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Abstract. Hydrologic processes, such as runoff production
or evapotranspiration, largely depend on the variation of soil
moisture and its spatial pattern. The interaction of electro-
magnetic waves with the land surface can be dependant on
the water content of the uppermost soil layer. Especially in
the microwave domain of the electromagnetic spectrum, this
is the case. New sensors as e.g. ENVISAT ASAR, allow for
frequent, synoptically and homogeneous image acquisitions
over larger areas. Parameter inversion models are therefore
developed to derive bio- and geophysical parameters from
the image products. The paper presents a soil moisture inver-
sion model for ENVISAT ASAR data for local and regional
scale applications. The model is validated against in situ soil
moisture measurements. The various sources of uncertain-
ties, being related to the inversion process are assessed and
quantified.

1 Introduction

Water affects all economic, cultural, social and ecological
aspects of daily life and is basic to functioning matter fluxes
and hence for a clean and stable environment. Its availability,
quality and allocation is largely affected by Global Change,
which summarizes the complex interactions of changes not
only in the global climate and water system but also changes
in population, development and economy. Thus solitary sci-
ences, with their inevitably unilateral view of the world,
are neither capable to understand the complex interactions
between nature, water and man nor to develop methods
for a sustainable water resource management under glob-
ally changing boundary conditions. The same applies to the
present state of observation systems, which often serve the
very specific needs of small research communities and are of-
ten not integrated into larger and more complex approaches.
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A major objective of recent Global Change research pro-
grams as e.g. the GLOWA-Danube project (Mauser and Lud-
wig, 2002; Ludwig et al., 2003) is therefore the development
of complex integrative models which can be used as tools for
scenario based decision making. A monitoring of large areas,
based on remote sensing techniques, is mandatory to provide
the needed spatially distributed input datasets to those mod-
els to validate and improve the model results on a regional
scale. New sensors, as ENVISAT ASAR (Advanced Syn-
thetic Aperture Radar), enable frequent observations of large
areas at regional scale with an appropriate spatial resolution
for mesoscale applications. The ASAR Wide Swath Mode
(WSM) has a high potential in this context (ESA, 2002). The
swath width of 400 km enables the acquisition of homoge-
neous, temporal consistent datasets of entire mesoscale river
catchments at a spatial resolution of 150 m. Additionally,
image acquisitions with higher spatial resolution is possi-
ble with the image and alternating polarization modes (ESA,
2002), which allow for a better comparison of the image data
with ground measurements.

A key parameter for the energy and mass fluxes at the
land surface is the actual water content of the soil layer.
An accurate and comprehensive, spatially distributed estima-
tion of the soil moisture content is therefore needed. The
potential to quantify soil moisture patterns of the top soil
layer (3–5 cm) with microwave imagery has been success-
fully demonstrated in numerous studies (e.g. Engman, 1998;
Quesney et al., 2000; Dubois et al., 1995; Wigneron et al.,
2003; Le H́egarat-Mascle et al., 2002). Contrasting earlier
and rather experimental research efforts, data acquired from
the ENVISAT ASAR sensor firstly enables to continuously
monitor large areas with high frequency (3–4 images per
week in mid-latitudes) and high spatial resolution from the
local (30 m resolution/100 km coverage) to the regional scale
(150 m/400 km).

The paper presents an inversion methodology for EN-
VISAT ASAR data to retrieve the soil moisture content of
the uppermost soil layer. The semi empirical approach is
validated against in situ soil moisture measurements. Despite
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the fact, that remote sensing data provide independent infor-
mation about the interaction of electromagnetic waves with
the land surface by means of reflected or scattered energy,
each attempt to invert bio- and geophysical parameters from
the data will be based on inversion models with a limited de-
gree of accuracy. An uncertainty analysis of the presented
soil moisture inversion approach is therefore conducted to
assess the influences of data and model parameter induced
uncertainties to the retrieved soil moisture values.

2 Testsite and datasets

The present work was conducted within the InFerno+

project, which has been established for the assimilation of
remote sensing data in operational flood forecasting systems
(Schulz et al., 2002). The testsites of this project, namely
the Mosel, Neckar and Ammer river catchments, are located
in southern Germany. All testsites are equipped with perma-
nently registering soil moisture stations and a dense network
of meteorological weather stations. A geographical informa-
tion system with a spatial resolution of 30 m is available for
the entire area, including information about the actual land
cover, soil texture and topography.

