Downloaded 11/12/13 to 193.175.53.21. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. Sc1. COMPUT. (© 2013 Society for Industrial and Applied Mathematics
Vol. 35, No. 5, pp. B987-B1009

FAST ITERATIVE SOLUTION OF REACTION-DIFFUSION
CONTROL PROBLEMS ARISING FROM CHEMICAL PROCESSES*

JOHN W. PEARSONT AND MARTIN STOLL#

Abstract. PDE-constrained optimization problems, and the development of preconditioned
iterative methods for the efficient solution of the arising matrix systems, is a field of numerical
analysis that has recently been attracting much attention. In this paper, we analyze and develop
preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations,
which themselves result from chemical processes. Important aspects of our solvers are saddle point
theory, mass matrix representation, and effective Schur complement approximation, as well as the
incorporation of control constraints and application of the outer (Newton) iteration to take into
account the nonlinearity of the underlying PDEs.
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1. Introduction. A class of problems which has numerous applications within
mathematical and physical problems is that of PDE-constrained optimization prob-
lems. One field in which these problems can be posed is that of chemical processes
[4, 19, 20, 21, 22]. In this case the underlying PDEs are reaction-diffusion equations,
and therefore the PDE constraints in our formulation are nonlinear PDEs.

When solving such reaction-diffusion control problems using a finite element
method, and employing a Lagrange-Newton iteration to take account of the non-
linearity involved in the PDEs, the resulting matrix system for each Newton iteration
will be large, sparse, and of saddle point structure. It is therefore desirable to devise
preconditioned iterative methods to solve these systems efficiently and in such a way
that the structure of the matrix is exploited. Work in constructing preconditioners
for PDE-constrained optimization problems has been considered for simpler problems
previously, for instance, Poisson control [46, 47, 53], convection-diffusion control [45],
Stokes control [36, 50, 56], and heat equation control [44, 54].

In this paper, we will consider an optimal control formulation of a reaction-
diffusion problem, which generates a symmetric matrix system upon each Newton
iteration. (Such an iteration is required to take into account the nonlinear terms
within the underlying PDEs.) We will generally search for block triangular precondi-
tioners for the matrix systems we examine, to be used in conjunction with a suitable
iterative solver. In order to do this, we will need to approximate the (1,1)-block by
accurately representing the inverse of mass matrices amongst other things, as well as
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devise an effective approximation of the Schur complement of the matrix system. We
demonstrate with numerical tests why the choices we make are sensible for a number
of practical problems.

This paper is structured as follows. In section 2, we discuss the underlying
chemical problem (detailing the statement of the problem without and with control
constraints included) and represent it in terms of matrix systems. In section 3, we
introduce some basic saddle point theory and use this to devise effective precondi-
tioners for the matrices which arise. In section 4, we present numerical results to
demonstrate the performance of our iterative solvers in practice. Finally in section 5,
we make some concluding remarks.

2. Problem formulation and discretization. Throughout this paper we con-
sider an optimal control problem based on that considered in [4]. The objective func-
tion that has to be minimized is given by

(2.1)

Ay 2 Ay 2
J(u,v,c) = o5 l[u— “QHLQ(Q) + B v — UQHLz(Q)

aru 2 ary 2 Q¢ 2
t— |u(x,T) — uallz,@q) + 5 [v(x,T) = vallz, @ + > lellz, ) -

where u and v refer to concentrations of reactants (which in this problem are state
variables), and c is the control variable, which also influences the underlying reaction.
The spatial domain on which the problem is solved is given by Q C R? with d € {2, 3},
and the time domain is taken to be the interval ¢ € [0,7]. We then have the space-
time domain @ given by @ := Q x [0, T, as well as the space-time boundary given by
¥ =900 x (0,T). The goal of the optimization problem is to compute the quantities
u, v, and ¢ in such a way that they are close in the Lo-norm to what are often referred
to as the desired states (uq, vq, uq, va). Note that we have four desired states in this
problem—two which are defined at all time points and two which are solely defined
at the final time at which the problem is being solved. These are known quantities,
which are typically determined from measurements and observations. In order for
the objective function to resemble a physical or chemical process the variables need
to satisfy the physics of the process of interest, which is typically modeled using one
or more PDEs alongside additional constraints. In our case the constraints subject
to which the objective function J(u,v,c) is minimized are given by the following
reaction-diffusion equations:

ur — D1Au+ kiu = —yiuv  in Q,
vy — DaAv 4+ kov = — youv  in Q,
D10, u+ b(x,t,u) =c on X,
Dy0,v+ev=0 onX,
u(x,0) = up(x) in Q,
v(x,0) = vp(x) in Q,
c€Cu={c€L(X):cs<c<cae onX}.

A~ o~~~ o~
0~ O Ut W N
NOAND AN NS AN NN

The quantities «,,, oy, ary, ary, ae, D1, Do, k1, ko, 71, 72, and € are nonnegative
constants. The function ¢ describing the boundary condition (2.4) is the control
variable defined above, and 0, denotes the normal derivative. Equations (2.6) and
(2.7) define the initial conditions for both concentrations. Additionally, we can impose
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so-called box constraints on the control as stated in (2.8). In [22] Griesse and Volkwein
also consider an integral constraint on ¢, which we do not discuss here. In some cases
it might also be sensible to include state constraints for the concentrations v and v,
which would be described by

Ug S U S Uy, Vg SV 0.

State constraints typically bring additional difficulties to optimal control problems
(see [10, 33]) and are not considered further in this present paper. For the remainder
of this paper we will also follow the assumptions of b(x,t,u) = 0 and £ = 0, as studied
in [22]. There are two approaches for solving the above problem. The first is the so-
called discretize-then-optimize approach, where we discretize the objective function
and constraint to build a discrete Lagrangian, and then impose the optimality con-
ditions in the discrete setting. The second is known as the optimize-then-discretize
approach, where we instead build a Lagrangian for the infinite dimensional problem
and then discretize the first order conditions. There is no preferred approach and we
refer to [30] for a discussion of the two cases. We note that recently it has become
a paradigm to create discretization schemes such that both approaches lead to the
same discrete first order system. We also need to deal with the nonlinearity of the
PDE constraint. We here apply a simple sequential quadratic programming (SQP) or
Lagrange—Newton method. Before we proceed to the derivation of optimality condi-
tions and discretization, we split the problem into two stages: solving the nonlinear
PDEs without control constraints and solving the system with the additional control
constraints incorporated.

