Angewandte mandmantion Chemie

Supporting Information
© Wiley-VCH 2013

69451 Weinheim, Germany

Synthesis and Reactivity of Metal Complexes with Acyclic (Amino)(Ylide)Carbene Ligands**
Elisa González-Fernández, Jörg Rust, and Manuel Alcarazo*

ange_201305311_sm_miscellaneous_information.pdf

Table of Contents

Experimental Procedures S2
Characterization of new compounds S2
NMR spectra S9
X-ray structure analyses S34

Experimental procedures:

General: All reactions were carried out in flame-dried glassware under Ar. All solvents were purified by distillation over the appropriate drying agents and were transferred under Ar. IR: Nicolet FT-7199 spectrometer, wavenumbers in cm^{-1}. MS (EI): Finnigan MAT $8200(70 \mathrm{eV})$, ESIMS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR Spectra were recorded on a Bruker AV 500, AV 400 or DPX $300 ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale.

All commercially available compounds (Acros, Aldrich) were used as received. The ylides $\mathbf{2 d} \mathbf{d}^{1}, \mathbf{2 f}^{2}, \mathbf{2 e}^{\mathbf{3}} 5^{4}, \mathbf{7}$ and $\mathbf{9}^{5}$ were prepared according to literature procedures. Gold (I) isonitriles $\mathbf{1 a}$ and $\mathbf{1 b}$ were prepared using the method described by Hashmi et. al. in quantitative yields ${ }^{6}$. Phenylisocyanide was prepared by the method of Weber et. al. from aniline ${ }^{7}$.

General procedure for AAYC-gold complexes bearing phosphorus ylides:

In a typical procedure, Gold (I) isonitrile $\mathbf{1}$ is suspended in toluene $(0.024 \mathrm{M})$ followed by addition of ylide $\mathbf{2}$ at the indicated temperature. After stirring the reaction for the referred time, the mixture was allowed to reach room temperature and the solvents filtered out. The remaining white solid thus obtained was then washed with small portions of pentane and dried under vacuum.

[^0]

4a

Compound 4a: Following the general procedure described above, a mixture of phenylisocyanide gold (I) chloride 1a ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) and 1-(Triphenylphosphoranylidene)-2-propanone $\mathbf{2 a}(38 \mathrm{mg}, 0.12 \mathrm{mmol})$ afforded pure $\mathbf{4 a}$ ($66 \mathrm{mg} .85 \%$) after a reaction time of 3 d at room temperature.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=14.54(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 6 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.65-$ $7.59(\mathrm{~m}, 8 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=200.9\left(\mathrm{~d}, J_{C-P}=36.0 \mathrm{~Hz}\right), 195.3\left(\mathrm{~d}, J_{C-P}=24.0 \mathrm{~Hz}\right), 144.1,134.5\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J_{C-P}=3.0\right.$ $\mathrm{Hz}), 129.8\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 129.1,126.6,125.8\left(\mathrm{~d}, J_{C-P}=91.6 \mathrm{~Hz}\right), 123.7,93.0\left(\mathrm{~d}, J_{C-P}=124.9 \mathrm{~Hz}\right), 31.7\left(\mathrm{~d}, J_{C-P}\right.$ $=2.3 \mathrm{~Hz}$) ppm. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=19.6 \mathrm{ppm}$. HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NOAuCIPNa:} \mathrm{676.084174;}$ found 676.084426. IR (neat) $\tilde{v}=680,690,706,721,736,749,756,875,901,983,998,1024,1052,1095,1133$, 1182, 1227, 1253, 1365, 1415, 1438, 1482, 1506, 1506, 1567, 1587, $3052 \mathrm{~cm}^{-1}$.

4b

Compound 4b: Following the general procedure described above, a mixture of phenylisocyanide gold (I) chloride $\mathbf{1 a}(41 \mathrm{mg}, 0.12 \mathrm{mmol})$ and the phosphorus ylide $\mathbf{2 b}(45 \mathrm{mg}$, 0.12 mmol) afforded pure $\mathbf{4 b}(62 \mathrm{mg}, 74 \%)$ after a reaction time of 1 d at $35^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=12.67(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 5 \mathrm{H}), 7.58-$ 7.53 (m, 6 H), 7.34-7.30 (m, $2 H$), 7.23-7.19 (m, 1 H), $3.73(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.59(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=200.6\left(\mathrm{~d}, J_{C-P}=35.9 \mathrm{~Hz}\right), 168.8\left(\mathrm{~d}, J_{C-P}=17.2\right.$ $\mathrm{Hz}), 144.4,134.1\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{C-P}=12.7 \mathrm{~Hz}\right), 129.1,126.3,126.2\left(\mathrm{~d}, J_{C-P}\right.$ $=94.0 \mathrm{~Hz}), 123.4,79.4\left(\mathrm{~d}, J_{C-P}=134.4 \mathrm{~Hz}\right), 60.0,13.6 \mathrm{ppm} .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=22.0 \mathrm{ppm}$. HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{AuCIPNa}$: 706.094742; found 706.095558. IR (neat) $\tilde{v}=688,681,698,710,748,760,799$, 819, 849, 905, 937, 997, 1024, 1071, 1081, 1103,1156, 1164, 1185, 1197, 1233, 1292, 1336, 1368, 1392, 1436, 1479, 1517, 1588, 1629, 2907, 2976, $3054 \mathrm{~cm}^{-1}$.