More than 50 ENVISAT ASAR images, acquired since the
year 2002 over the testareas form the database for the anal-
ysis on local and regional scale. Extensive field campaigns
were carried out during sensor passes to sample additional
ground truth information about the actual soil moisture con-
ditions on various agricultural test fields.

2.1 Data characteristics

The ENVISAT ASAR sensor allows for image acquisitions
in different imaging geometries, which enables to monitor
an area of interest from different sensor pathes and thus in-
creases the temporal repetition frequency significantly. Due
to the different imaging geometries, the incidence angle (an-
gle between ellipsoid normal and incident beam) changes,
which affects the amount of backscattered energy. The large
swath width of a WSM image corresponds to incidence an-
gles ranging from 15◦ to 45◦. Thus, parameter inversion
models have to account for this incidence angle change and
its effect on the backscattering coefficient.

For mesoscale image products, as the WSM mode, image
pixels can not be treated as homogeneous. The backscatter-
ing coefficient of a resolution cell is a function of different
land cover types within the image pixel. To allow for a quan-
titative estimate of land surface parameters from those image
products, it is mandatory to care for the subscale heterogene-
ity of the image pixels (L̈ow et al., 2003; Schneider and Op-
pelt, 1998). Using a high resolution (30 m) land use classifi-
cation developed by Stolz et al. (2004), the fractions of each
land use can be determined for each mesoscale image pixel.
This ancillary information is used for the preprocessing of
the image data and the derivation of quantitative parameters
from mesoscale ENVISAT ASAR imagery.

3 Determination of surface soil moisture from EN-
VISAT ASAR data

To derive quantitative information about the surface soil
moisture from ENVISAT ASAR data, an appropriate prepro-
cessing of the image data is crucial to obtain reliable esti-
mates of the backscattering coefficient. These can be used
to invert land surface parameters from the image. The prin-
ciple methodology to derive soil moisture of the upper soil
layer from ENVISAT ASAR data is outlined in the follow-
ing. It has been described in more detail by Löw et al. (2004).
The methodology is applicable at local as well as at regional
scales. Figure 1 shows the principle data flow for soil mois-
ture inversion from SAR data and the sources of model un-
certainties to be discussed later on in Sect. 4.

3.1 Geocoding

The image geometrical and radiometrical properties are dis-
torted due to changes in local topography. The image pix-
els are displaced due to topography and the changing local
scattering area results in significant backscatter changes up
to several decibels. This has to be compensated to obtain
reliable estimates of the backscattering coefficient as a func-
tion of surface characteristics. The SAR images are there-
fore precisely geocoded using the Range-Doppler approach
after calibrating the ENVISAT ASAR data to image bright-
ness values (β0). It has been shown, that SAR images can
be normalized by taking into account ancillary information
about local topography (L̈ow and Mauser, 2003; Small et al.,
2004) and that significant improvements of the radiometric
accuracy of the data can be achieved in this way (Riegler and
Mauser, 1998; L̈ow, 2004). The local scattering area is cal-
culated by taking into account the local slope and aspect with
respect to the incident wave. The normalized backscattering
coefficientσ 0, being comparable to the backscatter from flat
earth is obtained by normalizing the image brightness value
by the local scattering area.

3.2 Incidence angle normalization

The terrain corrected backscattering coefficients are mainly
a function of surface characteristics and the incidence angle.

Figure 2 shows an example of the incidence angle depen-
dency of the backscattering coefficient on crop and grass-
land, as derived from multitemporal analysis of image statis-
tics. Clearly can be seen, that the backscattering coefficient
decreases with increasing incidence angle. Due to the large
possible incidence angle range of ENVISAT ASAR data, a
normalization of the incidence angle effects on the signal is
mandatory for quantitative image analysis. This ensures the
comparability between multiple image datasets. This nor-
malization is achieved by using land use dependant linear in-
cidence angle models as those shown in Fig. 2 to normalize
a measured backscattering coefficient to a reference imaging
geometry (L̈ow et al., 2004). It is shown that the normal-
ization model only accounts for part of the variability of the
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Fig.1: Principle of soil moisture inversion from ENVISAT ASAR data and sources of uncertainties 
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Fig. 1. Principle of soil moisture inversion from ENVISAT ASAR data and sources of uncertainties.

data. The backscattering coefficient is as well influenced by
soil moisture, vegetation effects and surface roughness which
should be theoretically be taken into account in the normal-
ization procedure. This can not be achieved for larger ar-
eas due to missing data. The estimated angular backscatter
variability is therefore an approximation to the land surface
microwave interactions as function of incidence angle. The
uncertainty which is induced by the normalization model is
assessed in Sect. 4.

