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ABSTRACT 

We present a two-dimensional climate model to be used 
for basic dynamic studies on ice-age time scales (103 to 
106 years). The model contains an ice sheet, where flow 
and temperature are calculated in a vertical plane, oriented 
in the north�outh direction. The model ice sheet is forced 
by a zonally-averaged atmospheric energy-balance model, 
including a seasonal cycle and a simplified hydrological 
cycle, which specifies ice temperature and the mass balance 
at the ice-sheet surface. At the bottom of the ice sheet, the 
geothermal heat flux is prescribed. In addition, delayed 
bedrock sinking (or bedrock rising) is assumed. 

A stationary state is achieved after 200 000 model 
years. This long time scale is introduced by the slow 
evolution of the temperature field within the ice sheet. 
Using reasonable parameter values and presently observed 
precipitation patterns, modified by ice-sheet orography, the 
observed thickness to length ratio (4 km/3300 km) of the 
Laurentide ice sheet can be simulated within a realistic 
build-up time (40 000 years). Near the ice bottom, tem
perate regions developed. They may have had an important 
effect on ice-sheet build-up and ice-sheet decay. 

INTRODUCTION 

With the publication of the paper by Hays and others 
(1976), most of the scientists interested in ice-age modelling 
were convinced that the past changes in the global ice 
volume were related to variations of the Earth's orbital 
parameters. Encouraged by this result, a hierarchy of ice
sheet climate models was developed, intended to explain the 
link between radiation and ice volume. Only a few ice 
models were coupled to expl icit atmospheric models, from 
which the snow budget driving the ice sheet could be 
derived. The most convincing results were obtained by 
Pollard (1983). He used an ice model following Birchfield 
and others (1981), and coupled it to an atmospheric model 
derived from a zonally-averaged and seasonal energy-balance 
equation (but with land-ucean contrast). Most of the ice
sheet climate models did not include a rigorous calculation 
of ice temperature, except the model of Morland-Hutter 
(Morland (1984), and following papers), which considers 
temperature-dependent planar flow in ice sheets but without 
application to specific ice-age conditions. 

The aim of this work is not to make a further attempt 
to match data and model results, but rather to inspect the 
dynamics of the model without tuning the parameters to 
ice-age conditions. Especially, we are interested in the 
effect of ice temperature on the evolution of the ice-age 
ice sheets. Therefore, our ice-sheet model contains a fully 
coupled flow-temperature calculation and the parameteri
zations used in the atmospheric part of the model are fitted 
to modern conditions. In the next section we present a brief 
description of the coupled ice-atmosphere--continent model 
to simulate the build-up of the Laurentide ice sheet and to 
study stationary-state dynamics. In the final section we 
show model results, together with our conclusions. 

MODEL FORMULATION 

The ice-sheet model predicts the ice thickness h along 
a meridian. The northern

· 
boundary of the model ice sheet 

lies at 70 
o
N (the Arctic coast). The rate of change of 

ice-sheet thickness h follows from the mass-balance 
equation: 
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where b is the annual snow balance and q is the vertically
integrated horizontal ice velocity u (see Fig. 1). Delayed 
bedrock sinking (or rising) is described in the manner 
proposed by Weertman (1976), assuming a response time of 
10 000 years. For a more detailed review of the basic 
equations used for ice-sheet modelling see Paterson (1981) 
and Oerlemans and Van der Veen (1984). 

The rate of change of ice temperature TI within the 
ice sheet is controlled by the conservation of energy: 
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where u, v are the horizontal and vertical ice-velocity 
components, respectively, k = 36 m a-I the thermal 
diffusivity of ice, and d the production of deformational 
heat (see below). 
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Fig. I. Coordinate system of the coupled model and 
definition of model variables used in the text. The 
resolution of the ice-sheet model is 100 km in the 
horizontal direction and 200 m in the vertical direction. 
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The surface temperature of the ice sheet is determined 
by the atmospheric model. At the ice-sheet bottom, a 
geothermal heat flux of G = 5.02 x 10-2 W m-2 enters the 
ice. If the bottom temperature reaches the melting 
temperature T Mo T = T M replaces the flux boundary condi
tion. The melting temperature is corrected for pressure: 
T M = -aMh, where h is the ice thickness and 
aM = 0.87 K km-l. The values of the physical constants used 
in the ice model were all taken from Paterson (198 I). 

