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Nearly a century after Einstein first predicted
the existence of gravitational waves, a global net-
work of earth-based gravitational wave obser-
vatories [1–4] is seeking to directly detect this
faint radiation using precision laser interferom-
etry. Photon shot noise, due to the quantum
nature of light, imposes a fundamental limit on
the attometer level sensitivity of the kilometer-
scale Michelson interferometers deployed for this
task. Here we inject squeezed states to improve
the performance of one of the detectors of the
Laser Interferometer Gravitational-wave Obser-
vatory (LIGO) beyond the quantum noise limit,
most notably in the frequency region down to 150
Hz, critically important for several astrophysi-
cal sources, with no deterioration of performance
observed at any frequency. With the injection
of squeezed states, this LIGO detector demon-
strated the best broadband sensitivity to gravita-
tional waves ever achieved, with important impli-
cations for observing the gravitational wave Uni-
verse with unprecedented sensitivity.

A fundamental limit to the sensitivity of a Michelson
interferometer with quasi-free mirrors comes from the
quantum nature of light, which reveals itself through two
fundamental mechanisms: photon counting noise (shot
noise), arising from statistical fluctuations in the arrival
time of photons at the interferometer output; and radia-
tion pressure noise, which is the recoil of the mirrors due
to the radiation pressure arising from quantum fluctua-
tions in the photon flux. Both sources can be attributed
to the quantum fluctuations of the electromagnetic vac-
uum field, or vacuum fluctuations, that enter the inter-
ferometer [5, 6].

An electromagnetic field can be described by two non-
commuting conjugate operators that are associated with
field amplitudes that oscillate out of phase with each
other by 90◦, labeled as “in-phase” and “quadrature
phase” [7]. A coherent state of light (or vacuum, if the
coherent amplitude is zero) has equal uncertainty in both
quadratures, with the uncertainty product limited by the
Heisenberg uncertainty principle. For a squeezed state,
the uncertainty in one quadrature is decreased relative to
that of the coherent state (see green box in Fig. 1). Note
that the uncertainty in the orthogonal quadrature is cor-

respondingly increased, always satisfying the Heisenberg
inequality.

The vacuum fluctuations that limit the sensitivity
of an interferometric gravitational wave detector enter
through the antisymmetric port of the interferometer,
mix with the signal field produced at the beamsplitter
by a passing gravitational wave, and exit the antisym-
metric port to create noise on the output photodetec-
tor. Caves [5, 6] showed that replacing coherent vacuum
fluctuations entering the antisymmetric port with cor-
rectly phased squeezed vacuum states decreases the “in-
phase” quadrature uncertainty, and thus the shot noise,
below the quantum limit. Shortly after, the first exper-
iments showing squeezed light production through non-
linear optical media achieved modest but important re-
ductions in noise at high frequencies [8] [9]. However,
squeezing in the audiofrequency region relevant for grav-
itational wave detection and control schemes for locking
the squeezed phase to that needed by the interferometer
were not demonstrated until the last decade [10] [11] [12].
Since then, squeezed vacuum has been used to enhance
the sensitivity of a prototype interferometer [13]. The
600-m long GEO600 detector [14] has deployed squeez-
ing since 2010, achieving improved sensitivity at 700 Hz
and above.

An important motivation for the experiment we
present here was to extend the frequency range down
to 150 Hz while testing squeezing at a noise level close
to that required for Advanced LIGO [15]. This lower fre-
quency region is critically important for the most promis-
ing astrophysical sources, such as coalescences of black
hole and neutron star binary systems, but also poses
a significant experimental challenge. Seismic motion is
huge compared to the desired sensitivity, albeit at very
low frequencies <∼ 1 Hz, and LIGO employs a very high
performance isolation system to attenuate the seismic
motion by several orders of magnitude. This uncovers
a set of non-linear couplings which up-convert low fre-
quency noise into the gravitational wave band. In the
past, these processes have made it difficult for gravita-
tional wave detectors to reach a shot noise limited sen-
sitivity in their most sensitive band near 150 Hz. Any
interactions between the interferometer and the outside
world have to be kept at an absolute minimum. For in-
stance, randomly scattered light reflecting back into the
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interferometer has to be managed at the level of 10−18 W.
Past experience has shown that measured sensitivities at
higher frequencies are difficult to extrapolate to lower
frequencies [2]. For the first time, we employ squeezing
to obtain a sensitivity improvement at a gravitational
wave observatory in the critical frequency band between
150 Hz and 300 Hz. Similarly important, we observed
that no additional noise above background was added
by our squeezed vacuum source, firmly establishing this
quantum technology as an indispensable technique in the
future of gravitational wave astronomy.

