 4). Conversely,
PWMs produced by Seed-and-Wobble and PWM_align appear to be the strongest (i.e. they
are wider and have larger letters in the traditional ‘information content’ sequence logos), but
they score substantially lower than those of BEEML-PBM and FeatureREDUCE_PWM, on
both PBM and ChIP-seq data. We conclude from this analysis that information content has
little to do with the accuracy and utility of a motif, underscoring the fact that degeneracy is
common among eukaryotic TFs sequence specificities, and that most TFs will bind to many
variations of their ‘consensus sequence’, albeit at lower affinity. Indeed, previous studies
have demonstrated the importance of low affinity binding sites in vivo35-38. PWMs that
allow for a greater amount of degeneracy (and hence have lower information content) are
able to better capture the full range of lower affinity sites.

The finding that different algorithms excel (and fail) for different TFs suggests that an
algorithm incorporating all of their advantages will likely outperform any individual one. To
aid in the continued improvement of algorithms for the modeling of TF binding specificities,
we have created a web server that allows users to upload their own probe intensity
predictions, and compare them to those of the algorithms evaluated here (http://
www.ebi.ac.uk/saezrodriguez-srv/d5c2/cgi-bin/TF_web.pl). We anticipate that the
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availability of this resource will help encourage future improvements to algorithms for the
modeling and predicting of TF binding specificities.

Online methods
Protein binding microarray experiments

Details of the design and use of PBMs has been described elsewhere19, 28, 49, 50. Here, we
used two different universal PBM array designs, designated ‘ME’ and ‘HK’, after the initials
of their designers. Information about individual plasmids is available in Supplementary
Table 8. We identified the DNA Binding Domain (DBD) of each TF by searching for Pfam
domains51 using the HMMER tool52. DBD sequences along with 50 amino acid residues on
either side of the DBD in the native protein were cloned as SacI–BamHI fragments into
pTH5325, a modified T7-driven GST expression vector. Briefly, we used 150 ng of plasmid
DNA in a 15 μl in vitro transcription/ translation reaction using a PURExpress In Vitro
Protein Synthesis Kit (New England BioLabs) supplemented with RNase inhibitor and 50
μM zinc acetate. After a 2-h incubation at 37°C, 12.5 ml of the mix was added to 137.5 ml
of protein-binding solution for a final mix of PBS/2% skim milk/0.2 mg per ml BSA/50 μM
zinc acetate/0.1% Tween-20. This mixture was added to an array previously blocked with
PBS/2% skim milk and washed once with PBS/0.1% Tween-20 and once with PBS/0.01%
Triton-X 100. After a 1-h incubation at room temperature, the array was washed once with
PBS/0.5% Tween-20/50 mM zinc acetate and once with PBS/0.01% Triton-X 100/50 mM
zinc acetate. Cy5-labeled anti-GST antibody was added, diluted in PBS/2% skim milk/50
mM zinc acetate. After a 1-h incubation at room temperature, the array was washed three
times with PBS/0.05% Tween-20/50 mM zinc acetate and once with PBS/50 mMzinc
acetate. The array was then imaged using an Agilent microarray scanner at 2 mM resolution.
Images were scanned at two power settings: 100% photomultiplier tube (PMT) voltage
(high), and 10% PMT (low). The two resulting grid images were then manually examined,
and the scan with the fewest number of saturated spots was used. Image spot intensities were
quantified using ImaGene software (BioDiscovery). PBM data are available at NCBI GEO
under accession GSE42864.

Prediction of array intensities
We evaluated a panel of 26 algorithms, based on their ability to accurately predict array
intensities (see Table 1 for descriptions). Parameters used for the published and novel
algorithms, and full descriptions of the algorithms submitted as part of the DREAM
challenge can be found in Supplementary Note 9.

