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Abstract

The problem of finding the minimum size 2-connected subgraph is a classical

problem in network design. It is known to be NP-hard even on cubic planar graphs

and Max-SNP hard. We study the generalization of this problem, where require-

ments of 1 or 2 edge or vertex disjoint paths are specified between every pair of

vertices, and the aim is to find a minimum subgraph satisfying these requirements.

For both problems we give 3=2-approximation algorithms. This improves on the

straightforward 2-approximation algorithms for these problems, and generalizes

earlier results for 2-connectivity. We also give analyses of the classical local opti-

mization heuristics for these two network design problems.



1 Introduction

Graph connectivity is an important topic in theory and practice. It finds applications in the

design of computer and telecommunication networks, and in the design of transportation

systems. Networks with certain level of connectivity, which intuitively means that they

provide certain number of connections between sites, are able to maintain reliable com-

munication between sites even when some of the network elements fail. For a survey and

further applications, see Grötchel et al. [8].

Problem statement. Given a graph with weights on its edges, and an integral connec-

tivity requirement function r

uv

for each pair of vertices u and v, the vertex connectivity

(edge connectivity, respectively) Survivable Network Design Problem (SNDP) is to find a

minimum weight subgraph containing at least r
uv

vertex (edge, respectively) disjoint paths

between each pair u; v of vertices. If r
uv

2 X for some set X , for each pair u; v, we denote

the problem as X-VC-SNDP (X-EC-SNDP, respectively). The term survivable refers to

the fact that the network is tolerant to the failures of sites and links (in case of VC-SNDP)

or links (for EC-SNDP). Even the simplest versions of these problems are NP-hard, and so

approximation algorithms1 are of interest.

Previous results for general cases. For the EC-SNDP problem with arbitrary edge weights,

Williamson et al. [16] have given a 2r

max

-approximation algorithm, where r

max

is the

maximum value of the requirement function. This was improved later to a 2H(r

max

)-

approximation by Goemans et al. [6], where H(k) = 1 +

1

2

+ : : :+

1

k

is the kth harmonic

number. The best known result is a 2-approximation algorithm, due to Jain [9]. No algo-

rithm with a non-trivial approximation guarantee is known for the general version of the

VC-SNDP. For the f0; 1; 2g-VC-SNDP with arbitrary edge weights, Ravi and Williamson

[14] have given a 3-approximation algorithm. For a special case of the VC-SNDP with

r

max

� 3, Nutov [13] designed a 10=3-approximation algorithm.

Unweighted low-connectivity problems. The case of low connectivity requirements is

of particular importance, as in practice networks have rather small connectivities. There

has been intense research in the subarea of network design for low connectivity require-

ments and assuming that all the edge weights are equal to one (unweighted problems)

[3, 5, 11, 15]. We focus on the special cases of this problem where each r

uv

2 f1; 2g

and G is an unweighted, undirected graph. These are the simplest non-trivial versions of

this problem and have been studied for a long time, but tight approximation guarantees and

inapproximability results are not fully understood yet.

For the unweighted f2g-EC-SNDP (or 2-EC) Khuller and Vishkin [11] gave a 3

2

-appro-

ximation, which was improved by Cheriyan et al. [3] to 17

12

, and recently to 4

3

by Vempala

and Vetta [15]. For the unweighted f2g-VC-SNDP (or 2-VC) Khuller and Vishkin [11]

gave an algorithm with approximation guarantee of 5

3

, which was improved to 3

2

by Garg et

1A polynomial time algorithm is called an �-approximation algorithm, or is said to achieve an approx-

imation (or performance) guarantee of �, if it finds a solution of weight at most � times the weight of an

optimal solution. � is also called an approximation ratio (factor).
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al. [5], and finally to 4

3

by Vempala and Vetta [15].

Both unweighted 2-VC and 2-EC problems are NP-hard even on cubic planar graphs.

These problems are also MAX SNP-hard [4]. For the f1; 2; : : : ; kg-VC-SNDP and for

f1; 2; : : : ; kg-EC-SNDP, the results of Nagamochi and Ibaraki [12] imply k-approximation

algorithms for the unweighted case – see Proposition 2.

