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Synthetic lethal interactions in cancer hold the potential for successful combined therapies, which would avoid the difficulties

of single molecule-targeted treatment. Identification of interactions that are specific for human tumors is an open problem in

cancer research. This work aims at deciphering synthetic sick or lethal interactions directly from somatic alteration, expres-

sion and survival data of cancer patients. To this end, we look for pairs of genes and their alterations or expression levels

that are “avoided” by tumors and “beneficial” for patients. Thus, candidates for synthetic sickness or lethality (SSL) interac-

tion are identified as such gene pairs whose combination of states is under-represented in the data. Our main methodological

contribution is a quantitative score that allows ranking of the candidate SSL interactions according to evidence found in

patient survival. Applying this analysis to glioblastoma data, we collect 1,956 synthetic sick or lethal partners for 85 abun-

dantly altered genes, most of which show extensive copy number variation across the patient cohort. We rediscover and inter-

pret known interaction between TP53 and PLK1, as well as provide insight into the mechanism behind EGFR interacting with

AKT2, but not AKT1 nor AKT3. Cox model analysis determines 274 of identified interactions as having significant impact on

overall survival in glioblastoma, which is more informative than a standard survival predictor based on patient’s age.

Single molecule-targeted therapies, the dominant tool for
cancer treatment, have limited efficacy due to toxicity1 and
rapid development of drug resistance.2–4 Combination thera-
pies based on synthetic sickness or lethality (SSL) are hoped
to overcome these difficulties5 and promise successful treat-
ment strategies.6,7 The mechanism behind SSL-based therapy
is that while targeting individual genes in a given interacting
pair has a moderate effect, targeting both either kills, or sig-
nificantly decreases tumor viability.

Compared to the comprehensive collection of synthetic le-
thal gene pairs in yeast,8 the set of known SSL interactions in
human cancer is disappointingly small9 and their identifica-
tion remains an open problem. Experimental approaches are
overwhelmed by the quadratic number of possible pairs, and
can only be applied to cell lines.7 High-throughput studies
focus on single, abundantly altered genes (called primary
genes), such as KRAS,10 or PI3K,11 and screen through their
possible partner genes. Alternatively, a small set of plausible
genes is selected for testing, for example, based upon their
function in DNA repair.12,13 Existing predictive computational
methods14–17 require large training datasets of known genetic
interactions, that are only available for few simple model
organisms.18 Genome-wide association studies19–21 are limited
to estimating cancer risk associated with certain single-nucleo-
tide polymorphisms in the germline. Conde-Pueyo et al.22

identify SSL interactions in humans based on evolutionary
conservation to yeast, which are likely incomplete, since not
all SSL interactions are conserved in such distant species.

Traditionally, the notion of synthetic interaction is based
on a comparison of observed to expected fitness.23 From a
general, disease-oriented perspective, we are less concerned
with tumor fitness, but rather with how well the patients per-
form in dealing with cancer and survive. Therefore, here, tu-
mor performance is taken as inverse performance of their
carrier patients and serves as the basis for detection of SSL
interactions. Such an approach is also dictated by the data: at
our hand are patient survival information, together with col-
lective measurements across all cells in tumor samples and
direct assessment of tumor fitness is not available to us.
Although loosening the rigorous, fitness-based notion of syn-
thetic interaction, we gain access to the more realistic tumor
context and advantage over studies performed on cell lines.
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Our approach follows an intuitive principle that what is
“avoided” by tumors may be “beneficial” for patients. We
search large collections of tumor data for such pairs of genes
and their states that are under-represented in the data given
their individual prevalence, and that together coincide with
better carrier patient performance, more than expected from
their individual occurrences. Identifying SSL interactions
therefore requires an integrated analysis of somatic alteration,
expression and survival data. The key to finding them lies in
particular patterns of genomic alterations and expression that
have been observed in tumors.24–27 For example, somatic
mutations of two genes can be mutually exclusive, and do not
occur simultaneously in the same tumor. Alternatively,
expression of one gene can be concurrent with a genomic
alteration of another, and be either high or low only in those
tumors that carry this alteration. Existence of such tumor-
specific patterns suggests that they may improve tumor
viability. Consequently, states of genes that violate those pat-
terns, like mutually exclusive genes being mutated together,
or knock-down of a gene that is highly expressed concur-
rently with mutation of another, may decrease performance
of tumors and thus increase performance of carrier patients.