Newton system without control constraints. In this section we wish to
further describe how the above problem can be examined and in particular focus on
how to treat the nonlinearity of the PDEs. We proceed by formally building the
(continuous) Lagrangian subject to the reaction-diffusion system

uy — D1Au + kiu = —yuv  in Q,

vy — Do Av + kov = —yuv  in Q,
DiO,u=c¢ on X,
Dyd,v=0 onX,
u(x,0) = up(x) in £,
v(x,0) =vp(x) in Q,

giving

L(u,v,¢,p,q) = J(u,v,c) + / p(ur — D1 Au + kiu + y1uv)
Q

+ / q(vy — DaAv + kov + youv)
Q

+/pz(D18,,u—c)+/qz(Dgayv).
b)) >

Here we have split up the adjoint variables p and ¢ into interior and boundary parts
(p and pyx, and g and ¢gs;). We note that for brevity, when constructing £, we included
only the PDE part without boundary and initial conditions, which of course also need
to be incorporated. We also make the assumption ary = ary = 0 in the working

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/13 to 193.175.53.21. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

B990 JOHN W. PEARSON AND MARTIN STOLL

below; the case where this is not so may be treated similarly. A rigorous derivation
of the first order conditions can be found in [4, 22], to which we refer the interested
reader. By taking the Fréchet derivatives with respect to state, control, and adjoint
variables and equating the resulting expressions to zero, we obtain the first order
conditions, or Karush-Kuhn—Tucker (KKT) conditions, given by

—pt — DiAp + k1p + 71pv + y2qu + ay(u —ug) =0  in Q,
—qt — DaAq + kaq + y2qu + yipu + ay(v —vg) =0 in Q,
dp=0,q=0 onX,

ac—p=0 onX,

uy — D1Au+ kiju+yuv =0  in Q,

vy — Do Av + kv 4+ yuv =0 in Q,

du—Di'ce=0 on¥,

d,v=0 on 3.

We may abbreviate this set of nonlinear equations describing the first order conditions,
using the notation ®(x) = 0. We can use Newton’s method to solve this problem via
the relation ®'(xy)sy = —P(xx).

We now construct the Fréchet derivative of ®, obtaining

(2.9) —(8p)t — D1As, + k15p +71(psy + 5pv) + Y2(qs0 + 8¢v) + usy = b,
(2.10)  —(8q)t — D2Asg + k2sq + 72(qsu + Squ) + Y1(psu + spu) + sy = ba,
(2.11) Qcse — sp = b,
(2.12) (su)t — D1Asy + kisy + 71 (vSy + spu) = by,
(2.13) (8v)t — D2Asy + kasy + y2(usy, + s,v) = bs.

Here we denote with b = [bl,bg,b3,b4,b5]T := —®(xy,) the right-hand side of the
Newton system. Note that we did not write down the boundary conditions; however,
they naturally carry through to the Newton system. If we now write all the equations
together into an infinite dimensional system, the matrix describing the Newton process
is given by

a,dd  7p+2g 0 L, Y2v
Yoq + V1P a,1d 0 U L,
(2.14) 0 0 a.D7'd —-Dy'ld 0 |,
Lo Y1 ~-D;'1d 0 0
Y2v ,CU 0 0 0
where
o , o
Lo = g—DlA—i-klId—l—'ylv, Eu:—a_DlA'FklId"_A/lva
L, = % — DoA + kold + you, L) = _% — Do A + kpld + yau,

and Id denotes the identity operator.
In order to numerically solve the above problem we need to discretize the system
(2.14) and the right-hand side —®(xy).
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We first note that the system (2.14) is in saddle point form (as defined in sec-
tion 3), and its discrete counterpart (using a backward Euler time-stepping scheme)
is given by

TMI 0 ’CT y
(2.15) 0 auD{*M, —rD7'NT c |l —b
K —7D'N 0 A
A
with
My = blidiag (M, 1, (N0, (M)
M. = blkdiag(M., M., ..., M., M.),
-y _
0
N
N = 0 7
N
i 0 |
where
(@) M Y1 My, + 2 Mg, .
My = © ® =1,...,N,.
! PylMp(” + ")/QMq(i> aUM » ) y 4Vt

Here, M denotes a standard finite element mass matrix, M. is a boundary mass
matrix, and the matrix N consists of evaluations of inner products from the term
Joo wtr(z) with w a function on the boundary 92, z a test function for the domain
2, and tr the trace operator. The matrices M, and M,  are mass-like matrices
the entries of which are terms of the form [, p¢;¢; and [, Go;¢r, respectively (where
p and § represent the previous Newton iterates of the adjoint variables—or Lagrange
multipliers—p and ¢), and the vectors y and A correspond to the discretized state
(u,v) and adjoint (p, q) variables, respectively. The quantity N; denotes the number
of time-steps used, with 7 the size of the time-step.
Finally, the matrix KC represents the discretized PDE and can be written as

LM
-My; L®
’C = 9
—M,; LW:=D
_Md L(Nt)
where
M 0
=3
and
L(z) — M + T(DIK + klM +’\/1Mv(i)) TVlMu(i>
TA/ZMU(«;) M + T(DQK + ]€2M + ’)/QMu(i))
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with K the standard finite element stiffness matrix, and M, and M,
matrices with terms of the form fQ g ¢ and fQ vp;j¢1, where 4 and ¥ correspond to
the previous Newton iterates of the state variables v and wv.