Little is known about the generalizations where arbitrary requirements are allowed,

especially for vertex-connectivity, even for unweighted graphs, apart from the results in [9,

6, 16, 14]. The simplest such generalization is one which allows requirements to be either 1

or 2, instead of 2 for every pair. It should be noted that allowing the requirement function r

to take values from f0; 1; : : : ; kg (i.e. when zero is also allowed), for some integer k, makes

the unweighted and weighted problems essentially identical. This is because an edge with

an integer weight w can always be replaced by a path of Steiner vertices of length w.

For instance, unweighted f0; 1; 2g-VC-SNDP is equivalent to the arbitrary edge weights

f0; 1; 2g-VC-SNDP considered by Ravi and Williamson [14].

Our contributions. For both unweighted f1; 2g-VC-SNDP and f1; 2g-EC-SNDP (hence-

forth denoted by f1; 2g-VC and f1; 2g-EC), we give 3=2-approximation algorithms. This

improves on straightforward 2-approximation algorithms for these problems (Proposition

2). Our algorithms are generalizations and extensions of the algorithms of Garg et al. [5]

and of Khuller and Vishkin [11]. We also present analyses of the classical local optimiza-

tion heuristics for our problems.

From now on we assume that the edge weights are all equal to one (unweighted prob-

lems). Given a requirement function r

uv

on the pairs u; v of vertices, we define a require-

ment r̂
u

of a vertex u as r̂
u

= maxfr

uv

: v 2 V n ug. Garg et al. have used max(n; 2jIj)

as a lower bound to the 2-VC problem to get a 3=2-approximation algorithm, where I is an

independent set of vertices and n is the number of vertices in the given graph. Their lower

bound does not apply to our problem since some of the vertices in I may have a require-

ment of one. We generalize this lower bound to take for I 0 an independent set of vertices

that have requirement equal to 2. We use this lower bound and generalize the algorithm of

Garg et al. and its analysis to prove that the size of an optimal solution to f1; 2g-VC is at

most 3

2

max(n; 2jI

0

j), assuming a vertex of requirement 2 exists.

The lower bound of Khuller and Vishkin for the 2-EC problem also does not apply to the

f1; 2g-EC. We show an appropriate generalization of their idea and a 3=2-approximation

algorithm for the f1; 2g-EC based on it.

Our performance guarantees for the algorithms in Sections 2.2 and 2.3 are tight with

respect to the lower bounds that we use. This follows from the examples given in [5, 11]

showing that the obtained approximation guarantees are tight even for 2-VC and 2-EC

problems.

Local search or local optimization heuristics are one of the oldest and most widely used

methods in solving combinatorial optimization problems, like the traveling salesman or ve-

hicle routing problems [1]. We present analyses of the local optimization heuristics for our

problems. Based on ear decompositions of 2-connected graphs, we prove two new lower
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bounds. This implies algorithms for our problems that are simple and easy to describe.

In particular a 7=4-approximation algorithm for f1; 2g-VC, and a 5=3-approximation algo-

rithm for f1; 2g-EC.

Organization of the paper. Section 2 contains definitions and preliminary results, section

2.1 describes a decomposition method for our problems, then in section 2.2 we present our

algorithm for the f1; 2g-VC problem and we show how to use it to get an algorithm for

f1; 2g-EC in section 2.3. Also, a simple and different algorithm for f1; 2g-EC is shown.

The next section 2.4 contains the analyses of the local optimization heuristics, and finally

section 3 has some concluding remarks.

2 Preliminaries

We consider only undirected, simple graphs. Given a graph G = (V;E), we also write

V (G) = V and E(G) = E. We use standard terminology from graph theory. We refer to

the elements of V as vertices, but we also consider (super) nodes which will correspond to

sets of vertices, or contracted subgraphs of the input graph G. Elements of E, which are

undirected pairs of vertices, are called edges. A closed path of length l is a cycle, denoted

C

l

, and an open path means that all the vertices are distinct. Given a cycle C, any edge

joining two non-consecutive vertices of C is called a chord. A u � v path is a path with

end vertices u; v. We say that a vertex v is a cut vertex if its removal disconnects the graph.

