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Abstract

Refractive processes in strong-field QED are pure quantum processes, which involve only external

photons and the background electromagnetic field. We show analytically that such processes

occurring in a plane-wave field are all characterized by a surprisingly modest net exchange of

laser photons even at ultrarelativistic laser intensities. We obtain this result by a direct calculation

of the transition matrix element of an arbitrary refractive QED process and accounting exactly for

the background plane-wave field. A simple physical explanation of this modest net exchange of laser

photons is provided, based on the fact that the laser field couples with the external photons only

indirectly through virtual electron-positron pairs. For stronger and stronger laser fields, the pairs

cover a shorter and shorter distance before they annihilate again, such that the laser can transfer

to them an energy corresponding to only a few photons. These results apply to both optical and

x-free electron lasers, and are relevant for upcoming experiments aiming to test strong-field QED

at present and next-generation facilities.
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I. INTRODUCTION

Nonlinear processes have always played a fundamental role in different areas of physics,

spanning from hydrodynamics, atomic and laser physics to plasma and high-energy physics

[1]. From a theoretical point of view the description of such nonlinear processes, though

attractive, is also particularly challenging. Since the invention of the laser, it was manifest

that one of its unique features, the coherence, would allow for the experimental investigation

of nonlinear phenomena. In a laser beam, in fact, a large number of photons propagate in

phase and, depending on the laser intensity and on the process at hand, they may act

cooperatively. One example is atomic high-order harmonic generation (HHG), in which a

large number of laser photons is absorbed by a single atom and only one high-energy photon

is emitted (see the reviews [2]). When laser-driven electrons (mass m and charge e < 0)

are bound in atoms, nonlinear phenomena start at laser field amplitudes E0 of the order

of the typical atomic binding field Eat = m2|e|5, which corresponds to a laser intensity of

Iat = E2
at/4π = 7.0× 1016 W/cm2 (units with ~ = c = 1 are employed throughout). In this

case the average number of photons absorbed from the laser by the electron is of the order of

Up/ω0, where Up = e2E2
0/mω

2
0 is its ponderomotive energy and ω0 is the central laser photon

energy. HHG has also been observed for free electrons driven by an intense laser beam, being

named nonlinear Thomson or nonlinear Compton scattering, depending on if quantum effects

are negligible or not [3, 4]. In both nonlinear Thomson and Compton scattering, the typical

electric field strength, at which nonlinear effects set on, is given by Erel = mω0/|e|. The

corresponding intensity is of the order of 1018 W/cm2 at optical photon energies ω0 ≈ 1 eV.

An electron in a laser field with central laser photon energy ω0 and electric field strength of

the order of Erel is accelerated to relativistic velocities already within one laser period and

its dynamic becomes highly nonlinear with respect to the laser field amplitude [5]. On the

other hand, quantum effects such as the recoil of the photons emitted by the laser-driven

electron, strongly modify the emission process when the electric field strength of the laser

in the initial rest frame of the incoming electron is of the order of the so-called critical

field Ecr = m2/|e| of QED, corresponding to the laser intensity Icr = 4.6 × 1029 W/cm2

[6]. Relativistic quantum effects also allow for the nonlinear interaction of a photon with a

laser field, as in the case of electron-positron pair photo-production (nonlinear Breit-Wheeler

pair production (NBWPP)) [7–9]. This process, as well as any QED process occurring in
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the collision of a photon with a strong laser field [10], is essentially controlled by the two

Lorentz- and gauge-invariant parameters ξ = E0/Erel and κ = [(k0k)/mω0]E0/Ecr. Here,

(k0k) = ω0ω − k0 · k, with kµ0 = (ω0,k0) and kµ = (ω,k) being the four-momentum of

the laser photons and of the incoming photon, respectively. It is worth observing that in

the so-called “ultrarelativistic” regime ξ ≫ 1, the net number of laser photons absorbed in

NBWPP is very large and of the order of ξ3 [7]. Since presently available optical lasers allow

for values of ξ of the order of 102 [11], unprecedented degrees of nonlinearity of the order of

one million are in principle achievable.

Refractive QED processes in a strong laser field involve only initial and final photons, and

the background field [12]. Such processes of genuinely quantum nature are a unique tool for

testing the predictions of strong-field QED on the nonlinear evolution of the electromagnetic

field in vacuum. Vacuum polarization [13] and photon splitting [14] in a laser field are two

examples of refractive QED processes, which have been considered in the literature. It has

been observed in both cases, that the net number of laser photons exchanged with the laser

field is very small (of the order of unity) even in the ultrarelativistic regime ξ ≫ 1.

In the present paper we show analytically that this is a general feature of refractive QED

processes in a strong laser field. The physical origin of this effect lies in the fact that in a

refractive QED process, the laser field couples to the external photons only indirectly via

a virtual electron-positron pair. As we will see below, at higher and higher laser intensi-

ties the distance covered by the virtual electron and positron before annihilating decreases

accordingly, in such a way that the process occurs with a net exchange of a low number

of laser photons. This is in contrast, as we have mentioned, to the NBWPP, which is also

primed in the collision of a (real) photon and a laser field. However, in NBWPP the final

electron and positron are on the mass shell, requiring a large amount of laser photons to

be absorbed for the process to occur at all in the presence of an ultra-relativistic laser field.

The present results are of relevance for planned experimental campaigns, aiming to measure

strong-field QED effects in the presence of a background laser field. As we will see, they

indicate, for example, that, in order to detect nonlinear effects in the laser field amplitude

on refractive QED processes, it is more convenient to measure the yield of final photons and

to compare it with the corresponding value without laser field, rather than to measure the

angular distribution or the energies of the final photons.
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FIG. 1. Two typical Feynman diagrams relative to a generic refractive QED process in a laser field.

The thin wavy lines indicate the external photons with four-momenta kµ1 , . . . , k
µ
N and polarization

four-vectors eµ1 , . . . , e
µ
N , respectively, and the thick plain lines indicate the laser-dressed electron

propagators.