Note that we can solve for the updated states, control, and adjoints directly, which

also makes the computation of the right-hand side cheaper, that is,

mass-like

u(FHD) u® iy + (1p™® + 12g® )0
L OH+D) o® || auvg + (120 +1p®) ju®
Pk o®) )0
44D o 0P

in continuous form.

So far we have only discussed the Newton method to solve the KKT conditions.
Note that for certain values of the states, Lagrange multipliers, and parameters we
might run into the problem of obtaining an indefinite (1, 1)-block of A, caused by an
indefinite matrix M [15]. For this reason we briefly highlight that for this purpose
different techniques within the SQP step can be employed, such as line-search or trust
region approaches—these may explored in future research into this subject area. One
alternative that we also mention within the numerical results of section 4 is a Gauss—
Newton approach (see [24]), where we ignore all mixed derivatives of the Hessian
with respect to the Lagrange multipliers, resulting in a matrix system defined by the
matrix

o, ld 0 0 Ll You

0 o, 1d 0 U L
(2.16) 0 0 aD;'ld —-Dy'ld 0
L, mu —D;'ld 0 0
You L, 0 0 0

We find that preconditioners for the matrix (2.16) can be derived using the method-
ology presented in section 3.

Problem with control constraints. The problem we have discussed so far did
not include any additional constraints on the control c. We now wish to discuss how
pointwise constraints on the control, i.e.,

ca(x,t) < e(x,t) < ep(x,t),

may be dealt with. The treatment of control constraints can typically be carried out
using a semismooth Newton method introduced in [7]. (For further information we
refer to [27, 30, 58].) For the special case of the reaction-diffusion system we point to
literature such as [4, 19, 20, 21, 22] for discussions on control constraints. In general
the gradient equation of the Lagrangian becomes a variational inequality, which is in
turn solved using the semismooth Newton method or equivalently [27] a primal-dual
active set method. In contrast to [7] we employ a penalty technique, which has been
applied very successfully to state-constrained optimal control problems, called the
Moreau—Yosida penalty function [25, 32, 37]—this approach has also been applied to
control-constrained problems [55]. The advantage of this approach is that the method
does not need to work on submatrices corresponding to the free variables, which would
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require a reassembly of matrices for every Newton step and would make precondition-
ing the matrix systems more difficult. From experience [55], the performance of this
approach is comparable to the approach that directly uses the semismooth Newton
method. In the Moreau—Yosida framework, the constraints

ca(x,1) < c(x,t) < cp(x,t)

are incorporated into the objective function via a penalization term, that is, we instead
minimize the functional

1 2 1 . 2
T,0.0) + - fmasx {0, e}y + o min (0, — 0} 2, s,

subject to the state equations detailed above. We can now proceed using the semi-
smooth Newton approach, solving linear systems of the form

TMl 0 ICT y _
(2.17) 0 a.Di'L. —7D{'NT c |=b
K —mD'W 0 by

at each Newton step, where
M, + 671G_A(1)MCG_A(1)

L.=
M.+ e G yvp MG givp)

Here A = AS:) U A defines the active sets for every time-step of the discretized
problem, that is,

(2.18) Aﬁ) ={je{l,2,...,N}:(ci); > (cb)ij},
(2.19) AY = (G e{1,2,... N} (ci); < (ca)ij}

using the control ¢ from the previous iteration. The quantities (c;);, (¢p)i,;, and
(ca)i,; denote the values of ¢, ¢p, and ¢, at the ith time-step and the jth node, with
N representing the total number of nodes. This method is schematically shown in
Algorithm 1, where we assume here that the problem is already discretized.

ALGORITHM 1. Active set algorithm.
0)

1: Choose initial values for ¢(9), p(@ q©@ u© v(

2: Set the active sets Af), A and Ago) by using ¢ in (2.18), (2.19)

3: for k=1,2,...do

4:  Solve (2.17) (a system on the free variables from the previous iteration (Agkil)))
5:  Set the active sets Agf), A™ and Agk) by using ¢(*) as given in (2.18), (2.19)
6 if AP = AP AW = A%V and AT = AV then

7: STOP (Algorithm converged)

8  end if

9: end for
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3. Solving the linear systems.

Krylov solvers. We now wish to discuss how to efficiently solve linear systems
of the form Ax = b that arise at the heart of the Lagrange-Newton method dis-
cussed in the previous section. We here decide to employ Krylov subspace methods,
which have previously been found to be very efficient for a number of optimal con-
trol problems subject to PDE constraints [47, 48, 49, 53]. In our case, as the system
matrix is symmetric and indefinite, one option would be to employ the MINRES [43]
method introduced by Paige and Saunders. This is a short-term recurrence method
[12], requiring only a minimal amount of storage and involving one matrix-vector mul-
tiplication per iteration. MINRES minimizes the 2-norm of the residual rp = b — Axy
over the current Krylov subspace, where x; is the approximation to x at step k of
this procedure. Alternatively, there are many widely used nonsymmetric solvers such
as GMRES [52] and biconjugate gradients (Bica) [13] which could be used. Of course,
any Krylov method should only be effective if a preconditioner P is introduced such
that the properties of the left-preconditioned system

P lAx=P 'b

are better than that of the unpreconditioned system Ax = b. Specifically, P is
constructed in order to capture the properties of the matrix A well and so that it is
easy to invert. For excellent introductions to the topic of constructing preconditioners
for saddle point problems, we refer to [5, 11] and the references mentioned therein.
As a guideline for constructing good preconditioners we use the known results that if
the saddle point matrix