3.3 Soil moisture inversion

The developed soil moisture inversion approach is based on a
semiempirical model which was formerly developed for ERS
data (Rombach and Mauser, 1997). It has been shown in
different test sites in Europe, that the model can be used to
invert soil moisture with an accuracy of 4 vol.% (Bach and
Mauser, 2003) and that it can also be applied for mesoscale
SAR data (L̈ow et al., 2003). The model is mainly validated
for vegetated areas and different crop types. The backscat-
tering coefficient is known to be very sensitive to surface
roughness as well as to soil moisture (Oh et al., 1992; Zribi
and Dechambre, 2002). The bare soil contribution is atten-
uated by the vegetation canopy and the influence of surface
roughness therefore decreases. If additional surface rough-
ness information is available it can be used to improve soil
moisture inversion results (Zribi and Dechambre, 2002; Löw,
2004). Vegetation effects on the signal are treated to remain
constant after a certain phenological stage which has been
shown to be valid as a first approximation (Rombach and
Mauser, 1997). Nevertheless soil moisture inversion results
can be significantly improved if vegetation growth dynamics
is taken into account in the inversion process by means of
vegetation biomass and water content (Löw, 2004; Quesney
et al., 2000; Mattia et al., 2003)

This model is adapted for ENVISAT ASAR data by com-
pensating for the changing incidence angles and subpixel het-
erogeneities.
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Fig. 2: Incidence angle dependency of SAR backscatter for grassland and crop land 
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Fig. 3: Empirical relationship between dielectric constant and backscatter for various land use types 

Fig. 2. Incidence angle dependency of SAR backscatter for grass-
land and crop land.

The approach consists of basically two steps. In a first
step, the radar backscatterσ 0 is related to the dielectric con-
stant of the soil by a 2nd order polynomial. The empirical
relationships between the backscattering coefficient and the
dielectric constantεr are dependant on the land use (Fig. 3).
Detailed information about the actual land use is therefore
required to obtain best inversion results. If no or only impre-
cise land use information is available, the uncertainties of the
inversion results will increase. In forested and urban areas,
soil moisture information can not be derived from the image
data.

In a second step, the dielectric constant is converted to a
volumetric soil moisture contentmv using a dielectric model
(Hallikainen et al., 1985).
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Fig. 3: Empirical relationship between dielectric constant and backscatter for various land use types 
Fig. 3. Empirical relationship between dielectric constant and
backscatter for various land use types. 
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Fig. 4: Dielectric constant of soils as function of water content and soil texture 
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Fig. 5: Comparison between measured and retrieved soil moisture values at 30m and 150m resolution 

3.4 Model validation 
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Fig. 4. Dielectric constant of soils as function of water content and
soil texture.

As shown in Fig. 4 the relationship between the dielectric
constant andmv is dependant on the soil texture. Thus addi-
tional information about soil texture is required.

3.4 Model validation

To quantify the accuracy of the proposed soil moisture in-
version scheme, comparisons with ground measurements are
made at local and regional scale. The inverted soil mois-
ture values from the image data (30 m, 150 m) are validated
against in situ measured TDR probes. Figure 5 shows mea-
sured and retrieved soil moisture values, as derived from dif-
ferent ASAR images with various imaging geometries. It
can be seen, that the retrieved soil moisture values are almost
within a range of±5 vol.% which is a promising result.
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Fig. 4: Dielectric constant of soils as function of water content and soil texture 
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Fig. 5. Comparison between measured and retrieved soil moisture
values at 30m and 150m resolution.

It has to be emphasized that these comparisons are made
on the resolution cell size of the image data (30 m, 150 m).
The in situ soil moisture measurements are only a representa-
tive for a small area and not for the entire resolution cell size
of the SAR image. Due to the spatial variability of the soil
moisture it is difficult to compare the point measurements
with the image data. A systematic analysis of the variability
of the soil moisture within agricultural fields revealed stan-
dard deviations of the soil moisture values between 2 vol.%
and 8 vol.%. This scale gap introduces additional uncertainty
to the validation of the model results. Thus the variability of
the retrieved soil moisture, compared to the in situ measure-
ments is partly a result of the scale gap between the point
measurements and the image resolution cell size, as well as
uncertainties resulting from land use information and impre-
cise soil texture maps.

Figure 6 shows examples of derived surface soil moisture
maps and their temporal development. It can be seen, that
the soil moisture patterns are consistent with the observed
precipitation evolution within the same area.