Our analysis identifies candidate SSL interactions as such
pairs of genes that follow either a concurrence or mutual
exclusivity pattern, and both have a specific alteration or
expression level, which, when occurring together, violates this
pattern. Our main contribution is a score that allows ranking
of candidate SSL interactions according to how strongly hav-
ing both genes in their specific state or level (referred to as SSL
level) decreases performance of tumors more than expected
from having either of them alone at its respective level. We
further use Cox modeling to identify SSL interactions likely to
be of greatest therapeutic utility, describe their mechanism,
and provide the associated SSL levels for independent experi-
mental validation. We make sure that those SSL levels that
need to be induced externally can be reached by manipulating
gene expression. In this way, our analysis delivers a disease-
specific collection of SSL interactions, intended as a carefully
preselected input for subsequent experimental verification.

The proposed approach predicted SSL interactions in glio-
blastoma multiforme, the most common and the most lethal
brain tumor.28 Data stems from the Cancer Genome Atlas
(TCGA),29 a large, stable research network effort that spans
the process of cancer sample collection, comprehensive

laboratory analysis and database deposition. The short, 1 year
median survival of newly diagnosed patients makes the glio-
blastoma dataset more amenable to the kind of statistical sur-
vival analysis performed here. We integrated clinical
information available for 508 carrier patients with somatic
point mutations of 424 genes in 145 glioblastomas, copy
number variation (CNV) for 18,966 genes in 501 glioblasto-
mas, and gene expression of 17,591 genes in 500 glioblasto-
mas, relative to normal tissue. This resulted in a collection of
1,956 plausible SSL interactions, 274 of which were indicated
by Cox analysis to have significant impact on overall survival,
comparable to or even stronger than the established predictor
based on patient’s age (Fig. 1a). The analysis predicted the
mechanism underlying two known SSL interactions in cancer:
TP53 with PLK1 and EGFR with AKT2. Notably, our
approach is successful in identifying SSL interactions between
genes altered by CNV. To the best of our knowledge, this
work is the first computational analysis that identifies SSL
interactions from cancer patient data.

Material and Methods
Integrated multilevel data for a total of 577 glioblastomas29

was accessed from TCGA in a processed form using the
cgdsr package in R30 (dataset version download as of April
2012). After identification of candidate SSL interactions, we
ranked them based on interaction support found in patient
survival (Fig. 1a). This analysis is explained in detail below.

Collection of candidate SSL interactions

Preselecting primary genes. The analysis starts with collect-
ing genes of primary importance (shortly, primary genes), as
assessed by abundances of their alterations in the tumors. To
this end, we selected 85 genes that showed a consistent type of
somatic point mutations (shortly, PMs in this Section) or CNV
in at least 20 glioblastomas from the cohort. We considered only
PMs that were non-silent, and applied a statistical approach
called Gistic31 to identify genes targeted by high-level homozy-
gous amplifications or deletions, more frequently than expected
by chance. Additionally, we restricted all primary genes identi-
fied as altered by CNV to be concordant with their own expres-
sion, that is, to have decreased or elevated expression that is
consistent with their alteration (Supporting Information).

Concurrence and mutual exclusivity. Partners for the pri-
mary genes in the candidate SSL interactions are found by

What’s new?

While targeting one gene in cancer therapy has often only moderate effects, targeting a gene pair can lead to synthetic sick-

ness or lethality (SSL), significantly decreasing the tumor’s viability and defining new targets of combination therapy. How-

ever, the huge number of candidate gene pairs renders experimental testing of their interactions extremely difficult. Here, the

authors decipher synthetic interactions directly from integrated multi-level data derived from glioblastoma patients. They

search for gene pairs whose alterations are beneficial for the patient’s survival and prioritize candidate interactions based on

a quantitative score linked to patient survival. This approach provides a useful pre-selection for experimental verification, an

important step towards finding new and effective combination therapies.
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identifying genomic alteration and expression patterns relating
primary genes to each other, or primary genes to other genes,
whose expression was measured in the analyzed dataset. First,
for each primary gene, we screen all other genes for expression
changes concurrent with alteration of this gene. Concurrence
in the data is demonstrated by significant increase or decrease
of gene expression levels (i.e., concordance) exclusively in
those tumors that have either PM or CNV of the altered gene
(Supporting Information). Next, we utilize expression of the
genes that are concurrent with each primary gene to impute
its missing alterations (existence of either PMs, or CNV; Sup-
porting Information). In this way, for the 85 primary genes we
obtained a dataset of either true or imputed alteration values
in together 447 tumor samples, for which also both expression
and clinical data was measured.

Finally, we test each pair of primary genes for mutual
exclusivity. We apply a lower-tail hypergeometric test for
depletion of intersection between the known or imputed
alterations across the set of patients. To select significantly
mutually exclusive pairs, we use a Bonferroni-corrected
p-value threshold 0.05.