[

B -C

is invertible, then the (ideal) block preconditioners

A 0 A 0
P1_|:0 S:|7 7)2_|:B _S:|7

where A is the unchanged (1, 1)-block of the saddle point matrix and S = C+BA~1 BT
is the (negative) Schur complement of A, satisfy A\(P;'A) € {1,%\/5} provided
C =0 [38, 39], and \(P;'A) € {1} for any matrix C [31]. Therefore, although P,
is nondiagonalizable, both P; and Ps are extremely effective preconditioners for A.
Of course in practice, we would not wish to explicitly invert A and S to apply the
ideal preconditioner; however, if we construct good approximations to the (1, 1)-block
and the Schur complement of the system (2.15), an appropriate iterative solver is
likely to converge rapidly when used with a preconditioner consisting of these ap-
proximations. As pointed out earlier the (1,1)-block of the preconditioner may be
indefinite—in this case we cannot employ a symmetric Krylov subspace solver. Now
faced with the decision of choosing a nonsymmetric Krylov method, we wish to point
out that it is not straightforward to pick the “best method” (see [40]) and the con-
vergence of the Krylov subspace solver might not be adequately described by the
eigenvalues of the preconditioned matrix system [18]. Nevertheless in practice a good
clustering of the eigenvalues often leads to fast convergence of the iterative scheme,
and it can be seen that with a good preconditioner many methods behave in a similar
way.
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It is also possible to employ multigrid approaches to such saddle point problems.
This class of methods has previously been shown to demonstrate good performance
when applied to solve a number of PDE-constrained optimization problems, subject
to both steady and transient PDEs [1, 2, 8, 9, 23, 24, 28, 29, 57].

We emphasize once more that the matrix systems we seek to solve fit into this
saddle point framework. For the problem described in section 2 without control
constraints, for instance,

TMl 0
0 ozCTDl_l./\/lC '

We may therefore employ the theory of saddle point systems to develop precondition-
ers for this problem.

A= B=[K —-tD{'N' ], C=[0].

Approximating the (1,1)-block. In the case of a PDE-constrained optimiza-
tion problem with a linear PDE as the constraint and a cost functional of the form
discussed in section 2, the (1,1)-block of the resulting matrix system is a block di-
agonal matrix containing mass matrices (see [47, 49, 53], for instance), which can be
handled very efficiently. In this case, however, we have to take into account that the
(1,1)-block now contains blocks of the form

OéuM ’ylMp(i) + ’)/QMq(i)
71M:D(¢) + ’Yqu(i) ay M ’
which demonstrates one of the major complexities encountered when attempting to

solve such nonlinear problems numerically. When we seek to approximate these blocks,
we use the saddle point theory as stated above to take as our approximation

{ a, M — 04171 (’71Mp(i) + ’YQMq(i)) M (71M;D(¢) + 72Mq(¢)) 0 ]
’ylMP(i) + 72Mq(i) o, M

(3.1)

_ { Ay 0
WlMp(i) + A/ZMq(i) aUM

Using the saddle point result concerning block triangular preconditioners, we observe
that each preconditioned block has eigenvalues all equal to 1 using this approximation.
Note that these complicated looking matrices are actually straightforward to handle
as we assume that the mass matrices are lumped for our work.! The block M.,
which also forms part of the (1, 1)-block of our matrix systems, may be approximated
using Chebyshev semi-iteration [16, 17, 59] for consistent mass matrices or by simple
inversion for lumped mass matrices.

Approximating the Schur complement. We now focus on approximating the

Schur complement of the matrix system, which is given by
T

—— NMNT,
ach ¢
One approach that we would predict to prove successful for moderate values of the
parameter a. (motivated by work undertaken in [47], for instance) is to use the ap-
proximation

1
S = —KM'KT +
T

~ 1
(3.2) S = ;iCMfllcT,

n the case where mass matrices are not lumped, we believe that we may take a similar approx-
imation but replace the mass matrices by their diagonals within the preconditioner.
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that is, to drop the second term of the exact Schur complement for our approxima-
tion. However for smaller values of a. we find this approximation does not produce
satisfactory results. Hence, approximations that provide robustness with respect to
the crucial problem parameters have been investigated (see [35, 44, 46, 53, 60]). The
idea introduced in [44, 46] for simpler problems uses an approximation of the form

~ 1 —~ T

So == (k+ M) mi! (K+ M),
where M is chosen to accommodate a better approximation of the term that was
initially dropped from . To discover an approach for finding such an approximation,
we first study So more closely:

g, = % (KMTIKT + MM M+ KM M+ MMTET).

Our goal is for the second term of the Schur complement approximation §2 to accu-
rately approximate the second term of the exact Schur complement S, that is,

1 —~ —
(3.3) — MMM~ T NMIINT.
1

Qe
We now consider a block diagonal approximation M and recall the block structure of
the other matrices involved. The most complex term which needs to be considered is
the M7 ! term, which involves inverting 2 x 2 block matrices of the form (3.1). To

carry out this task, we observe that, given suitable invertibility conditions, the inverse

of a 2 x 2 block matrix {ﬁ; 1‘3;2} may be expressed as

[ (A1 — A1 Asy Agy) ™! —(A11 — A12A5; A21) LA A }
—(Agg — Ay AL} Alz) LAy A (Ao — A21A11 App)? ’

which can be easily checked. We may use this expression to note that the problem
of ﬁnding a suitable approximation (3.3) can be reduced to finding a matrix M =

blkdiag(M ", MV, M2 AP MY MY such that

MY Ay MY 0 [ ra;'DI'NMINT 0
0 Tflaglj/\/l\Q(i)M’lj/\/l\Q(i) 0 0
fori=1,..., Ny, where A; (A(Z))

We may therefore conclude that it is appropriate to take JT/[\Q(D = ]/\4\2(2) =
M2(Nt) 0, with M; M{" chosen such that
L 56) 4 =) 7700 T
—M;" A,V M’ &~ ——— M,
b0 ! ac.D1 r
where Mp := NM_ INT . Given that the matrices Ay ) and Mr are diagonal, the

above criterion will be satisfied if 1\71(1) is a diagonal matrix, with diagonal entries
given by

Al = )

1/2, 1/2
| mr 5
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where a((J) - and mr ;; are the jth diagonal entries of A and MTr, respectively. It
would also be appropriate to make the selection

~ (i T lig— [
i = VDo B0 af), 12

when j corresponds to a node on 02, using the fact that M. (which is equal to the

nonzero part of Mr) is spectrally equivalent to h%~1I, where d is the dimension of

and h the mesh-size used. L .