4 Uncertainty analysis

Each modelling process is associated with uncertainties
which are the result of simplified assumptions being made
in the model and imprecise input datasets provided to the
model. The total model uncertainty is the result of the inter-
ference of different contributing sources. For the presented
soil moisture inversion model these sources of uncertainty
are (Fig. 1).

1. image calibration errors: the radiometric calibration
error of ASAR image products is within 0.5–1.0 dB
(Rosich et al., 2003)

2. incidence angle correction: the empirical correction of
the incidence angle effect on the signal, as shown in
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Fig. 6. Multitemporal soil moisture patterns around Munich (Germany) as a function of precipitation distribution.

Fig. 3 only accounts for a part of the variance while
a certain amount remains unexplained by the linear re-
gression model.

3. land use specific derivation of the dielectric constant
(εr): To convert the backscattering coefficient to dielec-
tric constant values, the actual land use has to be known.
Uncertainties result from non existing or imprecise land
use information as well as from the inversion model it-
self which is calibrated empirically

4. unknown soil texture information: the dielectric con-
stant is converted to volumetric soil moisture with
a high degree of accuracy using a dielectric mixture
model. Due to a lack of spatially distributed precise soil
texture information for the upper soil layer, the volu-
metric soil moisture content (mv) can only be converted
from dielectric measurements with uncertainties.

In the following, the impact of the different sources of un-
certainties on the soil moisture retrieval is assessed using a
Monte Carlo based approach (Fig. 7). Soil moisture is in-
verted for backscatter values in the range of−18 to−3 dB
using the presented approach with a resolution of 0.05 dB.

For each backscatter value a number of 10 000 model realiza-
tions is inverted to soil moisture values. The different model
realizations are achieved by adding random gaussian noise
according to Table 1 for the different terms of uncertainty
mentioned above. These values are estimated from known
SAR image calibration uncertainties (Rosich et al., 2003) as
well as from assumptions being made for the error that could
be induced by the different model terms. The incidence an-
gle normalization uncertainty is derived from the residues of
the linear regression line in Fig. 2 while the uncertainties of
the estimates of the dielectric constant and volumetric soil
moisture can be derived from the variability of the parame-
ters which is shown in Fig. 3 and Fig. 4.

The frequency distribution and the first and second order
moment of the obtained soil moisture values is calculated.

To assess the impact of the various uncertainty sources
on the total model accuracy, simulations are also conducted
where random noise is added only for a single variable. This
gives a measure for the sensitivity of the model on the differ-
ent uncertainty terms.

Figure 8 shows an example of uncertainty analysis results
for arable land and an incidence angle of 30◦. The results
obtained when only a single noise term is added, as well
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Fig. 7: Assessment of uncertainties in soil moisture inversion by means of Monte Carlo simulations 
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Fig. 7. Assessment of uncertainties in soil moisture inversion by means of Monte Carlo simulations.

Table 1. Gaussian noise standard deviation (s) for Monte Carlo
based analysis of different terms of uncertainty.

Uncertainty source Unit σ

A Image calibration dB 0.5
B Incidence angle compensation m2/m2 485
C Backscatter to dielectric constant – 2.5
D Dielectric model vol.% 3.0

as the result of the interference of the different noise terms
are shown. The interference result corresponds to a worst
case scenario where no detailed information about the actual
land use and soil texture is available. For this worst case, the
standard deviation of the inverted soil moisture values is ap-
proximately 7 vol.% for low backscattering coefficients and
decreases to 4.5 vol.% for higher backscattering coefficients.

The different contributions of the various uncertainty
terms can be summarized as follows:

1. the image calibration has a small effect on the soil mois-
ture retrievals. With increasing backscattering coeffi-
cient, the influence of the calibration quality increases
due to a reduced sensitivity of the backscattering coeffi-
cient to soil moisture changes.

2. The influence of the incidence angle normalization pro-
cedure to the model accuracy is affected by the magni-
tude of the backscattering coefficient. For low backscat-
tering coefficients, corresponding to low soil moisture
content, uncertainties are higher than for those of higher
backscatter values. This is obviously caused by the bet-
ter signal to noise ratio for the higher backscattering val-
ues due to the fact, that a constant gaussian noise is used
for the simulations for the entire backscatter range.

3. If no detailed information about land cover is available,
only a mean relationship between the dielectric constant
and the backscattering coefficient can be assumed. This
results in a standard deviations of 2.5 to 4.5 vol.% for
the inverted soil moisture values.

4. The conversion of the dielectric constant to volumet-
ric soil moisture content is dependant on the available
soil texture information. The uncertainties in the soil
moisture retrieval results, which are caused by a lack of
soil texture information, contribute a systematic bias of
3 vol.% to the inversion results.