Mutation and expression states of genes in tumors. For
each primary gene g and tumor i we introduce a Boolean-

valued function A(g, i). A(g, i) is true, and we say g is on its
altered level in tumor i, if and only if (shortly, iff) g is altered
or imputed to be altered in i. Recall that, unlike for genes
altered by PMs, we require the expression of primary genes
altered by CNV to be consistently elevated or decreased upon
their own alteration. As it is easier to manipulate gene
expression rather than mutation, for each CNV-altered pri-
mary gene g and tumor i, we determined such a Boolean-val-
ued function A0(g, i) that depends on expression of g in i,
and correlates with the genomic alteration-based attribute
A(g, i) (Supporting Information). We say g is on its as altered
level in all tumors i for which A0(g, i) holds. Supporting In-
formation Figure S1 shows good general agreement of the
expression-based attribute with genomic alterations. 20 cases
of primary genes for which this agreement was not satisfac-
tory were left out of the analysis.

We next define that a Boolean-valued function U(g, i)
holds iff expression of g is up in tumor i, that is, has a value
greater than the 80%-th quantile of overall expression distri-
bution of g across all tumors. Note that definition of U(g, i)
is disease-specific; higher end of the expression range that is
observed in tumors, might, for example, happen to be the
base level in the normal tissue. Similarly, D(g, i) holds iff g is
down in i, that is, expression of g in i is lower than the
20%-th quantile of g’s expression across all tumors.

Figure 1. (a) Flow chart of our analysis. (b) Mutation and expression states of genes, SSL levels and tumor groups. Example of TP53 (g1)

and PLK1 (g2) interaction, fitting scenario I. Columns of the matrix stand for tumors, rows stand for real-valued expression of g2 (first row),

Boolean-valued functions indicating whether one of the genes is on a particular level in each tumor i (rows 2–6), and tumor groups (last

row). In this example, expression of PLK1 and somatic point mutations of TP53 are concurrent: PLK1 tends to be elevated, and is often up

(U(g2, i) is true; third row) in those tumors i where TP53 is mutated (where A(g1, i) is true, second row). The SSL level of TP53 (fifth row) is

equivalent to its altered level, and SSL(g1, i) is equivalent to A(g1, i). The SSL level of PLK1 (sixth row) is equivalent to its opposite, down

level (fourth row). Here, the Both group (yellow) gathers those tumors where the concurrence pattern observed for TP53 and PLK1 is vio-

lated, both genes are on their SSL levels, and where TP53 is altered, but PLK1 is down.
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Let g be a primary gene and g0 be a gene whose expression
was measured. Let m(g0, g) denote median g0 expression
across all tumors i for which A(g, i) holds. We set a Boolean-
valued function O(g0, g, i) to true iff expression of gene g0 in
i is on the opposite extreme (down or up) of its entire expres-
sion range than m(g0, g). Trivially, O(g0, g, i) implies either
D(g0, i) or U(g0, i) (example in Fig. 1b).

SSL scenarios and determination of SSL levels. We focus
on three scenarios in which SSL interactions may occur. Each
scenario assumes that either concurrence or mutual exclusiv-
ity pattern is observed in the data for a given pair of genes
g1, g2. Boolean-valued functions SSL(g1, i) and SSL(g2, i) are
defined, based on mutation states or expression levels of g1
and g2 (SSL levels; summarized in Table 1), in such a way
that in all tumors i for which both SSL(g1, i) and SSL(g2, i)
hold, the assumed pattern is violated.

In scenario I, exemplified in Figure 1b, expression of the
partner gene g2 is concurrent with alteration of the primary
gene g1. This scenario assumes that it would suffice to
manipulate the level of the partner gene to violate concur-
rence and impair performance of tumors. Thus, we set the
SSL level of the primary gene g1 to its altered or as altered
level, and the SSL level of the partner gene to its opposite
level. More formally, in case g1 is altered by PMs, SSL(g1, i)
is true if and only if A(g, i) holds (shortly, we write
SSL g1; ið Þ � A g1; ið Þ. In case g1 is altered by CNV, we instead
define SSL g1; ið Þ � A0 g1; ið Þ, since A0 g1; ið Þ is expression-based
and easier to induce experimentally than A g1; ið Þ. This corre-
sponds to identifying the SSL level of g1 with its alterations
as observed in tumors. On the other hand, for the partner
gene g2 we set SSL g2; ið Þ � O g2; g1; ið Þ. This corresponds to
identifying the SSL level of g2 with its expression level that is
opposite to the level acquired in tumors upon the alteration
of g1.