II. CALCULATION OF THE AMPLITUDE OF A GENERIC REFRACTIVE QED

PROCESS

Refractive QED processes in a laser field involve in general Ni incoming, No outgoing

photons, with Ni + No > 0, and the laser photons. However, for the sake of notational

simplicity, we consider here the abstract case of only incoming photons (No = 0) and we set

Ni = N . The photons have momenta kµj and polarization four-vectors eµj , with j = 1, . . . , N

(see Fig. 1): the jth incoming photon can be “transformed” into an outgoing one via the

substitutions kµj → −kµj and eµj → eµ ∗
j in the amplitude (see Eq. (1) below). As it will be

clear below, the results of the paper are unaffected by this particular choice. The mentioned

process is described by the sum of all Feynman diagrams, which can be obtained from the

one in the left side of Fig. 1 by permuting the labels in the photon legs. Among them, we

consider here only the one in the right part of Fig. 1, and the treatment of the remaining

diagrams can be performed in an analogous way (any diagram contributing to a refractive

QED process can always be considered together with the other one, differing only in the

direction of circulation of the four-momentum through the electron loop). The amplitude
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M corresponding to the diagrams in Fig. 1 is given by [15]

M =− eN
∫

d4x1 · · · d4xNe−i[(k1x1)+···+(kNxN )]

× Tr[ê1G(x1, x2|A)ê2G(x2, x3|A) · · · êNG(xN , x1|A)]+ 	,

(1)

where the “hat” indicates the contraction of a four-vector with the Dirac gamma matrices

γµ and where the symbol 	 indicates the amplitude corresponding to the diagram on the

right in Fig. 1. In Eq. (1) the quantity G(x, y|A) is the dressed electron propagator in the

laser field. The latter is described by the four-vector potential Aµ = Aµ(φ), where φ = (nx),

with nµ = (1,n) and n being the propagation direction of the laser field. By working in the

Lorentz gauge, the four-vector potential Aµ(φ) of the laser field can be chosen in the form

Aµ(φ) = (0,A(φ)), with n ·A(φ) = 0. Let a1 and a2 indicate the two possible independent

laser polarization directions, such that ar · as = δrs, with r, s = 1, 2, and that a1 × a2 = n.

Then, the four-vector potential Aµ(φ) can be written as Aµ(φ) = A0[a
µ
1ψ1(φ) + aµ2ψ2(φ)],

where A0 = −E0/ω0, a
µ
r = (0,ar), and the two shape-functions ψr(φ) are arbitrary, smooth

functions except that they satisfy the relation
√

ψ′2
1 (φ) + ψ′2

2 (φ) ≤ 1 for all values of φ, with

ψ′
1/2(φ) = dψ1/2(φ)/dφ. Here, E0 and ω0 indicate the laser-electric-field amplitude and its

central angular frequency, respectively [16]. Since the interaction of the jth photon with the

laser field is controlled by the parameter κj = ηjξ, with ηj = ω0|kj,X|/m2 [6, 7], it is natural

to assume here that κj 6= 0 for all js, which means kj,X 6= 0 for all js .

In order to calculate the amplitude M , we employ below the operator technique, devel-

oped in [13] for the case of a background plane-wave laser field. In the operator technique

the electron propagator in the laser field is written as G(x, y|A) = 〈x|G(A)|y〉, where

G(A) =
1

Π̂−m+ iǫ
, (2)

with Πµ = Πµ(A) = P µ−eAµ(φ) and with ǫ being a positive infinitesimal quantity. Here, the

four-vector P µ is the four-momentum operator, satisfying the commutation rules [xµ, P ν ] =

−igµν , where gµν = diag(+1,−1,−1,−1). By employing the above representation of the

electron propagator and by using the cyclic property of the trace, the amplitude in Eq. (1)

can be simply written as

M = −eN
∫

d4xTr 〈x|G1(A) · · ·GN (A)|x〉+ 	, (3)

where we have introduced the block operatorsGj(A) = G(A)êj exp[−i(kjx)]. It is convenient
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to express the amplitude M in terms of the “square” propagator

D(A) =
1

Π̂2 −m2 + iǫ
(4)

rather than in terms of G(A). The details of the procedure to carry this out are reported in

the Appendix A. Here, we only provide a summary of this procedure in terms of substitution

rules. The amplitude M , in fact, turns out to be expressed as

M =
1

2

[N/2]+1
∑

i=1

(M (i) + {1 . . .N → N . . . 1}), (5)

where M (i) are partial amplitudes, with [N/2] indicating the integer part of N/2. The

quantity {1 . . .N → N . . . 1} refers to the fact that each partial amplitude M (i) will have N

indexes corresponding to the N ordered operators Gj(A) in Eq. (3), and it indicates that

the same partial amplitude M (i) has to be added, but with the indexes 1, . . . , N appearing

in the opposite order N, . . . , 1. In turn, each partial amplitude M (i) is expressed as a sum
∑Ji

J=1M
(i)
J of terms M

(i)
J and the number Ji of terms in each partial amplitude depends on

the partial amplitude itself. Each term M
(i)
J has the form −eN

∫

d4xTr 〈x|O(i)
J |x〉, with the

operator O
(i)
J being obtained from the original operator product G1(A) · · ·GN(A) by means

of the following substitution rules:

1. Partial amplitudeM (1): substitute each blockGj(A) byDj(A) ≡ D(A) exp[−i(kjx)][2(Πej)+
k̂j êj ] (this partial amplitude contains one term).

2. Partial amplitude M (2): combine two successive blocks Gj(A)Gj+1(A) (for j =

1, . . . , N) and substitute this quantity with the “contraction”

−Cj,j+1(A) = −D(A)êj exp[−i(kjx)]êj+1 exp[−i(kj+1x)], then substitute the remain-

ing blocks as in 1.; it is understood that GN+1(A) ≡ G1(A) and that CN,N+1(A) ≡
CN,1(A); this partial amplitude contains N terms.

3. Partial amplitude M (3): combine twice two successive blocks Gj(A)Gj+1(A) and

Gj′(A)Gj′+1(A) (for j = 1, . . . , N − 2, and for j′ = 3, . . . , N − 1 (if j = 1) or for

j′ = j + 2, . . . , N (if j > 1)), and substitute these quantities with the contractions

−Cj,j+1(A) and −Cj′,j′+1(A), respectively; then substitute the remaining blocks as

in 1.; it is understood that GN+1(A) ≡ G1(A) and that CN,N+1(A) ≡ CN,1(A); this

partial amplitude has to be considered only if N ≥ 4 and it contains N(N − 3)/2

terms.
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4. The above procedure continues by increasing by one the number of combinations

of successive blocks. The last partial amplitude M ([N/2]+1) contains the two terms

(−1)N/2C1,2(A)C3,4(A) · · ·CN−1,N(A) and (−1)N/2CN,1(A)C2,3(A) · · ·CN−2,N−1 with

N/2 contractions if N is even, or the N terms (−1)(N−1)/2D1(A)C2,3(A) · · ·CN−1,N(A),

(−1)(N−1)/2CN,1(A)D2(A)C3,4(A) · · ·CN−2,N−1(A),...,

(−1)(N−1)/2C1,2(A)C3,4(A) · · ·CN−2,N−1(A)DN(A) with (N − 1)/2 contractions if N is

odd.

