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Abstract: In this paper, the Human Cognitive State (HCS) in the context of human and complex system 
interaction was classified by using the Fuzzy C-Means (FCM) algorithm. The most important features for 
the HCS pattern classification were extracted from a set of measured physiological variables based on the 
comparison of their respective rates of correct classification. The results have shown the usefulness of the 
FCM algorithm as well as the selected features for the challenging HCS classification problem. 
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1. INTRODUCTION 

In the safety-critical human-machine systems, the serious 
consequences of the decrement or breakdown of the human 
(operator) performance have drawn world-wide attention and 
concern, especially in the fields of transportation (e.g., 
railway, shipping, aeronautics and space) and process 
industry (e.g., chemical plants and nuclear power stations). A 
possible solution to this problem is to adjust the control 
strategy of such systems based on the analysis of the Human 
operator’s Cognitive State (HCS) (Hockey, 2003). In order to 
enhance the overall performance of such systems, an adaptive 
adding system can be developed, based on the identification 
or recognition of the HCS, to either warn the operator or 
reduce the task demands on the operator during the period of 
excessively high Mental WorkLoad (MWL). In Nickel et al. 
(2005) and Nickel et al. (2006), it was shown that some 
psychophysiological markers, for instance EEG-based-TLI 
(Task Load Index), are quite sensitive to the level of the 
operator’s mental stress or workload. Wilson (1999) adopted 
Artificial Neural Network (ANN) based approach to 
classification of operator functional (psychological or 
cognitive) state. Nonetheless, their approach can only provide 
the information regarding to which class a momentary 
operator state belongs to. Due to the black-box (and thus 
hard-to-interpret) nature of the ANN approach as well as the 
uncertain and fuzzy characteristics of the HCS classification 
problem, the ANN-based approach failed to provide a 
practically feasible solution to the difficult problem of 
recognizing the HCS in an accurate as well as transparent 
way. In this paper, based on a set of measured 
psychophysiological data (ECG, EEG, etc.), the Fuzzy 
C-Means (FCM) algorithm, originally proposed by Bezdek 
(1981), was employed to perform the HCS classification, 
which not only gives the cluster information but also the 
degrees of membership of a certain class. 

2. EXPERIMENTAL DATA 

2.1 Data collection 

In this work, an automation-enhanced Cabin Air Management 
System (aCAMS) was used to simulate a highly complex and 
safety-critical multi-task process control environment. The 
aCAMS was originally developed for ESA (European Space 
Agency) for investigating the stressors of the astronauts in the 
highly separated and confined environment (Hockey et al, 
1998). In aCAMS, the primary tasks of the human operator 
are to control (regulate) the five key controlled variables 
within the targeted ranges, and to handle in real time the 
programmed problems or faults (e.g., the operator is required 
to perform manual control tasks to maintain the normal 
operation of the whole system once an automatic controller or 
control subsystem malfunctions). 

Prior to the formal data acquisition experiments, each subject 
had undergone training of manual process control tasks for 
more than 10 hrs to get familiar to the experimental 
environment and control tasks. A total of 10 subjects (with 
subject-code A, C, D, E, F, G, H, J, K, and L, respectively) 
finally participated in the formal experiments, each carrying 
out 2 sessions of experiment. Each experimental session 
consisted of 9 task-load conditions, each condition lasting for 
15 min, hence each session lasted for 135 min (= 15 * 9). The 
experimental session was designed to emulate different task 
environments and task-loads according to the so-called 
cyclical loading scheme and consists of 9 different task-load 
conditions, under each of which there were a certain number 
of controlled variables demanding manual control by the 
operator (i.e., C1-C9 corresponds to the cyclic number of 1, 2, 
3, 4, 5, 4, 3, 2, 1, respectively). Prior to each task-load 
condition, the subject was asked to fill in health status 
questionnaire and complete subjective ratings of such 
variables as the level of efforts, anxiety and fatigue in a 
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manner of self-report on the relevant scales (in the range of 0 
to 100 points with 0 and 100 representing the two extremes 
of the lowest and highest level, respectively). 