In scenario II, the primary gene g1 and its partner g2 are
also concurrent, but here it is assumed that both g1 and g2
need to be manipulated to impair tumor performance. In the
case the primary gene g1 is altered by CNV, we know it is
concordant with its own expression. In this case we set the
level of g1 to opposite, and define SSL g1; ið Þ � O g1; g1; ið Þ for
each tumor i. For g1 altered by PMs, which are not correlated
with expression changes, we set its SSL level to down, and

define SSL g1; ið Þ � D g1; ið Þ. In either case, we set the SSL
level of the partner gene g2 to opposite, and define
SSL g2; ið Þ � O g2; g1; ið Þ.

Finally, scenario III assumes mutual exclusivity of two
alterations. Here, both genes in the pair are primary. For
each gene g in the pair, its SSL level is set to its altered, or as
altered level, and we define SSL g; ið Þ � A g; ið Þ or
SSL g; ið Þ � A0 g; ið Þ, depending on whether g is altered by
PMs or CNV, respectively. In the following, we assume that
candidate SSL interactions are pairs of genes that follow the
pattern assumed by, and have their SSL levels defined accord-
ing to these three scenarios.

Survival analysis for evaluation and ranking of SSL

interactions

We apply survival analysis32 to develop scores for evaluating
and ranking of the candidate SSL interactions. For each such
SSL interaction, we divide the analyzed tumors into four dis-
joint groups, denoted Both, G1, G2 and Neither, depending
on the corresponding SSL levels (example in Fig. 1b). G1 is
defined as the set of tumors where the primary gene is on its
SSL level but the partner gene is not. Formally, for the pair
of genes g1, g2, G15 ijSSL g1; ið Þ�:SSL g2; ið Þf g. G2 is defined
for the partner analogously. Both is defined as the group of
tumors with both genes on their SSL levels at the same time,
that is, Both5 ijSSL g1; ið Þ�SSL g2; ið Þf g. Neither is the group of
remaining tumors. Intuitively, scoring of SSL candidates is
performed by treating the group Neither as the reference.
The score assesses whether the difference in survival of car-
rier patients between Both and the Neither is larger than
expected from differences between G1 and Neither as well as
between G2 and Neither.

Quantifying SSL. Let t denote the time duration from the
moment of cancer diagnosis, 0 � t � tmax , where tmax is the
maximum monitoring time across all patients in the analyzed
cohort. Given a candidate SSL interaction, we are interested
in survival of patients carrying tumors in the four groups
Both, G1, G2 and Neither, defined for this interaction.
Namely, we estimate the survival function S(t), which is the
cumulative probability of survival up to time t (the probabil-
ity that the patient will die after a time point t). The survival
data for cancer patients is often right censored (e.g., 23% of

Table 1. All variants of scenarios and relevant SSL levels considered in this work

SSL primary SSL partner

Pattern Scenario PM-altered CNV-altered PM-altered CNV-altered

Concurrence I Altered As altered Opposite Opposite

II Down Opposite Opposite Opposite

Mutual exclusivity III Altered As altered Altered As altered

We assume that a candidate SSL pair of genes follows one of three scenarios (column Scenario). According to the scenarios, a particular genomic
alteration and expression pattern (Pattern) should be observed for the pair. SSL levels denote such status of the primary gene (SSL primary) and its
partner (SSL partner), which violate their pattern and potentially decrease tumor performance. SSL levels are defined in different variants depending
on whether the genes are altered by somatic point mutations (subcolumn PM-altered) or by CNV (CNV-altered).
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the glioblastoma dataset): some patients are still living or
stopped being monitored before death, and for them only the
time that passed from the diagnosis to the last follow-up is
known. We thus apply Kaplan–Meier estimation33 of the sur-
vival function, denoted Ŝ tð Þ, separately for the four groups
Both, G1, G2 and Neither. Next, for each patient group, we
compute its restricted mean lifetime,34 denoted l. l is an
equivalent of expected lifespan that is limited to the moni-
tored time interval, and is defined as an integral of the sur-
vival function up to the maximum monitoring time T, that is
common for all groups compared in the analysis, T � tmax .
Here, it can be approximated by summing the Kaplan-Meier
estimates Ŝ tð Þ of the survival function:

l5

Z T

0
S tð Þ �

XT

0
Ŝ tð Þ:

We approximate the performance of patients from group G
in the set Both, G1, G2 with a ratio lG=lNeither ; where lG is
the restricted mean computed for group G. Consequently, the
performance f G of tumors in group G is assessed as an
inverse of the carrier patients0 performance, so
f G5lNeither =lG: Finally, we propose a SSL measure, which
we call S-score. For a given SSL interaction, S compares the
performance of tumors having both genes on their SSL levels
defined for this interaction, to the product of performances
of tumors having exclusively one of the genes on its SSL
level. Formally, S is defined as:

S5log
f Both

f G1f G2

� �
5log

lG1lG2

lBoth lNeither

� �

S is negative when the performance of the tumors in
group Both is lower than the expected product of the individ-
ual performances of tumors in G1 and G2. Thus, negative S
indicates a SSL interaction in the tumors, which is beneficial
for the patients. Conversely, the score is positive when the
tumors in Both are better off than expected from this prod-
uct, and indicates a synthetic healthy or viable interaction in
tumors, which is detrimental for patients.