Now, a useful exponential representation of the square propagator D(A) has been found

in [13] (see also [14, 17]):

D(A) =− i

∫ ∞

0

ds eis(Π̂
2−m2+iǫ) = −i

∫ ∞

0

ds e−i(m2−iǫ)s

{

1 +
en̂

2PX
[Â(φ+ 2sPX)− Â(φ)]

}

× e−i
∫ s
0
ds′[P⊥−eA(φ+2s′PX)]2e−2isPφPX ,

(6)

where we have introduced the operators Pφ = (Pt +Px‖
)/2 and PX = −(Pt −Px‖

) = −(nP )

of the conjugated momenta to the coordinates φ = t−x‖ and X = (t+x‖)/2, with x‖ = n·x,
such that φ and X can be interpreted as a “time” and a “space” coordinate, respectively,

i.e., [φ, Pφ] = −i and [X,PX ] = i. Note that t = X + φ/2, x‖ = X − φ/2, Pt = Pφ − PX/2,

and Px‖
= Pφ + PX/2.

Out of the different partial amplitudes which arise from the above substitutions, we work

out only the following one

M (1) = −eN
∫

d4xTr 〈x|D(A)e−i(k1x)[2(Πe1) + k̂1ê1] · · ·D(A)e−i(kNx)[2(ΠeN) + k̂N êN ]|x〉,
(7)

which arises from the substitution in 1.. This partial amplitude is always present, inde-

pendently of the number of the external photons and, as it will also be clear from the

considerations below, the analysis of the other partial amplitudes proceeds analogously. By

looking at the expression of the operators D(A) (see Eq. (6)), the coordinate operators X

and x⊥ appear to occur only in the exponentials relative to the external photons. By em-

ploying the operator identity ei(kjx)f(P )e−i(kjx) = f(P + kj), we can move all the operators
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ei(kj,XX+kj,⊥·x⊥) to the left and let them act on the bra 〈x|. The result is

M (1) =− eN
∫

d4x ei(KXX+K⊥·x⊥)Tr 〈x|e−ik1,φφ{2[(Πµ + κµ2 )e1,µ] + k̂1ê1}D2(A)

· · · × e−ikN−1,φφ{2[(Πµ + κµN )eN−1,µ] + k̂N−1êN−1}DN(A)

× e−ikN,φφ[2(ΠeN ) + k̂N êN ]D(A)|x〉,

(8)

whereKµ =
∑N

j=1 k
µ
j , κ

µ
j =

∑N
i=j k

µ
i (note that κµ1 = Kµ), andDl(A) = D(A)|PX→PX+κl,X ,P⊥→P⊥+κl,⊥

,

with l = 2, . . . , N . Now, the operators between the bra 〈x| and the ket |x〉 do not contain

the coordinates X and x⊥, and the identities

〈X|f(PX)|X〉 =
∫

dpX
2π

f(pX), 〈x⊥|g(P⊥)|x⊥〉 =
∫

d2p⊥
(2π)2

g(p⊥) (9)

valid for arbitrary functions f(PX) and g(P⊥) can be applied (we assumed here that the

eigenstates |p〉 of the four-momentum operator P µ, i.e., P µ|p〉 = pµ|p〉, are such that 〈x|p〉 =
e−i(px) and 〈p|p′〉 = (2π)4δ4(p − p′)). Moreover, the integrals in X and x⊥ are easily taken

and the partial amplitude M (1) becomes

M (1) =− (−ie)Nδ(KX)δ
2(K⊥)

∫

dφ

∫

dpX

∫

d2p⊥

∫ ∞

0

ds1 · · · dsN e−i(m2−iǫ)S

× Tr 〈φ|{2[(pµ − eA(φ))eN,µ] + k̂N êN}

×
{

1 +
e

2pX
n̂[Â(φ+ 2s1pX))− Â(φ)]

}

× e−i
∫ s1
0 ds′1[p⊥−eA(φ+2s′1pX)]2e−2is1PφpXe−iκ1,φφ

× {2[(pµ − eA(φ) + κµ1 )e1,µ] + k̂1ê1}

×
{

1 +
e

2(pX + κ2,X)
n̂[Â(φ+ 2s2(pX + κ2,X))− Â(φ)]

}

× e−i
∫ s2
0 ds′2[p⊥+κ2,⊥−eA(φ+2s′2(pX+κ2,X))]2e−2is2Pφ(pX+κ2,X)e−iκ2,φφ

· · · × {2[(pµ − eA(φ) + κµN−1)eN−1,µ] + k̂N−1êN−1}

×
{

1 +
e

2(pX + κN,X)
n̂[Â(φ+ 2sN(pX + κN,X))− Â(φ)]

}

× e−i
∫ sN
0 ds′N [p⊥+κN,⊥−eA(φ+2s′N (pX+κN,X))]2e−2isNPφ(pX+κN,X)e−iκN,φφ|φ〉,

(10)

where S = s1+· · ·+sN . We note that in this expression of the amplitude, we have substituted

the operator P µ with the number pµ + κµj in the four-dimensional scalar products (Pej).

First, we observe that, since (kjej) = 0, then it is (κjej) = (κj+1ej), for j = 1, . . . , N − 1

and (κNeN) = 0. Moreover, although the substitution (Pej) → (pµ + κµj )ej,µ is evident for

8



the components pX and p⊥ (see Eq. (9) and the definition of the operators Dl(A) below Eq.

(8)), it is in principle not justified for the remaining component Pφ. However, we show in the

Appendix B that gauge invariance implies that the four-dimensional scalar products (Pej)

actually do not involve the component Pφ. The remaining matrix element can be calculated

by employing the identity

e−iφ0Pφ|φ〉 = |φ− φ0〉, (11)

where φ0 is a constant, and the fact that 〈φ|φ′〉 = δ(φ − φ′). The resulting δ-function

δ(2s1(pX +κ1,X)+ · · ·+2sN(pX +κN,X)) can be exploited to perform the integral in pX and

the result is

M (1) =− (−ie)N
2

δ(KX)δ
2(K⊥)

∫

dφ

∫

d2p⊥

∫ ∞

0

ds1 · · · dsN
S

e−i(m2−iǫ)Se−iKφφ

× e−i
∑N

j=1

∫ sj
0 ds′j{δκj,φδκj,X+[p⊥+πj,⊥(φ,s′j)]

2}

× Tr

〈

{2[(pµ − eA(φ))eN,µ] + k̂N êN}
{

1 +
e

2δκ1,X
n̂[Â(φ+ φ1)− Â(φ)]

}

× {2[(pµ − eA(φ + φ1) + κµ1 )e1,µ] + k̂1ê1}
{

1 +
e

2δκ2,X
n̂[Â(φ+ φ2)− Â(φ+ φ1)]

}

· · · × {2[(pµ − eA(φ+ φN−1) + κµN−1)eN−1,µ] + k̂N−1êN−1}

×
{

1 +
e

2δκN,X

n̂[Â(φ+ φN)− Â(φ+ φN−1)]

}〉

.