If v is a cut vertex of a graph G, and some two vertices x; y are in distinct components of

G n v, then v separates x and y. An edge is a bridge if its removal disconnects the graph.

d

G

(v) denotes the degree of vertex v in graph G.

An ear decomposition E of a graph G is a partition of the edge set into open or closed

paths, E = fQ
0

; Q

1

; : : : ; Q

k

g, such that Q
0

is the trivial path with one vertex, and each Q

i

(i = 1; : : : ; k) is a path that has both end vertices in V

i�1

= V (Q

0

)[ � � �[V (Q

i�1

) but has

no internal vertex in V

i�1

. A (closed or open) ear means one of the (closed or open) paths

Q

0

; Q

1

; : : : ; Q

k

in E . Given a non-negative integer `, an `-ear is an ear with ` edges. An ear

decomposition fQ
0

; Q

1

; : : : ; Q

k

g is open if all the ears Q
2

; : : : ; Q

k

are open. If a graph is

2-vertex(edge)-connected, then we also say that it is 2-VC(EC). The following results are

well known.

Proposition 1 The following are characterizations of 2-EC and 2-VC in a graph.

1. A graph is 2-EC if and only if it has no bridge. A graph is 2-VC if and only if it has

no cut vertex.

2. A graph is 2-EC if and only if it has an ear decomposition. A graph is 2-VC if and

only if it has an open ear decomposition. An (open) ear decomposition can be found

in polynomial time.
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Lemma 1 ([5]) Given a 2-EC graph G with a cycle C and edge e being a chord in C, the

graph G� e is also 2-EC.

Let E be an ear decomposition of a 2-connected graph. We call an ear S 2 E of length

� 2 pendant if none of the internal vertices of S is an end vertex of another ear T 2 E of

length� 2. Let E 0 � E be a subset of ears of the ear decomposition E . We say that set E 0 is

terminal in E if: (1) every ear in E 0 is a pendant ear of E , (2) for every pair of ears S; T 2 E 0

there is no edge between an internal vertex of S and an internal vertex of T , and (3) every

ear in E 0 is open.

Given a rooted tree T , let a “closed interval” [a; b℄ denote the a � b path in tree T for

some two vertices a; b such that b is an ancestor of a, and path [a; b℄ contains both vertices

a; b. Similarly, we define [a; b) as the a � b tree path with b being an ancestor of a and

the path contains a and does not b. Also (a; b℄ is defined by analogy. If a is a (proper)

descendant of b in T , then we say that a is below or lower than b, and b is above or higher

than a. A vertex in a rooted tree is also descendant and ancestor of itself.

We also denote by opt(G) or by just opt the value of an optimal solution on G to the

problem under consideration.

For a given requirement function r

�;�

defined on the pairs of vertices in V � V , we

define a vertex requirement function r̂

�

on the vertices in V as follows: for any u 2 V ,

r̂

u

= maxfr

uv

: v 2 V n ug. The following observation can easily be deduced from the

results of Nagamochi and Ibaraki [12].

Proposition 2 There is a k-approximation algorithm for the unweighted f1; 2; : : : ; kg-VC-

SNDP problem. Also, there is a k-approximation algorithm for the unweighted f1; 2; : : : ; kg-

EC-SNDP problem.

Proof: [12] has designed an algorithm that for the unweighted k-VC problem finds a sparse

subgraph with at most k(n�1) edges, where n is the number of vertices in the input graph,

such that the pairwise (local) vertex-connectivities are preserved in this subgraph up to k.

Therefore, this gives a feasible solution to the f1; 2; : : : ; kg-VC-SNDP problem. Since n is

a lower bound for this problem (if there is at least one pair u; v with r

uv

� 2), this implies

a k-approximation algorithm. The same is true for the f1; 2; : : : ; kg-EC-SNDP problem.

