
Signal processing via web services: the use case WebMAUS

Thomas Kisler1, Florian Schiel1, Han Sloetjes2

Institute of Phonetics and Speech Processing1, LMU München,
Max-Planck-Institute for Psycholinguistic2, Nijmegen

{kisler,schiel}@phonetik.uni-muenchen.de1, han.sloetjes@mpi.nl2

Abstract
The CLARIN infrastructure aims at providing a technical infrastructure for language resources. In this context we present the design
of a web service and a corresponding interface to provide easy access to an formerly only locally executable application for automatic
segmentation and labeling called Munich AUtomatic Segmentation (MAUS). Using a standard description format we not only make the
manual usage of those services possible, but also enable access from within other services or chaining engines like WebLicht. As an
example for the integration of the web service in another application, we show the WebMAUS integration into ELAN.

1. Introduction
The working draft of the HTML5 standard had a big influ-
ence on the possibilities of web interfaces and applications.
Though almost everything has been possible before, the new
standard makes many things much easier and defines func-
tionality in a way that all browsers could implement it. And
especially the new standard and the big hype around web
2.0 in general changed the visibility of web applications.
Services commonly referred to as web services are a con-
venient way to make software applications freely available
without the hassle to install software on the local computer.
Applications under development may be tested by a broader
user community at an early stage (alpha) without the usual
logistic problems connected with early version testing. Fur-
thermore legal issues regarding the copyrights of our appli-
cation code can be solved easily when the application stays
hidden from the end user. Web services may be used by indi-
vidual users via appropriate web interfaces or in batch mode
from the command line or by other applications calling the
web service as a “helper application”.
In this contribution we present a first example of a linguistic
web service that automatically segments and labels a spo-
ken utterance into its phonemic contents, implemented as
a CLARIN1 conform web service, as well as examples for
a web interface and the usage as a helper application to the
well-know ELAN tool (?).

2. Munich AUtomatic Segmentation
(MAUS)

Language resources often contain some kind of speech
recording, either as a single or multiple channel sound file
or as the soundtrack of a video recording. Many analyses
require some kind of alignment of a symbolic representa-
tion (annotation) of the recorded speech act (i.e. an ortho-
graphic or phonetic transcript) to the corresponding parts
of the speech signal. Such an alignment is usually called a
segmentation and labelling (S&L). While the orthographic
transcript of the truly spoken content can be obtained with
the aid of transcribers (sometimes even via mechanical turk)
at moderate effort, the S&L at word level or even worse the

1http://www.clarin.eu/

S&L on smaller linguistic units such as morphs, syllables or
phones is expensive, time-consuming and error prone.
There are several ways to automate the S&L process. A
simple way is the so called forced alignment to a given
sequence of phones using speech recognition technology
such as Hidden Markov Modelling (HMM). Here the aligner
has the task to find the best partitioning of the speech signal
given a fixed sequence of phonetic symbols and a set of
pre-trained statistical models for each phoneme class of
the language. Forced alignment works very well granted
that the signal is of moderate good quality and the truly
spoken phones are known a priori (which is usually not the
case because given the spoken words usually only a citation
form of pronunciation can be calculated automatically which
deviates from fluent spoken speech).
The Munich AUtomatic Segmentation system (MAUS) ex-
tends the basic aligner concept by modelling a statistical
space of possible pronunciation variants for a given ortho-
graphic input (?; ?). Figure 1 shows a simple example for the
german word ’Abend’. The hypotheses space is calculated
for each individual text input based on a machine-learned
statistical expert system of pronunciation. Combined with
HMM technology the MAUS can thus not only find the best
segmentation but at the same time the most likely sequence
of truly spoken phones in the speech signal (see Figure 2 for
MAUS S&L result as viewed in praat).
On a subset of spontaneous German speech in the Verbmobil
corpus (?) the MAUS technique yielded about 97% of the
average interlabeller agreement of three trained phoneticians
working on the same task (?).
MAUS is implemented as a system of UNIX script files
and C++ binaries that can be run on Linux and Windows
platforms. It requires as input the speech signal and some
form of either orthographic or phonological transcript of
the spoken utterance. The result is stored in either BAS
Partitur Format BPF (?), praat TextGrid2 or Emu (?) com-
patible annotation format files. MAUS currently (version
2.30) supports 7 languages: German, English, Hungarian,
Italian, Estonian, Spanish and Dutch (the first 4 including
tokenizing, text normalization and text-to-phoneme conver-
sion). A vast number of options allow the user to control