(12)

In this expression we have simplified the notation by introducing the “average”

f̄ =
1

S

N
∑

j=1

∫ sj

0

ds′jfj(s
′
j) (13)

of N arbitrary functions fj(s
′
j), the residuals

δfj(s
′
j) = fj(s

′
j)− f̄ , (14)

and the quantities

φj = 2

j
∑

i=1

δκi,Xsi (15)

and

πµ
j (φ, s

′
j) = κµj − eAµ(φ+ φ′

j), (16)

9



with

φ′
1 = 2δκ1,Xs

′
1 (17)

φ′
l = 2

l−1
∑

i=1

δκi,Xsi + 2δκl,Xs
′
l, l = 2, . . . , N. (18)

Note also that pX = −κ̄X , that φN = 0 and that in our gauge πj,X/φ(φ, s
′
j) = κj,X/φ.

Moreover, in Eq. (12) and in the successive expression of M (1), the quantity pX in the trace

has to be interpreted as −κ̄X .
In order to take the integral in p⊥, it is convenient first to shift p⊥ as p⊥ → p⊥ −

π̄⊥(φ, {s}), where {s} = s1, . . . , sN . In this way, the resulting expression of the amplitude

can be written as

M (1) =− (−ie)N
2

δ(KX)δ
2(K⊥)

∫

dφ

∫

d2p⊥

∫ ∞

0

ds1 · · ·dsN
S

e−i[Kφφ−F (φ,{s})]e−iSp2
⊥

× Tr

〈 N
∏

j=1

{2[(pµ + δπµ
j (φ, sj))ej,µ] + k̂j êj}

×
{

1 +
e

2δκj+1,X
n̂[Â(φ+ φj+1)− Â(φ+ φj)]

}〉

,

(19)

where

F (φ, {s}) =
N
∑

j=1

∫ sj

0

ds′j[δπ
µ
j (φ, s

′
j)δπj,µ(φ, s

′
j)−m2 + iǫ], (20)

where δκN+1 ≡ δκ1 and φN+1 ≡ φ1. The integral in p⊥ = (p1, p2) can be written as a sum

of integrals of the form

In1,n2 =

∫

d2p⊥ p
n1
1 p

n2
2 e−iSp2

⊥, (21)

where n1 and n2 are two non-negative integers. The integral In1,n2 vanishes if n1 and/or n2

are odd, whereas it is equal to

In1,n2 = 2π
(n1 − 1)!!(n2 − 1)!!

(2iS)(n1+n2+2)/2
(22)

if n1 and n2 are both even. In conclusion, we can write the partial amplitude M (1) in the

compact form

M (1) =
iπ

2
(−ie)Nδ(KX)δ

2(K⊥)

∫

dφ

∫ ∞

0

ds1 · · · dsN
S2

e−i[Kφφ−F (φ,{s})]

× Tr

〈 N
∏

j=1

{2[(pµ + δπµ
j (φ, sj))ej,µ] + k̂j êj}

×
{

1 +
e

2δκj+1,X
n̂[Â(φ+ φj+1)− Â(φ+ φj)]

}〉

,

(23)

10



where the substitution rules

pX →− κ̄X (24)

(

(pa1)
√

−a21

)n1
(

(pa2)
√

−a22

)n2

→











0 if n1 and/or n2 are odd

(n1−1)!!(n2−1)!!

(2iS)(n1+n2)/2
if n1 and n2 are even

(25)

in the expression of the trace are understood.

Before passing to the estimation of the net number of laser photon exchanged in a refrac-

tive QED process, we observe here that the integral representation

N
∏

j=1

1

p2j −m2 + iǫ
= (−i)N

∫ ∞

0

ds1 · · ·dsN ei
∑N

j=1

∫ sj
0 ds′j(p

2
j−m2+iǫ), (26)

of the electron propagator in vacuum in momentum space, suggests to interpret the quantity

δπµ
j (φ, s

′
j) as an “effective” instantaneous four-momentum of the virtual particle flowing

between the (j − 1)th and the jth vertex (see Eqs. (23) and (20)).

III. ESTIMATION OF THE NET NUMBER OF EXCHANGED LASER PHO-

TONS

If there were no external laser field, the remaining integral in φ in Eq. (23) would provide

the δ-function δ(Kφ), which, together with the other three δ-functions, would imply the

overall energy-momentum conservation Kµ = 0, as expected. In the presence of the laser

field, a measure of the net number of photons exchanged with the laser field during the

refractive QED process is determined by the quantity Kφ/ω0, where ω0 is the central laser

angular frequency. In order to estimate the net number of laser photons exchanged, we recall

that the multiphoton nature of the process is controlled by the parameter ξ = |e|E0/mω0,

where E0 is the amplitude of the electric field of the laser [6, 7]. From the physical meaning

of this parameter, in fact, it is not surprising that if ξ . 1, the net number of photons

exchanged with the laser field is of the order of unity. Thus, we directly consider below the

ultra-relativistic case where ξ ≫ 1. In order to further specify the physical regime, we have

also to consider the parameters κj (see the discussion below Eq. (1)). If κj largely exceeds

unity, an electron-positron pair can be in principle created in the collision of the laser field

and the jth external photon. The subsequent emission of radiation by such a pair would
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represent a background for the refractive QED process. Thus, we limit here to the case where

the parameters κj are fixed and less or of the order of unity, such that electron-positron pair

production from laser-external photons is negligible. Correspondingly, we also exclude the

possibility that electron-positron pairs can be created only by the external photons, even

though, as it will be clear below, the following considerations will not depend formally on

this condition.

It is convenient to write explicitly

δπµ
j (φ, s

′
j)δπj,µ(φ, s

′
j) = −2δκj,Xδκj,φ − [δπj,⊥(φ, s

′
j)]

2 (27)

and to shift the variable φ as φ→ φ+ Φ, with Φ such that

KφΦ + 2

N
∑

j=1

δκj,Xδκj,φsj = 0. (28)

In this way, the the partial amplitude M (1) can be written in the convenient form

M (1) =
iπ

2
(−ie)N δ(KX)δ

2(K⊥)

∫

dφ

∫ ∞

0

ds1 · · · dsN
S2

e−i[Kφφ+Fφ(φ+Φ,{s})]

× Tr

〈 N
∏

j=1

{2[(pµ + δπµ
j (φ+ Φ, sj))ej,µ] + k̂j êj}

×
{

1 +
e

2δκj+1,X

n̂[Â(φ+ Φ + φj+1)− Â(φ+ Φ + φj)]

