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ABSTRACT 

In the last decades microwave remote sensing has 
proven its capability to provide valuable information 
about the land surface. New sensor generations as e.g. 
ENVISAT ASAR are capable to provide frequent 
imagery with an high information content. To make use 
of the multiple imaging capabilities of those sensors, 
sophisticated parameter inversion and assimilation 
strategies have to be applied. 
The objective of the presented work is the analysis and 
quantitative description of the backscattering processes 
of vegetated areas by means of microwave 
backscattering models. The effect of changing imaging 
geometries is investigated and models for the 
description of bare soil and vegetation backscattering 
are developed. Spatially distributed model 
parameterisation is realized by synergistic coupling of 
microwave scattering models with a physically based 
land surface process model. This enables the simulation 
of realistic SAR images, based on bio- and geophysical 
parameters. 
The approach is validated using nine ENVISAT ASAR 
images. A pixelwise comparison between simulated and 
observed backscattering coefficients revealed a mean 
deviation of 0.5 dB with a corresponding standard 
deviation of 2.8 dB. 
 

1. INTRODUCTION 

A prerequisite for sustainable development and 
management of the limited natural resources of the 
Earth are integrative analysis and monitoring tools and 
techniques. Earth observation by means of remote 
sensing techniques has become a powerful tool for the 
characterization and description of the biosphere system 
at regional and global scales. It is therefore an ideal tool 
to provide necessary geospatial datasets for land surface 
process models and decision support systems. 
 
Recent operational spaceborne SAR systems as e.g. 
ENVISAT ASAR and RADARSAT and forthcoming 
systems as e.g. RADARSAT-II or TerraSAR, allow 
frequent, multipolarised observations of the Earth 
surface. Contrary to their predecessors, as e.g. the ERS 
and JERS satellites, the new sensor generation is 
capable to acquire data under different imaging 

geometries. This enables the frequent observation of an 
area of interest, which is crucial for operational 
applications as e.g. flood forecasting or disaster 
management. 
 
 
Due to the different imaging geometries and highly 
variable surface characteristics, the interpretation of 
these multiple datasets becomes more complicated than 
that of a system with a unique geometry. Sophisticated 
models and analysis tools, applicable for various sensor 
types, are therefore needed to analyse and predict the 
backscattering coefficient in relationship to the current 
state of land surface variables. 
 
The presented work concentrates on the understanding, 
separation and quantitative description of the various 
backscatter contributions. A theoretical land surface 
microwave backscattering model is suggested for bare 
soil and vegetated areas. By means of a synergistic 
coupling approach with a land surface process model, it 
enables the realistic simulation of SAR images and the 
spatially distributed comparison with real image 
datasets. 
After a description of the general concept and available 
datasets, the backscattering models are introduced and 
validated on the point scale. The approach is then 
transferred to spatially distributed simulations of 
realistic SAR images, using the output of a land surface 
process model to parameterise the microwave 
backscattering model. 

2. METHODOLOGY AND DATASETS 

2.1 Testarea and datasets 

The investigations for this study were done on a testsite, 
situated 25 km southwest of the Bavarian Capital of 
Munich (Germany). It is an heterogeneous agricultural 
area, mainly dominated by winter cereals and grassland. 
 
A total of 17 ENVISAT ASAR alternating polarisation 
image products (HH/VV polarisation) were analysed for 
the study. The images have multiple imaging 
geometries, covering the entire ENVISAT ASAR swath 
and were acquired in year 2003 during the crop 
development. 
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All image datasets were carefully calibrated and terrain 
geocoded using a rigorous approach [1]. The resulting 
geocoded images are free of geometric and radiometric 
terrain distortions. 
 
Extensive ground measurements of soil and plant 
parameters were carried out during the sensor path. The 
ground measurements were made for a wheat and a 
triticale field. Soil moisture was measured in different 
depths and at various sampling points. The wet and dry 
biomass of the different plant components (stalk, leaf, 
fruit) as well as the vegetation height and leaf area index 
(LAI) were measured. 