2.1 Decomposing into subproblems

We first outline a way to decompose the problem into subproblems. For that, we will follow

a standard decomposition method into 2-vertex connected components. This is done as

follows.

Let G = (V;E) be a given instance of the f1; 2g-VC(EC)-SNDP problem. Specify a

lower bound lb(G) on the value of an optimal solution opt(G) for the problem on G. De-

compose G into (maximal) subgraphs C
1

; : : : ; C

l

that are 2-vertex connected components
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(2-VC blocks) of G. Note, that if e 2 E is a bridge in G, then some C
i

will contain e as the

only edge. Since all the edge sets E(C
i

) are edge disjoint, it is clear that
P

l

i=1

lb(C

i

) will be

a lower bound on opt(G). Thus to prove the approximation guarantee for the original prob-

lem on G, we can argue for a guarantee within each subproblem. The maximum over these

approximation guarantees will give the performance guarantee of the overall algorithm.

Let G
i

= (V (C

i

); E(C

i

)), and n

i

= jV (C

i

)j for i = 1; : : : ; l.

2.1.1 Decomposing f1; 2g-VC

For each subproblem G

i

its requirement function r

i is defined for a vertex u 2 V (C

i

) as

follows: ri
uv

= 2 if there is v 2 V (C

i

) with r

uv

= 2, and r

i

uv

= 1 otherwise. The definition

is different for the f1; 2g-EC problem, see Section 2.1.2. Moreover, let for any u 2 V (C

i

),

r̂

i

u

= maxfr

i

uv

: v 2 V (C

i

) n ug. The algorithm will process each G

i

separately. The

following lemma justifies this approach for the f1; 2g-VC problem.

Lemma 2 The problem can be solved for each C

i

separately and independently. That is

the union of the solutions to each C

i

gives a solution to the problem on G, and maximum

approximation guarantee among the guarantees for subproblems C
i

’s is the approximation

guarantee for the problem on G.

Proof: The first part follows from opt(G) =

P

i

opt(G

i

). Given solutions H

i

for G
i

,

i = 1; : : : ; l,
S

i

H

i

is a feasible solution to G. This is true, since: (1) if u 2 V (C

i

),

v 2 V (C

j

) (i 6= j), then r

uv

= 1, and (2) each H

i

is connected, so their union is also

connected. Now let H be a solution to G, and let H
i

be the subgraph induced by E(H) on

the vertex set V (C
i

), for i = 1; : : : ; l. We argue that H
i

is a feasible solution to G

i

. Let

u; v 2 V (C

i

) with r

i

uv

= 2. Then r

uv

= 2, so E(H) contains two vertex-disjoint u � v

paths. Since G
i

was a 2-VC block of G, E(H
i

) must also contain two vertex-disjoint u� v

paths.

The part of the lemma about the approximation guarantee follows from the discussion

in the beginning of Section 2.1.

If for some i, V (C
i

) does not contain any vertex pair u; v with ri
uv

= 2, then the solution

to C

i

will be any spanning tree of C
i

. Observe, that since all the requirements are at least

1, lb(C
i

) = jV (C

i

)j � 1 will be the lower bound for the problem within C

i

. Therefore, the

performance guarantee for C
i

will be one. Thus we can focus in Section 2.2, on C

i

such

that there exists a vertex pair u; v 2 V (C

i

) with r

i

uv

= 2.

2.1.2 Decomposing f1; 2g-EC

Let us focus on some C

i

, and let U
i

� V (C

i

) be the set of all cut vertices that separate

between C

i

and other blocks C

j

’s. For each vertex u 2 U

i

, let V i

(u) � V be a set of

vertices w 2 (V n V (C

i

)) [ fug such that there is a u� w path in G that does not use any

5



edge in E(C

i

). Note that u 2 V

i

(u). We also define V

i

(u) to be just fug in case when

u 2 V (C

i

) n U

i

. With these definitions, we can now define the requirement function r

i

for the f1; 2g-EC on G

i

: for a vertex pair u; v 2 V (C

i

) we have r

i

uv

= maxfr

xy

: x 2

V

i

(u); y 2 V

i

(v)g. Let also for any u 2 V (C

i

), r̂i
u

= maxfr

i

uv

: v 2 V (C

i

) n ug. We have

the following lemma, analogous to that in Section 2.1.1.

