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Recently, an enrichment of identical matching sequences has been found in many eukaryotic genomes.

Their length distribution exhibits a power law tail raising the question of what evolutionary mechanism or

functional constraints would be able to shape this distribution. Here we introduce a simple and

evolutionarily neutral model, which involves only point mutations and segmental duplications, and

produces the same statistical features as observed for genomic data. Further, we extend a mathematical

model for random stick breaking to analytically show that the exponent of the power law tail is �3 and

universal as it does not depend on the microscopic details of the model.
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Ever since Susumu Ohno wrote his influential book to
highlight the role of gene duplication in evolution [1], it
has been well recognized that duplication and subsequent
change of genetic material allow the exploration of evolu-
tionary trajectories not accessible by point mutations only.
Having completed the sequencing of the human genome,
we know today that about 5% of primate genomes are
composed of so-called segmental duplications often span-
ning tens of kbp [2,3]. The majority of those duplications
are thought to have no direct function. In contrast to the
very rich discussion about ‘‘the evolutionary fate and con-
sequences of duplicated genes’’ [4], the destiny of dupli-
cated nonfunctional DNA segments is in the majority of
cases clear: they will dissolve into the genomic background
by random mutations. However, as we show in this Letter,
this dispersion process generates interesting statistical
properties of the length distribution of identical sequence
segments in genomes, which exhibits scale invariance with
an integer exponent. We argue that this distribution is the
characteristic mark of processes that are continuous and
perpetual on evolutionary time scales and generate
segmental duplications of genetic material and disperse
them by random mutations into the genomic background.

Just after its duplication, a duplicated sequence segment
will start out 100% identical to its original; subsequently
random nucleotide substitutions and small scale insertions
or deletions will break it into two and then more pieces,
each being still identical to the corresponding segment in
the original. This dispersion process can easily be observed
in sequenced genomes when considering maximal seg-
ments of exactly matching nucleotides, i.e., copies of
sequence segments that are equal over their entire length

but differ on both ends. Such identical matches can easily
be found using, for example, a gapless local alignment
algorithm with infinite mismatch costs [5]. More advanced
techniques employing suffix trees [6] or word counts are
considerably faster for counting long and short segments,
respectively. Independent of the algorithm, a self-
alignment will include the global match along the diagonal
of the alignment grid but will also show smaller (off-
diagonal) matches representing duplicated segments along
the sequence (see inset in Fig. 1 and the Supplemental
Material [7] for more details on the computational proce-
dures). For our purposes, we are not interested in the
positions of those sequence segments but focus solely on
their length distribution. As an example, we present the
match length distribution (MLD) of the human genome in
Fig. 1 [8,9]. We show two genomic distributions, before
and after filtering for repetitive elements. Such elements
cover about 45% of the human genome [9–11]. They have
been copied into our genome multiple times in short bursts
during evolution; their duplication dynamics is therefore
remarkably different from the dynamics of (often) unique
segmental duplications [3].
For small lengths of matching segments r < 10, the

distribution is dominated by our neutral expectation for
matching segments in random iid sequences (blue curve
in Fig. 1). It is given by an exponential function in r

miidðrÞ ¼ 1

2
L2ð1� pÞ2pr; (1)

where L is the total sequence length and p the probability
of matching nucleotides, which is equal to 1=4 for an iid
sequence with equal proportions of nucleotides. Note that
this exponential MLD leads to the well-known Gumbel
distribution for bestmatches in an alignment of iid sequen-
ces, which is commonly used to assess the significance of
local alignments [12,13].
Excluding duplications due to insertions of repetitive

elements, the observed MLD carries an interesting
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statistical signature; i.e., it is well described by a power law
with exponent �3 (black curve in Fig. 1), which can also
be found in other species and was first reported by Gao and
Miller [14]. Given this empirical result and considering
that it only holds over one order of magnitude, it is rea-
sonable to question if a meaningful model can be devel-
oped that also explains this finding mathematically; see
Ref. [15] for a discussion on power law relationships in
empirical data. However, although the genomic data might
not be conclusive with respect to the exact functional form
of the tail of the MLD, we will show in the following that a
power law with exponent �3 can be understood through a
simple sequence evolution model. The MLD of our model
can be analytically computed using an integrated or time-
averaged version of the stick-breaking model, a model
which was first developed to describe the fragmentation
process of polymers [16].