2http://www.praat.org/



Figure 1: Example of a pronunciation hypotheses space for the German word ’Abend’.

Figure 2: Example of a segmentation & labelling created by MAUS.

the S&L process as well as the form of output formatting
and the statistical modelling of the pronunciation variation
(e.g. by learning new pronunciation models or formulating
explicit phonological pronunciation rule sets). The MAUS
freeware package can be downloaded from the Bavarian
Archive for Speech Signals3.

3. WebMAUS Services
As a contribution to the “Common Language Resources and
Technology Infrastructure” (CLARIN) project, we devel-
oped a web service that provides the functionality of the
aforementioned MAUS tool. This web service allows ac-
cess to MAUS without the need of installing it locally on
the users machine, might the “user” be a human or another
web service that wants to access it. The CLARIN view on
web services is rather a process oriented view, especially
when regarding the efforts that are put into implementing
work flow engines, that allow the chaining of different web
services. That was one of the main reasons we decided to
implement the web services as RESTful remote procedure
calls (RPC).
We wanted to use standard technologies to provide an easy-
to-use and easy-to-understand interface to our web services.

3http://www.bas.uni-muenchen.de/forschung/Bas/software/

Therefore some of the HTML operations serve as an enve-
lope for the data necessary to our web services. Through
the “overloading” of POST we can achieve customized be-
haviour without breaking the RESTful idea (?).
To provide a machine readable format, we described our
web services in the standard description format for RESTful
web services, the Web Application Description Language
(WADL). The WADL contains the technical aspects of a cer-
tain web service and therefore allows programs or chaining
engines to generate the call to the WADL described web
service automatically.
In addition to the technical WADL description, the CLARIN
meta data infrastructure (CMDI4) format gives us the possi-
bility to describe our web services also semantically. Each
web service is described in the CMDI file, based on com-
ponents that are registered in a public component registry.
The harvester for CMDI metadata that are built to harvest
the metadata of data can then also be used to harvest the
metadata about the available web services in the CLARIN
infrastructure (?).
So far we provide a variety of different RPCs that offer
access to two MAUS modes, a simple basic and a general
functionality. The “runMAUSBasic” takes a plain txt and a

4http://www.clarin.eu/cmdi



signal file as input and returns a Praat compatible TextGrid
file for a number of languages5. In this case the web service
is extended by a language specific tokenizer and text nor-
malization followed by a statistical-driven text-to-phoneme
algorithm (Balloon (?)) which converts the arbitrary input
text into an ordered sequence of canonical pronunciations.
Other than the language no parametrization is allowed. The
more powerful “runMAUS” call requires a signal file and
a BAS Partitur Format file (BPF) containing a tier with al-
ready tokenized and phonemic encoded speech. In contrast
to the simpler “runMAUSBasic” this web service allows
the caller to provide the full set of optional parameters of
the MAUS tool. With those parameters the MAUS call is
fully customizable and therefore appropriate for advanced
users. By incorporating both calls into simple script loops
vast amounts of data can be processed automatically (batch
processing). Other web service calls provide documentation
and information about language specific phoneme sets used
by the MAUS services.
The beforementioned descriptions can then be used to manu-
ally or automatically integrate WebMAUS to any infrastruc-
ture that also understands these descriptions. Example for
those Service Oriented Architectures (SOA) are WebLicht
and Taverna.
An integration of WebMAUS into the WebLicht tool chain
(?) TODO Weblicht is already planned. WebLicht is a chain-
ing architecture to combine many different processing steps
to answer various research questions. This tool chain profits
from two mentioned advantages of such a Service Oriented
Architecture, which a that no tools have to be installed on the
users machine and that it can access functionality where the
source code might not be available. The tool chain was build
in an earlier project (TODO cite weblicht) and was designed
to process Linguistic data. The biggest problem with an easy
integration of multimodal data so far is the exponential big-
ger amount of data that has to be processed. The current idea
in WebLicht of piping the complete data through the chain is
probably not applicable anymore. Though making the data,
that should be processed, available via a weblink raises the
problem of persistency and data storage. So far the architec-
ture was based on the assumption that one file contains both
the source and the result of a processing step. This becomes
obviously unapplicable for the input of multimodal data, as
in addition to the symbolic data also the signal/video files
have to be available. But also for the output this creates the
challenge of either adapting the current file format, so that
results of signal processing can be integrated or additional
files containing those results have to be piped through the
chain.