Lemma 3 The problem f1; 2g-EC can be solved for each C
i

separately and independently.

That is the union of the solutions to each C

i

gives a solution to the problem on G, and

maximum approximation guarantee among the guarantees for subproblems C
i

’s is the ap-

proximation guarantee for the problem on G.

Proof: The first part follows from opt(G) =

P

i

opt(G

i

). Given solutions H

i

for G
i

,

i = 1; : : : ; l,
S

i

H

i

is a feasible solution to G. This follows from: (1) transitivity property

for edge-connectivity, that is for any x; y; z 2 V if there are k edge disjoint x� y paths and

k edge disjoint y� z paths, then their union forms k edge disjoint x� z paths, and (2) each

H

i

is connected, so their union is also connected. Now let H be a solution to G, and let H
i

be the subgraph induced by E(H) on the vertex set V (C
i

), for i = 1; : : : ; l. We argue that

H

i

is a feasible solution to G

i

. Let u; v 2 V (C

i

) with r

i

uv

= 2. Then r

xy

= 2 for some

x 2 V

i

(u) and y 2 V

i

(v). So E(H) contains two edge-disjoint x � y paths. It can easily

be seen that, by the definition of ri, this implies that E(H
i

) also contains two edge-disjoint

u� v paths.

The part of the lemma about the approximation guarantee follows from the discussion

in the beginning of Section 2.1.

As in Section 2.1.1, if for some i, V (C
i

) does not have any pair u; v with r

i

uv

= 2, then

the solution to C

i

will be a spanning tree of C
i

. And the approximation guarantee for such

C

i

will be one. Thus, we can focus in Section 2.3, on C

i

such that there is a vertex pair

u; v 2 V (C

i

) with r

i

uv

= 2.

2.2 Application to f1; 2g-VC

In this section we give a 3=2-approximation algorithm for f1; 2g-VC. Our lower bound,

algorithm and its analysis are extensions and generalizations of the results of Garg et al. [5].

The algorithm has two phases. The first phase is the same as in their algorithm. The second

phase is different from the second phase in [5], however, some of the cases considered are

analogous to [5].

We focus on a subproblem G

i

= (V (C

i

); E(C

i

)) such that G
i

is 2-vertex connected

and there is a pair u; v 2 V (C

i

) with r

i

uv

= 2. Below we present our lower bound for

f1; 2g-VC.

Lemma 4 If there is a pair u; v 2 V (C

i

) with r

i

uv

= 2, then opt(G

i

) � n

i

and opt(G

i

) �

2jI

i

j, where I
i

� V (C

i

) is an independent set of vertices v such that r̂i
v

= 2.

6



Proof: The first bound of opt(G
i

) � n

i

is obvious. To show the second bound notice that

if v is a cut vertex that is common to some two 2-VC blocks C
i

and C

j

(i 6= j), then any

feasible solution to the problem must contain at least r̂i
v

edges within C

i

and at least r̂j
v

edges within C

j

.

In the next three sections, we show how to use this lower bound to obtain a 3=2-

approximation algorithm for the f1; 2g-VC problem.

2.2.1 The algorithm – phase 1

It is important that in this phase we pick a set E 0 of edges in G

i

that form a 2-vertex-

connected subgraph of G
i

, regardless of the fact that some of the requirements ri
uv

might

be one.

1. Perform a depth-first-search in G

i

: label edges as tree edges and back edges (i.e., all

the other edges that do not belong to the tree). Let T be the DFS tree.

2. W.l.o.g. we can assume that any leaf of T is a vertex u 2 V (C

i

) with r̂

i

u

= 2. If this

is not true for some leaf, repeatedly shrink the leaf tree edge, until the resulting leaf

has requirement 2.