Evaluation criteria
We evaluated the probe intensity predictions produced by each algorithm for each TF using
two evaluation criteria (see Figure 1 for illustrations, and below for descriptions). Before
performing our evaluations, we removed all spots manually flagged as bad or suspect from
the set of test probe intensities used in the evaluations. Each of the 66 experiments was
scored individually using each criterion. The final score for both criteria was calculated as
the average across all 66 experiments. To assign a final score to each algorithm, the score
distributions of both of the criteria were first converted to relative scores, such that the best
performing algorithm for the given criterion received a score of 1, and the scores of all other
algorithms were relative to this best score (e.g. 0.90 as good as the top score, 0.80 as good,
etc). The final score for each algorithm was then calculated as the average of its two relative
scores, and can hence be interpreted as how well the algorithm performed relative to the best
algorithm, on average. A similar calculation was performed in order to achieve the final
scores of the individual TFs depicted in Figure 2. In this case, the calculations were carried
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out as described above, but individually for each of the 66 experiments (i.e. skipping the
step of averaging across all 66 experiments).

Pearson correlation of probe intensities—We measured the correlation between the
predicted probe intensities p and the actual intensities a using the (centered) Pearson
correlation, r:

where N is the total number of probe sequences on the array, p̄indicates the mean probe
intensity across all predicted probe intensities, and ā indicates the mean across all actual
probe intensities. We chose not to use the Spearman correlation because its rank
transformation results in a loss of resolution in the high probe intensity range, placing
greater emphasis on the (majority of) unbound, low intensity probes.

AUROC of probe intensity predictions—As a second measure of an algorithm’s
accuracy, we quantified the ability of the given algorithm to assign high ranks to bright
probes. We defined bright probes as those whose intensities were 4 standard deviations
above the mean in the actual experiment, as in Chen et al. 200727. This results in an average
of 350 bright probes per experiment, with an enforced minimum of 50, and a maximum of
1300. For each algorithm’s predictions for each TF, we ranked the ~40,000 probes based on
their predicted intensities and calculated the AUROC of the actual bright probes. We
subtracted 0.50 from the final AUROC score, so that a value of 0 corresponds to random
expectation.

Identification and evaluation of secondary motifs
We identified primary and secondary PWMs for each TF in this paper and the TFs from
Badis et al. 20097 using two of the top algorithms (FeatureREDUCE and BEEML-PBM),
and used a combination of both PWMs to predict probe intensities using the following
procedure:

1. Run the algorithm to learn a single PFM, PFM1, on the training array data.

2. Use PFM1 to predict the probe intensities of the training array (intensities1).

3. Regress the values of intensities1 against the actual training array intensities.

4. Calculate the residuals by subtracting the regressed intensities from the actual
training array intensities. Set any resulting negative values to 0.

5. Run the algorithm to learn a single PFM, PFM2, on the residuals.

6. Use PFM2 to predict the probe sequences of the training array (intensities2).

7. Regress the two sets of probe scores (intensities1 and intensities2) against the
training probe intensities to learn the weights of the two PFMs.

8. Use PFM1 to predict the probe intensities of the test array.

9. Use PFM2 to predict the probe intensities of the test array.

10. Combine the two sets of predicted probe intensities using the regression
coefficients learned on the training array in step 7.
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We found that the resulting secondary motif probe intensity predictions decreased
performance for both algorithms in our evaluation scheme (Table 2). We therefore tried an
alternative scheme (similar to that of Zhao and Stormo24) where we converted the training
intensities and probe intensity predictions of PFM1 and PFM2 to 8-mers (using the median
probe intensity), and then learned the weights of the two PWMs by performing regression on
these 8-mer values. The resulting weights were then used to combine the predicted 8-mer
scores of PWM1 and PWM2 on the test data. Using this strategy, we observed a minor
increase in overall performance for both algorithms on both datasets (Supplementary Table
6).