4c

Compound 4c: Following the general procedure described above, a mixture of phenylisocyanide gold (I) chloride 1a ($23 \mathrm{mg}, 0.07 \mathrm{mmol}$) and the phosphous ylide $\mathbf{2 c}(21 \mathrm{mg}$, 0.07 mmol) afforded pure $4 \mathrm{c}(38 \mathrm{mg}, 88 \%)$ after a reaction time of 3 d at $35^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=8.89(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.75(\mathrm{~m}, 9 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.69-$ $7.61(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=$ $201.9\left(\mathrm{~d}, J_{C-P}=35.9 \mathrm{~Hz}\right), 143.0,134.8\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 134.4\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{C-}\right.$ $p=13.0 \mathrm{~Hz}), 129.3,126.8,123.1,122.9\left(\mathrm{~d}, J_{C-P}=94.1 \mathrm{~Hz}\right), 117.8\left(\mathrm{~d}, J_{C-P}=22.1 \mathrm{~Hz}\right), 60.1\left(\mathrm{~d}, J_{C-P}=154.6 \mathrm{~Hz}\right)$ ppm. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$) $\delta=21.8 \mathrm{ppm}$. HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{AuCIPNa}$: 659.068858; found 659.069049. IR (neat) $\tilde{v}=687,715,727,748,758,788,850,900,923,996,1026,1073,1102,1120,1190,1225$, $1284,1300,1319,1343,1436,1491,1529,1594,2175,3242 \mathrm{~cm}^{-1}$.

Compound 4d: Following the general procedure described above, a mixture of phenylisocyanide gold (I) chloride 1a ($23 \mathrm{mg}, 0.07 \mathrm{mmol}$) and phosphorus ylide 2d (24 mg , 0.07 mmol) afforded pure $\mathbf{4 d}(38 \mathrm{mg}, 81 \%)$ after a reaction time of 6 h at $35^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=7.98(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 6 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.61-$ $7.53(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$,
$\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=188.9\left(\mathrm{~d}, J_{C-P}=32.0 \mathrm{~Hz}\right), 167.8\left(\mathrm{~d}, J_{C-P}=19.1 \mathrm{~Hz}\right), 144.4,134.6\left(\mathrm{~d}, J_{C-P}=9.3 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, J_{C-P}=2.9\right.$ $\mathrm{Hz}), 129.3\left(\mathrm{~d}, J_{C-p}=12.4 \mathrm{~Hz}\right), 129.0,125.1\left(\mathrm{~d}, J_{C-p}=92.0 \mathrm{~Hz}\right), 125.0,122.4,86.1\left(\mathrm{~d}, J_{C-P}=132.3 \mathrm{~Hz}\right), 37.0 \mathrm{ppm}$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$) $\delta=18.1$ ppm. HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OAuCIPNa}$: 705.110727; found 705.110773. IR (neat) $\tilde{v}=691,729,144,756,841,900,937,998,1027,1048,1070,1098,1158,1188,1215,1271,1304$, $1384,1435,1446,1481,1496,1542,1597,3042,3275 \mathrm{~cm}^{-1}$.

Compound 4e: Following the general procedure described above, a mixture of phenylisocyanide gold (I) chloride $\mathbf{1 a}(89 \mathrm{mg}, 0.26 \mathrm{mmol})$ and phosphorus ylide $\mathbf{2 e}(94 \mathrm{mg}, 0.26 \mathrm{mmol})$ afforded pure $\mathbf{4 e}(180 \mathrm{mg}, 98 \%)$ after a reaction time of 6 h at $35^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=9.77(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=12.1,8.1$ $\mathrm{Hz}, 6 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93-6.90 (m, 1 H), $6.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=189.6(\mathrm{~d}$, $\left.J_{C-P}=35.7 \mathrm{~Hz}\right), 156.4\left(\mathrm{~d}, J_{C-P}=20.1 \mathrm{~Hz}\right), 149.6,144.5,136.3,134.7\left(\mathrm{~d}, J_{C-P}=9.1 \mathrm{~Hz}\right)$, $133.0\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 128.8,126.8\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 126.2(\mathrm{~d}$, $\left.J_{C-P}=91.8 \mathrm{~Hz}\right), 124.4,121.7,120.8,87.9\left(\mathrm{~d}, J_{C-P}=134.4 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}-\mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=20.0$ ppm. HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{AuCIPNa}$: 711.100164; found 711.100454. IR (neat) $\tilde{v}=688,711,742,793,862,900,997,1017,1051,1098,1154,1183,1263,1312,1379,1425,1435$, 1460, 1494, 1514, 1557, 1582, $3056 \mathrm{~cm}^{-1}$.

Compound 4f: Phenylisocyanide gold (I) chloride $\mathbf{1 a}(44 \mathrm{mg}, 0.12 \mathrm{mmol})$ is added to a cooled solution of the phosphorus ylide $\mathbf{2 f}(43 \mathrm{mg}, 0.12 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After 2 h , it was allowed to warm up to room temperature overnight. Filtration of the obtained suspension afforded a white solid, which contains both $\mathbf{4 f}$ and the side product $\mathbf{3 f}$. Consecutive crystallizations (3 times) in DCM/pentane allowed the isolation of pure $\mathbf{4 f}(4 \mathrm{mg})$ in 5% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta=7.71-7.66(\mathrm{~m}, 5 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 9 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 5 \mathrm{H})$, 7.06-6.70 (m, 3 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=187.1$ ($\mathrm{d}, \mathrm{J}_{C-P}=37.7 \mathrm{~Hz}$), 144.5, $134.8\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 134.0\left(\mathrm{~d}, J_{C-P}=3.8 \mathrm{~Hz}\right), 133.1\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 133.1\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 132.3\left(\mathrm{~d}, J_{C-P}=\right.$ $9.9 \mathrm{~Hz}), 129.6\left(\mathrm{~d}, J_{C-P}=1.7 \mathrm{~Hz}\right), 129.1\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{C-P}=12.1 \mathrm{~Hz}\right), 128.9,127.9\left(\mathrm{~d}, J_{C-P}=2.3\right.$ $\mathrm{Hz}), 125.8\left(\mathrm{~d}, J_{C-P}=91.1 \mathrm{~Hz}\right), 124.0,121.2,88.9\left(\mathrm{~d}, J_{C-P}=132.1 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=21.0$ ppm. HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OAuCIPNa}$: 710.104912; found 710.105881. IR (neat) $\tilde{v}=689,704,716, \mathrm{I} 744,784$, 800, 853, 887, 913, 996, 1009, 1027, 1071, 1098, 1159, 1220, 1261, 1305, 1326, 1372, 1433, 1444, 1480, 1493, $1508,1590,2851,2922,2961,3051,3331,3494,3551 \mathrm{~cm}^{-1}$.

