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Abstract

Intersatellite laser interferometry is a central component of future space-
borne gravity instruments like Laser Interferometer Space Antenna (LISA),
evolved LISA, NGO and future geodesy missions. The inherently small laser
wavelength allows us to measure distance variations with extremely high
precision by interfering a reference beam with a measurement beam. The
readout of such interferometers is often based on tracking phasemeters, which
are able to measure the phase of an incoming beatnote with high precision over
a wide range of frequencies. The implementation of such phasemeters is based
on all digital phase-locked loops (ADPLL), hosted in FPGAs. Here, we present
a precise model of an ADPLL that allows us to design such a readout algorithm
and we support our analysis by numerical performance measurements and
experiments with analogue signals.

PACS numbers: 04.80.Nn, 95.55.Ym, 07.87.+v, 06.30.Bp, 06.30.Gv, 42.62.Eh

(Some figures may appear in colour only in the online journal)

1. Introduction

The Laser Interferometer Space Antenna (LISA) is a space-borne observatory for gravitational
waves in the frequency range of 0.1 mHz-1 Hz [1]. LISA will detect gravitational waves by
measuring the variation of the light travel time between free-floating test masses with millions
kilometre separation. Heterodyne laser interferometry is used to convert the path length
variations into phase shifts of the heterodyne beatnote (2 ... 25 MHz), which is then detected
by a photodiode and an electronic phasemeter. The measurement needs to be performed with
a noise level of the order of pcycle/ VHz.

The readout system, or phasemeter, for these interferometers is implemented by digitizing
the heterodyne signals and determining the phase using an IQ demodulation system [2, 3]
implemented in an FPGA. Due to the high initial phase noise measured by each interferometer
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Figure 1. The left side shows the basic phasemeter topology, where the incoming signal is
digitized and then mixed in phase and in quadrature with a digital reference signal. The quadrature
information is filtered and fed into a controller (PI), determining a frequency actuation signal in
the so-called phase increment register (PIR). The phase increment is then fed into a numerically
controlled oscillator (NCO), where it is integrated in the phase accumulator (PA) and then converted
to a sine and cosine in the look-up table (LUT). The right side shows a prototype LISA phasemeter
[3]. The FPGA of such a system was used to perform the digital simulations.

and also the continuously varying Doppler shifts in the LISA constellation, this digital 1Q
demodulation is embedded in a closed-loop phase and frequency tracking system, a phase-
locked loop (PLL) or more specifically an all digital PLL. (ADPLL). The phasemeter needs to
be able to track signals between 2 and 25 MHz with a precision of 277 urad/+/Hz. An overview
of the phasemeter structure and a prototype implementation is shown in figure 1.

In this paper, we present a detailed analysis of the digital core of the phasemeter and
the phase tracking algorithm, based on which one can design and optimize the readout for
intersatellite interferometers like LISA or future geodesy missions like GRACE Follow-On [4].
Even though the original LISA design is currently not considered any more, various variants of
the concept are studied, including the currently proposed evolved LISA [5]. Since the original
LISA design has comparable requirements for the phasemeter, the analysis presented in this
paper is aimed at this concept. Therefore, the analysis can be easily adapted also for other
LISA-like missions, to all of which we will refer to only as LISA in the following.

For our analysis, we use a combination of analytic modelling and numeric measurements,
which are performed by directly using very high speed integrated circuit hardware description
language (VHDL) code running on phasemeter prototypes. This also allows us to test the
algorithm properties under realistic conditions by either using the hardware to generate realistic
signals or by directly measuring analogue signals. The paper includes a linearized model of
the PLL, a model for noise introduced by quantization effects, an estimate of the phasemeter
linearity and the results of the digital signal measurements. In addition, we present a test of
the linearity performance of our prototypes using analogue signals.

2. ADPLL model

2.1. Scaling

The PLL is implemented using integer arithmetic, where each value is represented by X bits
and one can use different scalings to map these to numbers. In this paper, we choose to scale
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A

Figure 2. Block diagram of the linearized PLL model. Included are bit length indicators
(N,M,K,EC,T), possible truncation noise additions (if,, #if, i), input additive noise ,qq and
markers for signal readout points (Q, PA, PIR). Not shown here are the amplitude readout and
the additional computation delay transfer function. The controller and the low pass filter can be
implemented according to signal and requirement specifications. The input and output of the LUT
are kept at an equal bit length in the linear design of the model. (A larger output does not lead to
phase noise improvement, since the phase information is already lost before the LUT.)

each integer by 27X, which leads to the following ranges for signed and unsigned numbers:

_hx-1 X—1 _

1
< signed < Z—Xi| < 0.5

~0s< |

0 . 2¥
0< x < unsigned < | < 1. (1)

Numbers with this scaling have no units, since they only represent values in the digital
computation, only appropriate further scaling maps them to real physical quantities with units,
as done in the following.