The experiment was carried out toward the end of 2011
on the LIGO detector at Hanford, Washington, known
as “H1”. The optical layout of the detector is shown in
Fig. 1. The interferometer light source (“H1 laser”) is
a Nd:YAG laser (1064 nm) stabilized in frequency and
intensity. A beam splitter splits the light into the two
arms of the Michelson, and Fabry-Perot cavities increase
the phase sensitivity by bouncing the light ≈ 130 times
in each arm. The Michelson is operated on a dark fringe,
thus most of the light is reflected from the interferometer
back to the laser. A partially transmitting mirror be-
tween the laser and the beam splitter forms the power-
recycling cavity, which increases the power incident on
the beam splitter by a factor of 40. In order to isolate
them from terrestrial forces such as seismic noise, the
power recycling mirror, the beam splitter, and the arm
cavity mirrors are all suspended as pendula on vibration-
isolated platforms.

A passing gravitational wave produces a differential
change in the lengths of the arm cavities (generally, one
arm gets shorter while the orthogonal arm gets longer),
causing a signal field to appear at the antisymmetric port
proportional to the wave amplitude.

For unperturbed arm length L, a gravitational wave of
amplitude h (in dimensionless units of strain) induces a
differential change in arm length ∆L = hL. For typical
astrophysical sources from 10 to 100 Mpc away, such as
the inspiral and merger of binary neutron stars or black
holes, terrestrial detectors must measure strains at the
level of 10−21 or smaller.

A full description of this interferometer (and its sis-
ter interferometer in Livingston, LA) can be found in
Ref. [2]. A number of crucial modifications have been
made since then that enable the implementation and
testing of squeezing. In particular, the signal readout
has been changed from a heterodyne to a homodyne sys-
tem [16], where we actively operated the Michelson in-
terferometer with a small offset from a dark fringe to
send about 30 mW of light to the antisymmetric port to
act as the homodyne reference beam. An output mode-
cleaner (OMC in Fig. 1) was also installed to prevent
light in higher order optical modes and at different radio-
frequency offsets from reaching the readout photodetec-
tor. Moreover, the available laser power was increased
from 10 W to 20 W. This resulted in 15 W of light

power reaching the interferometer, 600 W impinging on
the beamsplitter and 40 kW stored in the interferometer
arm cavities. These modifications resulted in a factor of
2 improvement in sensitivity above 500 Hz over the 2009
configuration.

The grey box of Fig. 1 shows a simplified schematic
of the squeezed vacuum source. A sub-threshold op-
tical parametric oscillator (OPO) in a bow-tie config-
uration [17] [18] produces the squeezed vacuum state.
Light at 532 nm pumps the OPO and produces squeezed
vacuum at 1064 nm via parametric downconversion in
a second-order nonlinear PPKTP crystal placed in the
OPO cavity. The “pump laser” for the squeezed vac-
uum source is phase-locked to the “H1 laser” and it emits
1064 nm light which drives the second harmonic gener-
ator (SHG) to produce light at 532 nm. The “control
laser” is phase-locked to the “pump laser” to generate
a frequency shifted coherent beam which enters the in-
terferometer through the “output Faraday isolator”, to-
gether with the squeezed vacuum. The interferometer
reflects both fields back towards the OMC, and the beat
between the frequency shifted coherent beam and the in-
terferometer beam is detected by the “squeezing angle
control photodiode” to control the phase of the squeezed
vacuum field relative to the interferometer field [11]. The
OMC filters out the frequency shifted coherent beam,
while the squeezed vacuum reaches the “output photodi-
ode”.