4g

Compound 4g: Following the general procedure described above, a mixture of 2,6-dimethyl-phenylisocyanide gold (I) chloride 1b ($100 \mathrm{mg}, 0.28 \mathrm{mmol}$) and phosphorus ylide 2a $(88 \mathrm{mg}, 0.28 \mathrm{mmol})$ afforded pure $\mathbf{4 g}(54 \mathrm{mg}, 30 \%)$ after a reaction time of 3 d at $50^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=13.70(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 6 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 3 \mathrm{H})$, 7.64-7.58 (m, 6 H), 7.13-7.06 (m, 3 H), 2.26 (s, 6 H), 1.48 (s, 3 H) ppm. ${ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=206.6\left(\mathrm{~d}, J_{C-P}=34.8 \mathrm{~Hz}\right), 195.0\left(\mathrm{~d}, J_{C-P}=28.0 \mathrm{~Hz}\right), 142.6,135.0,134.6$ $\left(\mathrm{d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{C-P}=12.4 \mathrm{~Hz}\right), 128.4,127.6,125.9\left(\mathrm{~d}, J_{C-P}=92.0 \mathrm{~Hz}\right), 91.1$
$\left(\mathrm{d}, J_{C-P}=124.3 \mathrm{~Hz}\right), 31.6\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 19.1 \mathrm{ppm} .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=20.5 \mathrm{ppm}$. HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NOAuCIPNa}: 704.115849$; found 704.115049. IR (neat) $\tilde{v}=682,693,709,720,734,755, \mathrm{~m} 768,781,842$, $873,920,982,998,1018,1046,1098,1142,1213,1250,1268,1342,1360,1418,1435,1500,1572,2975 \mathrm{~cm}^{-1}$.

4h

Compound 4h: Following the general procedure described above, a mixture of 2,6-dimethyl-phenylisocyanide gold (I) chloride 1b ($46 \mathrm{mg}, 0.13 \mathrm{mmol}$) and phosphorus ylide 2c ($47 \mathrm{mg}, 0.13 \mathrm{mmol}$) afforded after 4 d at $50^{\circ} \mathrm{C}$ a white solid that was further purified by crystallization from DCM : pentane. Thus, 4h was obtained in 37% yield (33 mg).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=11.89(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 3 \mathrm{H})$, $7.57-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 0.59(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=206.1\left(\mathrm{~d}, J_{C-P}=34.8 \mathrm{~Hz}\right), 168.8\left(\mathrm{~d}, J_{C-P}=16.9 \mathrm{~Hz}\right), 142.9$, $135.5,134.2\left(\mathrm{~d}, J_{C-P}=9.2 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 128.4,127.5,126.2\left(\mathrm{~d}, J_{C-P}=\right.$ $93.6 \mathrm{~Hz}), 76.9\left(\mathrm{~d}, J_{C-p}=135.0 \mathrm{~Hz}\right), 59.6,19.0,13.6 \mathrm{ppm} .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=22.4 \mathrm{ppm}$. HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{AuCIPNa}$: 734.126042; found 734.125744. IR (neat) $\tilde{v}=683,698,709,722,748,776,802,938$, 997, $1025,1078,1103,1162,1182,1216,1258,1300,1339,1368,1390,1436,1480,1521,1635,2982,3063 \mathrm{~cm}^{-1}$.

4i

Compound 4i: Following the general procedure described above, a mixture of 2,6-dimethyl-phenylisocyanide gold (I) chloride 1b ($86 \mathrm{mg}, 0.24 \mathrm{mmol}$) and phosphorus ylide 2c ($71 \mathrm{mg}, 0.24 \mathrm{mmol}$) afforded after 4 d at $50^{\circ} \mathrm{C}$ a white solid that was further purified by 3 consecutive crystallizations from DCM : pentane. Thus, $\mathbf{4 i}$ was obtained in 25% yield (40 $\mathrm{mg})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=8.29(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 9 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 6 \mathrm{H}), 7.20-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.11(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=207.0\left(\mathrm{~d}, \mathrm{~J}_{C-P}=29.5 \mathrm{~Hz}\right)$, $141.2,136.1,134.7\left(\mathrm{~d}, J_{C-P}=9.9 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, J_{C-P}=2.7 \mathrm{~Hz}\right), 129.6\left(\mathrm{~d}, J_{C-P}=13.1 \mathrm{~Hz}\right), 128.7,128.4,123.1(\mathrm{~d}$, $\left.J_{C-P}=95.0 \mathrm{~Hz}\right), 117.8\left(\mathrm{~d}, J_{C-P}=22.2 \mathrm{~Hz}\right), 57.3\left(\mathrm{~d}, J_{C-P}=154.6 \mathrm{~Hz}\right), 19.0 \mathrm{ppm} .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=$ 22.1 ppm. HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{AuCIPNa}$: 687.100159; found 687.100556. IR (neat) $\tilde{v}=687,697,716,749$, $780,804,907,927,952,997,1025,1105,1123,1165,1186,1217,1260,1312,1328,1375,1436,1482,1505$, 2180, 2962, $3282 \mathrm{~cm}^{-1}$.