To define the set of plausible SSL interactions for the glio-
blastoma cohort we applied a S-score threshold 20.4, and
discarded all interactions with the S-score higher than this
threshold. The threshold corresponds to a 1.5-fold decrease
of tumor performance in the Both group as compared to the
expected performance. Additionally, we conservatively filtered
out candidate interactions with the Both group smaller than
10 tumors and a small subset of interactions that could
potentially result in survival estimations of the Both group
that are over-pessimistic for the tumors (Supporting
Information).

Results
Here, we detail the results of each analysis step for the glio-
blastoma dataset (Fig. 1a). Out of 85 primary genes we

initially selected (Methods), 82 were altered by CNV, con-
cordant with their own expression, and three genes were
altered by point mutations. The prevalence of CNV-altered
primary genes shows their critical importance in glioblas-
toma, and thus the great potential of therapies aimed at those
alterations. As selection was separate for point mutations and
for CNV alterations, a gene could be selected twice (e.g.,
EGFR). This, however, is desired, since the same gene could
be in SSL interactions with different partners depending on
the type of its alterations. Next, the dataset was scanned for
genes that are in candidate SSL interactions with the primary
genes (Methods). Identification of alteration and expression
patterns resulted in 17,390 concurrent and 96 mutually exclu-
sive gene pairs. Determination of SSL levels according to
three SSL scenarios delivered 14,045 candidate SSL interac-
tions fitting scenario I, 17,390 interactions fitting scenario II,
and 49 fitting scenario III (altogether 31,484 interactions).

The candidate SSL interactions were ranked by their S-
scores, prioritizing interactions with the most prominent SSL
effect according to carrier patient survival (see Supporting In-
formation Fig. S2 for histogram of the S-scores). For each
candidate interaction, its S-score compares the performance
of the tumors with both genes on their SSL level (i.e., in the
Both group) to what is expected from having only one gene
on its SSL level. The performance of tumors was estimated
using the reverse restricted mean lifetime of their carrier
patients, and treating patients with neither of the genes on
their SSL levels as a reference (Methods). Further threshold-
ing and filtering resulted in selection of 1,956 plausible SSL
interactions (Supporting Information Table S1; figures avail-
able online at www.molgen.mpg.de/�szczurek/SLcancer/). A
number of 867 plausible interactions were identified in sce-
nario I, 1,084 in scenario II, and five interactions in scenario
III. There are 74 unique genes altered by CNV either on the
first or the second components of the interacting gene pairs,
and only two altered by point mutations (no plausible pairs
with PTEN as component were identified). Our analysis pro-
vides together 1917 plausible SSL interactions containing
CNV-altered genes (either on the first or second component).
These interactions hold the potential for SSL-based combined
therapy that would directly target the widespread CNV alter-
ations in glioblastoma.

Hints for known synthetic lethal interactions in

glioblastoma

To inspect our results for the known SSL interactions, we
collected eleven experimentally verified SSL partners of three
primary glioblastoma genes: TP53, EGFR and PTEN, as
reviewed by Weidle et al.9 We are not aware of any experi-
mentally verified synthetic lethal interaction with genes that
are altered by CNV.

First, we found PLK1 to have expression significantly and
exclusively concurrent with point mutations of TP53. PLK1
was shown to be consistently up-regulated under mutations
of primary gene TP53, and its inhibition significantly
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decreased viability of TP53 mutant cancer cells.35 As
expected, disturbance of this concurrence (scenario I) deliv-
ered a very low, plausible S-score (Table 2). Another SSL
interaction identified as plausible, EGFR and AKT2, is known
to interact genetically in glioblastoma: combinatorial knock-
down of EGFR and AKT2 resulted in tumor-specific apopto-
sis and led to significantly increased survival in intracerebral
mouse models.36 As its discovery, the phenomenon of SSL
interaction between EGFR and AKT2, but not AKT1 nor
AKT3 (Akt family kinases with a similar function), remained
unexplained. Our results give a highly suggestive clue for this
phenomenon: as shown in Table 2, from this family of ki-
nases only expression of AKT2 is concurrent with EGFR
mutation, fitting scenario II.

Supporting Information Table S2 lists the remaining nine
known SSL interactions, which do not match any genomic
alteration and expression pattern. Thus, those interactions
cannot be explained by our scenarios, and were not prese-
lected as input candidate SSL interactions for our analysis.