2.2. Linearized model

The specific linear model presented here is a modification of well-known ADPLL models
described by Gardner [6]. Figure 2 shows the block diagram of the model, which considers
phase as the quantity that is sensed and actuated. The signals and blocks shown are described
in the following.

Assuming an input signal with a peak amplitude Vj, in volts and a maximum peak-to-peak
voltage range of the analogue-to-digital converter of V,,.,, the digitized input signal i[n] ! is

! In the following, we specify for a quantity x also its unit [x] and range (min < x < max).
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i[n] = ﬁ -sin (won + &;[n]) = A - sin (won + ¢€;[n]),
p—p
[i[n]] = 1; (—0.5 < i[n] < 0.5)

[Al=1; (0< A <0.5) (2

with &;[n] as phase, the signal of interest and wy ([wg] = cycle) as value corresponding to
the beatnote frequency fy ([fo] = Hz) in a digital system sampled by a sampling frequency
fs- This leads to time steps between two samples n and n 4 1 of 7, = 1/ f;. One should note
here that wy is only necessary for the initial loop acquisition and not for the linear model, it is
included here to keep the resemblance to the actual signals inside the PLL. Additional terms
for additive noise and additional tones are not included here. The output of the numerically
controlled oscillator o[n] is described as

o[n] = 1 - cos (won + &,[n),
[o[n]] = 1; (—0.5 < o[n] < 0.5) 3)

with &,[n] as numerically controlled oscillator (NCO) output phase, the current PLL reference.
The ideal error signal of the loop (e, = &;[n] — &,[n]) is not directly accessible by arithmetic
operations, therefore, it is approximated by multiplying both signals to compute an error signal
ue[n]

uc[n] = i[n] - o[n]

u[n] = — - [sin (&.[n]) + sin 2won + &;[n] + g,[n))]. 4)

ENJISS

At this point, two linearizations are introduced to complete the linear model. First, we assume
a small phase error (g.[n] < 1), which implies the loop is locked with sufficient loop gain,
and second, we assume a suppression of the second harmonic term by appropriate filtering.
(This also includes the suppression of additional tones.) This simplifies equation (4) to

_A A
u[n] ~ Z(ei[n] —&o[n]) = Z(ee[n]),
[ue[n]] = rad. )

The phase detector can now be described with a linear transfer function including the signal
amplitude as part of its gain

. ue(2) _ Ue (2) = é
Fpp(2) = 6i(2) —&,(2)  &.(z) 4’

[Fep(2)] = 1. (6)

A generic low pass filter follows the phase detector and provides the suppression of higher
harmonics. The design and implementation of this filter depend on the exact loop design
and should be adapted accordingly. A more detailed discussion is shown in the nonlinearity
section:

_ uq(2)
FLr(2) )
[FLr(2)] = 1. (7)

The open-loop gain of the PLL is determined by a controller, for example, a simple
proportional-integral controller. For our implementation, the full loop model shows that an
overall gain reduction in the loop is necessary to achieve a stable condition. Therefore, we
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include a constant gain reduction before the servo to allow the system to operate at the correct
range and to prevent any overflows in the digital accumulators, where the fixed-point arithmetic
is performed. For convenience, we use bit shifting, adding a number of C bits from the left to
the signal leads to

FGain(2) = ug(Z) = 27C,
uq (2)
[FGain(Z)] =1 (8)

In the servo amplifier, the desired bandwidth and loop response can then be set by tuning the
Kk, and k; values:

7(2) !
PI()Zug(Z):Kp+Kil I
cycle
[Fp1(2)] = - ©)
s x rad

The frequency signal u is now representing the frequency of the NCO and, assuming the PLL
is locked, also allows us to determine the phase of the incoming signal. The register containing
this value is also denoted as phase increment register (PIR). For lock acquisition, this value
must be pre-set close to the incoming frequency.