In the whole session, the electroencephalogram (EEG), 
electrocardiograph (ECG) and operator performance data 
were recorded continuously. The EEG data was collected at a 
sampling rate of 2048 Hz according to the international 10-20 
electrode placement system (Jasper, 1958). For each EEG 
electrode (or measurement channel), three band powers, 
namely θ (4-8Hz), α (8-13Hz), and β (13-22Hz), were 
calculated. The data preprocessing was performed on the 
Biosemi® system. The preprocessed and down-sampled heart 
rate (HR) and EEG data was recorded every second. 

The instantaneous values of the five key controlled variables 
(i.e., multiple process outputs) were also measured, which 
can be used to derive the primary-task performance of the 
human operator who shared the control tasks with the 
machine in the whole human-machine system. 

2.2 Data preprocessing 

Considering the time period of subjective ratings, the first 
and last 30-sec measurement data were discarded, hence each 
task-load condition contains 14-min data and we had the 
usable time-series data of length 14×9=126 min for each 
experimental session. 

Based on the preprocessed HR data, we define the following 
heart rate variability (HRV) index, HRV2, as the ratio of the 
standard deviation and the mean of the HR data within a 
sampling interval (i.e., 1 min), which can be computed by 
(Wilson, 1999): 

2
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  (1)

where HR and HR stand for the s.d. and mean value of the 

HR time-series data within the time interval considered. 

Furthermore, the frequency spectral analysis of the HRV 
time-series data was performed to compute the ratio of lower- 
and higher-frequency band powers, i.e., LF/HF (Zhang et al, 
2008), where the LF and HF bands are defined as 
0.03-0.15Hz and 0.18-0.4Hz, respectively. 

For EEG data, the following two TLI indices (Wilson, 1999) 
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where Pθ and Pα stand for the theta- and alpha-band power, 
respectively, with the division of the specific frequency bands 
at five different electrode sites (in standard 10-20 EEG 
electrode placement system) defined as: (Fz, θ): 6-7 Hz; (AFz, 
θ): 5-7 Hz; (Pz, α): 10-12 Hz; (CPz, α): 8-10.5 Hz; (POz, α): 

10-13.5 Hz. 

All data was normalized by: 
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where z  [0,1] is the normalized version of the original data 
z, and and are the maximal and minimal value of the 

data set.  
maxz minz

3. HCS CLASSIFICATION BASED ON FCM 
ALGORITHM 

3.1 Fundamental ideas 

The HCS is referred to as the cognitive (mental or 
psychological) state of the human operator, which has many 
different correlates including possibly the physiological state, 
psychological state, the task demand, task environment, and 
other external factors. All those factors determine the 
performance of the operator when dealing with the current 
tasks under the current state and environment. In this work, 
the HCS evaluation is quantified and indexed by the task 
(work) performance of the operator. A variety of pattern 
recognition methods have been proposed. This paper adopted 
fuzzy c-means algorithm to perform the HCS classification 
based on the following two main reasons:    

1) The intrinsic nature and characteristics of the HCS pattern 
recognition problem require the use of fuzzy logic based 
approach with more flexible (or softer) class membership. In 
practical estimation of the HCS based on the 
psycophysiological measures (response), a linguistic variable, 
such as ‘excellent’, ‘average’, ‘worse’, may be usually used 
to describe or differentiate the levels of the HCS. Even in 
some cases, only a ‘hard-threshold-like’ redline of the 
operator’s task performance needs to be determined to infer 
the optimal allocation of the tasks to the operator, so as to 
avoid the operational accidents caused by the deterioration of 
the operator state. Therefore, the fuzzy logic based HCS 
pattern classification problem is mainly considered. 

2) The FCM algorithm has moderate computational overhead. 
Furthermore, in the FCM, all variables are continuous and 
differentiable and thus gradient-based technique can be used 
to find a viable and more efficient search direction, which 
avoids the blind search in the whole feature space and thus 
the combinatorial explosion issue related to other traditional 
non-fuzzy approaches.  