}〉

,

(29)

where

Fφ(φ+ Φ, {s}) =
N
∑

j=1

∫ sj

0

ds′j{[δπj,⊥(φ+ Φ, s′j)]
2 +m2 − iǫ}. (30)

The advantage of this form with respect to that in Eq. (23) is that all the N integrands in

Fφ(φ + Φ, {s}) are strictly positive and therefore that Fφ(φ+ Φ, {s}) ≥ 0. This implies, in

fact, that the integration region in ds1 · · · dsN mainly contributing to the partial amplitude

M (1) is confined to sufficiently small values of sj such that that Fφ(φ + Φ, {s}) . 1, as

otherwise the function exp(−iFφ(φ + Φ, {s})) would be highly oscillating. From what we

mentioned at the beginning of this section, this would already indicate that the net number

of photon exchanged during the refractive QED process is of the order of unity. However,

in order to complete the proof, we have still to analyze the pre-exponential function. In

fact, if N is small, then the different powers of the external field present in this function

would not essentially change the net number of laser photons exchanged. However, this

12



could in principle occur for large Ns. In order to show that this is not the case, we recall

that in the considered regime, the parameters ηj = κj/ξ are much smaller than unity and

therefore, in the effective integration region with respect to the variables s1, . . . , sN , it is

ω0|δκj,X|sj . ω0|δκj,X|/m2 ≪ 1, where we used the fact that sj . 1/m2 (see Eq. (30)).

Consequently, it results that ω0|φj|, ω0|φ′
j| ≪ 1 and, by assuming that |kj,φ| . |Kφ| for all

js, that ω0|Φ| ≪ 1 (see Eq. (28)). This observation allows one to expand the four-vector

potential in Eq. (29) as [18]

Aµ(φ+ Φ + φj) ≈Aµ(φ)− 2Eµ(φ)

(

Φ+

j
∑

i=1

δκi,Xsi

)

(31)

Aµ(φ+ Φ + φ′
j) ≈Aµ(φ)− 2Eµ(φ)

(

Φ+

j−1
∑

i=1

δκi,Xsi + δκj,Xs
′
j

)

, (32)

where Eµ(φ) = −dAµ(φ)/dφ (note that Eµ(φ) is not a four-vector). Analogously, one obtains

Â(φ+ Φ+ φj+1)− Â(φ+ Φ+ φj) ≈− 2Ê(φ)δκj+1,Xsj+1 (33)

δπµ
j (φ+ Φ, s′j) ≈δκµj + 2eEµ(φ)

[ j−1
∑

i=1

δκi,Xsi + δκj,Xs
′
j

− 1

S

N
∑

l=1

sl

( l−1
∑

i=1

δκi,Xsi +
1

2
δκl,Xsl

)]

.

(34)

Now, the fact that Fφ(φ + Φ, {s}) . 1 implies, as an order-of-magnitude estimate, that

[δπj,⊥(φ+Φ, sj)]
2sj . 1/N . Thus, the above expansions, together with the fact that |p⊥| ∼

1/
√
S (see Eq. (25)), indicate that in the effective formation region of the process, the ratio

between the terms in the pre-exponent proportional to the laser field and those which do

not contain the laser field itself is less than unity. Therefore, terms containing higher powers

of the external field are subdominant and, in conclusion, the probability of an exchange of

a net number of photons much larger than unity is suppressed also for large values of N .

In order to make our analysis more concrete, we consider the particular case of a

monochromatic, circularly polarized laser field. In this case, the vector potential is given by

A(φ) = −(E0/ω0)[cos(ω0φ)a1 + sin(ω0φ)a2]. Starting again from the general expression in

Eq. (29) (see also Eq. (30)), it is convenient to introduce the vectors

aj,c(s
′
j) = Cj(s

′
j)a1 + Sj(s

′
j)a2 (35)

aj,s(s
′
j) = −Sj(s

′
j)a1 + Cj(s

′
j)a2, (36)

13



where Cj(s
′
j) = cos(ω0(Φ + φ′

j)) and Sj(s
′
j) = sin(ω0(Φ + φ′

j)). In this way, we obtain

δπj,⊥(φ+ Φ, s′j) = δκj,⊥ −mξ[cos(ω0φ)δaj,c(s
′
j) + sin(ω0φ)δaj,s(s

′
j)] (37)

and the function Fφ(φ+ Φ, {s}) can be written as

Fφ(φ+ Φ, {s}) = F0({s}) + Fc({s}) cos(ω0φ) + Fs({s}) sin(ω0φ), (38)

where

F0({s}) =
N
∑

j=1

∫ sj

0

ds′j((δκj,⊥)
2 +m2{1 + ξ2[(δCj(s

′
j))

2 + (δSj(s
′
j))

2]} − iǫ), (39)

Fc/s({s}) =− 2mξ

N
∑

j=1

∫ sj

0

ds′jδκj,⊥ · δaj,c/s(s
′
j). (40)

Note that the integrals in ds′j in F0({s}) and Fc/s({s}) can be easily taken in the present

case, which is however not necessary here. The discussion below Eq. (30) indicates that in

the effective integration region it is F0({s}), |Fc/s({s})| . 1. We consider now the prototype

integral in φ

I({s}) =
∫

dφ e−i[Kφφ+Fφ(φ+Φ,{s})], (41)

which is present in the partial amplitude M (1). After introducing the quantities FA({s})
and ϕ0({s}) according to the definitions

Fc({s}) = FA({s}) cos(ϕ0({s})), (42)

Fs({s}) = FA({s}) sin(ϕ0({s})), (43)

and after passing to the variable ϕ = ω0φ− ϕ0({s}), we obtain

I({s}) = 2πe−i[(Kφ/ω0)ϕ0({s})+F0({s})]
∞
∑

nl=−∞

i−nlδ(Kφ − nlω0)Jnl
(FA({s})), (44)

where we employed the identity exp(iz cosϕ) =
∑∞

n=−∞ inJn(z) exp(inϕ) in terms of the

ordinary Bessel functions Jn(z) of integer order n, valid for an arbitrary complex number

z [19]. Equation (44) shows that nl indicates the net number of photons absorbed from (if

nl < 0) or ceded to (if nl > 0) the laser field. The well-known property of ordinary Bessel

functions Jn(x) of a real (positive) argument of being much smaller than unity at n ≫ x

and the fact that FA({s}) =
√

F 2
c ({s}) + F 2

s ({s}) . 1 shows, at least for the terms in the
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pre-exponent independent of the laser field, that the net number of photons exchanged with

the laser field is of the order of unity. The general observation below Eq. (34) indicates that

also high-order terms in the laser field in the pre-exponential will not essentially increase

the net number of laser photons exchanged during the refractive QED process.