A sequence evolution model.—We introduce a sequence
evolution model that includes two basic dynamic pro-
cesses: point mutations and duplications of sequence
segments. Both processes act on a sequence of nucleotides
A ¼ ða1; . . . ; aLÞ of length L with ai 2 fA;C;G;Tg

representing the four possible states. The dynamics is
Markovian and the mutation process changes the sequence
A ! A0 at one random position k:

a0i ¼
�
a0 with a0 � ai for i ¼ k;
ai otherwise:

(2)

This process happens with rate � per site; i.e., in an
infinitesimal small time interval dt it occurs with proba-
bility �Ldt.
The second process in our model generates segmental

duplications. A random segment of consecutive nucleoti-
des of fixed length K � L starting at a random position c
in A, (ac; . . . ; acþK�1), is copied and pasted to a random
position v. The rest of the sequence stays unchanged; the
new sequence A0 is given by

a0i ¼
�
ai�vþc for iwithv � i < vþ K;
ai otherwise:

(3)

This process overwrites the K preexisting nucleotides avþk

for 0 � k < K at the target site, and the total sequence
length L stays constant. For simplicity we assume periodic
boundary conditions and identify a1 with aLþ1. Segmental
duplications occur with rate � per site, which is assumed to
be smaller than the mutation rate.
Using only these two basic processes—mutations and

segmental duplications—we will be able to generate
sequences that exhibit power law match length distribu-
tions as they are observed in the human genome.
Match length distribution of the simulated sequences.—

Given the above dynamics it is easy to simulate sequences
and perform a self-alignment to find identical matching
segments. We start each simulation with a random iid
sequence with equal nucleotide frequencies. This sequence
is then subjected to the above dynamics for a time long
enough for each nucleotide to be mutated at least once on
average and for a stationary state to be reached. The
resulting sequence is then aligned to itself to find matching
sequence segments. See the Supplemental Material [7] for
computational details.
The MLDs for several simulations using generic pa-

rameters are shown in Fig. 2. The sequence length in all
these simulations was L ¼ 106. The distributions share the
same behavior for small lengths, r & 15, which is domi-
nated by the presence of small random matches whose
distribution is an exponential as described in Eq. (1) with
p ¼ 1=4 and is plotted in the same figure.
Because of the continuous generation of segmental

duplications, we also observe many more exact matches
of length r > 20 than would be expected for random
sequences. Interestingly, the length distributions follow a
power law with exponent�3, as observed in genomic data
from the human genome. Varying the parameters describ-
ing mutations and segmental duplications, � and �, does
not change the exponent of the power law, i.e., the slope in
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FIG. 1 (color online). The match length distribution for a self-
alignment of the human genome. The MLD for the complete
genome excluding repetitive sequences (in total L ¼ 1:23 Gbp)
is shown in black and shows the described power law tail. The
MLD for a human sequence of the same length but including
repetitive elements is shown in red. For small lengths both
distributions coincide and are dominated by random sequence
matches, which occur in randomly shuffled sequences (blue
curve). The dashed line represents the function L=r3, where r
is the match length. The inset gives an example for an alignment
grid of a self-alignment of a sequence of length 12. Matching
nucleotides are marked by diagonal lines. The global alignment
is shown in red along the main diagonal. Off-diagonal matches
are depicted in black. The grid is symmetric and only matches
above the main diagonal are counted. In this example there are
six matches of length one, three matches of length two, and one
match of length three.
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the double logarithmic plot in Fig. 2. Observing the shifts
of different distributions for varying � and � along the
vertical axis, the prefactor of all distributions seems to
be proportional to �=�. The other two parameters, the
sequence length L and the length of segmental duplications
K, have an influence on the prefactor of the power law tail
but not on its exponent; see the Supplemental Material [7].
These observations can be explained by the following
analytic considerations.