2.2 Approach 

The calibration and validation of empirical surface 
parameter inversion and backscattering models is 
difficult for images with multiple imaging geometries as 
provided by ENVISAT ASAR. Numerous field 
measurements, combined with ASAR acquisitions 
would be needed. Even for a minimal specification, the 
number of necessary ground measurements exceeds the 
capabilities for ground based data acquisitions. To 
overcome this problem, a combination of empirical with 
theoretical backscattering models was chosen for this 
study. These are calibrated, using a reduced number of 
ground measurements, and then used for the generalized 
prediction of the backscattering coefficient for various 
imaging geometries and ground conditions. Together 
with a plant growth model, which can predict the plant 
and soil parameters of heterogeneous areas for each 
instant, the number of field measurements can be 

reduced significantly. Such a model can also be used, to 
provide spatially distributed time series of land surface 
parameters, needed as input variables for a 
backscattering model. 
 
Fig. 1 shows the general concept of the presented 
approach, which is mainly separated into two major 
parts. The first deals with the derivation and calibration 
of soil and vegetation backscattering models for various 
imaging geometries. The models are calibrated and 
validated using ground measurements and image data. 
To reduce the number of necessary model input 
parameters, a bare soil backscattering model is 
recommended, which requires only two input 
parameters. This helps to simplify the description of 
bare soil surfaces and allows the accurate prediction of 
the bare soil backscatter. A vegetation backscattering 
model is then calibrated and validated, using available 
ground measurements and SAR image data. The 
resulting forward backscattering model allows for a 
precise prediction of the backscattering coefficient of 
vegetated areas, based on bio- and geophysical 
variables. 
The second part of the study transfers the developed 
backscattering models for spatially distributed 
simulation of the backscattering coefficient in 
heterogeneous areas. The necessary spatially distributed 
backscattering model input parameters are provided as 
output of a physically based land surface process model. 
The coupling of the backscattering and process models 
is realized by an appropriate interface. This enables the 
spatially distributed prediction of the backscattering 
coefficient based on bio- and geophysical parameters.  
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Fig. 1: Calibration of a SAR backscattering model and coupled modelling of 

land surface microwave interactions 



3. BACKSCATTER MODEL CALIBRATION 

3.1 Bare soil backscatter model 

To predict the backscattering coefficient of vegetated 
areas, the bare soil and vegetation contributions have to 
be separated. The bare soil backscattering model used 
for the investigations is a simplified two-parameter bare 
soil backscattering model developed by [2]. It expresses 
the backscattering coefficient σs of a bare surface as 
function of a surface roughness parameter A and the 
surface reflectivity Γ0 at normal incidence angle as 
 
σs=A(θ) Γ0

b(θ) (1) 
 
The dielectric properties of the surface are represented 
by the surface reflectivity Γ0 defined as 
 
Γ0 = (1-εr

0.5) / (1+εr
0.5) (2) 

 
The empirical parameters A and B can be described as 
function of the incidence angle. The surface roughness 
parameter A needs to be estimated empirically or can be 
derived from multitemporal image datasets. Spatially 
distributed informations of the surface roughness are 
derived from ENVISAT ASAR alternating polarization 
datasets, using the algorithm proposed by [2]. 
 
The bare soil model predictions are validated, using four 
ENVISAT ASAR alternating polarization datasets from 
spring 2003, where the vegetation cover was still sparse. 
Soil moisture information was available for the 
testfields from the ground measurements. The bare soil 
backscattering coefficients are simulated using Eq. 1 
and the soil moisture information and then compared to 
the image data (Fig. 2). The backscattering coefficients 
are predicted well for both polarisations. The RMSE 
between the modelled and measured values is 1.6 and 
1.7 dB for HH and VV polarisation respectively and the 
coefficient of determination exceeds 0.85. The gain of 
the regression line is near unity. 