Plausible SSL interactions with overall influence on

survival in glioblastoma

By definition, our S-score is helpful in identifying plausible
SSL interactions, for which tumors having both genes on
their SSL levels (tumors in the Both group; Methods) perform
worse than expected from having only one gene on its SSL
level (G1 or G2 group). We now ask a different question, and
aim at such a subset of the plausible SSL interactions for
which survival of patients with tumors in the Both group
improves as compared to all other patients (in G1, G2 or Nei-
ther). These interactions have an overall influence on patient
survival and as such are of the most clinical interest.

To this end, we applied Cox modeling,37 and tested which
of the interactions are good survival predictors. Intuitively,
Cox models estimate how strongly predictors in a given set
relate to patient survival. The influence of each predictor is
evaluated using hazard ratio38 and its significance is esti-
mated using the Wald0s test.39 This approach allowed us to
compare the interactions to a predictor based on patient0s
age, with younger patients expected to have a significantly
better outcome in glioblastoma.40

Testing was performed on a preselected subset of interac-
tions. First, we chose such 1,901 of all plausible SSL interac-
tions (97%), for which tumor performance in the Both group
is lower than one, indicating that survival of patients in the
Both group is better than of those in Neither. Interestingly,
for 916 (48%) of these interactions, performance is lower
than one exclusively for the Both group. In those cases the
synthetic effect is very profound: the two individual SSL lev-
els are advantageous for tumors, but combining them to-
gether decreases tumor performance and reinforces patients.
Second, out of the 1,901 interactions we further selected a
small set of 440, which satisfy the proportional hazard
assumption31,32,41 (required for Cox models; Supporting In-
formation), and which showed a significant survival differ-
ence between patients in the Both group and all other
patients (log-rank test p-value< 0.05).

For each of the 440 SSL interactions, we made a predictor
variable with value 1 for patients in the Both group, and 0
otherwise. Next, we fitted bi-variate Cox models, using this
together with a predictor based on discretized patient0s age
(with a threshold of 40 years) as a reference. 274 of those
SSL-based predictors (62%) have a profound influence on
survival in glioblastoma (Wald0s test p-value< 0.05, Support-
ing Information Table S3). All of them are contained in a
larger set of 418 predictors (95%), for which the fitted fold
decrease of hazard was larger than the decrease of hazard
associated with younger age. The hazard decrease caused by
age was on average equal 1.4, and consistent across all mod-
els (standard deviation 0.03). For the SSL-based predictors,
the mean hazard decrease was stronger, and equal to 1.8
(standard deviation 0.35). Taken together, Cox modeling
identifies SSL interactions with very strong evidence for influ-
ence on overall glioblastoma survival.

Finally, we selected 40 (out of 274) such interactions that
are the most feasible to verify experimentally, and have SSL
levels that clearly correspond to knock-down or over-expres-
sion of genes as compared to the healthy control (removing
interactions with SSL levels that effectively correspond to the
level in healthy tissue; for example, see Supporting Informa-
tion Fig. S3). Table 3 lists 20 such interactions underlying
predictors with most impact on hazard in glioblastoma,

Table 2. Insights into known pairs

Primary Partner Cor. comb. p S SSL primary SSL partner Scenario

TP53 PLK1 5.7e203 20.6 Altered Opposite (down) I

EGFR AKT2 1.8e205 20.58 Opposite (down) Opposite (down) II

AKT1 1 – – – –

AKT3 1 – – – –

Results for two known SSL pairs (white background), and two AKT kinases, known not to be SSL with EGFR (gray background). Column Cor. comb.
p—Bonferroni-corrected combined p-value, serving to signify the concurrence of the partner’s expression with the alteration. The S-score (column S),
the SSL levels (columns SSL primary and partner), and the fitting scenario are reported where available. Bold marks values that meet our criteria for
selection of SSL interaction candidates (using the p-values) and selection of plausible interactions (using the S-score). For the two known pairs, we
identify the correct scenario and correct SSL levels. Neither AKT1 not AKT3 satisfy our criteria for candidate SSL interactions and thus for them the
S-score and scenario are not available.
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fitting scenario I and scenario II (top ten each; see Support-
ing Information Table S4 for the full list). Figure 2 presents
the Kaplan–Meier plots and SSL levels for two top selected
interactions. The survival curves clearly illustrate the advant-
age of having both interacting genes on their SSL levels with
respect to the rest of the patients.