The prognostic Equations (I) and (2) determine the 
time evolution of the ice sheet, provided the ice velocity is 
known. It can be derived from a set of diagnostic 
equations, the force balance and the empirical flow law for 
ice. In the shallow-ice approximation (Hutter, 1983), an 
analytical expression for the horizontal ice-velocity 
component u can be derived (Herterich, 1988): 

where ub is the sliding velocity at the ice-sheet bottom hb 
(being zero in the present model version) and hs is the 
height of the ice surface. In the model, the density of ice 
(p = 910 kg m-3) is constant, g = 9.8 m S-2 is the accele
ration by Earth's gravity, and n = 3. The temperature
dependent coefficient A(T'), where T' is the ice tempera
ture measured above pressure-melting point, is based on 
measurements compiled by Paterson (1981). 

The vertical velocity component v follows from the in
compressibility condition. Finally, the production of defor
mational heat d, defined by d = Li,kf. ik(Jik' where f. ik and 
(Jik are the components of the straIn-rate tensor and stress 
tensor, respectively, can be expressed in terms of the shape 
of the ice sheet 

d 
2 - A(T' )(pg)n + l(h 

pc s 

with c = 2 x 103 m2 S-2 K-1, the heat capacity of ice. 

(4) 

The above equations were formulated on a finite
difference grid. To prevent numerical instabilities, an 
up-wind scheme was used. The movement of the ice-sheet 
margin, where the shallow-ice approximation breaks down, 
was determined by mass conservation (Equation (I». 

The atmospheric model, forcing the model ice sheet, is 
based on a zonally-averaged energy-balance equation (cf. 
North, 1975), including a seasonal cycle, which is solved 
analytically for the atmospheric sea-level temperature TA as 
a function of latitude. At the ice-sheet surface, the 
temperature is reduced with respect to sea-level temperature 
(cf. Bowman, 1982), using a lapse rate of r = -6deg/km. 
The mean annual surface temperature Ts of the ice sheet is 
obtained by integrating over the year. 

The model precipitation as a function of latitude 'P in 
mid-latitudes is approximated by a Gaussian distribution: 

'P - 'Po 2 
P = Poe-(--c-). (5) 

where Po is a proportionality factor, determining the 
precipitation maximum at latitude 'Po' and c a constant to 
give the best fit between model and present data. The 
position 'Po is related to a critical temperature gradient, 
derived from the theory of baroclinic instability (Holton, 
1979). In the model, 'Po is shifted by 10· in latitude during 
the year, in accordance with observations. 

Some additional effects, also influencing precipitation, 
are contained in the proportionality factor Po: 

By Equation (6), precipitation increases with the surface 
slope I ahs/ ax I of the ice sheet, thus simulating orographic 
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rain. P 1 is the average precIpitation in mid-latitudes and P 2 
was chosen such that the model precipitation fits the obser
vations in mountain areas of North America. The form (6) 
includes the "elevation-desert effect" (Budd and Smith, 1979) 
with hsl the sea-level height, and a factor T(To)' which 
crudely models the (linear) reduction in precipitation with 
decreasing global temperature To. 

The snowfall s in the model depends on precipitation 
and surface temperature (s = P for Ts < 0, and s = 0 
otherwise). Following Pollard (1980), snow melt is para
meterized linearly in terms of surface temperature and solar 
insolation. The annual balance b of snowfall and snow melt 
follows by integrating over the year. 

RESUL TS AND CONCLUSIONS 

The aim of the first numerical experiment was to build 
up a typical ice-age ice sheet within a realistic time. Using 
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Fig. 2. Ice-sheet shape and isolines of temperature (
·

C). 
Dotted areas indicate temperate ice (a) after 35 000 model 
years integration (with temperature-flow coupling), (b) 
after 35 000 model years integration (without 
temperature-flow coupling), (c) after 200 000 model years 
integration (with temperature-flow coupling). 
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the parameterization (6) for precipitation fitted to 
present-day observations, the Laurentide ice sheet reaches an 
extent of 3300 km and a maximum height of 3770 m within 
a build-up time of 40 000 years. 