4j

Compound 4j: 2,6-dimethyl-phenylisocyanide gold (I) chloride 1b ($94 \mathrm{mg}, 0.26 \mathrm{mmol}$) was added to a cooled solution of the phosphorus ylide $\mathbf{2 d}(90 \mathrm{mg}, 0.26 \mathrm{mmol})$ in toluene (11 ml) at $-78^{\circ} \mathrm{C}$. After 2 h at this temperature, the reaction mixtures was allowed to reach room temperature overnight. Filtration of the obtained suspension afforded a white solid which was purified by recrystallization (3 times from DCM : pentane). Thus, $\mathbf{4 j}$ was obtained as colourless crystals ($21 \mathrm{mg}, 12 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=7.86-7.81$ $(\mathrm{m}, 6 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}-$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=194.3\left(\mathrm{~d}, J_{C-P}=31.0 \mathrm{~Hz}\right), 168.0\left(\mathrm{~d}, J_{C-P}=19.2 \mathrm{~Hz}\right), 142.4,136.6,134.5\left(\mathrm{~d}, J_{C-P}=\right.$ $9.1 \mathrm{~Hz}), 133.3\left(\mathrm{~d}, J_{C-P}=2.6 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{C-P}=12.3 \mathrm{~Hz}\right), 128.5,127.6,125.5\left(\mathrm{~d}, J_{C-P}=92.7 \mathrm{~Hz}\right), 82.1\left(\mathrm{~d}, J_{C-P}=\right.$ 134.1 Hz), 37.0, 19.3 ppm . ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=18.8 \mathrm{ppm}$. HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OAuCIPNa}$:
733.142026; found 733.142583. IR (neat) $\tilde{v}=694,712,743,755,767,854,918,946,997,1028,1051,1102$, $1160,1192,1212,1263,1293,1357,1384,1436,1488,1586,1606,2848,2915,2951,3007,3059,3269 \mathrm{~cm}^{-1}$.

$3 \mathbf{e}$

Compound 3e: Phenylisocyanide gold (I) chloride 1a ($230 \mathrm{mg}, 0.63 \mathrm{mmol}$) was added to a cooled solution of phosphorus ylide $\mathbf{2 e}(224 \mathrm{mg}, 0.63 \mathrm{mmol})$ in toluene (26 ml) at $-78{ }^{\circ} \mathrm{C}$. After 2 h at this temperature, the reaction mixture was allowed to reach room temperature overnight. Filtration of the obtained suspension afforded a white solid ($306 \mathrm{mg}, 83 \%$) which corresponds to 3 e.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=7.64$ (ddd, $\left.J=0.9,1.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.90-7.85(\mathrm{~m}, 6 \mathrm{H}), 7.66-$ $7.61(\mathrm{~m} .3 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 7 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 4.5\left(\mathrm{~d}, J_{H-P}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=161.0\left(\mathrm{~d}, J_{C-P}=5.5 \mathrm{~Hz}\right), 147.9,136.5,134.5\left(\mathrm{~d}, J_{C-P}=9.2 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, J_{C-P}=12.1\right), 125.9$ $\left(\mathrm{d}, J_{C-P}=87.9\right), 122.7\left(\mathrm{~d}, J_{C-P}=13.1 \mathrm{~Hz}\right), 119.3,29.6\left(\mathrm{~d}, J_{C-P}=49.1 \mathrm{~Hz}\right)$ ppm. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=$ 28.3 ppm. HRMS calcd. for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OAuCIPNa}$: 733.142026; found 733.142583. IR (neat) $\tilde{v}=694,712,743,755$, $767,854,918,946,997,1028,1051,1102,1160,1192,1212,1263,1293,1357,1384,1436,1488,1586,1606$, 2848, 2915, 2951, 3007, 3059, $3269 \mathrm{~cm}^{-1}$.

Compound 6: A suspension of Phenylisocyanide gold (I) chloride 1a ($38 \mathrm{mg}, 0.11 \mathrm{mmol}$) in

6 toluene (4.7 ml) was cooled at $-10^{\circ} \mathrm{C}$ and then the arsenic ylide $5(41 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added. After stirring the obtained suspension for 1 d , the reaction mixture was allowed to reach room temperature. The solvents were then filtered out and the remaining a white solid washed with small portions of toluene and dried under vacuum. Thus, 6 was obtained as a white solid ($32 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=14.45(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $6 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 11 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{br}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=198.0,144.1,133.3,133.1,130.5,129.1,129.0,126.4,123.4,31.3 \mathrm{ppm}$ HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{AsAuCINONa}: 720.032365$; found 720.033071. IR (neat) $\tilde{v}=691,741,756,793,865,1014,1078,1259$, 1371, 1441, 1459, 1509, 1565, 1589, 2853, 2922, $2955 \mathrm{~cm}^{-1}$.