We may build these choices of M; () into the matrix M and in turn into the Schur
complement approximation 5’2 We can also check heuristically that these choices of
/\/l ensure that 7 1/\/1/\/11 M=~ o ' DN MIINT by taking the approximations

~ hil, M. ~ h®1I (where I are identity matrices of different dimensions), and
Writing

Q

1 i i T L(d— i
2 POVl 2 0 ) WEEDlag |2

§j vV Dlozc Dl()éc
N M- WT)

(25im;154)

T
hd—l ~
Oéch (Oé Dl

33
whenever the index j corresponds to a boundary node. (Both sides of the expression
would be equal to zero otherwise.) In the above work, we have assumed that a ;é 0.
Let us now consider how our approximations of the (1,1)-block A and (negatlve)
Schur complement S may be applied. Due to the potential indefiniteness of A, as
well as the nonsymmetry of the preconditioner used, a nonsymmetric solver, such as
GMRES or BIC@G, needs to be applied. Given that this is the case, we recommend that
a block triangular preconditioner of the form P, be used, of the following structure:

M, 0 0
Py = 0 «arD*M. 0 |,
K —D{'N -5,

where /\//\ll denotes the approximation of M; described above.

Alternative Schur complement approximation. We note at this point that
as we apply a nonsymmetric iterative method to solve the matrix system discussed,
we see no reason a nonsymmetric Schur complement approximation could not be used.
For instance, it seems feasible to utilize an approximation

Sy = % (1 + M) My (/C+A7)T,
where in general M is not equal to M. We may consider block diagonal matrices
M = blkdiag (7\4\1(}), 0,02, 0,... MM, 0) :
M = blkdiag (13,0, M3}, 0,...., Mg, 0)

and, similarly to above, select M, 1(11) and ]/\4\2(? to be diagonal matrices. Their diagonal
entries may be given by

~ (1)
mlLJJ m | 07JJ|
) T . OB S 1O

mr, or
21733 \/m 37
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ALGORITHM 2. Inexact Uzawa method.

: Select xq.
: for k=0,1,2,...do

1
j,; Xpp1 = Xp + P! (b - (L + blkdiag (M, 0)) xk)
4: end for

for example. Such choices of M and M should ensure that the approximation
T IMMIIM = 70, ' DTN M INT holds, as for the Schur complement approx-
imation §2. N N

We note that whether the Schur complement approximation Sy or S3 is used, the
inverses of matrices of the form IC+4 M need to be approximated for every application
of the Schur complement. We here use a Uzawa scheme [51] that approximately solves
for diagonal blocks of the form L + blkdiag(]\//f7 0) of K+ M. (See Algorithm 2 for a
sketch of the routine used.) The preconditioner P is of block diagonal form and for
each of these matrices applies an algebraic multigrid (AMG) technique to approximate
the diagonal blocks of L + blkdiag(]/\/[\ ,0).

Preconditioning for Gauss—Newton system. Let us now consider whether
the approach detailed above may be applied to the matrix systems arising from a
Gauss-Newton method. The matrix involved is given by (2.16) in continuous form,
which in discrete form results in the same matrix (2.15) as for the Newton method,
except now with

M = blkdiag (a, M, a, M, a, M, a, M, ... a,M,a,M).

For this matrix, we may approximate the (1, 1)-block A = blkdiag (TMl, Ta.Dy 1./\/lc)
exactly. When developing an approximation of the form

S, = % (1 + M) My (/C+A7)T
to the Schur complement

s = LMok ¢ TN MO,
T a.D1

we may therefore look again for a matrix of the form M such that

T

1 ~ —~
;MMl‘lM ~ NMIINT.

QclVy
As for the Newton system, this problem reduces to finding an alternating block diag-
onal matrix M = blkdiag(M",0,M?.0,..., M 0) such that

1D o][aM 0 17 [P 0] _ 7 [NMZNT 0
| 0 0 0 M 0 0] aD 0 0

for i =1,..., N;. This suggests that we should take

L =y, r—1 770
— MMM ~ My,

Tl a.D1
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which is achieved if ]/W\l(l) == JT/[\l(N‘) = M\l, where M, is a diagonal matrix with
diagonal entries
Qg 1/2 1/2 Oy pi—%

B oor T
Dy, 7 T Dia,

Mg =T

Here, m;; and mr ;; denote the jth diagonal entries of M and Mr, respectively.

These approximations of A and S may be incorporated into a block diagonal or
block triangular saddle point preconditioner. For the numerical results of section 4,
we will once again consider block triangular preconditioners for matrix systems of this
form.

Preconditioning for control constraints. We also wish to examine how the
system (2.17), which incorporates inequality constraints on the control variable, may
be preconditioned effectively. The (1,1)-block now contains the matrix a.7D;*L,,
which is a simple block diagonal matrix that can be treated in the same way as the
(1,1)-block of the problem without control constraints. Approximating the Schur
complement

1
S = KMKT + ———NLINT
T c-Dl
is again the more challenging task. We now wish to use the technique employed earlier

and write

8o = — (K + M) M7! (/C+A7)T,

\\IP—‘

where /\//T is chosen such that

%M\Mflf\?% NLZNT.
1

Qe

“INT is a block diagonal matrix with blocks of the form

T

N (MC+571G_A(i)MCGA(i))_1 NT, i=1,..., Ny,

O401)1

alternating with zero blocks. Hence, we see that M should again have an alternat-
ing block diagonal structure, that is, M= blkdlag(M(l) 0, ]\’/71(2)7 0,.. M(N‘) ,0), as
before. ‘

Let us now employ the notation l<r?jj for the diagonal entries of the matrix

N (Mc+a’1GA<i>MCGA(i))_1 N7, which will be nonzero on the diagonals corre-
sponding to boundary nodes and zero otherwise. Then, in complete analogy to the
case without control constraints, we may motivate the following choice for the diagonal
entries of M{":

~ (7)

il = D)