3. We include all the edges of T into E

0. Now the algorithm chooses a subset of some

back edges so that the resulting solution is 2-vertex-connected: when the DFS backs

up from a vertex u, if the parent of u in T threatens to be a cut vertex in the currently

chosen E

0, add to E

0 the highest going back edge from the subtree rooted at u. Form

a block out of all the vertices in the subtree rooted at u that are not included in any

other block.

4. At the end of the DFS, form a block out of all the vertices that do not belong to any

other block. This block is called the root block.

The following lemma has been proved in [5, 11].

Lemma 5 ([5, 11]) The picked subgraph has the following properties: (1) The set of edges

E

0 constitutes a 2-vertex-connected subgraph of G
i

. (2) For each block, the tree edges

within this block form a spanning tree on the vertices included in the block. (3) Each leaf

of T forms a block by itself, and the root of T is contained in the root block.

We start with T , and if for each block we shrink its vertices into one vertex, then by

part (2) of Lemma 5, the resulting graph will also be a rooted tree, say T

0. The vertex

corresponding to the root block will be the root of T 0. Tree T

0 defines a natural parent-

child relation between the blocks. For each block B distinct from the root block, we define

a unique vertex in T called the parent vertex of B, as the vertex in the parent block of B

that has a tree edge from B.

For proofs of the next two lemmas the reader is referred to [5, 11].

7



Lemma 6 ([11]) All edges of G
i

run, either: (1) within a block, (2) between a block and

its parent block, or (3) between a block and a unique vertex in its grandparent block, where

the unique vertex is the parent vertex of the parent block.

Lemma 7 ([5]) If a vertex in a block has no edge from any of the child blocks, then it has

no edge from any descendant block.

2.2.2 The algorithm – phase 2

Let C be a simple cycle in G

i

, and u; v be two distinct vertices on C. A simple path P

joining u and v is called a chordal path if for any internal vertex w of P , w has degree

exactly two and r̂

i

w

= 1. We prove the following generalization of a lemma from [5] (see

Lemma 1).

Lemma 8 Let H
i

be any feasible spanning subgraph of G
i

that fulfills all the requirements

r

i, and C be a simple cycle in H

i

with a chordal path P . Then H

i

n e

0

also fulfills all the

requirements ri, where e
0

is any edge of P .

Proof: Clearly, deleting edge e
0

will not disconnect the graph H

i

. Therefore, we need only

prove that this will not destroy any of the 2-vertex connections in H

i

. Let u; v be the two

end vertices of P lying on C. Assume towards a contradiction that there are two distinct

vertices x; y 2 V (G

i

) with r

i

xy

= 2, and such that H 0

i

= H

i

n e

0

contains a cut vertex w

separating x and y in H

0

i

. Let H1 and H

2 be the two connected components of H 0

i

after

the deletion of w, such that x 2 H

1 and y 2 H

2. Since H
i

has at least two vertex disjoint

x � y paths, H 00

i

= H

i

n w has at least one x � y path. Furthermore, since H 00

i

n e

0

has no

x�y path, edge e
0

must belong to any x�y path in H 00

i

. This, together with the fact that P

is a path of degree two internal vertices, gives that P must be completely contained in any

x � y path in H

00

i

. This means that u and v belong to different components H1, H2. But

then any u� v path goes through w, which contradicts definition of the chordal path.

In the next lemma we prove a property of the first phase which we will use in the 2nd

phase.

Lemma 9 Let B be a non-leaf and non-root block defined by the first phase of the algo-

rithm and let p be the parent vertex of B. Then there is a back edge going from some child

block of B to p. This back edge was picked by the algorithm into E

0.