The stick-breaking process for the dispersion of a single
duplication.—Let us first focus on the evolution of a
single segmental duplication. Just after its generation
we will find one full length 100% identical match of
length K. This match will then be disrupted by muta-
tions, which occur randomly in one of the two copies of
the duplicated sequence. This fragmentation process of
matching sequence segments can be mathematically
described by the so-called stick-breaking process, a pro-
cess that was once introduced to understand the fragmen-
tation of long polymer chains [16]. In this framework,
each segmental duplication is considered to be a full
length stick, which is then broken up into smaller sticks.
Following Ziff and McGrady [17], the dynamics of the
length distribution of fragmented sticks in time can be
solved analytically. For simplicity we assume that the
stick length r is a continuous parameter and that muta-
tions only break a stick without shortening it. If we
denote the length distribution of sticks at time t after
the segmental duplication event by mðr; tÞ, then it fulfills
the following differential equation

@mðr; tÞ
@t

¼ �2�rmðr; tÞ þ 4�
Z 1

r
mðs; tÞds; (4)

where the first term on the rhs represents the loss of
matches due to mutations with rate � in one of the two
copies with total length 2r. The second term describes
the gain of matches due to a mutation in a longer match,
which has to occur in one out of four possible locations,
each being in distance r from one end of the two
matches. At time t ¼ 0 we start with one stick of length
K, formalized by the initial condition mðr; 0Þ ¼
�ðr� KÞ, where �ðxÞ denotes the Kronecker delta func-
tion. The time dependent solution of this differential
equation with this initial condition is known to be

mðr; tÞ ¼ ½4�tþ 4�2t2ðK � rÞ� expð�2�rtÞ (5)

for 0< r < K, mðr; tÞ ¼ expð�2�KtÞ for r ¼ K, and
mðr; tÞ ¼ 0 otherwise [17]. For large t and small r this
is basically an exponential function in r.
The dispersion of a multiple duplication.—To finally

understand the occurrence of power law tails in the match
length distributions in simulated and genomic sequences,
note that in these contexts we are likely to observe the
remaining pieces of multiple ancient segmental duplica-
tions of different ages. Depending on their age, these
segmental duplication will be broken into a different num-
ber of pieces. Assuming that duplications occur continu-
ously we have to consider the time-averaged match
distribution. Up to a normalization factor this distribution
is equal to the integral

Z 1

0
mðr; tÞdt ¼ K

�r3
(6)

for 0< r < K and equal to 1=ð2�KÞ for r ¼ K. This
expression already shows the desired power law with the
observed exponent. The appearance of a scale-invariant
distribution in a process that is observed at different time
points is not unexpected [18]. Surprisingly, in our inte-
grated stick-breaking model the exponent is universal in
the sense that it does not depend on the microscopic details
of the model: the mutation and duplication rates.
The stationary state of a stick-breaking process with

continuous duplications.—To deduce the correct normal-
ization factor for the distribution [Eq. (6)], we consider a
stick-breaking process, in which according to our evolu-
tionary model segmental duplications of length K are
continuously generated with rate � per site. The dynamics
in Eq. (4) for the distributionmðr; tÞ then gains a third term
on the rhs that describes the influx of new matches of
length K in a system of size L,

@mðr; tÞ
@t

¼ �2�rmðr; tÞ þ 4�
Z 1

r
mðs; tÞds

þ �L�ðr� KÞ: (7)
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FIG. 2 (color online). The MLD for various values of � and
�. For this plot we choose �0 ¼ 0:1, �0 ¼ 0:001, L ¼ 106,
K ¼ 1000. The two blue and red distributions are from sequen-
ces with the same ratio �=�. Using dashed lines we show
theoretical predictions of the continuous (gray) and discrete
(black) stick-breaking model. The dotted line represents the
predicted MLDs for two random iid sequences of the same
length.
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In this setting we are interested in the stationary state
distribution m1ðrÞ and solve the differential equation (7)
for @m=@t ¼ 0. The solution is

m1ðrÞ ¼ �K

�

L

r3
(8)

for r < K and m1ðrÞ ¼ �L=ð2�KÞ for r ¼ K.
Corresponding lines are shown in Fig. 2 and match our
simulated data very well. We can match our observations
even better by considering a discrete version of the stick-
breaking model; see the Supplemental Material [7]. In
essence these considerations yield a finite size correction
to the asymptotic power law behavior in Eq. (8) for small r;
see Fig. 2 for examples.