3.2 Basics of FCM algorithm 

The fuzzy C-Means (FCM) algorithm is concerned with 
partition-based clustering and unsupervised learning. The 
clustering is performed completely based on the 
inter-relationship of data itself without the need of explicit 
information about the target clusters. The basic idea of the 
FCM algorithm is to maximize the similarity of the objects 
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which are partitioned to a certain cluster, whereas to 
minimize the similarity between different clusters. Step 1: Initialization 

(parameter setting, 
dataset loading, etc.) The FCM algorithm improved the normal c-means clustering 

algorithm in terms of the data partition approach with the 
latter adopting ‘hard’ partition, whereas the former ‘soft’ 
partition by means of fuzzy logic. In the normal c-means 
algorithm, certain data point either belongs to or does not 
belong to a cluster. In contrast, in the FCM algorithm each 
data point belong to every cluster to different degrees 
(referred to as the membership degree represented by a value 
between 0 and 1) with the sum of all membership degrees 
equal to 1. The closer to 1 the membership degree, the more 
significant the membership of the data to this cluster is. 

Step 2: Compute the c-means 
vectors, v, based on the current 

MD matrix by eqn. (4) 

The specific computational procedure of the FCM algorithm 
is as follows: 

Step 3: Update the MD 
matrixU by eqn. (5) 
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Step 4: If    1l lU U    (here  is a small constant) is 

satisfied or the preset number of iterations are completed, the 
algorithm stops and outputs the clustering results, otherwise 
let , and then back to the Step2 to continue the 
computational loop. 

1l   l

The above four computational steps constitute the flowchart 
of FCM algorithm, which is shown in Fig. 1. 

 

Fig. 1. The flowchart of the FCM algorithm. 

3.3 Results and some discussion 

The HCS classification by using the FCM algorithm gives us 
not only the class of each momentary state, but also the 
degree of the class membership as well as the center of each 
cluster. The class with maximal membership would be 
selected as the final class to which certain data point belongs. 
In our work, c=3, i.e., the HCS was classified into three 
classes with label of Risky, Average and Good, respectively. 
Based on the measured data, a total of 5 features were 
derived, including HRV2, LF/HF, TLI1, TLI2, and HR (the 
average value of heart rate at each minute). In this case, p=5, 
which implies that the dataset consists of the data points in 
5-D feature space. In what follows, the HCS classification 
results for three subject (D, K and L) among a total of 10 
subjects will be demonstrated. The five HCS features are 
shown in Fig. 2, 4, 6, 8, 10, 12a), respectively, while the 
corresponding FCM-based data clustering results are shown 
in the panel b) of the same figures by small squares. 

To evaluate the effectiveness of the FCM algorithm for the 
HCS classification, a supplementary variable NOV (Number 
Of Variables under manual control) is considered as a 
reference. In our experimental design, we varied the NOV to 
realize a cyclical loading scheme (i.e., the NOV was stepwise 
increased until a threshold, then gradually reduced in a cyclic 
manner, refer to the same solid stepwise line in Fig. 2b, etc.). 
In this way the HCS variations with different task- and 
mental-load conditions can be thoroughly investigated. 

Y
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It can be seen from Fig. 2, 4, 6, 8, 10, 12b) that the HCS 
gradually deteriorates with the elevation of task-load during 
the first half period of the experimental session, whereas it 
gradually recovers with the reduction of the task-load during 
the latter phase of the session. The actual variations in the 
HCS level are well captured by the FCM-based classification 
results. The HCS classification results of the other seven 
subjects also reveal its real variations, thus the validness of 
the selected five features used for the HCS classification 
problem is basically substantiated. 

In what follows, the difference between the cluster centers is 
used to further examine the sensitiveness of each candidate 
feature-set to the HCS classification. In other words, certain 
relatively insensitive features can be eliminated based on the 
information with regard to the cluster centers, so as to reduce 
the computational complexity of the FCM algorithm. By 
measuring the inter-cluster difference, some features that are 
relatively insensitive to the HCS variations can be removed. 
In this work, the feature(s), resulting in too close cluster 
centers measured by their Euclidean distance in (6), would be 
eliminated: 

, ` ; , 1, 2, ,i j i j i j c   v v          (6) 

where δ is a small positive threshold that controlled the 
number of resulting clusters. Here we take its value to be 0.1. 