Typically, the different sources of uncertainties interfere
and the resulting model uncertainty is higher than that of the
singular error sources which is shown by the worst case sce-
nario. Additional information can be provided to the inver-
sion process by means of spatially distributed land cover and
soil texture information which increases the accuracy of the
soil moisture inversions. Figure 8 shows also the simula-
tion results of such a more realistic scenario where the noise
for the conversion of the backscattering coefficient to dielec-
tric constant (C) as well as for the conversion fromεr to mv

(D) was assigned a more realistic value of 1.0 due to prior
land use and soil texture knowledge. It can be seen, that
the uncertainties of the soil moisture retrievals decrease with
higher backscattering coefficients. A significant reduction
of the standard deviation over the entire backscatter range
can be observed, compared to the worst case scenario. For
low backscatter values, the inversion results have a standard
deviation of approximately 5.5 vol.% which depletes below
3 vol.% for higher backscatter values.

Commonly, remote sensing derived surface parameters are
validated against in situ measurements as it has also been
done for the present model (Fig. 5). Typically the in situ mea-
surements are treated to represent the expected true value,
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Fig. 8: Soil moisture inversion uncertainties based on Monte Carlo simulations assuming singular and 

combinations of different sources of uncertainty at an incidence angle of 30°: standard deviations of inverted soil 

moisture values (left) and relationship between backscattering coefficient and soil moisture, including uncertainties 

(right) 

5 Conclusions 

The proposed soil moisture inversion model has shown promising results at the local as well as at the regional scale. 

It enables the homogeneous derivation of surface soil moisture for mesoscale watersheds. To obtain best inversion 

results, appropriate land use and soil texture information is required. The uncertainty analysis revealed that inversion 

uncertainties decrease with increasing soil moisture content. This is of particular interest for applications in flood 

forecasting and surface runoff prediction. The uncertainties at higher soil moisture values are comparable to those 

resulting from in situ measurements. Thus, ENVISAT ASAR data has the potential to provide spatially distributed soil 

moisture information at a high level of accuracy if the necessary input datasets are available with sufficient precision. A 

constraint remains in the fact that the soil moisture content of the root zone is typically required for hydrological 

applications. Adaptive data assimilation techniques are therefore required to use remote sensing derived soil moisture to 

update hydrological model state variables. 
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coefficient and soil moisture, including uncertainties (right).

but they are as well associated with uncertainties. If ground
based soil moisture measurements are made on a spatial res-
olution being comparable to the SAR sensor resolution cell
size (>30 m), the in situ measurements show soil moisture
standard deviations between 1 vol.% up to 10 vol.% (Löw,
2004; Huisman, 2002). Based on an analysis of a large
database of soil moisture measurements on multiple sites and
agricultural crops, typical inner field soil moisture standard
deviations were found to range from 2 vol.% to 5 vol.%.
Thus, the variability of the in situ soil moisture measure-
ments is within the same order than those resulting from un-
certainties in the realistic soil moisture inversion scenario.

5 Conclusions

The proposed soil moisture inversion model has shown
promising results at the local as well as at the regional scale.
It enables the homogeneous derivation of surface soil mois-
ture for mesoscale watersheds. To obtain best inversion re-
sults, appropriate land use and soil texture information is
required. The uncertainty analysis revealed that inversion
uncertainties decrease with increasing soil moisture content.
This is of particular interest for applications in flood fore-
casting and surface runoff prediction. The uncertainties at
higher soil moisture values are comparable to those result-
ing from in situ measurements. Thus, ENVISAT ASAR data
has the potential to provide spatially distributed soil mois-
ture information at a high level of accuracy if the necessary
input datasets are available with sufficient precision. A con-
straint remains in the fact that the soil moisture content of the
root zone is typically required for hydrological applications.
Adaptive data assimilation techniques are therefore required
to use remote sensing derived soil moisture to update hydro-
logical model state variables.
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Le Hégarat-Mascle, S., Zribi, M., Alem, F., Wisse, A., Loumagne,
C.: Soil moisture estimation from ERS/SAR data: Toward an
operational methodology, IEEE Trans. Geosci. Remote Sensing.,
40, 12, 2647–2658, 2002.

Huisman, S.: Mesasuring Soil Water Content with Time Domain
Reflectrometry and Ground Penetrating Radar – Accuracy, Re-
producibility and Feasibility, PhD Thesis University of Amster-
dam, ISBN 90-76894-23-X, 2002.
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