By accumulating the PIR value in a register called phase accumulator (PA), the phase
driving the NCO is generated:
-1

_up(x) oz
)= =T
[Fpa(2)] =s. (10)

This phase is then fed into a sine and cosine look-up table to generate the local oscillator. In
the loop, this operation is described by the transfer function

Fur = al2) =2r
up (2)
rad
[FLutr] = . (1D
cycle

One additional element not yet included is the delays of the signal processing. These delays
become important for high bandwidth and they can directly be computed from the number of
registers used in the loop logic. For a total delay of D clock cycles they are included as zP. If
parts of the loop are running at slower frequencies, the delays should be scaled according to
the sampling rate of the signal.

Continuing, the above results in an open-loop transfer function G(z), which allows us to
determine loop stability, noise suppression and suppression of higher harmonics:

g,(z) Am e 7! ! b
G(z)=-2 _"" p..2C. ; . . . 12
(2) £.2) > LF (Kp + K [ ] — ! < (12)
The system transfer function H(z) and the error function E(z) = 1 — H(z), which describes

the untracked parts of the input signal and therefore the tracking error, are derived from the
open-loop transfer function:

_ Gk &
HO=1760 " (43
Ee
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Figure 3. Example of a closed-loop PLL transfer function H(z) from a simulation and the linear
model. Both curves are in very good agreement, save for the second harmonic, present at 20 MHz.

We performed a loop gain measurement of one of our VHDL implementations by adding
digital noise into the loop. The results in figure 3 show a very good agreement between
the implementation and the simulation, with the exception of the peak corresponding to the
second harmonic frequency (20 MHz). One should keep in mind though that this model and
all corresponding analysis are only valid in closed-loop operations and only if the gain of the
loop is sufficient to maintain the error point close to zero.

2.3. Additive and phase noise

We now extend the input signal (equation (2)) by including additive noise A (including shot
noise, electronic noise and relative intensity noise) and phase noise €. Since the PLL cannot
distinguish between the phase noise and phase signal &, both terms can again be described by
a single term ¢;:

i[n] = Z[n] + A - sin (won + &; + &[n]) = Av[n] + A - sin (won + g;[n]). (15)

For phase noise, the standard deviation of the residuals oppase can be computed by integrating
the product of the noise with the loop error function E (z):

Ul)zhase = [) 512 (2) x E(Z)2 df (16)

This is a measure of untracked residual phase error.

The standard deviation of the error generated by input additive noise 0,44 is computed by
integrating the product of the effective phase noise with the system transfer function H (z),
since this transfer function describes how noise added to the error signal &,(z) is attenuated
in a closed loop. Due to the mixing process, the amplitude noise induced phase noise &ymp is
also increased by V2

© (V2A\’ ©
O = /0 (IT) (2) x H(2) df = /0 Eaa)’ @) x H @ df. (D)

The different treatment of phase noise and additive noise, both of which are present in the
input signal, can be understood if one considers phase as the quantity that propagates around
the loop. Input phase noise directly represents that and an increased bandwidth allows us to
track this phase more precisely. Additive noise as such does not represent a phase error. It
only gets converted into phase noise by the action of the mixer (phase detector) which is in
the loop, hence the different transfer function.

2.4. Amplitude detection

The detection of the amplitude A of the incoming signal is performed by multiplying i[n] with
an in-phase output of the NCO [[n]:
I[n] = 5 - sin (won + &lnl),
Uln]l = 1. (18)
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The multiplication of i[n] and I[n] gives

A
ur[n] = i [cos (&i[n] — go[n]) — cos 2won + &i[n] + go[n])]. (19)

Assuming a locked PLL (¢; — ¢, = ¢, < 1) and a sufficient filtering of the second harmonic,
this can be reduced to

A A 20
ur[n] = ZCOS(se[n]) ~ T (20)

Therefore, the readout of u; (I) yields directly the amplitude A/4 of the tracked tone, while
dc offsets and signals at sufficiently different frequencies average to zero. The knowledge of
the signal amplitude is required to understand the loop bandwidth, to track changes in the
interferometry, like in contrast and optical power, and to perform calculations involving the
vector properties of the input signal, like for example stray light corrections [7].