Comparison of algorithm performance on in vivo data
We gauged the ability of each algorithm to predict in vivo TF binding by comparing the
ability of their PWMs to accurately predict ChIP-seq and ChIP-exo binding data. We
searched for publicly available ChIP-seq data measuring the in vivo binding of any of the 66
mouse TFs evaluated here using a variety of sources, including the hmCHIP database53,
ArrayExpress54, and the NCBI Gene Expression Omnibus55. Some data was unusable
because scores were not assigned to individual peak calls. In total, we obtained data for five
TFs: Esrrb (hmCHIP accession SRP000217), Zfx (hmCHIP accession SRP000217), Tbx20
(GEO accession GSM734426), Tbx5 (GEO accession GSM558908), and Gata4 (GEO
accession GSM558904). We also obtained four yeast ChIP-exo experiments from Rhee and
Pugh 201129.

For each in vivo dataset, we defined a set of positive (bound) sequences and negative
(control) sequences. Positive sequences were defined for ChIP-seq data as the 500 highest
confidence peaks, using only the middle 100 bases of each peak (similar results were
obtained when using the middle 50 bases, see Supplementary Table 7). Full-length sequence
reads were used for ChIP-exo data. Random sequences were defined in one of three ways: 1)
500 randomly chosen genomic regions of the same length as the positive sequences,
excluding all repeat sequences using RepeatMasker; 2) 500 sequences of length 100 (or 50)
randomly chosen from promoter sequences, where promoters were defined as the 5000 base
upstream regions upstream of the transcription start site of RefSeq genes, excluding all
sequences flagged by RepeatMasker (obtained from the UCSC Genome Browser56); 3) 500
randomly shuffled positive sequences, where dinucleotide frequencies were maintained.

We assessed the PWMs produced by each algorithm by scoring the positive and negative
sequences, and calculating the AUROC of the sequence scores using the positive and
negative probe labels. Positive and negative ChIP sequences were scored using the energy
scoring framework of BEEML-PBM (setting mu to 0, and ignoring strand-specific biases).
The final score for each algorithm on each TF was calculated as the mean AUROC across
the three negative peaks sets. We also scored the probe sequences using the k-mer-based
algorithms of Team_D, 8mer_sum, and FeatureREDUCE, and the dinucleotide algorithms
of BEEML-PBM_dinuc and FeatureREDUCE_dinuc. We examined the performance of
BEEML-PBM and FeatureREDUCE secondary motifs on the in vivo data using the PWMs
and PWM weights learned from the in vitro data, as described above. In order to compare
the in vitro generated motifs to in vivo-derived ones, we also used PWMs derived by
ChIPMunk32 and MEME-Chip33 when run on the same in vivo data in a cross validation
setting. For these analyses, half of the positive probes were randomly chosen for training,
and the other half were used for testing. This procedure was applied 10 times, and the final
numbers reported are the average evaluation scores across all 10 iterations.
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Data availability
PBM data are available at NCBI GEO under accession GSE42864, and on the project
website (http://hugheslab.ccbr.utoronto.ca/supplementary-data/DREAM5/). Source code
from the top-performing algorithms and the best-performing PWMs for each TF are
available as Supplementary Files on the Nature Biotech website, and on the project website.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Box 1

Appearance and information content of a motif may not reflect accuracy

Sequence logos39, 40 provide a simple, intuitive means for conveying information about a
TF’s binding preferences. However, several aspects of their interpretation can be
misleading. To illustrate, logos produced by the eight PWM-based algorithms evaluated
here are depicted for TF_6, the C2H2 zinc finger TF Klf9 (Fig. 4). At a glance, the PWMs
produced by Seed-and-Wobble and the PWM_align algorithms might be interpreted as
being superior to the others, given their high information content. However, based on our
evaluations, these PWMs are in fact too stringent, and place too much emphasis on the
consensus sequence of this TF (compare the final scores of each algorithm). Rather, the
lower information motif produced by BEEML-PBM is a better predictor of Klf9’s
sequence preferences. In general, this observation holds for almost all TFs analyzed here
—the Seed-and-Wobble and the PWM_align algorithms tend to produce PWMs that are
‘too stringent’ and too long, and energy-based algorithms such as BEEML-PBM produce
motifs that represent the correct degree of degeneracy and length (see Supplementary
Fig. 4 for logos and Fig. 2 for evaluations).