Compound 9: A mixture of phenylisocyanide gold (I) chloride 1a ($25 \mathrm{mg}, 0.08 \mathrm{mmol}$) and diaminoalkene 7 ($16 \mathrm{mg}, 0.08 \mathrm{mmol}$) was suspended in toluene (3 ml) and warmed to $35{ }^{\circ} \mathrm{C}$. After 8 h the mixture was allowed to reach room temperature. Elimination of the solvents by filtration afforded pure 9 as a yellow solid ($40 \mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$) $\delta=14.73(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.25$ $(\mathrm{m}, 3 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}) 3.63(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=$ 194.6, 187.4, 151.5, 143.7, 142.3, 130.2, 129.3, 128.9, 126.2, 125.9, 122.7, 121.3, 98.4, 36.0 ppm. HRMS calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OAuCINa}$: 572.077435; found 572.078099.IR (neat) $\tilde{v}=691,704,728,760,792,906,1025,1071$, $1155,1173,1235,1278,1384,1446,1488,1519,1595,3125 \mathrm{~cm}^{-1}$.

Compound 10: A mixture of phenylisocyanide gold (I) chloride 1a ($26 \mathrm{mg}, 0.08 \mathrm{mmol}$) and diaminoalkene 9 (14 mg , $0.08 \mathrm{mmol})$ was suspended in toluene $(3.3 \mathrm{ml})$ and warmed to $35^{\circ} \mathrm{C}$. After 18 h the mixture was allowed to reach room temperature. Elimination of the solvents by filtration afforded pure 10 as a yellow solid ($35 \mathrm{mg}, 87 \%$ yield).

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=12.09(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=189.6,165.9,162.2,144.2,143.1,142.8,135.3,129.2,125.0,124.4,122.0$, 98.4, 59.5, 46.2, 14.8 ppm. HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{AuCINa}$: 537.061450; found 10 537.061877. IR (neat) $\tilde{v}=680,694,749,759,788,893,931,954,1028,1074,1091,1175$, 1218, 1256, 1299, 1336, 1373, 1447, 1493, 1527, 1588, 1622, 1640, 2975, $3055 \mathrm{~cm}^{-1}$.

Compound 11 : KOMe ($5.5 \mathrm{mg}, 0.078 \mathrm{mmol}$) and $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(19.3 \mathrm{mg}, 0.039$ $\mathrm{mmol})$ were suspended in THF (2 ml) and stirred for 10 min , at $5^{\circ} \mathrm{C}$. Then, 4 a was added and the mixture stirred for 36 h . Along this time a light yellow precipitate was slowly formed. The reaction was then allowed to reach room temperature and the solvent evaporated in vacuo. The yellow solid thus obtained was washed with small portions of DCM to afford 11 ($54 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.06-$ $8.01(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 9 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{br}, 2$ $\mathrm{H}), 3.33(\mathrm{br}, 2 \mathrm{H})$, 2.44-2.35 (m, 4 H$)$, 1.83-1.72 (m, 4 H$) 1.49(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=197.6\left(\mathrm{~d}, J_{C-P}=35.0 \mathrm{~Hz}\right), 180.7\left(\mathrm{~d}, J_{C-P}=24.1 \mathrm{~Hz}\right), 155.5,134.1\left(\mathrm{~d}, J_{C-P}=8.7 \mathrm{~Hz}\right)$, $133.1\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right), 129.4\left(\mathrm{~d}, J_{C-P}=12.4 \mathrm{~Hz}\right), 128.2,125.5\left(\mathrm{~d}, J_{C-P}=91.6 \mathrm{~Hz}\right), 124.8,124.6,95.3\left(\mathrm{~d}, J_{C-P}=\right.$ $126.6 \mathrm{~Hz}), 82.7\left(\mathrm{~d}, J_{C-R h}=11.8 \mathrm{~Hz}\right), 75.1\left(\mathrm{~d}, J_{C-R h}=11.8 \mathrm{~Hz}\right), 53.6,31.6,29.6,28.7 \mathrm{ppm} .{ }^{31} \mathrm{P}-\mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=19.9 \mathrm{ppm}$. IR (neat) $\tilde{v}=687,708,725,741,759,776,800,869,911,964,998,1023,1070,1096,1142$, 1187, 1218, 1262, 1350, 1362, 1404, 1440, 1483, 1494, 1591, 2228, 2838, 2858, 2942, 2994, $3052 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{AuCINOPRhNa}{ }^{+}$: 886.075756; found 886.076414.

Compound 12: $\left[R h C p^{*} \mathrm{Cl}_{2}\right]_{2}(5.0 \mathrm{mg}, 0.009 \mathrm{mmol})$ and $4 \mathrm{a}(10.2 \mathrm{mg}, 0.016 \mathrm{mmol})$ were