3.2 Vegetation model calibration 

An adequate parameterisation of the vegetation 
influence on the backscattering signal is mandatory for 
the modelling of the backscattering coefficient over the 
vegetation period. Different imaging geometries have to 
be taken into account in this context, to make use of the 
multiple imaging capabilities of ENVISAT ASAR. 
 
The changing imaging geometry has a major influence 
on the signal as can be seen in Fig. 3, where the 
temporal development of the backscattering coefficient 
of a wheat field is shown exemplary. Over the entire 
vegetation period, the backscatter is inversely 
proportional to the incidence angle (e.g. DOY 156-181). 
This main mechanism is superposed by the plant 
development and changing surface soil moisture 
contents. It can also be observed, that the temporal 
development of the backscattering coefficient differs for 
different polarisations. VV is lower than the HH 
backscattering coefficient, which is caused by the 
stronger attenuation effects of the canopy, due to the 
vertically oriented stalks of the wheat plants. The 
incidence angle effect is stronger for HH than for VV 
polarisation during the vegetation period, as can be 
observed on DOY 155-181. A similar incidence angle 
dependency is also observable for bare soils (e.g. before 
DOY 120) indicating that soil contributions have a 
major influence on the HH backscattering coefficient of 
vegetated areas. 
A semi empirical approach is developed to describe the 
vegetation’s influence on the signal (Fig. 4). The 
method is based on the theoretical modelling of the bare 
soil backscatter contribution σs using the bare soil 
model given by (1). The necessary soil moisture 
information is taken from ground measurements. The 
remaining residuals ∆σ between the measured 
backscattering coefficient σ0 and the simulated bare soil 
backscatter σs are analysed and empirically related to 
the imaging geometry and vegetation parameters. This 
enables the derivation and calibration of species specific 
vegetation backscattering models. 
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Fig. 2: Bare soil backscatter simulation results 
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Fig. 3: Temporal development of the backscattering

coefficient of a wheat field for both
copolarisations and various incidence angles 



3.3 Relating image parameters to vegetation 
properties 

The distinct, polarisation dependant vegetation 
interactions can be expressed in terms of the 
copolarisation ratio CP, defined as 
 
CP = σHH / σVV (3) 
 
This ratio is mainly influenced by the different 
attenuation and scattering properties of the canopy for 
different polarisations. The attenuation of the 
electromagnetic field by the vertically oriented stalks 
has a major influence for wheat. High values of the CP 
therefore indicate a strong attenuation of the signal in 
VV polarisation and vice versa. Thus, the copol ratio 
may be treated as a measure of the extinction properties 
of the plants which can be directly derived from the 
image data. As reported by [4], a strong relationship 
exists between the copol ratio and the vegetation 
biomass. 
The copol ratio CP is an ambiguous variable. The same 
copol ratio can be observed under different conditions. 
If a low vegetation cover is illuminated by a shallow 
electromagnetic incident field, the radiation path 
through the canopy is quite large, resulting in strong 
interactions with the canopy. The same value of CP can 

also be observed, if the vegetation cover is higher and 
the incident ray has a smaller incidence angle. Thus the 
path through the vegetation remains the same. Under the 
assumption of the same extinction and scattering 
properties, the copol ratio can therefore not be used to 
characterize the extinction properties of a vegetation 
cover in an unambiguous, incidence angle independent, 
manner. 
If the vegetation height h and the incidence angle are 
known, CP can be normalized to get a normalized copol 
ratio CPN defined as 
 
CPN=CP cos(θ) h-1 (4) 
 
This parameter contains information about the intrinsic 
scattering and attenuation properties of the canopy, as 
observed by the SAR system. It is independent of the 
imaging geometry and therefore allows for the 
multitemporal analysis and comparison of different 
ENVISAT ASAR images. After [3], the normalized 
copol ratio can be related to plant biophysical 
parameters P as absolute vegetation water content or 
vegetation biomass as 
 
log(CPN) = a log(P) + b (5) 
 
where a and b denote species specific parameters. Fig. 5 
shows the relationship between the normalized copol 
ratio and the dry biomass for cereals. 
 