L.jj

\/— | Ao, ;4

These choices of ]/\4\1(1) may again be built into the matrix M and hence the Schur
complement approximation Se.
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=  Robust unsymmetric 0 A

i
I 0.05- = Nonrobust ., —BD non-symmetric approximation
D g0 —BT non—symmetric approximation|
5
E 0 l - SN D O 0 O o o zﬂwo"
107 F
S _o.0s
[} -8
{=2 10
]
o 10° 10’ 102 10° 10" 10" ; ‘ : ‘ : 5
0 5 10 15 20 25 30 35 40
Eigenvalue Real Part lterations (max. 40)
(a) Eigenvalues a. = le — 3. (b) Iterations a. = le — 3.
o 01 : : _ 1
S X Robust symmetric
< + Robust unsymmetric| 100 L BT symmetric approximation
& 0.05r ! o Nonrobust --BD symmetric approximation
=4 2 —BT
'g 13 o —BD non-symmetric approximation|
£ o0 —co o o 2
E i
2 -0.05 i 1
o 8
=l 100
i .
—0.1L5 5 5 7 5 w0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
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(c) Eigenvalues ac = le — 5. (d) Iterations a. = le — 5.

Fic. 3.1. Eigenvalues of Sv = ASv for various approximations of the Schur complement (left)
including a nonrobust approzimation. GMRES iterations for the saddle point problem using the differ-
ent Schur complement approximations and also block diagonal and block triangular preconditioners
(right). The problem size is relatively small (dim(S) = 5000).

Effectiveness of Schur complement approximations. To motivate our
choices of Schur complement approximation, we wish to illustrate the properties of the
preconditioned matrix systems when the approximations derived in this section are
used. We note that good clustering of these eigenvalues alone will not guarantee rapid
convergence of a nonsymmetric iterative solver such as BicG or GMRES; however, it
should at least indicate the prudence of our selections.?

In Figure 3.1, we aim to demonstrate this effectiveness in two different ways. In
plots (a) and (c) we show, for different values of a., the eigenvalues of the precondi-
tioned Schur complement when robust symmetric (that is, §2), robust unsymmetric
(§3), and nonrobust (§1) approximations are used. The plots indicate that whereas
the eigenvalues of both §5 'S and §§ 1S seem to be fairly clustered, the results when
§2 is taken as the Schur complement approximation seem to be the best.

In plots (b) and (d), we show GMRES convergence plots for a test problem when a
range of preconditioning choices are made, for different values of a.. Specifically, we
show results when the symmetric approximation (that is, Se) and nonsymmetric ap-
proximation (§3) are taken to the Schur complement and when a BT (block triangular
preconditioner we considered in this section) and BD (analogous block diagonal pre-
conditioner) are used within the GMRES method. Whereas the plots indicate that all
four choices of preconditioner behave reasonably well, the block triangular precondi-
tioner with Schur complement approximation Ss yields the best results. We therefore
use this preconditioner for the numerical results presented in the next section.

2Figure 3.1 considers the case without control constraints, but we note that the behavior of our
preconditioners is very similar when control constraints are present.
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4. Numerical experiments. In this section we present numerical results for the
iterative methods we have described, using the Schur complement approximation Ss.
We implement this methodology using the finite element package deal.Il [3] with Q1 fi-
nite element basis functions on a quadrilateral mesh. For the AMG preconditioner, we
use the Trilinos ML package [14] that applies a smoothed aggregation AMG. Within
the multigrid routine we typically apply a Chebyshev smoother (10 steps) in combi-
nation with the application of 6 V-cycles. We currently regard our implementation as
a proof of concept, as at present we reinitialize the AMG preconditioner upon each
application. A possible alternative would be to store various preconditioners, however
this is prohibitive from a computer memory point of view. Therefore, we believe that
the development of an efficient technique using multigrid or a fixed number of steps
of a simple iterative solver such as a Gauss—Seidel or Jacobi method should be inves-
tigated in the future. Consequently, we wish to emphasize that the timings presented
here are not as rapid as they would be were the recomputation of the preconditioner at
each application not required. If the varying preconditioners are handled efficiently,
this could also lead to the relatively larger number of V-cycles being reduced—we
choose to use this number of V-cycles as we wish to avoid the performance of the
AMG routine being sensitive to parameter changes. Our implementation of Bica is
stopped with a tolerance of 10~% or smaller for the relative residual. Additionally, we
stop the SQP method whenever the relative change between two consecutive solutions
is smaller than a given tolerance, as specified in our examples. More sophisticated
techniques [41] for carrying this out could be employed in the future. We feel that
as our purpose is to illustrate the performance of our preconditioner the choice made
here is appropriate. Our experiments are performed with 7' =1 and 7 = 0.05, that
is, with 20 time-steps. We take the parameters ary = ary = 0 in all our numerical
experiments, though we find it makes little difference computationally if this is not
the case. We only consider three-dimensional examples here and specify Q C R? for
each example. All results are performed on a Centos Linux machine with Intel Xeon
CPU X5650 at 2.67 GHz CPUs and 48 GB of RAM. We present overall timings for
the solution process in seconds.

No control constraints.

Ezxample 1. The first example we consider involves a cylindrical shell domain
shown in Figure 4.1(a) with inner radius 0.8, outer radius 1.0, and height 3.0. The
parameter setup for this problem is as follows: the desired state for the first reactant
is shown in Figure 4.1(b) and is given by

ug = 2t |sin(2z1z023)| + 0.3,

where x = [xl,xg,xg]T, and the desired state for the second reactant is given by
vg = 0. Additionally, we have Dy = Dy = k1 = k2 = 1 and 1 = 72 = 0.15. Figure
4.2 demonstrates computed state and control variables for this problem at a particular
time-step.

In Table 4.1 we show for each step of the SQP method the number of Bica
iterations needed to achieve the required convergence. The first column indicates
the number of degrees of freedom (i.e., the dimension of the matrix systems being
solved), with the second and fifth columns providing the timings for all SQP steps at
the level of mesh refinement. The third and sixth columns give the number of SQP
steps needed to reach convergence, and the remaining fourth and seventh columns
give the iteration numbers needed for BICG to converge to the desired tolerance. For
this setup we require three SQP steps to reach the tolerance of 1076, The results
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l 0.7000 /
[ 05000 |
03000 ]

Max: 1100  /
Min: 0.3000

e /

(a) Domain (b) Desired state for first reactant at eighth
time-step

Fic. 4.1. Cylindrical shell domain for computations and desired state for the first reactant at
the eighth time-step.