12 disolved in DCE (0.2 ml) and $\mathrm{NEt}_{3}(0.04 \mathrm{ml}, 0.272 \mathrm{mmol})$ was dropwise added. This solution was heated at $50^{\circ} \mathrm{C}$ and stirred at this temperature for 4 d . Then, the reaction mixture was allowed to cool down to room temperature and filtered in order to remove the formed precipitate. The bright red solution thus obtained was evaporated in vacuo affording a red solid that was redissolved in a small amount of toluene and filtrated again. Evaporation of the toluene produced an orange solid that could be further purified by consecutive crystallizations (2 times from DCM : pentane). Thus 11 was obtained as an orange solid ($9.0 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.75-7.66$ ($\mathrm{m}, 6$ H), 7.53-7.50 (m, 3H), 7.47-7.43 (m, 6H), 6.96-6.92 (m, 2 H), 6.69 (t, J=7.2 Hz, 1 H$), 6.54(\mathrm{br}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{~s}, 15 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=200.5\left(\mathrm{dd}, J_{C-R h}=3.3 \mathrm{~Hz}, J_{C-P}=35.0 \mathrm{~Hz}\right), 192.8\left(\mathrm{~d}, J_{C-P}=\right.$ $27.7 \mathrm{~Hz}), 149.2,132.6\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d}, J_{C-P}=3.3 \mathrm{~Hz}\right), 127.6\left(\mathrm{~d}, J_{C-P}=12.4 \mathrm{~Hz}\right), 126.6,126.2\left(\mathrm{~d}, J_{C-P}=\right.$ $93.5 \mathrm{~Hz}), 121.1,119.6,93.6\left(\mathrm{~d}, J_{C-R h}=6.7 \mathrm{~Hz}\right), 92.8\left(\mathrm{~d}, J_{C-P}=95.8 \mathrm{~Hz}\right), 22.1,8.4 \mathrm{ppm} .{ }^{31} \mathrm{P}-\mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=11.4\left(\mathrm{~d}, J_{P-R h}=2.9 \mathrm{~Hz}\right) \mathrm{ppm} . \mathrm{IR}$ (neat) $\tilde{v}=695,708,722,742,756,768,843,905,984,994,1021$, 1062, 1105, 1119, 1154, 1187, 1225, 1278, 1309, 1353, 1392, 1435, 1473, 1554, 1588, 2911, $3044 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{CINOPRh:} \mathrm{694.150034;} \mathrm{found} \mathrm{694.150324}$.

Compound 13: $\left[\mathrm{Ru}(\mathrm{cym}) \mathrm{Cl}_{2}\right]_{2}(10.6 \mathrm{mg}, 0.017 \mathrm{mmol})$ and $\mathbf{4 a}(22.6 \mathrm{mg}, 0.035 \mathrm{mmol})$ were dissolved in DCE $(0.7 \mathrm{ml})$ and then $\mathrm{NEt}_{3}(0.08 \mathrm{ml}, 0.595 \mathrm{mmol})$ was added drop wise. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ and stirred for 1 d . Then, the mixture was allowed to cool down to room temperature and filtered. The bright red solution was evaporated in vacuo and the remaining orange solids purified by consecutive crystallizations (two times from DCM : pentane) to afford $13(10.0 \mathrm{mg}, 41 \%)$ as an orange solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=7.72$ (dd, $J=7.9$, $12.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.56-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{br}, 2$ H), $5.42(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (quint. $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.94(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=208.8\left(\mathrm{~d}, J_{C-P}=2.8 \mathrm{~Hz}\right.$), $194.9\left(\mathrm{~d}, J_{C-P}=28.1 \mathrm{~Hz}\right), 155.5,134.2\left(\mathrm{~d}, J_{C-P}=9.9 \mathrm{~Hz}\right)$, $132.1\left(\mathrm{~d}, J_{C-P}=2.9 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C-P}=12.4 \mathrm{~Hz}\right), 128.1,127.3\left(\mathrm{~d}, J_{C-P}=93.0 \mathrm{~Hz}\right), 122.0,120.8,102.5,98.0,93.2$ $\left(\mathrm{d}, J_{C-P}=97.3 \mathrm{~Hz}\right), 91.0,84.2,82.1,76.6,31.4,23.2,22.5,22.2,19.0 \mathrm{ppm} .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=11.6$ ppm. IR (neat) $\tilde{v}=692,710,726,743,801,844,864,983,1025,1103,1160,1191,1260,1384,1436,1472,1556$, 1589, 1738, 2849, 1917, 2958, $3057 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{CINOPRu}$: 692.141123; found 692.141970.

Selected NMR spectra:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 3 \mathbf{e}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 3 \mathbf{e}$

${ }^{31}$ P-NMR (162 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) 3e

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 a}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 a}$

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 4a

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 b}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 4b

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 4b

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 c}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 c}$

- ${ }^{\text {a }}$	
กั่రై	
V	WV/VIV

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 4c

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 d}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 d}$

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 4d

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 e}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 e}$

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 e}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 f}$

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 f}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 g}$
(2)
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 g}$

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 g}$

$\begin{array}{lllllll}90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}$ $20 \quad 10$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 h}$

\mid

4h

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 h}$

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 4h

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 i}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 i}$

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 i}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 4 \mathrm{j}$

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) 4 j

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{4 j}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 6$

6

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 6$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 8$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 8$

$\begin{array}{llllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \end{array}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 10$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 11$

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) 11

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 11$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 12$

12

$\begin{array}{lllllllllllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & \mathrm{ppm}\end{array}$

${ }^{31}$ P-NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 12$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 13$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 13$

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 13$

X-Ray Analyses

Compound 3e

Empirical formula

Color

Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Au} \mathrm{Cl}_{3} \mathrm{NP}$
colourless
$670.72 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
150 K
$0.71073 \AA$
MONOCLINIC
C2/c, (no. 15)

$\mathrm{a}=24.4111(6) \AA$	$\alpha=90^{\circ}$.
$\mathrm{b}=8.577(2) \AA$	$\beta=93.067(5)^{\circ}$.
$\mathrm{c}=23.0774(16) \AA$	$\gamma=90^{\circ}$.