3. Readout

3.1. Frequency readout

The phase ¢; can be reconstructed by reading the frequency value u; (PIR) or the phase value
u, (PA) of the PLL, which represent the frequency/phase of the incoming signal, respectively.
For the PA

uy[n] ~ (won + ¢;[n])/2n  (for g, [n] K 1)
[up[n]] = cycle; (—mrad < (2m x up[n]) < mrad). 21

Since the absolute system phase is a ramp, with the slope given by the current heterodyne
frequency, a direct readout of u,, is not practical, since this value will overflow very quickly. A
decimation of such a sawtooth function is difficult and the dynamic range for a non overflowing
value of u,, is very large. The preferred possibility for the phase readout of a single loop is the
frequency value u;:

ugln] ~ | wo + % 2w (for g, [n] K 1)
8T,

cycle

[ur[n]] = - (OHz < (fs x ug[n]) < f). (22)
This value is not overflowing and allows us for standard decimation and filtering algorithms
to be implemented, though one has to keep in mind that this signal has a large dynamic range.
Any requirements on decimation filters and bit length have to take into account that the signal
of interest (phase) is not directly processed, but its derivative, which changes its spectral

properties. The phase fluctuations can easily be reconstructed afterwards by integration.

3.2. PA readout

If several channels track the same frequency and they only vary slightly in phase, the differences
of the PLL phases (Au,) can be readout directly by subtracting the PA values. The rapid ramp
present in the individual loops is thereby completely subtracted and only the small signal of
interest remains. This is ideal for implementing techniques like differential wave front sensing
(DWS) [8].

Even though the small differences in phase can also be reconstructed from the PIR readout,
the PA readout is preferred. This is because the PIR values need to be tracked continuously to
reconstruct the correct absolute phase values. This means that any glitches or cycle slips will

7
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break the reconstruction. Even though the reconstruction can be restarted, a new initialization
of the PLLs would be required. In contrast to that the PA readout does not break by such an
event, (assuming in both cases that the PLLs stay in lock) but it would automatically return to
the correct value after the event passed, making it more reliable. In addition, the PA difference
signals have a much smaller dynamic range, allowing to reduce the required bit lengths and
computational efforts in further processing of, for example, DWS data.

3.3. Additional IQ readout

If the residual phase error in the loop &, exceeds the acceptable noise level, because the
loop reacts too slowly to track precisely the phase fluctuations of the incoming signal
(RMS[e.(>1Hz)] > 1 ucycle for LISA), an additional corrective readout can be performed
[2]. This might be necessary if the required PLL bandwidth needs to be rather low to achieve
stable operations (see section 5).

Since the untracked signal in a PLL is a vector and not a scalar, the readout of both
quadrature components I and Q is required for the additional phase reconstruction. For a loop
locked near but not exactly on zero phase difference, they can be written as

A
0 =u,n] = 75 (ge[n])

I = u/n] = %cos (g.[n)). 23)

The residual phase €, can be reconstructed by computing

g, = arctan <ue[n]> = arctan (g> (24)
us[n] 1

Equally, the amplitude A of the vector in this situation can be computed as

% = ulnl? + wn* = VO + I~. (25)

Which readout is required can be evaluated by comparing the PLL bandwidth with the dynamic
range of the incoming signal. For the design shown here, we used a controller that has sufficient
signal suppression at low frequencies to reach the required performance without additional IQ
readout. Nevertheless, we still implemented it for diagnostic purposes.

3.4. Decimation

The signals of interest are decimated to a desired sampling rate (typically of the order of a few
Hz) for storage and further computation. The decimation can be implemented in one or several
steps and can make use of different computation methods based on the hardware used. Here,
we only describe the decimation taking place inside the FPGAs, which is normally restricted
to use integer parallel processing.

We found CIC filters [9] to be a good choice for the decimation inside FPGAs. Their
implementation is simple (they only require accumulators and differentiators), they are easily
modelled and they provide notches of suppression exactly at the most critical frequencies, the
ones that would be aliased to very low frequencies. Which order of filter is required can be
computed for each signal by comparing the sum of all frequencies filtered and aliased into
the signal band to the requirements. Since the suppression of CIC filters is increasing with
frequency this calculation is, in the case of LISA like signals, completely dominated by the
first notch.

8
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The use of CIC filters also allowed us to implement an additional noise shaping technique
[10]. This technique allows us to reduce the readout bit length of some signals, since it reduces
low-frequency truncation noise due to the CIC transfer functions.