IV. DISCUSSION

As we have already mentioned above, it is interesting to compare the low net exchange

of laser photon in a refractive QED process with what happens in the case of the NBWPP,

which does also occur in the collision of a (real) photon and a laser field. In particular, we

limit again to the strong-field limit corresponding to ξ ≫ 1 at fixed invariant parameters

κj ∼ 1. The real electron and positron created via the NBWPP at ξ ≫ 1 are already

ultra-relativistic and a large net number of laser photons of the order of ξ3 are absorbed

from the laser field in order to fulfill energy-momentum conservation [7]. On the other hand,

a refractive QED process occurs via a virtual electron-positron pair and this manifests itself

in the appearance of the integrals in ds1 · · · dsN in the partial amplitudeM (1). At larger and

larger values of the electric field amplitude, the effective integration region in ds1 · · · dsN
reduces accordingly, in such a way that the function Fφ(φ + Φ, {s}) is always of the order

of or less than unity, and then that the net number of laser photons exchanged is of the

order of unity, too. More specifically, we recall that if pµ = (ε,p) is the momentum of a

classical electron at the initial value φ = 0 (A(0) = 0), then the component pφ(φ) of the

four-momentum pµ(φ) = (ε(φ),p(φ)) at φ is given by [5]

pφ(φ) = −m
2 + [p⊥ − eA(φ)]2

2pX
. (45)

By performing the change of variable φ′
j = 2δκj,Xs

′
j in Eq. (30), we see that Fφ(φ+Φ, {s})

qualitatively corresponds to the quantity
∑N

j=1

∫ φj

φj−1
dφ′

jPj,φ(φ
′
j), where φ0 = 0 and where

Pj,φ(φ
′
j) is the component φ of the four-momentum of the virtual electron/positron flowing

between the (j − 1)th vertex and the jth vertex. Thus, the condition Fφ(φ + Φ, {s}) . 1

corresponds to the fact that, according to Heisenberg uncertainty principle, the virtual

electron-positron pair annihilates after an interval ∆φ′
j in φ

′
j given by ∆φ′

j ∼ 1/Pφ,j, where

Pφ,j indicates the order of magnitude of the momentum flowing between the (j − 1)th

vertex and the jth vertex. This corroborates the interpretation that in a refractive QED
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process, the stronger is the laser field, the higher is the four-momentum flowing through

the electron-positron loop. Accordingly, the virtual electron-positron pair propagates for a

shorter distance inside the laser field, such that the net number of photons, that can be

exchanged in the process is always of the order of unity.

This difference between the net number of photons exchanged with the laser field in a

general refractive QED process and in NBWPP could appear at first sight to contradict

the optical theorem, when the imaginary part of the amplitude of a refractive QED process

can be related to the total rate of the corresponding pair-production process (e.g., the

refractive QED process corresponding to NBWPP is essentially the polarization operator)

[15]. However, this is not the case, because the total rate of a pair-production process

does not contain information on the net number of photons exchanged with the laser field,

as the rate is integrated over the whole phase space of the created electron and positron.

More quantitatively, since a plane-wave field depends only on the spacetime variable φ, it

is possible to write th S-matrix element Sfi of an arbitrary process occurring in such a

background field as

Sfi = δfi + i(2π)3δ2(Pf,⊥ − Pi,⊥)δ(Pf,X − Pi,X)Rfi, (46)

where P µ
i/f indicates the total initial/final four-momentum. The optical theorem [15] here

reads

2 Im(Rii) =
∑

f

(2π)3δ2(Pf,⊥ − Pi,⊥)δ(Pf,X − Pi,X)|Rfi|2 (47)

and we are interested to the case in which in the initial state there are a certain number

of photons, whereas in the final state an electron-positron pair is present. By limiting, for

simplicity, to the case of a monochromatic laser field with angular frequency ω0, we can

expand the amplitude Rfi as

Rfi =
∞
∑

nl=−∞

(2π)δ(Pf,φ − Pi,φ − nlω0)Tnl,fi, (48)

and the optical theorem provides the relation

2 Im(T0,ii) =
∞
∑

nl=−∞

∑

f

(2π)4δ(P µ
f − P µ

i − nlω0n
µ)|Tnl,fi|2. (49)

On the one hand, this identity shows that only the quantity T0,ii corresponding to no net

exchange of laser photons in a refractive QED process is relevant for the optical theorem.
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On the other hand, as already mentioned, all the quantities |Tnl,fi|2 corresponding to the net

exchange of an arbitrary number of laser photons in the pair-production process are to be

included on the right-hand side of Eq. (48). In the specific example of NBWPP, the above

conclusion is confirmed by the fact that the total pair production rate at ξ ≫ 1 becomes in-

dependent of the parameter ξ (it depends only on the parameter κ = (ω0|kX |/m2)(E0/Ecr),

where kµ is the four-momentum of the external photon), and it coincides with the corre-

sponding total rate in a constant-crossed field but averaged over the laser phase [7].

It is also worth observing that, although the net number of laser photons exchanged in a

refractive QED process is of the order of unity, high-order terms in the laser field amplitude

contribute to the process (as, for example, in the Bessel functions in Eq. (44)). Such

nonlinear terms stem for the exchange of laser photons without a net absorption or emission

during the process. The fact that Fφ(φ + Φ, {s}) . 1 (that FA({s}) . 1 in Eq. (44) for

the case of a circularly-polarized, monochromatic laser field), suggests that in general the

exchange of a large number of laser photons is not probable. However, such nonlinear effects

can strongly modify the amplitude of a refractive QED process. This observation suggests

that, in general, in order to detect nonlinear effects in the laser amplitude in a refractive

QED process, it is more convenient to measure yields of final photons and to compare them

with the expected result without laser field, rather than to measure, for example, the energy

or the angular distribution of the final photons. In fact, the optimal regime of parameters

to detect a refractive QED process is at κj ∼ 1. Now, even considering next generation

of 10-PW optical laser systems [6], providing an intensity of the order of 1023 W/cm2, the

ratio E0/Ecr is smaller that 5× 10−4. Thus, in order to have κj ∼ 1, initial photon energies

are required of the order of 1 GeV. For final photon energies of this order of magnitude,

if only a few photons from an optical laser (ω0 ∼ 1 eV) are effectively exchanged, it is

not feasible in practice to measure the induced effects on the final photons’ energies and/or

angular distribution. The same conclusion can also be drawn in the case of present and

under-construction x-ray laser facilities [6], for which even the ultra-relativistic limit ξ ≫ 1

is not feasible, due to the relatively large photon energy (ω0 & 1 KeV).

The analysis carried out so far accounts only for the tree-level diagrams like those in Fig.