$\mathrm{c}=23.0774(16) \AA$
$\gamma=90^{\circ}$.
4824.8(12) \AA^{3}

8
$1.847 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$6.511 \mathrm{~mm}^{-1}$
2592 e
$0.30 \times 0.12 \times 0.07 \mathrm{~mm}^{3}$
3.05 to 33.10°.
$-37 \leq \mathrm{h} \leq 37,-13 \leq \mathrm{k} \leq 13,-35 \leq 1 \leq 35$
67463
$9159\left[\mathrm{R}_{\mathrm{int}}=0.0532\right]$
7901
99.9 \%

Gaussian
0.81 and 0.39

Full-matrix least-squares on F^{2}
9159 / 0 / 289
1.086
$\begin{array}{ll}\mathrm{R}_{1}=0.0288 & \mathrm{wR} \mathrm{R}^{2}=0.0665 \\ \mathrm{R}_{1}=0.0378 & \mathrm{wR}^{2}=0.0704\end{array}$
1.327 and $-2.047 \mathrm{e} \cdot \AA^{-3}$

Compound 4i

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=67.16^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{AuCl} \mathrm{N}_{2} \mathrm{OP}$
colourless
$710.96 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
1.54178 A

MONOCLINIC
p 21/c, (no. 14)

$\mathrm{a}=16.8854(7) \AA$	$\alpha=90^{\circ}$.
$\mathrm{b}=10.9240(5) \AA$	$\beta=111.3890(10)^{\circ}$.
$\mathrm{c}=16.4234(7) \AA$	$\gamma=90^{\circ}$.

2820.7(2) \AA^{3}

4
$1.674 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$11.412 \mathrm{~mm}^{-1}$
1400 e
$0.14 \times 0.13 \times 0.10 \mathrm{~mm}^{3}$
2.81 to 67.16°.
$-18 \leq h \leq 20,-12 \leq k \leq 13,-19 \leq 1 \leq 19$
67770
$4988\left[\mathrm{R}_{\text {int }}=0.0481\right]$
4859
99.2 \%

Gaussian
0.54295 and 0.22715

Full-matrix least-squares on F^{2}
4988 / 0 / 338
1.123
$\mathrm{R}_{1}=0.0186 \quad \mathrm{wR}^{2}=0.0442$
$\mathrm{R}_{1}=0.0193$
$w R^{2}=0.0445$
0.496 and $-0.717 \mathrm{e} \cdot \AA^{-3}$

Compound 4a

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=37.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{AuClNOP}$
colourless
$653.87 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
MONOCLINIC
P2/c, (no. 14)
$\mathrm{a}=14.7905(9) \AA$
$\mathrm{b}=11.9586(10) \AA$
$\mathrm{c}=15.2551(7) \AA$
$\beta=115.796(4)^{\circ}$.
$\gamma=90^{\circ}$.
2429.3(3) \AA^{3}

4
$1.788 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$6.253 \mathrm{~mm}^{-1}$
1272 e
$0.27 \times 0.21 \times 0.10 \mathrm{~mm}^{3}$
2.68 to 37.00°.
$-24 \leq \mathrm{h} \leq 25,-20 \leq \mathrm{k} \leq 20,-25 \leq 1 \leq 25$
60767
$12321\left[\mathrm{R}_{\mathrm{int}}=0.0518\right]$
9429
99.8 \%

Gaussian
0.55184 and 0.21375

Full-matrix least-squares on F^{2}
12321 / 0 / 299
1.037
$\mathrm{R}_{1}=0.0329$
$w^{2}=0.0548$
$\mathrm{R}_{1}=0.0580$
$w R^{2}=0.0605$
1.425 and $-2.498 \mathrm{e} \cdot \AA^{-3}$

Compound 4e:

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{AuClN} \mathrm{N}_{2} \mathrm{P} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ yellow
$731.38 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
MONOCLINIC
P2 ${ }_{1} / \mathbf{c}$, (no. 14)
$\begin{array}{ll}\mathrm{a}=8.7003(3) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=19.0210(12) \AA & \beta=90.348(4)^{\circ} . \\ \mathrm{c}=17.8177(14) \AA & \gamma=90^{\circ} .\end{array}$
2948.6(3) \AA^{3}

4
$1.648 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$5.248 \mathrm{~mm}^{-1}$
1428 e
$0.17 \times 0.10 \times 0.09 \mathrm{~mm}^{3}$
3.17 to 34.94°.
$-14 \leq \mathrm{h} \leq 13,-28 \leq \mathrm{k} \leq 30,-28 \leq 1 \leq 28$
95323
$12890\left[\mathrm{R}_{\mathrm{int}}=0.0388\right]$
11231
99.8 \%

Gaussian
0.66 and 0.49

Full-matrix least-squares on F^{2}
12890/0/345
1.091
$\mathrm{R}_{1}=0.0244 \quad \mathrm{wR}^{2}=0.0570$
$\mathrm{R}_{1}=0.0326$
$w R^{2}=0.0605$
2.411 and $-1.792 \mathrm{e} \cdot \AA^{-3}$

Compound 6:

formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{As} \mathrm{Au} \mathrm{ClNO}$
colourless
$697.82 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
MONOCLINIC
P2 ${ }_{1} / \mathrm{c}$, (no. 14)

$\mathrm{a}=14.9063(15) \AA$	$\alpha=90^{\circ}$.
$\mathrm{b}=12.0478(12) \AA$	$\beta=115.743(3)^{\circ}$.
$\mathrm{c}=15.3302(3) \AA$	$\gamma=90^{\circ}$.