During the experiment reported here, the LIGO H1
detector was configured as it was during its most sen-
sitive scientific run S6 [19] concluded in October 2010.
Shot noise was the limiting noise source above 400 Hz
and contributed significantly to the total noise down to
150 Hz [2]. Radiation pressure noise was negligible, com-
pletely masked by other noise sources.

The significantly improved sensitivity due to squeezing
in this experiment is shown in Fig. 2. The performance
without squeezing shown by the red curve was compara-
ble at high frequency to the best sensitivity H1 reached
during S6. The blue curve shows the improvement in
the sensitivity resulting from squeezing, with a 2.15 dB
(28%) reduction in the shot noise. This constitutes the
best broadband sensitivity to gravitational waves ever
achieved. To achieve the same improvement, a 64% in-
crease in the power stored in the arm cavities would
have been necessary, but this power increase would be
accompanied by the significant limitations of high power
operation [15, 20]. The measured improvement due to
squeezing is well explained given the amount of squeezing
injected into the interferometer and the total measured
losses in the squeezed beam path, as we will detail later.
A reduction in the total losses would therefore directly
translate in a larger shot noise suppression.

Equally important, the squeezed vacuum source did
not introduce additional technical noise in any frequency
band. This required paying particular attention in the
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FIG. 1. Simplified layout of the H1 interferometer with squeezed vacuum injection. The interferometer layout is described in
the text, together with the main squeezer components (shown in the grey box). The green box shows a simplified representation
of coherent states and squeezed states in the “in-phase” and “quadrature phase” coordinates.

design of the squeezed vacuum source to the control
of scattered light. Scattered light is a serious issue in
gravitational wave detectors operating near the quantum
limit, since it not only limits the squeezing enhancement,
but can degrade the interferometer sensitivity. Noise
due to scattered light is also extremely hard to calcu-
late a priori. Not only is the amount of scattering dif-
ficult to estimate, but the phase noise on the scattered
light fields is also unknown. Understanding the impact
of scattered light noise was one of the important moti-
vations for our experiment. In particular, light leaving
the interferometer is backscattered by the OPO and re-
enters the interferometer, contaminating the main inter-
ferometer output. Because the squeezed vacuum source
is mounted on an optical bench outside the vacuum sys-
tem that houses the interferometer, large relative motions
between the two are possible. To mitigate this problem,
the H1 OPO is a traveling wave cavity designed to pro-
vide an intrinsic isolation to backscattering of more than
40 dB [17]. Moreover, an additional Faraday isolator on
an in-vacuum suspended isolation platform was installed

in the injection path of the squeezed beam. With this
arrangement, the backscatter noise due to linear phase
variations was measured to be at least a factor 10 below
the total noise in the critical region between 150 and 300
Hz.

In order to explain quantitatively the measured im-
provement in the LIGO H1 sensitivity, we studied the two
main mechanisms that degrade squeezing: optical losses
and phase noise. Squeezed vacuum states are fragile; any
optical loss, including imperfect mode matching, reduces
the correlations imposed on the beam by the squeezed
vacuum. Furthermore, fluctuations in the relative phase
between the squeezed beam and the interferometer beam
can degrade the quantum noise reduction, since devia-
tion from the optimal phase projects the higher-noise or-
thogonal quadrature onto the measured quadrature. The
measurement shown in Fig. 2 was obtained by injecting
10.3±0.2 dB of squeezing, and the observed improvement
in the shot noise limit is consistent with the measured
losses and phase noise, as detailed below.