The fact, that the copol ratio can be directly related to 
plant biophysical variables indicates, that it can be used 
to parameterise the vegetation influence on the signal. 
Using alternating polarisation data, this information can 
be extracted from the image data itself. It might also be 
used to invert vegetation biomass or water content. A 
priori information about the vegetation height is needed 
in this context to estimate the normalized copol ratio. 
 
To estimate the influence of the vegetation on the 
backscattering coefficient, expressed in terms of CPN, 
the residuals between simulated bare soil backscatter 
and observed backscattering coefficients can be used. It 
can be shown, that stable relationships (R²=0.93) exist 

CPN vs. biomass

dry biomass [g/m²]
0 500 1000 1500 2000 2500 3000 3500

no
rm

al
ize

d 
co

po
l r

at
io

 C
PN

0

2

4

6

8

10

12

14

16

18

20

tritcale
wheat
combined fit, R²=0.84

 
Fig. 5: Relationship between vegetation dry biomass

and normalized copol ratio for cereals 
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Fig. 4: Calibration of species specific vegetation scattering models using image data and ground measurements 



between CPN and the backscatter residuals [3]. This 
allows for the derivation of plant biophysical parameters 
from ENVISAT ASAR alternating polarization data and 
enables the accurate prediction of the backscattering 
coefficient of agricultural areas. The vegetation 
influence on the signal is compensated, using the copol 
ratio and additional a priori vegetation height 
information. Using available SAR images and ground 
measurements, the microwave backscattering model, 
consisting of the bare soil model, given by Eq. 1 and the 
vegetation model, is used to predict the backscattering 
coefficient of the investigated test fields during crop 
development. Fig. 6 shows the predicted and measured 
backscattering coefficients. It can be seen, that the 
model provides excellent predictions of the 
backscattering coefficient. The regression lines for both 
species (wheat and triticale) as well as both 
polarisations are near unity. The coefficients of 
determination range from 0.90 to 0.99. The RMSE is 
0.4  dB for wheat and 1.1 dB for triticale respectively. 

4. COUPLED MODELLING OF LAND 
SURFACE MICROWAVE INTERACTIONS 

Land surface process models can be used for the 
parameterization of remote sensing models, as e.g. the 
backscattering models, introduced in the previous 
section [5,6]. A linkage between those and a physically 
based land surface process model is established to allow 
for spatially distributed validation of the proposed 
backscattering model. A quantitative analysis of the 
deviations between model results and SAR images is 
made. 

4.1 Land surface process model 

The process-oriented land surface model PROMET-V 
(PROcess-oriented Multiscale Environmental and 
Vegetation model) was developed to simulate plant 
growth, water and nitrogen fluxes. A brief introduction 
and examples for assimilation of remote sensing data in 
PROMET-V can be found in [5]. It was designed to 

allow for the spatially distributed modelling of land 
surface processes. Based on spatially distributed input 
datasets, it calculates time series of land surface 
parameters. Its raster structure makes it suitable for 
comparison and coupling with remote sensing data 
products. It has been shown, that the model can provide 
reliable input data series for remote sensing models, and 
that it can be used for assimilation strategies [5-7]. 
 
The land surface process model output variables as e.g. 
soil moisture are not necessarily applicable as such for 
the backscattering model where the dielectric constant is 
needed instead of the volumetric soil moisture. 
Therefore a functional interface has to be defined which 
derives appropriate input parameters for the 
backscattering model from regular PROMET-V outputs. 
The process model can then be used to predict the state 
of land surface variables for each image pixel. 