4. Quantization noise model

4.1. Truncation noise

The digital integer numbers used in the FPGA implementation can only represent a finite
number of distinct values with a constant, non-zero separation between them. An effective
implementation of an ADPLL will require the use of signal truncations inside the loop to save
resources and to fit into flight compatible FPGA devices. The modelling and implementation
of such truncations are described in the following.

It is well known that the truncation of a continuous signal to a digital number with N bits
at a sampling rate fimp can be modelled as an addition of uniformly distributed white noise
with a linear power spectral density of

~ _ q 2N
xtrunc - -
\/6'fsamp \/6'fsamp
~ 1
[Xtrunc] = E

The same formula is also applied here for the truncation of digital signals, though the
assumption of additive white noise is only valid for signals that move through a significant
range of digital values without any coherent relationship to the sampling frequency, like, e.g.,
two or more sine waves at non-harmonic frequencies [11]. Otherwise, the quantized signal
will show artefacts and peaks from the coherent interaction with the truncation process.

(26)

4.2. Dither

To avoid such artefacts, an intentional noise floor is added to the signal before truncation,
so-called dither, with triangular dither being the preferred implementation [11].

Such a triangular dither generator was implemented by subtracting the outputs of two
independent linear feedback shift registers with a repetition length longer than 10000 s to
ensure that no artefacts will be visible in the LISA signal spectrum (0.1 mHz-1 Hz).

Based on simulation, the effective white noise introduced by a dithered truncation was
found to be slightly higher with a value of

2N3 g3
\/6 'fsamp \/6 ‘fsamp
1
VHz

The increase by a factor of /3 can be tolerated, since the introduction of spurious signals is
now suppressed and anyway this noise can be arbitrarily reduced by using more bits.

Xtrunc+dith =

27)

[)?trunc] =

4.3. Rounding

Truncation can also introduce small signal offsets due to rounding errors. This is prevented
by offset-free rounding algorithms based on simple integer arithmetic. We designed specific
VHDL rounding blocks for our implementation. These blocks truncate symmetrically around

9
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zero, and they are linear, keeping the amplitudes of signals constant. To generate the correct
offset for some truncation cases, a dithered bit is used to determine the rounding direction.

4.4. Noise shaping

The linearized ADPLL model can now be used to understand the effect of in-loop truncation
noise on the phase tracking performance by applying standard control theory. As an example,
we evaluate the influence of a truncation of the frequency value u(z), it shows a strong noise
shaping and it also allows a strong reduction of readout bit rates.

A naive PLL implementation would use a high number of bits at u,(z). This is because
truncations at this point in an open-loop system are especially critical, since they introduce
a white frequency noise, which leads to a 1/f phase noise inside the PLL. The linear model
shows, however, that this noise is suppressed directly by the loop error function E (z). Since the
PLL includes a f? suppression at low frequencies, the effective phase noise is easily reduced
below 1 urad/+/Hz in the LISA signal bandwidth:

~ fi 277"
&u; (2) ﬁf T
We implemented such a truncation and were able to perform null measurements with a
performance of 1ucycle between 0.1 mHz and 1 Hz in a 80 MHz system with a 12 bit
frequency value, which corresponds to an LSB frequency resolution of only ~20 kHz. All of
the following simulations include this truncation.

The bit reduction of this specific signal is especially useful, since the readout of the PLL
frequency requires the highest dynamic range of all PLL signals. The noise shaping allows
us to reduce the initial bits to be downsampled and potentially also reduces all bit lengths in
further processing.

x E()rad. (28)

5. Nonlinearity and cycle slips

The presented linear analysis of the phasemeter is valid for many applications. Phasemeters
based on this analysis were already successfully tested and used in various laboratory
experiments [12, 13].

A phasemeter in a true intersatellite interferometer will have to operate under rather
extreme conditions, a low SNR of the input signal (due to additive noise) and a large dynamic
range of the signal phase, due to frequency noise and signal dynamics. Therefore, the PLL
could reach a state where it becomes nonlinear and cycle slips occur in the PLL tracking
[14, 15].

The resulting phase noise from R slips during a measurement period is given as [16]

2+/R
Osiip(2) = \/—;/_

For LISA, this means that any slip spoils the system performance completely and is therefore
comparable to a loss of lock or another measurement disturbance. Earlier experimental
investigations by Dick er al [16] and detailed modelling [14, 15] have shown that the relation
between the bandwidth and the signal noise floor is the critical factor for the probability of
cycle slips.