Let us consider first the impact of optical losses. Given
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the normalized variance of the output mode V± for the
elongated (+) and the squeezed (-) quadratures, respec-
tively, the normalized variances V

′

± for a given detec-

tion efficiency η can be written as V
′

± = ηV± + (1 − η).
The total detection efficiency measured in our experi-
ment is 44% ± 2%, corresponding to about 56% loss, in
good agreement with independent measurements of the
loss sources: mode mismatch between the squeezed beam
and the OMC cavity (25% ± 5%), scatter and absorp-
tion in the OMC (18%±2%), and absorption and imper-
fect polarization alignment in the Faraday isolators (the
squeezed beam passes through a Faraday three times,
with total losses of 20% ± 2%). A significant reduction
of these losses is possible, but it couldn’t be achieved
on the time scale allowed for this experiment before the
H1 upgrade for Advanced LIGO began. With 10.3 dB
of squeezing leaving the OPO and a detection efficiency

η = 0.44, only 2.2 dB of squeezing can be measured.

We must also account for the impact of phase noise.
Assuming that the relative phase noise between the lo-
cal oscillator and the two squeezing quadratures has a
normal distribution with a small standard deviation of
θ̃, the detected squeezing quadratures can be written as
V

′′

± = V
′

± cos2 θ̃+V
′

∓ sin2 θ̃ [21–23]. An independent mea-
surement indicates a phase noise of 37 ± 6 mrad.

The detectable squeezing in our experiment is therefore
2.14 ± 0.13 dB, consistent with the measured sensitivity
improvement of 2.15 ± 0.05 dB shown in Fig. 2. Even
though the impact of phase noise is negligible in this case,
a correct accounting of phase noise is crucial to predict
the detectable squeezing for higher detection efficiency
and higher squeezing levels. For example, with 35 mrad
of phase noise, a pure squeezed state of 20 dB injected
into an interferometer with perfect detection efficiency
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would result in less than 9 dB of squeezing.

A significant upgrade, known as Advanced LIGO [15],
is currently underway with the goal of increasing the
strain sensitivity of the LIGO detectors by a factor of
10. An important element of the improved sensitivity
is the increased light power. The nearly 1 MW of light
power circulating inside the arms is close to the limits of
the instrument, due to thermal effects caused by light ab-
sorption and the potential for optomechanical paramet-
ric instabilities [20]. Any further improvement looks best
to be done with quantum-enhancing techniques [24, 25],
such as squeezed vacuum injection.

Fig. 3 shows how Advanced LIGO could benefit from
squeezing. The total losses for a squeezed beam in Ad-
vanced LIGO are expected to be significantly less than
the losses measured in our experiment, possibly as low
as 10%. With the squeezed vacuum source employed in
the H1 experiment, we could expect to reduce the shot
noise by at least a factor of 2, improving the high fre-
quency sensitivity of Advanced LIGO. Due to effective
mitigation of other low-frequency noise sources, radiation
pressure noise will now limit the low frequency sensitivity
of Advanced LIGO. Thus, without further manipulation
of the injected field [26], the quantum enhancement at
high frequencies would be achieved at the expense of the
low frequency performance. That said, a factor of 2 im-
provement, even at high frequencies, would significantly
impact the astrophysical reach of the Advanced LIGO de-
tectors for several types of sources. For, example, there
are several dozen known pulsars with expected emission
frequencies between 80 Hz and 776 Hz [27]. Probing the
(quasi-)stationary quadrupole deformation of these spin-
ning neutron stars will provide a constraint on the size
of quadrupole deformations (”mountains”) and thus, to
some extent, on the breaking strain of the neutron star
crust. Even more remarkable is that a factor of 2 in-
crease of the high-frequency sensitivity will allow us to
track the late inspiral and eventual merger of neutron
star and black hole binary systems to higher frequen-
cies. This will impose much more significant constraints
on the poorly understood nuclear equation of state by
measurements of the tidal deformability [28, 29], of the
post-merger survival time [30], and of mode pulsations of
the merged remnant (at frequencies > 2 kHz).