4. WebMAUS Interfaces
As a show case for our developed web services and as a user
interface for technical unfamiliar users we developed a few
state-of-the-art web interfaces.
A web interface should provide an intuitive, natural-web-
compliant way of processing the data. We based the inter-
face on recent technologies like HTML5 and jQuery. The
working draft of the HTML5 standard provides a variety of

5currently English, German, Hungarian and Italian

features that emerged from the widespread use of HTML
and were missing in older standards. Those are audio play-
ers, advanced forms and also desktop-like behaviour, like
drag and drop (?). jQuery, as an abstraction to Javascript,
hides much of the counter-intuitive aspects of Javascript for
the developer and provides a rich set of functions for GUI
design and Ajax (Asynchronous Javascript and Xml) calls.
A big advantage of those web technologies is, that they
can be run from within every standard compliant browser.
Unfortunately, HTML5 is no standard so far and only a
handful browsers implement the working draft HTML5 in
a broader sense. It is to hope that once it is released that
future generations of browsers will implement the standard
in a more compatible way, than this was the case the past
decades. Until now we propose to use Mozilla Firefox or
Google Chrome, since both of these browsers implement
a big subset of the specifications of the upcoming HTML5
standard. Both of them are freely available and Firefox
furthermore is open source, so that theoretically everybody
has access to our web interfaces.
As a demonstration for our “runMAUSBasic” and “run-
MAUS” functionality, three interfaces have been developed6.
For the “Basic MAUS” interface only a plain text file and
a signal file with the utterance are necessary. This is the
easiest to use interface and useful for single signal and text
files. The visual feedback presented to the user is responsive
and entertaining, and results can be stored in a widely used
standard format (Praat TextGrid). User may select between
different languages, for which the BPF generation is imple-
mented, since text normalisation and grapheme to phoneme
conversion are already available. The second interface “Gen-
eral MAUS” gives access to the general MAUS interface,
takes a signal file and a BPF file as inputs, and provides a set
of options to the user which he might change to achieve bet-
ter results. The user may choose between 7 languages and
three different output formats7. The last web service, and the
most interesting one especially for processing large amounts
of data, is “Multiple MAUS” (see Fig. 3). It not only allows
the full customization as does the general interface, but also
for uploading several files via drag and drop. The combined
size of files is limited to 300 MB and the interface has been
successfully tested with a set of 600+ files (300+ signal-text
pairs).

5. Calling WebMAUS from ELAN
ELAN8 (?) is an audio and video annotation tool for the
desktop, that is being developed by The Language Archive
department of the Max Planck Institute for Psycholinguistics.
It is applied in several types of research within linguistics
and beyond. Annotation in ELAN is still mainly a manual
process and although it offers specialized user interfaces for
the before mentioned steps of segmentation and labelling
(S&L), producing fairly accurately aligned, multi-layered
annotations to the primary data, is time consuming (and
therefore expensive). In recent years first steps have been