Since the LISA phasemeter needs to operate far outside any cycle-slip region and therefore
in the linear regime, we compiled a model to determine a suitable loop bandwidth for a given
set of signal parameters that should allow to minimize the cycle-slip probability and nonlinear
effects of the phase tracking.

rad. (29)

10
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Figure 4. Shown is the 1o standard deviation of the error point from additive noise (blue), phase
noise (green), truncation noise (brown) and of their quadratic sum (grey). The additive noise is an
example based on the laser shot noise expected in LISA with an effective received power of 3.5pW
(also shown for comparison is the additive noise for 25pW effective power). The phase noise used
here is the laser frequency noise expected in LISA (see & in figure 5). The dots show the measured
values of o. The inset is a schematic of the linearized and real response of the phase detector in
comparison to different distributions of the error point signal. The green distributions illustrates a
linear case, the yellow and the red curves show how the nonlinearity becomes more prominent as
o increases.

The two most important reasons for nonlinear behaviour are the sinusoidal response of
the phase detector and the existence of second harmonics and other additional tones, like the
side-band beatnotes for inter spacecraft clock transfer or an ADC pilot tone.

5.1. Phase detector

The nonlinear output of the phase detector, omitting the second harmonic, is
A A
Ueln] = 7 - sin (&iln] = &o[n]) = 7 - sin (&[n]). (30)

The nonlinear response is also shown in the inset of figure 4 in direct comparison to the linear
behaviour assumed before.

For an error signal ¢,[n] <« 7 /2, we can assume a quasi-linear behaviour of the phase
detector. If the error signal exceeds 77 /2, the loop gain starts to reduce until it crosses zero and
changes sign at ¢,[n] = 7. At any of these points, the loop is potentially unstable and the error
signal eventually jumps by 27 or more, which results in a phase tracking error of the same
amount.

5.2. Optimal bandwidth

Since the absolute error signal is directly related to the linearity of the PLL, we can use the
calculated standard deviations to evaluate the size of the error signal. We also include the

11
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second harmonic and digitization noise from inside the PLL to get a complete picture. By
evaluating this for different loop bandwidths, we can then optimize the PLL to work in a
regime closest to linear behaviour, minimizing nonlinear effects and cycle slips.

The standard deviations for additive and phase noise have already been calculated in
section 1. The internal quantization noise influences can be added quadratically (assuming
uncorrelated noise sources). The comparison of the resulting standard deviations can be
compared for different bandwidth and phase margin (damping) configurations to find an
optimal design of the PLL. The standard deviations can be added quadratically to compute the
resulting overall standard deviation ogp,.

Figure 4 shows the modelled standard deviations for example parameters (discussed in
section 6) and their dependence on the loop gain. To verify our model, we have measured the
standard deviation of the PLL error signals for various noise influences and a range of stable
bandwidth. We computed the standard deviations by fitting the phase error of the PLL, which
we readout at full sampling speed by subtracting the PA value of the PLL and an NCO used
in our simulations. The measured standard deviations are shown as dots in figure 4 together
with their respective modelled values. Our model shows excellent agreement between the
predictions and the measured values, which verifies that the linear model is appropriate for
this range of operation.

The optimal bandwidth for the here assumed noise sources is found at 240 kHz. Operating
the PLL at this point should allow us to minimize any nonlinear phase artefacts and the
probability of cycle slips. Although we cannot deduce the exact probability, we can now test
the system for stability and performance for given signal parameters.

5.3. Second harmonic

The second nonlinear behaviour of the phase detector is the generation of a second harmonic
of the input signal, as shown in equation (4).

We can split the effects of the second harmonic into two parts. The first effect creates
parasitic phase noise in the signal band, which we describe in detail in the following. For
convenience, we therefore rewrite the second harmonic part of equation (4) in the continuous
time domain

Ueop(t) = % -sin Qwot + &;(t) + &,(1)). 31

We simplify this equation by assuming the PLL to be tightly locked (¢, = ¢;) and by defining
an effective phase value e (f) = wot + €,(¢), with an effective frequency wer = 5;;“ The
second harmonic propagates through the PLL in a time 7, and creates an effective phase

modulation. The output of the NCO at the time ¢ can therefore be written as

NCOqu (1) = 3 cos(ecge(t) + m - sin e (t — T,))). (32)

Here, m is a modulation index given by the attenuation of the second harmonic by the open-
loop transfer function (m = |G (2wef)|), referred to the gain for the nominal low-frequency
error signal, which in the signal range is ~1. Using Bessel functions of the first kind, we can
expand this to