The reduced feature space after feature elimination and HCS 
classification results for the 1st session data of the three 
subjects D, K, and L are shown in Fig. 3, 7, 11a) and b), 
respectively, while those for the 2nd session data of the same 
three subjects are shown in Fig. 5, 9, 13a) and b), respectively. 
From the results shown in Fig. 3, 5, 7, 9, 11, and 13, it can be 
observed that the classification results based on the reduced 
number of features are also in good agreement with the actual 
trend of the HCS variations. 
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Fig. 2. The HCS features and classification results (subject D; 
s1): The temporal dynamics of the 5 features (upper) and 
HCS classification results (lower). 
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Fig. 3. The reduced 3D feature space (upper) and HCS 
classification results (lower): subject D; s1. 
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Fig. 4. The HCS features and classification results (subject D; 
s2): The temporal dynamics of the 5 features (upper) and 
HCS classification results (lower). 
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Fig. 5. The reduced 3D feature space (upper) and HCS 
classification results (lower): subject D; s2. 
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a)                    b) 

Fig. 6. The HCS features and classification results (subject K; 
s1): a) The temporal dynamics of the 5 features; b) The HCS 
classification results. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TLI1

H
R

 

0 20 40 60 80 100 120 140
Risky

Average

Good

Time index

Classification

NOV

 

Fig. 7. The reduced 2D HCS feature plane (upper) and 
classification results (lower) for subject K; s1. Here the 
centers of three distinct OFS classes are indicated (upper). 
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a)                    b) 

Fig. 8. The HCS features and classification results (subject K; 
s2): a) The temporal dynamics of the 5 features; b) The HCS 
classification results. 
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a)                   b) 

Fig. 9. The reduced feature space and classification results 
(subject K; s2): a) The 3D HCS-feature space generated by 
data dimension-reduction (i.e., 2 features, LF/HF and HR, 
were eliminated); b) The HCS classification results. 
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Fig. 10. The five candidate temporal features (upper) and 
HCS classification results (lower): subject L; s1. 
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Fig. 11. The 3D feature space generated by dimensionality 
reduction (upper) and HCS classification results (lower): 
subject L; s1. 
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a)                  b) 

Fig. 12. The HCS features and classification results (subject 
L; s2): a) temporal variation of 5 features; b) HCS 
classification results. 
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a)                     b) 

Fig. 13. The reduced feature space and classification results 
(subject L; s2): a) The 3D HCS-feature space generated by 
data dimension-reduction (i.e., 2 features, TLI1 and LF/HF, 
were eliminated); b) The HCS classification results. 

 

Furthermore, the subject-specific feature selection and the 
corresponding classification results of the both dataset for 
each subject before and after feature elimination are 
compared in Table 1, which gives not only the linear 
correlation coefficients (LCC) between the classified HCS 
and the NOV parameter (see the 4th and 5th column), but also 
the classification consistency rate (CCR) index before and 
after using feature selection (see the last column). In Table 1, 
the eliminated features are marked with “--”, while the 
selected features marked by “√”; s1 and s2 stand for the first 
and 2nd dataset (measured in 1st and 2nd session of 
experiments), respectively. From the last row of Table 1, it is 
recognized that overall the most sensitive HCS feature is 
TLI2, followed by HRV2, HR, and TLI1, while the index of 
LF/HF was shown to be relatively insensitive to the 
variations in the HCS. It is also noted that the importance of 
each feature seems fairly different across subjects. From the 
LCC values shown in Table I, an obvious linear correlation 
was observed between the classified HCS and the actual 
change of the task-load in particular for subjects C, D, J, K 
and L, which indicated that our classification results agree 
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well with the actual HCS variations with the change of task 
load. From the CCR values given in the last row of Table I, 
among 126 data points the class labels of 122 pair of data 
(with a percentage of 96.83%) are consistent for the 1st 
session of subject L, while 111 pairs of data (with a 

percentage of 88.10%) for the 2nd session of subject D. It is 
also seen that the inconsistency of the data clustering results 
prior to and after the feature selection are small, and hence 
the validity of the proposed feature elimination (selection) 
approach is demonstrated.