Figure 4.
Characteristics of Klf9 motifs produced by the eight PWM-based algorithms evaluated in
this study. The algorithms are ranked top to bottom in order of the overall score of their
PWM for this TF in our evaluation scheme. Two popular visualization methods of the
PWMs produced by each algorithm are depicted: on the left are traditional sequence
logos39, 40, which display the information content of each nucleotide at each position; the
total information content of the PWM is given to the left of this logo. On the right are
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frequency logos, in which the height of each nucleotide corresponds to its frequency of
occurrence at the given position40.
Similarly, different interpretations might be made about a TF’s sequence preferences
based on which visualization method is used to depict a PWM. For example, the
importance of the initial T nucleotide in the TAACGG consensus sequence in the motifs
of BEEML-PBM might be considered negligible upon viewing of the information-
content-based logo, whereas this nucleotide would likely be considered highly important
based on the frequency plot. Indeed, the information specified at this position does play a
large role in the overall effectiveness of the motif. When ignoring the frequencies
specified at this position (i.e., setting all four nucleotide frequencies to 0.25), the
correlation between BEEML-PBM’s predicted and actual probe signal intensities drops
from 0.58 to 0.38. Furthermore, the sequence logos for BEEML-PBM, MatrixREDUCE,
FeatureREDUCE and Team_E appear nearly indistinguishable based on the sequence
logos, despite their drastically differing final evaluation scores. In summary, we find that
the appearance of sequence logos has little bearing on their predictive accuracy.
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Figure 1.
Evaluation criteria used in this study. For each TF, we scored an algorithm’s probe intensity
predictions using two evaluation criteria, which are illustrated here for TF_16 (Prdm11),
using the predictions of BEEML-PBM on the raw array intensity data. (a) Pearson
correlation between predicted and actual probe intensities across all ~40,000 probes. (b)
Area under the receiver operating characteristic curve (AUROC) of the set of positive
probes. Positive probes (black dashed lines) were defined as all probes on the test array with
intensities greater than four standard deviations above the mean probe intensity for the given
array.
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Figure 2.
Comparison of algorithm performance by transcription factor. (a) Final score of each
algorithm for each TF. TF name, ID and family are depicted across the columns, and
sequence specificity model type and name are depicted across the rows. Color scale is
indicated at the upper right. Algorithms are sorted in decreasing order of final performance
across all TFs. TFs are sorted in decreasing order of mean final score across all algorithms.
(b) Summary statistics for each TF across all algorithms: mean final score, maximum final
score achieved by any k-mer, dinucleotide or PWM-based algorithm, Pearson correlation of
8-mer Z-scores between replicate arrays, and the number of 8-mers with E-scores > 0.45 on
the training array (normalized by the maximum such value across all TFs). (c) Difference
between the best score achieved by any k-mer based algorithm and the best score achieved
by any PWM-based algorithm for each TF.
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Figure 3.
Comparison of algorithm performance on in vivo data. For each algorithm, we learned a
model (PMW, k-mer or dinucleotide) using PBM data, and gauged its ability to discriminate
real from random ChIP peaks using the AUROC (Online Methods). Data for the first five
TFs were taken from mouse ChIP-seq data. The final four are from yeast ChIP-exo data. The
color scale is indicated at the bottom. Team_E was not run on the ChIP-exo data, because it
requires initialization parameters specific to the individual TF. FeatureREDUCE was run
using models of length 8, instead of length 10, owing to the superior performance of this
length model on in vivo data (T.R. Riley and H.J. Bussemaker, manuscript in preparation).
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Table 1

Summary of evaluated algorithms.

Name and reference Model type Description of algorithm

Team_D (1)11 k-mers Constructs a matrix indexing the presence of contiguous k-mers (size 4-8) on each
probe. Estimates an affinity vector by applying a conjugate gradient method, and uses
it to predict intensities11.

Team_F (2) / Dispom41 Markov model Constructs a probabilistic classifier based on foreground and background Markov
models. Weighted extension of the Dispom algorithm.