6https://webapp.phonetik.uni-muenchen.de/BASWebServices
7BPF,TextGrid and Emu.
8http://www.lat-mpi.eu/tools/elan/



Figure 3: “WebMAUS Multiple” screen shot with advanced
options.

taken to extend the tool with software components that semi-
automatically segment and/or label media signals. A lan-
guage independent silence recognizer was the first of such
extensions. Next, in the AVATecH9 (?) project the extension
mechanism for recognizers was enhanced in order to accom-
modate extension with components created in a variety of
programming languages (ELAN itself is written in the Java
programming language). Because the recognizers in AVAT-
ecH run on different platforms, it seems natural to make
them available as web services and that is what currently is
being worked on.
The initial implementation of the interaction with Web-
MAUS builds on this existing extension mechanism of
ELAN (therefore it is not an integral part of ELAN but
a separate module). The advantage of this approach is that
the WebMAUS client software can be replaced easily and re-
peatedly independently of the update cycles of ELAN itself.
In this first implementation the “runMAUSBasic” variants
for four languages are supported. The information about the
web services and how to invoke them, is extracted manually
from the WebMAUS WADL file and is stored in a meta data
file describing the module and its parameters. Whether it is
possible to build a generic web service client module that
can invoke any web service that’s sufficiently described by
a CMDI and a WADL file, is still unclear and to be investi-
gated. Interaction with WebMAUS, at this stage, consists

9http://www.mpi.nl/avatech

of uploading a wav file and a text (or text file) to the web
service and converting the returned content to tiers. The
user interface of ELAN allows the user to either select a
text file from the file system, or to select a tier for upload.
In the latter case ELAN converts the contents of the tier to
plain text and uploads that to the web service. The results
are currently returned as Praat TextGrid files.
This scenario is an example of bringing the data to the algo-
rithm and for each call the data is uploaded again. Since the
“basic” WebMAUS does not support parameters to configure
the workings of the service, it is not likely that the same file
needs to be uploaded more than once (the result will always
be the same). But for more complex processing it would be
beneficial to upload the audio separately and then supply the
URL of the uploaded file to the web service.
As possible enhancement of the WebMAUS client exten-
sion, supporting the general “runMAUS” service can be
considered. For that purpose ELAN should ideally be able
to produce BPF files. A further enhancement can be reached
in post processing the results. While the fine segmentation
is advantageous in many cases, it is often also required to
have aligned annotations on the level of bigger units e.g.
“sentence”. Joining smaller segments to build larger units (as
a separate tier) could be a next step to improve the usability
of the MAUS technology for ELAN users.

6. Conclusion
The described web services and interfaces have reached a
stable state and are now used for the research and teaching
at the “Institute of Phonetics and Speech Processing” in
Munich. Especially the much more eye-candy and, for users
who are familiar with the web, intuitive interface seemed to
have led to an improvement in the user experience. Even
lower semesters who are not yet used to to handle the tools
and programs that are commonly used within the research
community have been able to produce S&L data after been
shown the interface once.
The WebInterface furthermore saves the hazzle of local in-
stallation and permanently updating it and makes the tool
available to a broader audience, which are not able to install
a set of tools that are supposed to interact which each other.
People that are familiar with a command line interface can
profit from the possibility to call the web services from the
command line itself or scripts over tools like curl10.
Researchers and students that are already used to tools like
ELAN can profit from the easy integration of web services
into their favorite GUI. As the interface is clearly structured
the integration of a web service is much easier than inte-
grating functionality by other means (e.g. through libraries).
The developers of tools, too, profit from the fact that no up-
dates of the provided funtionality on the client are necessary.
In a well-designed user interface additional work might be
taken from the user, as it can be seen in ELAN. There the
user not only is able to select a file from the filesystem, but
also send a tier to the web service which might save him
some time in creating such a text file.

10http://curl.haxx.se



Figure 4: The results of a call to WebMAUS, three tiers have been created.

7. Acknowledgements
The work of the authors was carried out within the CLARIN-
D projcect (?) (BMBF-funded).