 

Table 1. Comparison of HCS classification results with and without feature selection: 10 subjects with each having 2 
measured datasets. 

Candidate physiological features 
Subject 

code 

Data 
session 

# TLI2 TLI1 HR LF/HF HRV2 

LCC 
without 
feature 

selection

LCC with 
feature 

selection 
CCR 

s1 √ √ √ -- -- -0.1265 -0.2481 70.63% 
A 

s2 √ -- √ -- √ -0.2713 -0.2345 88.10% 

s1 √ -- √ -- -- -0.5437 -0.4438 84.13% 
C 

s2 √ √ -- -- √ -0.5255 -0.5418 78.57% 

s1 √ √ √ -- -- -0.6131 -0.6185 94.44% 
D 

s2 √ -- √ -- √ -0.6396 -0.6652 88.10% 

s1 -- √ -- √ √ -0.0108 -0.0483 77.78% 
E 

s2 -- √ √ -- √ -0.0777 -0.0026 90.48% 

s1 √ -- -- -- √ -0.1078 -0.2471 65.87% 
F 

s2 √ √ -- -- √ -0.2046 -0.0824 92.86% 

s1 √ √ √ -- -- -0.1315 -0.1179 88.10% 
G 

s2 √ -- √ -- √ -0.3899 -0.2723 76.19% 

s1 √ √ -- -- √ -0.4899 -0.4814 88.89% 
H 

s2 √ -- √ -- √ -0.527 -0.4002 77.78% 

s1 -- √ √ -- √ -0.416 -0.3869 91.27% 
J 

s2 √ √ -- -- √ -0.6008 -0.5083 89.68% 

s1 -- √ √ -- -- -0.3455 -0.3655 92.86% 
K 

s2 √ √ -- -- √ -0.7202 -0.4768 82.54% 

s1 √ -- √ -- √ -0.5484 -0.5008 96.83% 
L 

s2 √ -- √ -- √ -0.5244 -0.5752 86.51% 

# of selection 16/ 20 12/ 20 13/ 20 1/ 20 15/ 20    

 

4. CONCLUSIONS 

Based on a series of the measured physiological data, 5 key 
features which are sensitive to the HCS variations are 
calculated in this paper. Then the FCM algorithm is adopted 
to realize the fuzzy classification of the momentary HCS 
change under variable mental workload conditions. The 

cyclical loading design scheme suggested also allows us to 
evaluate the HCS classification performance without the 
explicit knowledge of the target classes. The results for 10 
subjects have shown that the hybrid-data-based fuzzy pattern 
classification technique can recognize individually the real 
variations in the HCS. The correlation analysis showed that 
the classified HCS clearly reflects the gradual change of the 
HCS in response to the stepwise variations of the task-load 
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(i.e., the level of manual control task difficulty) specified by 
the cyclical loading scheme. The feature selection (or called 
data dimensionality-reduction) was also performed based on 
a criterion of the cluster centers generated by the FCM 
algorithm. Our results have also shown a significant 
individual difference on the subject-specific HCS-related 
patterns finally selected. Moreover, the unimportant feature 
elimination procedure ensures comparable classification 
accuracy with enhanced computational efficiency, which may 
be desirable for online real-time HCS classification. 

Due to the complex and at most partially known relationship 
between the HCS and the psychophysiological responses of 
the human operator, the entirely data-based method has to be 
used for its investigation. Although the fuzzy logic based 
paradigm was shown to be effective for the HCS 
classification problem by this work, some further work needs 
to be done in the following two directions: 1) The improved 
classification algorithm: For instance, two possible problems 
may arise: i) How to extract the individually optimal or 
near-optimal HCS features for each subject? ii) How to 
improve the computing efficiency aspect of the FCM 
algorithm, utilized in this paper, to make it more tailored to 
real-time online classification of the HCS required by the 
practical situations? 2) The measured data: To further 
improve the generalization (or predictive) accuracy and 
reliability of the classification algorithms, more sessions of 
experimental data for each subject should be available. On 
the other hand, the data measured from more subjects are 
required to study the individual difference between subjects 
and the possibility of designing a generic HCS classifier for 
certain group of subjects with similar physical characteristics. 
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