SSL networks

Next, we constructed a network of SSL interactions over the
set of 274 plausible SSL interactions that were indicated via
Cox modeling to have a positive impact on overall patient
survival in glioblastoma. The largest part of the network
spans 213 interactions that fit scenario II and have the pri-
mary gene altered by CNV (Supporting Information Fig.
S4A). Remarkably, the network has a visible hub structure.
There are several genes for which multiple SSL partners with
overall survival importance have been identified, predomi-
nantly SEC61G (55 partners), FKBP9L (21), MTAP (18),
CHIC2 (16), CDKN2B (11) and PSPH (11). Another subnet-
work spans 58 interactions that are also altered by CNV, but
fit scenario I (Supporting Information Fig. S4B). Here, the
dominating hubs are EGFR (with 40 partners), MTAP (6),
and PDGFRA (5). Only three interactions make up the small

subnetwork that fits scenario I, with all edges connecting
TP53 altered by point mutations to its partners (Supporting
Information Fig. S4C).

Cox modeling validates the S-scores

Finally, we utilized Cox modeling for validation of the
S-scores, verifying that interactions with extreme S-scores are
enriched in predictors with high impact on overall survival.
In contrast to the S-score, neither the hazard ratio nor the
Wald0s p-value estimated for the Cox models are based on
restricted mean, and thus they provide independent signifi-
cance measures. Here, we repeated selection of plausible SSL
interactions and subsequent Cox modeling for all 7,753 can-
didate SSL interactions with negative S-scores, which meet
our filtering criteria for validity, as, for example, minimal size
of the smallest patient group, but do not necessarily meet the
stringent S-score threshold 20.4 (see Methods). The set of
1,956 interactions selected in our main analysis (“Results”
Section) as plausible is the subset of those 7,753 interactions
that satisfies this threshold. From the set of 7,753 interactions
we further selected 852 as predictors for consequent bi-vari-
ate Cox modeling, together with a predictor based on age.
Again, the 440 predictors analyzed in “Plausible SSL

Table 3. Top plausible SSL pairs with significant impact on overall survival in GBM

Primary Partner HR Wald’s p S EM primary EM partner Alt. Sc.

EGFR IFIH1 1.97 0.001 20.83 – Knock down CNV I

EGFR TRIM21 1.86 0.007 20.69 – Knock down CNV I

PDGFRA OIP5 2.21 0.015 20.73 – Knock down CNV I

EGFR NOLC1 1.96 0.016 20.83 – Over-expression CNV I

EGFR INA 1.87 0.016 20.86 – Over-expression CNV I

TP53 SLC1A5 2.98 0.016 20.65 – Knock down PM I

EGFR SUPV3L1 2.09 0.019 20.87 – Over-expression CNV I

EGFR ART3 1.75 0.03 20.42 – Knock down CNV I

EGFR TRIM5 1.87 0.03 20.79 – Knock down CNV I

EGFR MMS19 1.78 0.031 20.65 – Over-expression CNV I

FKBP9L MOSC2 2.16 0.001 20.87 Knock down Knock down CNV II

FKBP9L GALNT13 2.4 0.001 20.85 Knock down Over-expression CNV II

FKBP9L MEOX2 2.12 0.002 20.78 Knock down Knock down CNV II

FKBP9L VAV3 1.87 0.006 20.88 Knock down Knock down CNV II

SRD5A3 FAM83D 2.66 0.008 20.88 Knock down Knock down CNV II

FKBP9L SHOX2 2.12 0.01 20.85 Knock down Knock down CNV II

B4GALNT1 TMEM196 1.9 0.011 20.84 Knock down Knock down CNV II

FKBP9L P2RY1 2.3 0.012 21 Knock down Knock down CNV II

B4GALNT1 MOV10 1.94 0.013 20.95 Knock down Over-expression CNV II

FKBP9L GMPR 2.03 0.019 20.77 Knock down Knock down CNV II

SSL pairs with most impact on hazard in glioblastoma, verifiable in the lab by over-expression or knock down of genes, fitting scenario I and sce-
nario II. For each pair of primary gene and its partner, significance of a predictor based on their SSL levels was assessed using two-variate Cox mod-
eling, together with a predictor based on patient’s age. The estimated fold-decrease of hazard ratio (column HR) and p-value in the Wald’s test
(Walds’s p) are reported. In addition, for each pair we list the S-score (S), experimental manipulation required for validation (EM primary and EM
partner), type of the alteration of the altered gene (Alt.) and scenario (Sc.). C
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interactions with overall influence on survival in
glioblastoma” Section are subset of these 852, based on the
S-score threshold 20.4.

Figure 3 shows that the S-scores for SSL interactions
resulting in significant predictors are significantly enriched
on the low end of the entire negative S-score range
(Wilcoxon0s test enrichment p-value 6.7e229; Supporting In-
formation), similar to the interactions that resulted in hazard

decrease stronger than the decrease associated with age (p-
value 4e235). Supporting Information Figure S5 shows high
correlation of S-scores with hazard ratio (Pearson correlation
20.64) and with Wald0s p-values (0.44). These results also
suggest that those interactions for which the Cox models can-
not be constructed (for which the proportional hazard
assumption does not hold), but which have low S-scores, are
potentially of high survival importance.