[ ///’7\
/N
/
1.150 / 1.213 »
/ -7 -
09226 / 08458
/ i
Iu.s9sz / 04782| \
[N
04678 / 01106 |\
|
02404 | . -0.2570
Max: 1.150 Ty Max: 1213
Min: 0.2404 / Min: -0.2570

(a) Computed state for first reactant at eighth  (b) Computed control at eighth time-step
time-step

Fi1a. 4.2. Computed control and state for the first reactant at the eighth time-step with a. =
le — 5 and oy = oy = 1.0.

indicate a benign mesh-dependence of the preconditioner, which from our experience
can often be observed for boundary control problems. We also observe nearly constant
iteration numbers when the regularization parameter is varied.

Ezxample 2. The setup used for the second example is similar to that for the first.
Here, however, we take the desired states

3
o = {0.7 for (z1,22,23) €[0,0.5]7, vo = 0,

0.2 otherwise,

with the parameters Dy = Dy = k1 = ke = 1 and ; = 2 = 0.15. In contrast to the
previous example we solve the optimization problem on a Hyper L domain consisting
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TABLE 4.1
Results on the cylindrical shell domain for varying mesh-size and reqularization parameter ..
SQP steps are shown in columns 3 and 6 with the corresponding BICG iteration numbers in columns
4 and 7. The timings (in seconds) measure the total time for convergence of the SQP scheme.

DoF Time SQP step Bicc Time SQP step Bica

ac=1le—5 ac=1le—3

538 240 1726 step 1 16 1995 step 1 17
step 2 16 step 2 20

step 3 16 step 3 20

3331 520 14904 step 1 28 14757 step 1 28
step 2 27 step 2 31

step 3 34 step 3 29

(a) Computed state for first re- (b) Desired state (¢) Computed control
actant

F1G. 4.3. Desired state, computed control, and state for the first reactant at eighth time-step
with ac = le — 5 and oy = apy = 1.0.

of the cube on [—1,1]® with the cube (0,1]* removed (see Figure 4.3). Again, we wish
to vary the control regularization parameter a,. and the mesh-size. Table 4.2 shows
the results for the setup presented here, including timings and iteration numbers as
explained in Table 4.1. We again observe a mild growth in iteration numbers with
varying mesh-size and robustness for our selection of o, values. We find all iteration
numbers are very reasonable considering the complexity of the matrix system being
solved.

TABLE 4.2
Results on the Hyper L domain for varying mesh-size and regularization parameter ac. SQP
steps are shown in columns 3 and 6 with the corresponding BICG iteration numbers in columns 4
and 7. The timings (in seconds) measure the total time for convergence of the SQP scheme.

DoF  Time SQP Bicc  Time SQP Bica

ac=1le—5 ac=1le—3

60920 457 step 1 23 369 step 1 19
step 2 25 step 2 20

step 3 25 step 3 20

382 840 2819 step 1 29 2624  step 1 27
step 2 35 step 2 30

step 3 33 step 3 33

2670 200 22976 step 1 46 19128 step 1 36
step 2 52 step 2 44

step 3 53 step 3 44
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Varying parameters. We next consider a problem where the desired states are
given by

w, = {03 for (21,29, x3) € [0,0.5]%,
@7 00.2 otherwise,

and vary some values that have previously been assumed to be fixed. The default setup
is again Dy = Dy = k1 = ko = 1 and v; = 2 = 0.15, with the stopping tolerance
for the SQP method set as 10~%. In the remainder of this section we vary one or two
of these parameters and keep the others fixed. Clearly this does not cover all the
relevant choices that might be possible, but this should indicate the effectiveness of
our approach for a large range of parameter regimes. All computations are carried
out on a fixed mesh that leads to a saddle point system of dimension 382840. We note
that each of the problems tested represents a completely different setup of the PDE
and the optimization problem. The purpose of presenting the results in Table 4.3 is
to show that the iteration numbers for these scenarios are reasonable and sometimes
very low. There are some specific parameter regimes for which this approach is not
as effective as for the cases presented, but for a wide range of parameters (h, 7,
Q, o, O, D1, Do, ki, ka, 71, v2) we find that our approach works very well. Also
presented in the table are results for the case when the tolerance of the iterative solver
is decreased—it can be seen that the increase in iteration numbers is not dramatic for
a decreased tolerance.

We may see from the results in Table 4.3 that especially for increasing values of v
and v, it is possible that the convergence deteriorates slightly due to the (1, 1)-block
having larger negative eigenvalues (as the increasing indefiniteness of the (1, 1)-block
in this case is not captured by our preconditioner). One way to overcome this issue is
by switching from a Newton method to a Gauss—Newton scheme [6, 42]. This means
that the off-diagonal blocks in (2.14) are ignored, which results in a typically slower
convergence of the nonlinear iteration but provides better matrix properties during

TABLE 4.3
Results for varying parameters on the Hyper L domain with fized dimension 382840 and varying
regularization parameter a.. The timings (in seconds) measure the total time for convergence of the
SQP scheme. We show the number of BICG iterations and the number of SQP steps.