Team_E (3) PWM + HMMs Learns PWMs using MEME42, retrains by Expectation-Maximization using a Hidden
Markov Model43, and combines it with a probe-specific bias using a linear model.

Team_G (4) k-mers Models probe affinities as a product of an occurrence matrix of motif sequences
(contiguous or gapped 6-mers) and a vector of unknown motif affinities. Estimates
motif affinities using a multiple linear model.

Team_J (5)44, 45 Dinucleotides Learns binding energy linear models with nearest-neighbor dinucleotide
contributions, and combines them with probe sequence-dependent bias under an
information theory-based framework44, 45.

Team_I (6) k-mers Uses top 1000 and bottom 250 8-mers for specific binding, and nucleotide triplet
background frequencies for non-specific binding. Performs linear regression between
these features and the observed binding intensities using Lasso46.

Team_C (7) PWM + k-mers +
Random forests

Constructs blended predictions from random forests of contiguous k-mers (length 4
through 6) and RankMotif++27 PWMs.

Team_H (7)10 k-mers + dinucleotides Trains support vector regression models to directly learn the mapping from probe
sequences (using inexact matches to dinucleotide k-mers of length 10 to 15) to the
measured binding intensity10.

Team_A (10) /
Amadeus47

k-mers + PWM Identifies and scores 20 de novo PWM models using Amadeus47. Combines the
PWM with maximum probe sequence contiguous 6-mer AUC scores, and performs
linear regression against the probe intensities.

Team_K (11) k-mers Identifies informative contiguous k-mers (length 1 to 8) using feature selection
(allowing mismatches), learns their weights using regression against the probe
intensities.

Team_B (13) PWM Uses top and bottom 1000 probes as positive and negative sets for discriminative
motif discovery using eTFBS48. Uses PWM scores as features for constructing
regression models.

BEEML-PBM24, 25 PWM or dinucleotides Obtains maximum likelihood estimates of parameters to a biophysical PWM24 or
dinucleotide25 model, including the TF’s chemical potential, non-specific binding
affinity, and probe position-specific effects.

FeatureREDUCE PWM, Dinucleotides and/
or k-mers

Combines a biophysical free energy model (PWM or dinucleotide) with a contiguous
k-mer background model (length 4 to 8) in a robust regression framework.
Throughout, we use ‘FeatureREDUCE’ to denote the combined dinucleotide and k-
mer model, FeatureREDUCE_PWM to denote the PWM-only model, and
FeatureREDUCE_dinuc to denote the dinucleotide-only model.

MatrixREDUCE26 PWM Performs a least-squares fit to a statistical-mechanical PWM model to discover the
relative contributions to the free energy of binding for each nucleotide at each
position26.

RankMotif++27 PWM Learns PWMs by maximizing the likelihood of a set of binding preferences under a
probabilistic model of how sequence binding affinity translates into binary binding
preference observations27.

Seed-and-Wobble19 PWM Uses the 8-mer with the highest E-score as a seed, and inspects all single-mismatch
variants (and positions flanking the seed sequence) to identify the relative
contribution of each base at each position to the binding specificity19.

8mer_max k-mers Calculates the median probe score of all contiguous 8-mers. Prediction is the
maximum 8-mer score on each probe.

8mer_pos k-mers Similar to 8mer_sum, but takes into account probe position effect in a manner similar
to BEEML-PBM.
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Name and reference Model type Description of algorithm

8mer_sum k-mers Calculates the median probe score of all contiguous 8-mers. Prediction is the sum of
all 8-mer scores on each probe.

PWM_align PWM Aligns all contiguous 8-mers with E-score > 0.45 to create a PWM.

PWM_align_E PWM Aligns all contiguous 8-mers with E-score > 0.45, weighting each sequence by its E-
score, to create a PWM.

The type of sequence specificity model used by each algorithm is indicated, along with a brief description of the algorithm (more information about
the algorithms can be found in Supplementary Note 9). The final rank in the original DREAM challenge is indicated in parenthesis after the
algorithm’s name, where applicable.
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