4.2 Spatially distributed simulation of the 
backscattering coefficient 

The backscattering coefficient of agricultural fields can 
then be simulated based on the land surface model 
outputs for any instance. For a total of nine ENVISAT 
ASAR acquisitions (see Tab. 1), synthetic SAR images 
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Fig. 6: Simulated and measured ENVISAT ASAR backscattering coefficients for cereals 

Tab. 1: ENVISAT ASAR images used for coupled 
backscatter modelling 

 

DATE DOY DIRECTION INCIDENCE ANGLE [°] 

02.04.2003 92 ASC 18.9 
11.04.2003 101 ASC 39.2 
24.04.2003 114 ASC 29.9 
01.05.2003 121 DESC 43.0 
07.05.2003 127 DESC 32.7 
05.06.2003 156 DESC 43.0 
11.06.2003 162 DESC 32.8 
17.06.2003 168 ASC 33.2 
20.06.2003 171 ASC 39.3 

 



are generated, using this coupled modelling approach. It 
is emphasized that the images cover a wide incidence 
angle range. 
 
An example of a simulated SAR scene is given in 
Fig. 7. The fields with available simulation results, 
corresponding to wheat and triticale, are extracted from 
the original image dataset for better comparability. It 
can be seen, that the backscattering coefficients have the 
same magnitude and even similar features can be 
observed in both datasets.  
 

The accuracy of the simulated backscattering 
coefficients is assed by correlating simulated and 
measured backscattering coefficients and by analysing 
the residuals. This is done for all dates on a pixel by 
pixel basis without any filtering applied to the datasets, 
which is the most sophisticated approach. A total of 
35357 image pixels was used for the comparisons. 
Fig. 8 shows the pixelwise correlation of the simulated 
and measured backscattering values and the frequency 
distribution of the residuals for all images used for the 
investigation. Positive residuals indicate an 
overestimation of the backscattering coefficient by the 
model and vice versa. 
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Fig. 7: Simulated and observed SAR image (HH polarisation); the original image is masked to simplify comparisons

with the modelling results 



It can be seen, that the backscattering coefficients are 
generally well predicted by the backscatter model. The 
gain of the regression line is almost unity. The residuals 
are normally distributed with an average of 0.5 dB. The 
residuals have a standard deviation of 2.8 dB. Around 
70% of all values are within the interval of ±2 dB. It can 
be seen from Fig. 8, that the variances are rather similar 
for the backscatter range, corresponding typically to 
agricultural fields (-18 … -6 dB). 
This indicates, that the model generally provides good 
estimates of the backscattering coefficient. The 
simulated input parameters, provided by PROMET-V, 
have lower dynamics within an agricultural field than in 
reality. The reason is that the land surface model input 
parameters as e.g. soil texture are rather homogeneous 
over larger areas. In reality, the microscale variations of 
soil hydrological properties are more heterogeneous. 
Due to similar other input variables, as e.g. temperature 
and precipitation fields, the land surface model 
predictions have a lower spatial variance than in reality. 

5. CONCLUSIONS 

Sensors with multiple imaging capabilities, as e.g. 
ENVISAT ASAR, are the basis for frequent and 
accurate monitoring of the environment. A method was 
presented, being capable to predict the backscattering 
coefficient of bare soils and vegetated areas over a wide 
incidence angle range. The vegetation influence on the 
signal can be assessed using dual polarisation datasets. 
Spatially distributed modelling of the backscattering 
coefficient was achieved by a synergistic coupling of 
the backscattering models with a physically based land 
surface process model. The method is transferable to 
heterogeneous landscapes. 
Remaining residuals between simulated and measured 
backscattering coefficients contain valuable 
informations about imprecise parameterisations of the 
land surface model and therefore allow for the 
derivation of land surface parameters and adjustment of 

spatially distributed parameter sets as e.g. soil texture. 
This will be a subject of further investigations. 
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Fig. 8: Pixelwise correlation between measured and simulated backscattering coefficients (left) and frequency

distribution of the remaining residuals - analysis for all nine ENVISAT ASAR images 