2479.9(4) \AA^{3}

4
$1.869 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$7.385 \mathrm{~mm}^{-1}$
1344 e
$0.20 \times 0.17 \times 0.07 \mathrm{~mm}^{3}$
2.67 to 36.00°.
$-24 \leq \mathrm{h} \leq 24,-19 \leq \mathrm{k} \leq 19,-25 \leq 1 \leq 25$
62465
$11702\left[\mathrm{R}_{\mathrm{int}}=0.0491\right]$
10436
99.8 \%

Gaussian
0.62 and 0.27

Full-matrix least-squares on F^{2}
11702 / 0 / 299
1.094
$\mathrm{R}_{1}=0.0294 \quad \mathrm{wR}^{2}=0.0693$
$\mathrm{R}_{1}=0.0357$
$w^{2}=0.0723$
1.897 and $-4.624 \mathrm{e} \cdot \AA^{-3}$

Empirical

Compound 9

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=34.99^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{AuCl} \mathrm{N}_{3} \mathrm{O}$
yellow
$549.80 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 Å

MONOCLINIC
P21/n, (no. 14)
$\mathrm{a}=12.3447(8) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=11.9732(8) \AA \quad \beta=110.926(5)^{\circ}$.
$\mathrm{c}=13.8197(9) \AA \quad \gamma=90^{\circ}$.
1907.9(2) \AA^{3}

4
$1.914 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$7.864 \mathrm{~mm}^{-1}$
1056 e
$0.27 \times 0.26 \times 0.05 \mathrm{~mm}^{3}$
2.76 to 34.99°.
$-19 \leq \mathrm{h} \leq 19,-19 \leq \mathrm{k} \leq 19,-22 \leq 1 \leq 22$
55520
$8346\left[\mathrm{R}_{\mathrm{int}}=0.0311\right]$
7679
99.4 \%

Gaussian
0.69 and 0.14

Full-matrix least-squares on F^{2}
8346 / $0 / 237$
1.172
$\mathrm{R}_{1}=0.0157$
$w R^{2}=0.0432$
$\mathrm{R}_{1}=0.0192$
$w R^{2}=0.0450$
0.668 and -1.638 e $\cdot \AA^{-3}$

Compound 11:

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{Au} \mathrm{Cl}_{3} \mathrm{NOPRh}$
orange
$948.87 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
MONOCLINIC
P2 $1 / \mathbf{c}$, (no. 14)

$\mathrm{a}=15.2528(12) \AA$	$\alpha=90^{\circ}$.
$\mathrm{b}=12.7151(19) \AA$	$\beta=101.855(11)^{\circ}$.
$\mathrm{c}=17.885(4) \AA$	$\gamma=90^{\circ}$.

3394.7(10) \AA^{3}

4
$1.857 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$5.118 \mathrm{~mm}^{-1}$
1856 e
$0.14 \times 0.12 \times 0.06 \mathrm{~mm}^{3}$
2.729 to 33.218°.
$-23 \leq \mathrm{h} \leq 23,-19 \leq \mathrm{k} \leq 19,-25 \leq 1 \leq 27$
58509
$12950\left[\mathrm{R}_{\mathrm{int}}=0.0360\right]$
11849
99.8 \%

Gaussian
0.75 and 0.51

Full-matrix least-squares on F^{2}
12950/0/407
1.096
$\mathrm{R}_{1}=0.0294$

$$
w R^{2}=0.0676
$$

$\mathrm{R}_{1}=0.0342$
$w R^{2}=0.0698$
n / a
1.7 and $-3.4 \mathrm{e} \cdot \AA^{-3}$

Compound 13:

Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{Cl}_{1} \mathrm{~N}_{1} \mathrm{O}_{1} \mathrm{P}_{1} \mathrm{Rh}_{1}$
orange
$694.02 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
MONOCLINIC
P2 $1 / \mathbf{c}$, (no. 14)
$\mathrm{a}=10.7983(10) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=13.1084(12) \AA \quad \beta=100.263(2)^{\circ}$.
$\mathrm{c}=23.391(2) \AA \quad \gamma=90^{\circ}$.
3258.0(5) \AA^{3}

4
$1.415 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.686 \mathrm{~mm}^{-1}$
1432 e
$0.15 \times 0.12 \times 0.08 \mathrm{~mm}^{3}$
1.77 to 33.31°.
$-16 \leq \mathrm{h} \leq 16,-20 \leq \mathrm{k} \leq 20,-35 \leq 1 \leq 36$
107131
$12543\left[\mathrm{R}_{\mathrm{int}}=0.0424\right]$
10641
100.0 \%

Gaussian
0.77 and 0.54

Full-matrix least-squares on F^{2}
12543 / 0 / 394
1.114
$\mathrm{R}_{1}=0.0233 \quad \mathrm{wR}^{2}=0.0596$
$\mathrm{R}_{1}=0.0333$
$w R^{2}=0.0684$
0.535 and $-0.498 \mathrm{e} \cdot \AA^{-3}$

[^0]: ${ }^{1}$ J. Vicente, M. T. Chicote, M. C. Lagunas, P. G. Jones J. Chem. Soc. Dalton Trans. 1991, 2579
 ${ }^{2}$ A. A. Skatova, I. L. Fedushkin, O. V. Maslova, M. Hummert, H. Schumann Russ. Chem. Bull. Int. Ed. 2007, 56, 2284.
 ${ }^{3}$ J. Vicente, J. Abad, R. Bergs, P. G. Jones, D. Bautista J. Chem. Soc. Dalton Trans. 1995, 18, 3093
 ${ }^{4}$ J. A. Teagle, J. L. Burmeister Inorg. Chim. Act. 1986, 118, 65.
 ${ }^{5}$ A. Fürstner, M. Alcarazo, R. Goddard, C. W. Lehmann Angew. Chem. Int. Ed. 2008, 47, 3210
 ${ }^{6}$ A. S. K. Hashmi, T. Hengst, C. Lothschütz, F. Rominger Adv. Synth. Catal. 2010, 352, 1315.
 ${ }^{7}$ W. P. Weber, G. W. Gokel Tetrahedron Lett. 1972, 17, 1637