Figure 2a shows the temperature field within the model 
ice sheet after 35 000 model years. The temperature 
increases from the ice surface towards the base. Near the 
base, however, a temperature inversion is visible. This 
inversion is due to temperate regions (dotted areas), where 
the ice is at the pressure melting point everywhere. These 
temperate regions started to develop after 15 000 model 
years near the southern edge of the ice sheet. The existence 
of temperate regions within an ice sheet requires an internal 
energy source, which is the heat released by deformation. 
The occurrence of temperate regions in ice-age ice sheets 
has not yet been reported by other modelers. Since we did 
not expect to have such temperate regions occurring in our 
model, we were also not prepared to treat the ice 
deformation in these regions properly. In the model, the 
temperature was simply not allowed to rise above the 
pressure melting point and the deformation was calculated as 
if it were ice at the pressure melting point, without 
considering the complexities introduced by melting. 

Figure 2b shows another model run, also over 35 000 
model years, but without temperature-flow coupling. The 
flow was calculated assuming a mean ice temperature of 
-10 0c. This build-up experiment produces a higher ice 
sheet with a shorter southern extent compared to the 
build-up experiment with temperature-flow coupling. The 
thickness-to-Iength ratio is now unrealistically high 
(increased by a factor of about 1.5). This difference in 
ice-sheet shape reflects the strong temperature dependence 
of ice flow. The flow increases by a factor 10 from -10 ° 

to 00 C. Since the ice-sheet shape influences its own mass 
balance, we conclude that ice temperature is an 
indispensable model variable which has to be included in a 
realistic ice-sheet model. 

An almost-stationary state of the ice sheet is achieved 
after about 200 000 model years integration (see Fig. 2c). 
For a stationary state, the amount of accumulated snow over 
the year has to be equal to the amount of ice melting 
away. In our model, the ice sheet needs more than 100 000 
years build-up time to arrive at a nearly stationary shape. 
Its length is then approximately 5000 km. The ice sheet 
needs another 100 000 years to achieve a stationary 
temperature distribution. We infer from this result that the 
Laurentide ice sheet was probably never in a stationary 
state. The temperature distribution of this stationary state 
differs from the temperature distribution during the initial 
phase of ice-sheet build-up. In the build-up phase, heat 
diffusion produces an almost constant vertical temperature 
gradient. In the stationary state advection of cold ice has 
flattened the gradient in the upper half of the ice sheet, 
with a steepening below. Temperate regions are still present, 
but their vertical extent is now reduced. 

In a final experiment, the almost-stationary state of the 
ice sheet was forced stochastically. Our intention was to 
study the effect of short time-scale weather fluctuations on 
the evolution of the ice sheet. Weather fluctuations occur on 
time scales of hours to days, which is small compared to 
the response time of ice sheets (on the order of 10 000 
years and longer). The weather fluctuations will therefore be 
treated as a white-noise process, formally introduced in the 
model by splitting the proportionality factor Po in Equation 
(5) into a mean and a fluctuating part, with a variance 
equal to the square of the mean. For interpretation of the 
resulting model time series (and sp�ctrum) we used standard 

methods of spectral analysis. The resulting time constant is 
near 18 000 years. The induced stochastic changes of the ice 
volume had an amplitude of about 10% of the total volume. 
This leaves 90% of the change between minimum and 
maximum ice volume to be explained by deterministic 
processes. In the case of a stronger pOSItive feedback 
between the ice sheet and the atmosphere than incorporated 
in our model, this amplitude may be much larger 
(Oeriemans, 1979). The stochastic component, however, 
cannot be too large. Otherwise, it would be hard to 
explain the observed high coherence between the changes of 
solar insolation and the ice-volume record (Imbrie and 
others, 1984). 
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