NCOqu (1) = 3Jo(m) cos(eeir (1)) + 3J1 (m) sin(eegr (1)) sin e (t — 7)) + O(m”)
o(t) + 02 (t) + O(m?). (33)

Assuming m < 1, one can approximate the first two Bessel function by Jy(m) ~ 1 and
Ji(m) &= m/2. This yields the original NCO output o(t), the term from the second harmonic
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074 () and higher terms O(m?), which we discard in the following. We now rewrite 0,y and
immediately discard the third harmonic term:

1
027 (1) = E%(COS(Seff(t — 7)) — cos(eeir(f — 74)))

1m
0 (t) =~ 37 CoS (e (f — Tg)). (34)

The phase modulation side band at @ — 2w = —w thus ends up at the same frequency as the
nominal NCO output and results in a parasitic phase signal by the action of the mixer. The
additional mixer output is

. Am .
i(t) X 03¢ (1) = 17 sin(efr (1) — eft (t — Tg)). (35)
The effective parasitic phase error ¢, 5/ is therefore (see equation (5))

epaf(t) = %sin(sew) — egr(t — ). (36)

Assuming a constant 7, and an effective frequency wesr that varies on time-scales smaller than
T4, ONE can approximate this to

|G Cawetr)| .
Epar(t) N ——— sin(wer(t)Ty). (37
This parasitic noise couples very nonlinear and depends highly on the suppression of the
second harmonic m, the group delay in the PLL 7, and the dynamics of the input signal
werr(t). The coupling is at its maximum in the linear range of the sine. Assuming this operating
condition, we can calculate the maximum parasitic phase error in dependence of the signal
frequency noise spectrum:
|G Qwerr)| ~

Epar(f) = 2 Wefr () T (38)

The second effect caused by the second harmonic is an additional instantaneous root-mean
square value of the error signal. Even though this does not cause a phase error at low
frequencies, it does increase the probability to leave the linear range of the phase detector. The
maximum additional error is €, (max) = |G (2wesr)|.

The above equations allow us to determine the necessary suppression by low pass filters
for a given system by calculating the error signal residuals and by comparing the signal
dynamics with the required phase performance. Since the choice of low pass filter is also
limited by logic resources, a trade-off is necessary. We have found IIR filters to be a good
compromise between suppression and logic resources required. A second-order IIR filter with
a corner frequency of 300 kHz is used in the following simulations, a small residual parasitic
phase is visible as the roll-up in the blue curve in figure 5. In critical cases, e.g., when the
signal frequency can span a wide range, a more complex 2 f-filter could be used, for example
one that adapts its corner frequency to the signal frequency. One should also consider that this
analysis is only valid if the second harmonic is below the Nyquist frequency (f;/2). If this
is not the case, the second harmonic will be aliased to another frequency and potentially not
cause a parasitic phase error.

6. Digital measurements

To evaluate the modelled performance and noise influence, we performed FPGA-based
measurements of the ADPLL performance. Similar to Shaddock et al [2], we implemented
a scheme based on a digital nonlinearity test, where three independent noise sources are

13



Class. Quantum Grav. 30 (2013) 235029 O Gerberding et al

i HiE
N N
° ™ =% (model)
10 - g (m |
T, g  (simulated)
e £,44 (Model)
104 Pa, — Euf (model) i
1pm (LISA) R
<102 | |===A, B, C (initial) i
N — A+B-C \
T —
= A+B-C (+A) \
£10 ~
5 NG
10 _
€add \\\,
107" | } "J\'
\‘+\ ‘ SUf ~
10_6 L ‘ : |
10" 107 10 10 10° 10 10° 10° 10* 10° 10°

Frequency [Hz]

Figure 5. Left: shown are the results of two digital nonlinearity measurements. The initially
measured signals A, B and C are the same for both measurements and are therefore only plotted
once. The first measurement (dark blue) was performed without any additive noise, the correct
combination of the input signals reveals the noise floor and linearity limits of the PLLs under test. It
demonstrates the full performance of the PLL only limited by numerical limits. The measurement
also shows a dynamic range performance of the phasemeter of 10 orders of magnitude at 0.01 Hz,
necessary for the implementation of TDI. We observe a small roll-up at low frequencies, which
we attribute to truncations in data post-processing and nonlinearities in the PLL due to the second
harmonic. The second measurement (light blue) used additional additive noise in all three signals
with a SNR equivalent to 3.5pW effective power in a LISA-like set-up. No cycle slips were
observed under these extreme conditions and correct signal combination reveals the performance
to be limited by a white noise floor. Right: shown here is the high-frequency part of the phase noise
used for the signal (a model in violet and a simulation in dashed blue) as well as the predicted
noise floor for the additive noise (orange) and the expected phase noise due to the truncation to
12 bit at the PIR (yellow).