Considering the MLD per site, m1=L, the prefactor
A :¼ �K=� can be interpreted as the length of newly
duplicated genomic sequence relative to the amount of
mutated nucleotides. For the human genome this factor is
close to one; see Fig. 1. This indicates that the amount of
information that is ‘‘backed up’’ by segmental duplications
is on average equal to the amount lost due to mutations.
Note, however, that the spacial distribution of segmental
duplications in the human genome is very complex and not
specific to coding sequences. Therefore, this process might
not save coding sequences from deterioration per se. For
present day biological evolution, natural selection is proba-
bly a more powerful force to maintain and evolve genomic
information over long periods of time.

Discussion.—We introduced a simple evolutionary
model of segmental duplications and mutations that is
able to give us insights into the occurrence of a power
law tail in the length distribution of exact matches in self-
alignments of genomic sequences. Using an extended ver-
sion of the stick-breaking process for fragmentation we can
also correctly deduce the empirically observed exponent
�3 of this power law dependency. For the human genome,
this tail comprises exactly matching sequences from length
25 to about 1000 bp; see Fig. 1. From our analysis we
estimate that a total of about 50 Mbp (approximately 1.6%
of the human genome) is part of at least one such match.
The longest matching sequence segments are about 1000
bp in length, which suggests that the majority of segmental
duplications spawn probably a few kbp, consistent with
previous studies [2,3]. Furthermore, the prefactor of the
power law tail in the MLD of the human genome is A � 1.
From this observation, and assuming that mutations occur
with a rate of about 1.5% per 10 million years [3], we can
easily derive that a total number of about 4.5 Mbp per
million years have been duplicated in the human lineage.
This estimate agrees well with the one given in Ref. [3].
Assuming further that a typical duplication is 10 kbp long,
the duplication rate �would be of the order of 1:5� 10�13

per bp and year. When restricting our analysis to coding
sequences of the human genome, we find a similar power
law tail with the same exponent �3 in the MLD; see the

Supplemental Material [7]. Surprisingly, the prefactor A is
about five, which is most likely due to a lower nucleotide
substitution rate in these regions of the human genome.
Our model is very simple and uses fewer assumptions in

comparison to a recently introduced model [19] that
requires segmental duplications, whose length distribution
needs to follow a power law from the outset. In our model
the power law in the MLD can be derived without restric-
tive distributional assumptions and is solely generated
through the interplay of the continuous duplication and
mutation processes.
Further, we remark that, although similar in their defini-

tion of the underlying basic processes, our model is differ-
ent from so-called expansion-modification models [20,21],
which have been introduced previously to understand the
observations of long-range correlations of the GC content
along genomes [22]. The important difference is that in
these models sequences as short as one nucleotide are
inserted right next to its origin extending the total sequence
length. This way no long matches are seeded. It can easily
be tested that sequences that have been generated by an
expansion-modification process [23] do not show a power
law tail in the length distribution of identical matches. In
this respect, these two phenomena, i.e., power law length
distributions of matches and long-range correlations of the
GC content, need not necessarily appear together.
Our results have also consequences for the assessment of

the statistical significance of local sequence alignments of
related species. The appearance of a power law tail in the
length distribution of exact matches requires corrections
to the Gumbel distribution of optimal scores in local
sequence alignments. A quantification of the effects of
segmental duplications on the score statistics will provide
a better null model for local gapped alignment. However,
because most segmental duplications occur in series and
are interstitial [3], such corrections will probably only be
relevant for regions where segmental duplications accu-
mulated on evolutionary time scales.
In conclusion, we remark that in contrast to three-

dimensional objects, which also show scale-invariant
behavior in their fragment size distribution when broken
[24], in our one-dimensional system, objects, i.e., segmen-
tal duplications, need to be continuously generated and
broken up to give rise to the observed power law tail as a
superposition of exponential distributions for different
degrees of fragmentations. This condition of continuity
seems to be sufficiently met for segmental duplications in
the human lineage. This is not true for repetitive elements,
which have been copied into our genome in irregular
bursts. Therefore the match length distribution of the
non-repeat-masked genome, which is clearly dominated
by inter-repeat matches, does not have a power law tail
with exponent �3; see Fig. 1.
The good fit of our model to empirical data is indicative

of a constant accumulation of segmental duplications in the
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human genome, which are subsequently fragmented by
random mutations during evolution. This process can
mathematically be described by an extended version of
the stick-breaking model, which explains the existence
of the power law tail in the size distribution of fragments
and the universality of its exponent with fascinating
simplicity.
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