Parameter Time SQP step Bicc Time SQP step Bica
ac=1le—5 ae =1le—3
D1 =Dy =100 1783 step 1 28 1161 step 1 16
step 2 33 step 2 22
Dy =D2 =0.1 2083 step 1 19 1744 step 1 18
step 2 27 step 2 20
step 3 20 step 3 19
1 = v2 = 0.05 2426 step 1 25 2199 step 1 22
step 2 29 step 2 25
step 3 29 step 3 25
y1 =72 =0.75 3240 step 1 20 3796 step 1 24
step 2 60 step 2 36
step 3 32 step 3 72
tol = 1le — 6 3226 step 1 34 2702 step 1 27
step 2 38 step 2 33
step 3 38 step 3 33
tol = le — 8 3749 step 1 39 3289 step 1 33
step 2 46 step 2 39
step 3 46 step 3 42
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TABLE 4.4
Results for varying parameters 1 and v on the Hyper L domain with fized dimension 382840
and varying regularization parameter a. for the Gauss—Newton scheme. The timings (in seconds)
measure the total time for convergence of the SQP scheme. We show the number of BICG iterations
and the number of GN steps.

Parameter Time GN Step Bicc Time GN Step Bica

ac=1le—5 o =1le—3

y1 =72 =0.75 3107 step 1 25 2848 step 1 22
step 2 27 step 2 25

step 3 27 step 3 25

step 4 27 step 4 24

y1 =72 =175 3249 step 1 25 2973 step 1 22
step 2 28 step 2 26

step 3 28 step 3 26

step 4 26 step 4 26

the solution process. We observe that all our preconditioners can be applied in this
case. Table 4.4 provides some results for this case with larger v; and ~2 and the
desired states

3
vo = {0.7 for (z1,22,23) € [0,0.5]", vg = 0.

0.2 otherwise,

It can be seen that we have a small increase in the number of Gauss-Newton (GN in
the table) iterations compared to the number of SQP steps to reach the tolerance of
10~ but that the number of BICG iterations remains (almost) constant.

Control constraints. We now present results for the case where control con-
straints are present. The domain of interest is again the Hyper L domain presented
earlier, with the desired states given by

ug = tsin(2z1z2x3) cos(2z1z223)|, vo =0,
and D1 = Dy =k = ko =1, 71 = 72 = 0.15. We work only with an upper bound on
the control given by

cp = 1.5.

The results for varying o, and different mesh-sizes are shown in Table 4.5. We note
that the convergence of the Newton method dealing with the control constraints
(CCNM in the tables) seems to depend on the tolerance used for the solution of

TABLE 4.5
Results on the Hyper L domain for varying mesh-size and regularization parameter a.. Shown
are the number of SQP steps, the number of the Newton iterations for the CCNM, and the average
number of BICG iterations per step of the CCNM method.

DoF Time SQP step CCNM/Bicc Time SQP step CCNM/Bica

ac=1le—5 ae=1le—3
60 920 859 step 1 3/22.0 1066 step 1 3/18.0
step 2 2/25.5 step 2 3/21.0
step 3 3/21.0
382 840 13358 step 1 5/28.6 5498 step 1 2/26.0
step 2 5/32.6 step 2 2/36.0
step 3 5/32.8 step 3 2/35.0
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TABLE 4.6
Results on the Hyper L domain for wvarying penalty parameter . Shown are the mumber of
SQP steps, the number of the Newton iterations for the CCNM, and the average number of BicG
iterations per step of the CCNM method.

CCNM/ CCNM/ CCNM/

DoF  SQP step av.Bica SQP step av.Bica SQP step av.Bica
e=1le—2 e=1le—4 e=1le—6

60 920 step 1 3/32.3 step 1 3/24.6 step 1 3/20.6

step 2 3/36.3 step 2 3/26.6 step 2 3/22.3

the linear system (see [34]). The smaller value of a. shown in Table 4.5 requires the
tolerance for the iterative solver to be reduced, as otherwise we do not observe con-
vergence of the Newton method to deal with the control constraints. Our stopping
criterion for the Newton method is based on the coincidence of subsequent active sets,
but a more sophisticated stopping criterion might be able to avoid the convergence
issue of the Newton method [26, 41]. Table 4.5 shows the number of SQP steps, the
number of semismooth Newton steps (CCNM) for the control constraints, and the
average number of BICG iterations at each SQP step. We find that it is also feasible
to handle the nonlinearity of the PDEs and the control constraints within a single
Newton loop, and the matrix systems obtained using this approach are of the same
structure as that derived in section 2. We see that there is a benign growth in Bica
iteration numbers with respect to the mesh-size. The difference in iteration numbers
for the two different values of «. is likely to be due to the fact that as we change «.
the values for the control ¢ change, which means that more nodes belong to the active
sets than in the case with the larger value of ..

In addition, we wish to illustrate robustness with respect to the penalty parameter
€. We here keep the mesh-size, as well as the regularization parameter (a. = le — 3),
fixed and consider different values of . Table 4.6 illustrates that once again the
resulting iteration numbers are very reasonable given the complexity of the problem.
We also observe that the performance of the Newton method depends on the tolerance
with which the linear systems were solved. For the rather low tolerance of 10~
we find that the Newton scheme and the SQP method often converge in very few
iterations. We sometimes observe that for smaller values of the penalty parameter
the convergence of the outer SQP method is slower than for larger values. This
may be caused by the use of our simple SQP scheme—as we mentioned previously
more sophisticated schemes may be able to avoid this. Observe that the residual of
the iterative solver depends on €, and thus from our experience small tolerances are
typically required to ensure convergence of the outer iteration. We note that it is also
possible to replace the SQP scheme by a Gauss—Newton iteration to possibly avoid
indefinite Hessians.

5. Conclusions. In this paper we have considered a PDE-constrained optimiza-
tion problem based on reaction-diffusion equations used to model chemical processes.
We devised nonlinear solvers to solve these problems, at the heart of which lay the
solution of large-scale linear systems of saddle point structure. We have shown that
these systems can be solved using efficient preconditioning techniques for a wide range
of cases. We have introduced a preconditioner that efficiently approximates the (1, 1)-
block of the saddle point systems, and we additionally derived approximations of the
Schur complement which were intended to be robust with respect to parameters within
the construction of the problem. Our numerical results illustrated that for a variety
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of problem setups (including problems with box constraints on the control variable)
our method solves the matrix systems in low BICG iteration numbers. To summarize,
the method presented here not only enables the accurate solution of chemical process
models but also provides fast and robust techniques to do this.
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