Figure 2. Two most plausible SSL interactions with significant impact on overall survival in glioblastoma. Kaplan–Meier plots in the first

row show survival curves for four patients groups, Both (having both genes on their SSL levels in tumors; plotted in red), G1 (having only

the first gene on its SSL level; blue), G2 (having only SSL level of the second gene; orange), and Neither (black). f denotes performance of

each group. On all plots the area under the survival curve for the Both group is significantly larger than under the reminding three curves.

Similarly, the estimated performance of tumors in the Both group is much smaller than expected from performances in the groups G1 and

G2. Boxplots in the second row show expression value distributions for the two interacting genes (g1, g2). White boxplots: distribution of

expression values across all tumors. Gray: expression in those tumors, that have gene g1 on its altered/as altered level (all tumors i that

satisfy A(g1, i) or A0(g1, i)). Blue boxplots correspond to the opposite levels. Blue boxplots, left: expression in tumors i that have g1 on the

opposite level and satisfy O(g1, g1, i); right: in tumors i that satisfy O(g2, g1, i). Red: expression values in those patients that have both

genes on their respective SSL levels. (a) Interaction EGFR, IFIH1 fits scenario I, EGFR is altered by CNV, and IFIH1 has increased expression

values upon the alteration of EGFR. Thus, the SSL level of EGFR is set to the as altered level, while the SSL level of IFIH1 is set to opposite

(in this case, opposite is equivalent to down). (b) Interaction FKBP9L, MOSC2 fits scenario II. Expression of FKBP9L is elevated compared to

the range of all its expression values upon its own alteration. The level of MOSC2 expression in those patients that have FKBP9L altered is

also increased. The SSL level of FKBP9L is set to opposite (here equivalent to down), as is the SSL level of MOSC2.
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Discussion
This work presents statistical analysis that combines point
mutations, CNV and gene expression together with carrier
patient survival for a cohort of glioblastomas. We identify
candidate SSL interactions based on mutual exclusivity and
concurrence patterns, and propose the S-scores for their eval-
uation and ranking. The methodological advantage of the S-
scores is that they are available for a large fraction of all
interactions for which the proportional hazard assumption
does not hold and for which significance tests that depend
on this assumption would not be valid. This decision is sup-
ported by Royston and Parmar,42 who advocated the use of
restricted mean survival time in cases when this assumption
is doubtful. Moreover, the S-score, constructed specifically to
measure SSL interaction, combines survival comparisons
between four tumor groups at the same time (Both, G1, G2
and Neither).

Mutual exclusivity between genes has been extensively
studied before26,27,43,44 and was indicated24 to either point to
their synthetic lethality or to their involvement in the same
pathway. Unlike the previous approaches, our analysis is able
to distinguish these two cases, since only the former will be
reflected in patient survival and our S-scores.

Our analysis does not exclude the fact that the combined
treatment based on the selected plausible SSL interactions
may also harm the normal cells, and this should be investi-
gated experimentally. As shown in “Plausible SSL interactions
with overall influence on survival in glioblastoma” Section,
our approach can easily be adjusted to consider only such
SSL levels that are practically verifiable in the lab. Experimen-

tal verification of a given SSL interaction should involve set-
ting both genes to their SSL levels, for example in cancer cell
lines or in mouse xenografts, and monitoring cell/tumor via-
bility as compared to only either of the genes on its SSL level.
Clearly, there is a long way from a verified SSL interaction to
the actual drug discovery. To resolve how the required SSL
levels could be induced for treatment of human tumors, their
protein product localization, post-transcriptional modifica-
tions, and turnover should be assessed in further experimen-
tal rounds.

We foresee that enlarged sample datasets that are cur-
rently being generated for various cancers will increase the
power of our approach. For example, the fact that a given
interaction was not identified as SSL does not necessarily
imply that it is not, since we discarded a large number of
candidate interactions with small sized patient subgroups.

We note that there is room for future research, for exam-
ple a deepened analysis of interactions with positive S-scores,
which in the current work were discarded. Those interactions
may be of diagnostic relevance since they point at gene states
(their relevant SSL levels) that are together associated with
unexpectedly bad outcome. Planned improvements include
data model-driven definition of the SSL levels, and signifi-
cance assessment of the S-scores. Still, our results with the
current approach already very clearly indicate that we are
able to decipher traces of SSL interactions hidden in the tu-
mor genomic data.
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