Advanced LIGO can be improved with squeezing at
all frequencies, as shown in Fig. 3, by arranging to inject
squeezed vacuum with different quadrature angles at dif-
ferent frequencies (frequency-dependent squeezing [26]).
We are currently developing the techniques for convert-
ing squeezed vacuum of the type produced here into fre-
quency dependent squeezed vacuum for use in Advanced
LIGO. By further improving the sensitivity of ground-
based detectors and pushing the limits of astrophysical
observations, quantum-enhancement techniques promise
to play a critical role in future discoveries of gravitational
wave sources.
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FIG. 3. Comparison of possible sensitivity curves for Ad-
vanced LIGO. Projection for a squeezing-enhanced Advanced
LIGO interferometer (continuous lines), using a design sim-
ilar to the one described in this paper, is compared to the
Advanced LIGO sensitivity tuned for high frequency perfor-
mance (dashed lines). The total noise, in both cases, has been
computed by considering all the main noise sources, but only
thermal noise and quantum noise are shown, as they are the
only relevant noise sources above 100 Hz. The total losses for
the squeezed beam were assumed to be 10%, starting with 9
dB of squeezing delivered by the OPO and 35 mrad of phase
noise. With the same parameters, but assuming the injection
of optimal frequency dependent squeezing, quantum noise can
be reduced at all frequencies as shown by the dash-dotted red
line.

We have shown previously [31] that the LIGO optome-
chanical system can be treated as a quantum oscillator
with an occupancy number around 200. Given the ex-
treme fragility of quantum mechanical states, it is all the
more difficult to quantum engineer them without doing
harm. With the result presented here, we have demon-
strated that we can improve the sensitivity of a macro-
scopic quantum instrument without penalty. This is of
great relevance for Advanced detectors as they are ex-
pected to operate close to the quantum ground state of
the optomechanical system.

METHODS

Injection of squeezed vacuum

A schematic of the squeezed vacuum source is shown
in the grey box of Fig. 1. The 1064 nm “pump laser” is
phase-locked to the “H1 laser” and it drives the second
harmonic generator (SHG) to produce light at 532 nm.
The optical parametric oscillator (OPO) is resonant for
both 1064 nm and 532 nm light. It is typically pumped
with about 40 mW of 532 nm light, where the thresh-
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old for spontaneous sub-harmonic generation is near 95
mW. The 1064 nm ‘control laser” is phase-locked to the
“pump laser” to generate a 29 MHz frequency shifted co-
herent beam which co-propagates with the squeezed vac-
uum beam, entering the interferometer through the “out-
put Faraday isolator”. The interferometer reflects both
fields back towards the output mode cleaner (OMC). A
1% sample of these two beams is detected before reaching
the OMC by the “squeezing angle control photodiode.”
The beat between the 29 MHz frequency shifted coher-
ent beam and the interferometer beam provides an error
signal which is used to control the phase of the squeezed
vacuum field relative to the interferometer field.

Optical Losses

The optical losses measured in the path from the
squeezed vacuum source to the “output photodiode”
are 56%. The dominant loss sources are: mode mis-
match between the squeezed beam and the OMC cav-
ity (25% ± 5%), scatter and absorption in the OMC
(18% ± 2%), and absorption and imperfect polarization
alignment in the Faraday isolators (with total losses of
20% ± 2%). The mode mismatch between the squeezed
beam and the output mode cleaner (OMC) is mainly
caused by a complicated optical train in the vacuum en-
velope, which precluded improving the mode matching
on a time scale compatible with this experiment. The
losses in the OMC itself are also larger than expected,
and they are believed to be due to scatter and absorp-
tion inside the mode cleaner cavity. The squeezed beam
had to pass through a Faraday isolator installed between
the squeezed vacuum source and the interferometer, and
it had to double pass the “output Faraday isolator.” The
large beam size out of the interferometer required us
to use large aperture Faraday isolators. Large aperture
Faraday isolators tend to have lower throughput due to
the requirement for larger crystals. Most of these losses
are due to the fact that the LIGO H1 detector was not
initially designed for injection of squeezed states, and the
squeezing injection path was retrofitted within the origi-
nal LIGO optical layout.
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