generated, combined and then fed into three numerically controlled oscillators. Tracking all
three signals and combining their respective phase measurements allows us to determine the
phase noise performance for large signals and under realistic conditions.

A white Gaussian noise, generated like the truncation dither, is shaped by a specially
designed IIR filter, to simulate the laser frequency noise expected at the beatnote of the master
satellite in the LISA configuration. For our signals, we choose the highest pre stabilized laser
frequency noise spectrum proposed for LISA (800 Hz/+/Hz in band) [17].

An additional Gaussian noise is used to introduce additive noise and to simulate a weak
light environment, here with an effective power of ~3.5 pW, corresponding to an SNR of
30 dBHz.

The PLLs used to track these three beatnotes are optimized based on the described models
and techniques. This includes the frequency truncation to 12 bits, the readout truncation, loop
gain optimization and sufficient second harmonic filtering.

We performed two of these measurements, one with weak light condition and one without
to test the PLL stability and the performance. The results of both are shown in figure 5.
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Figure 6. Left: shown is the set-up used for the analogue three signal test, generating three signals
with phases that can be combined to zero. Right: shown are the measurement results achieved with
this set-up. One of the signals is split after the mixing and fed into two channels to investigate the
noise floor of the phasemeter prototype used. The initial noise floor of this reference measurement
(orange) lies above the requirement for a wide range of the spectrum. The use of a pilot-tone
correction allowed to reduce this noise below the requirements for the full range (dark blue). The
readout of this null measurement was performed using the readout of the PIR and the PA (not
shown), both results are indistinguishable in the required frequency range and show only slight
variations at high frequencies due to different transfer functions and aliasing. The three signal
combination (violet) reveals a noise floor above the requirement for almost all frequencies, not
allowing us to fully test the linearity of our phasemeter channels. The cause of this excess noise was
identified to be the mixers that generate a low-frequency phase noise that spoils the performance.

For the weak light case, the measurement shows a continuous tracking of all signals
without the occurrence of cycle slips. The achieved performance after signal recombination
was limited by the additive noise as expected.

Without additional noise, the measurement achieved a performance better than
1 pcycle/~/Hz % NSF in the whole signal range. This demonstrates that the underlying
noise floor of the system is sufficient for LISA-like missions. We could thereby demonstrate
a dynamic range of up to 10'? at 1 mHz.

7. Analogue measurements

The three signal test was also performed using analogue signals. By mixing three GHz tones, we
generated three MHz signals with similar properties as in the simulations. Those three signals
were injected into a phasemeter prototype [2] and the measurement signals and combinations
are shown on the right side of figure 6. The analogue mixing is limited by low-frequency phase
noise generated in the mixers and can therefore not show the full system performance. The
phasemeter noise performance, including digitization noise and analogue front-end noise, was
demonstrated in parallel by a null measurement. The use of a pilot tone allowed to correct
this measurement below the LISA requirement, showing that the front-end in the experiment
performed as required.

Although the full performance was not yet shown with analogue signals, we already
reached a dynamic range of up to 107 at 1 mHz.

8. Conclusion

We have demonstrated a full model of the phase readout system for future LISA-like space-
borne gravity missions. We have used this model to design and optimize the system parameters
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and to predict the influence of truncations. Nonlinearities were treated in three steps, first by
applying the linear model to find the optimal bandwidth, second by testing the designed PLL
in a realistic VHDL-based measurement and third by using real analogue signals with similar
properties.

Future plans include the testing of the phasemeter performance with analogue and optical
signals to perform tests under more realistic conditions and to include further noise influences.
An interesting idea for future work might be to further investigate the ratio between the
standard deviation and the cycle-slip probability. An automatic loop gain control will also
potentially be necessary to stay in the linear system range. The phasemeter core will also be
adapted for the use in an Breadboard Model of the LISA phasemeter currently built and tested
in an ESA technology development activity [18].
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