1, i.e., it has been assumed that radiative corrections are negligible. In the presence of an

external plane-wave field this is the case if ακ
2/3
j ≪ 1 for all j, where α = e2 ≈ 1/137 is the

fine-structure constant, i.e., if κj ≪ 1/α3/2 ≈ 103 [7]. However, radiative corrections and
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high-order diagrams would in any case involve only virtual particles in such a way that the

physical argument given above and concerning the net number of laser photon exchanged

would again apply. On the other hand, as we have already mentioned, the regime κj ≫ 1 is

not suitable for observing a refractive QED process, due to the background photons emitted

by the produced electron-positron pairs.

V. CONCLUSION

In conclusion, by employing the operator technique, we have shown in general that refrac-

tive QED processes in a laser field occur with a net absorption/emission of only a few laser

photons even in the ultrarelativistic regime ξ ≫ 1. Due to the general validity of the above

analysis, the present investigation is of relevance for experimental campaigns at upcoming

optical and x-ray laser facilities. Our main conclusion is that in order to experimentally

observe nonlinear effects in the laser field amplitude in such processes, it is more convenient

to measure yields of final photons in a refractive QED process and compare them with the

expected value without laser field, rather than, for example, to measure the energies or the

angular distribution of the final photons.
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APPENDIX A

In the present appendix we will indicate how to express the amplitude (3) in such a

way that it contains only the square propagators D(A) (see Eq. (4)). It is convenient

to introduce here the notation (note that some of the above symbols have been already
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introduced between Eq. (3) and Eq. (6))

Gj(A) =G(A)êj exp[−i(kjx)], (50)

Dj(A) =D(A) exp[−i(kjx)][2(Πej) + k̂j êj ], (51)

Qj(A) =D(A)êj exp[−i(kjx)]G−1(A), (52)

Cj,j+1(A) =D(A)êj exp[−i(kjx)]êj+1 exp[−i(kj+1x)]. (53)

The following identities can be easily proven

Gj(A) =Dj(A)−Qj(A), (54)

Qj(A)Dj+1(A) =Qj(A)Qj+1(A) + Cj,j+1(A), (55)

where for j = N , the index N + 1 has to be intended as 1 (recall the cyclic property of the

trace). In order to further simplify the notation, we also define the generalized trace of a

matrix operator O

Trx(O) =

∫

d4xTr〈x|O|x〉 (56)

such that it is sufficient to analyze the quantity

TN (A) = Trx[G1(A) · · ·GN(A)]+ 	 . (57)

Since, as will be clear, the procedure to transform the quantity TN (A) only depends on if

N is odd or even, we explicitly work out only the cases N = 3 and N = 4, being the cases

N > 4 completely analogous. Now,

T3(A) = Trx[G1(A)G2(A)G3(A)]+ 	

= Trx[(D1(A)−Q1(A))(D2(A)−Q2(A))(D3(A)−Q3(A))]+ 	

= Trx[D1(A)D2(A)D3(A)]− Trx[Q1(A)D2(A)D3(A)]

− Trx[D1(A)Q2(A)D3(A)]− Trx[D1(A)D2(A)Q3(A)] + Trx[D1(A)Q2(A)Q3(A)]

+ Trx[Q1(A)D2(A)Q3(A)] + Trx[Q1(A)Q2(A)D3(A)]− Trx[Q1(A)Q2(A)Q3(A)]+ 	 .

(58)

The first term already contains only square propagators and, by applying the identity (55)

to the three terms containing only one operator Qj(A), we see that the contributions com-

ing from the first term in Eq. (55) exactly cancel the terms containing two operators

19



Qj(A)Qj+1(A). Thus, we obtain

T3(A) = Trx[D1(A)D2(A)D3(A)]− Trx[C1,2(A)D3(A)]− Trx[D1(A)C2,3(A)]

− Trx[C3,1(A)D2(A)]− Trx[Q1(A)Q2(A)Q3(A)]+ 	 .
(59)

Now, we consider separately the quantity

T+,3(A) = Trx[Q1(A)Q2(A)Q3(A)] = Trx
[

G+(A)ê1e
−i(k1x)G+(A)ê2e

−i(k2x)G+(A)ê3e
−i(k3x)

]

,

(60)

where we have introduced the quantity G+(A) = (Π̂ +m+ iǫ)−1, which corresponds to the

electron propagator but with m → −m. By imagining to work in the Dirac representation

of the gamma matrices [15], we consider the unitary matrix U = γ0γ2γ5 and we note

that UγµU † = γµ,t, where the upper index t indicates the transpose with respect to the

Dirac-matrices indexes. Since the four-momentum operator is hermitian, it is easy to show

that UG+(A)U
† = −[G(−A)]tx , where the upper index tx indicates the transpose with

respect to the Dirac-matrices and to the spacetime indexes. In this way, by inserting the

unity operator UU † in Eq. (60) before and after each êj and by exploiting the fact that

Trx(O
tx
1 O

tx
2 ) = Trx[(O2O1)

tx ] = Trx(O2O1) for arbitrary operators O1 and O2, we obtain

T+,3(A) =Trx[Q1(A)Q2(A)Q3(A)] = −Trx
[

G(−A)ê3e−i(k3x)G(−A)ê2e−i(k2x)G(−A)ê1e−i(k1x)
]

=− Trx[G3(−A)G2(−A)G1(−A)].
(61)

Now, we recall that, in general, the quantity TN(A) also contain the contribution from the

Feynman diagram where the electron arrows are reversed (see Fig. 1) and that, due to Furry

theorem [15], only terms proportional to an odd power of laser amplitude effectively con-

tribute to T3(A), i.e., T3(A) = −T3(−A). Therefore, by applying the same above procedure

to the additional contribution from the Feynman diagram where the electron arrows are

reversed, we obtain

T3(A) =
1

2
{Trx[D1(A)D2(A)D3(A)]− Trx[C1,2(A)D3(A)]

− Trx[D1(A)C2,3(A)]− Trx[C3,1(A)D2(A)] + {123 → 321})},
(62)

where the quantity {123 → 321} means that the previous terms have to be added, but

with the indexes 1, 2 and 3 appearing in the opposite order 3, 2 and 1. This result exactly
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corresponds to the general procedure given in the main text below Eq. (3) for the case

N = 3.

The case with N = 4 can be worked out in a completely analogous way and we only

stress the differences with respect to the case N = 3. The starting point is the quantity

T4(A) = Trx[G1(A)G2(A)G3(A)G4(A)]+ 	

= Trx[(D1(A)−Q1(A))(D2(A)−Q2(A))(D3(A)−Q3(A))(D4(A)−Q4(A))]+ 	

= Trx[D1(A)D2(A)D3(A)D4(A)]− Trx[Q1(A)D2(A)D3(A)D4(A)]

− Trx[D1(A)Q2(A)D3(A)D4(A)]− Trx[D1(A)D2(A)Q3(A)D4(A)]

− Trx[D1(A)D2(A)D3(A)Q4(A)] + Trx[Q1(A)Q2(A)D3(A)D4(A)]

+ Trx[Q1(A)D2(A)Q3(A)D4(A)] + Trx[Q1(A)D2(A)D3(A)Q4(A)]

+ Trx[D1(A)Q2(A)Q3(A)D4(A)] + Trx[D1(A)Q2(A)D3(A)Q4(A)]

+ Trx[D1(A)D2(A)Q3(A)Q4(A)]− Trx[D1(A)Q2(A)Q3(A)Q4(A)]

− Trx[Q1(A)D2(A)Q3(A)Q4(A)]− Trx[Q1(A)Q2(A)D3(A)Q4(A)]

− Trx[Q1(A)Q2(A)Q3(A)D4(A)] + Trx[Q1(A)Q2(A)Q3(A)Q4(A)]+ 	 .

(63)

By applying the identity (55) in the terms containing only one operator Qj(A), four of the

six terms with two operators Qj(A) and Qj′(A) cancel, and we obtain

T4(A) = Trx[D1(A)D2(A)D3(A)D4(A)]− Trx[C1,2(A)D3(A)D4(A)]

− Trx[D1(A)C2,3(A)D4(A)]− Trx[D1(A)D2(A)C3,4(A)]− Trx[C4,1(A)D2(A)D3(A)]

+ Trx[Q1(A)D2(A)Q3(A)D4(A)] + Trx[D1(A)Q2(A)D3(A)Q4(A)]

− Trx[D1(A)Q2(A)Q3(A)Q4(A)]− Trx[Q1(A)D2(A)Q3(A)Q4(A)]

− Trx[Q1(A)Q2(A)D3(A)Q4(A)]− Trx[Q1(A)Q2(A)Q3(A)D4(A)]

+ Trx[Q1(A)Q2(A)Q3(A)Q4(A)]+ 	 .

(64)

By applying the identity (55) in the remaining terms containing two operators Qj(A) and

Qj′(A), two of the four terms with three operators Qj(A), Qj′(A) and Qj′′(A) cancel, and
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we obtain

T4(A) = Trx[D1(A)D2(A)D3(A)D4(A)]− Trx[C1,2(A)D3(A)D4(A)]

− Trx[D1(A)C2,3(A)D4(A)]− Trx[D1(A)D2(A)C3,4(A)]− Trx[C4,1(A)D2(A)D3(A)]

+ Trx[C1,2(A)Q3(A)D4(A)] + Trx[D1(A)C2,3(A)Q4(A)]

− Trx[Q1(A)D2(A)Q3(A)Q4(A)]− Trx[Q1(A)Q2(A)D3(A)Q4(A)]

+ Trx[Q1(A)Q2(A)Q3(A)Q4(A)]+ 	 .

(65)

Finally, by applying again the identity (55) in the two terms containing two operators Qj(A)

and Qj′(A), the new terms containing three operators Qj(A), Qj′(A) and Qj′′(A) combine

to the remaining two terms also containing three operators Qj(A), Qj′(A) and Qj′′(A), and

give two terms Trx[Q1(A)Q2(A)Q3(A)Q4(A)] with a minus sign. In conclusion, we have

T4(A) = Trx[D1(A)D2(A)D3(A)D4(A)]− Trx[C1,2(A)D3(A)D4(A)]

− Trx[D1(A)C2,3(A)D4(A)]− Trx[D1(A)D2(A)C3,4(A)]− Trx[C4,1(A)D2(A)D3(A)]

+ Trx[C1,2(A)C3,4(A)] + Trx[C4,1(A)C2,3(A)]− Trx[Q1(A)Q2(A)Q3(A)Q4(A)]+ 	 .

(66)

The trace Trx[Q1(A)Q2(A)Q3(A)Q4(A)] can be manipulated exactly as in the case N = 3

and we arrive to the final result

T4(A) =
1

2
{Trx[D1(A)D2(A)D3(A)D4(A)]− Trx[C1,2(A)D3(A)D4(A)]

− Trx[D1(A)C2,3(A)D4(A)]− Trx[D1(A)D2(A)C3,4(A)]− Trx[C4,1(A)D2(A)D3(A)]

+ Trx[C1,2(A)C3,4(A)] + Trx[C4,1(A)C2,3(A)] + {1234 → 4321}},
(67)

which again corresponds to the substitution rules given below Eq. (3) for the case N = 4.

APPENDIX B

In this appendix, we show that the four-dimensional scalar products (Pej) do not contain

the operator Pφ. We temporarily assume that kj
2 6= 0 for all js. In this way, by introducing

the quantities fµν
r = nµaνr − nνaµr , with r = 1, 2, the four-vector eµj can be expanded with

22



respect to the basis [13]

Λ
(1),µ
j = −kj,λf

λµ
1

kj,X
, Λ

(2),µ
j = −kj,λf

λµ
2

kj,X
, (68)

Λ
(3),µ
j =

kµj
√

kj
2
, Λ

(4),µ
j = −

nµkj
2 + kµj kj,X

kj,X

√

kj
2

(69)

as eµj =
∑4

u=1 b
(u)
j Λ

(u),µ
j , with b

(u)
j = −(Λ

(u)
j ej) (note that (Λ

(u)
j Λ

(v)
j ) = −δuv, with u, v =

1, . . . , 4). If we write the total amplitude M as M = e1,µ1 · · · eN,µN
Mµ1···µN , then

M =

4
∑

u1,...,uN=1

b
(u1)
1 · · · b(uN )

N Λ
(u1)
1,µ1

· · ·Λ(uN )
N,µN

Mµ1···µN (70)

and gauge invariance requires that k1,µ1M
µ1···µN = · · · = kN,µN

Mµ1···µN = 0 [15]. This implies

that the terms proportional to the four-vectors Λ
(3)
j,µj

and those proportional to the divergent

part of the four-vectors Λ
(4)
j,µj

in the limits kj
2 → 0, do not contribute to M . Thus, the

amplitude M remains finite in the same limits kj
2 → 0. Moreover, the quantities (Pej) only

effectively involve contractions of P µ either with nµ or with aµ1/2, so that they do not contain

the operator Pφ. It is also worth pointing out here that in the limit kj
2 → 0, although

the contributing part of Λ
(4)
j,µj

goes to zero as
√

kj
2, the corresponding contribution to the

amplitude M remains finite because the quantity b
(4)
j = −(Λ

(4)
j ej) diverges as 1/

√

kj
2 in the

same limit (see Eq. (69)). In conclusion, by means of the above limiting procedure, our

analysis can also be applied to the case in which any of the external photons is real, i.e.,

on-shell.
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