Proof: Let u be the child vertex of p in the DFS tree T . Notice that u is unique, by part

(2) of Lemma 5, and u belongs to B. During the bottom-up traversal when adding the back

edges, let us focus on the time when the algorithm inspects p from u. We know that then p

threatens to be a cut vertex, and u does not. p is the reason for the algorithm that it adds the

farthest going back edge, say e, from the subtree rooted at u. This also means that, since u
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already is not a cut vertex, there must be some back edge e0 going from below into p. We

argue that there must be such e

0 coming from a child block of B. First, by Lemma 6, we

know that e0 cannot come from any grandchild blocks of B. Assume that e0 comes from

B, into p. Whenever the algorithm adds a back edge from a subtree rooted at a vertex v (if

v is a current vertex from which the algorithm inspects the parent of v), it creates a new

block out of the vertices in the subtree rooted at v not contained in any other block. This

means that if such back edge e

0 is added, then the created block B cannot contain vertex

u. Contradiction. We see also that this back edge e0 must be the farthest back edge coming

from a child block. Therefore, it must have been added to E

0.

After the first phase set E 0 consisting of the edges of DFS tree and of one back edge

out of each non-root block has been output. I = ;, initially. The second phase will try for

each block B to delete a tree edge within B, or if it is impossible to find a vertex s with

r̂

i

s

= 2, add it to I , such that I remains independent. The 2nd phase will also modify the

set of back edges.

Like in the second phase of the algorithm of Garg et al. [5], we traverse the blocks

top-down. At each step we fix a block, say B, and B decides on the back edges going out

of the child blocks of B. The first step is made with the root block: it chooses the farthest

going back edge from each of its child blocks. Now, any child block having its back edge

decided, decides on the back edges for its child blocks in a way we will specify. Following

these steps we proceed towards the leaves.

Let now B be some non-root and non-leaf block for which the decision about the back

edge e = e(B) out of it has been made (by the parent block of B). Let v be an end vertex

of e and v 2 B, and u = u(B) be the other end vertex of e. Let p = p(B) be the parent

vertex of B. See cases in Fig. 3 for an illustration.

Block Property. We can assume that: (1) the back edge e(B) goes higher than p(B), and

(2) there is an u(B)� p(B) path that goes through the ancestor blocks of B.

The above property is obviously true for child blocks of the root block, by the choice

decided by the root block. We will show that this property is maintained during the algo-

rithm, see Lemma 10. We introduce some new notation here. Let a
T

� b denote the a � b

path in tree T , and a

A

� b be an a� b path through the vertices in the ancestor blocks of B.

Let now w

0 be a vertex in path [v; p) that is the highest vertex with d

T

(w

0

) � 3. If there

is no such vertex in [v; p), then let w0

= v. Let also, w00 be the lowest vertex in (w

0

; p℄

which has a back edge from some child block of B. It is easy to notice that both w

0 and w

00

exist and are well defined (see Lemma 9). We also note that the path [w

0

; w

00

℄ has length

(i.e. the number of tree edges) at least one. Let q be the parent vertex of w0. The algorithm

considers the following cases.

9
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Figure 1: Cases for the analysis of phase-2. Tree edges are solid thick lines, back edges –

solid thin lines, and blocks – shaded areas.

1. Assume that q 6= w

00, and there is a vertex s 2 [q; w

00

) with r̂

i

s

= 2. In this case we

label block B and vertex s with MARKED, and we add s to the lower bound set I .

Also B decides to retain the 1st phase choices of the farthest going back edges from

all child blocks of B.

2. Assume that either q 6= w

00, and for any vertex s 2 [q; w

00

), we have r̂

i

s

= 1, or

q = w

00. In this case the tree edge (q; w

0

) is deleted from the current solution. We

will show later that this step preserves the connectivities.

Let e0 be the back edge going from some child block B

0 of B into vertex w

00. Then

B decides not to take the farthest going back edge from B

0, but e0 instead. For each

other child blocks of B, B decides to retain the choice of the back edges made by the

1st phase.

In case 2 of the above algorithm when we delete a tree edge within block B, we charge

that edge paying this way for the back edge going out of B. Therefore, in these cases the

back edge is for free, and all such blocks are labeled FREE. Finally, the root block has

no back edge going out of it and so is labeled FREE. Each leaf block is itself a vertex of

requirement two, and so we label it MARKED, and choose all the leaf vertices into I .
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2.2.3 Analysis and approximation guarantee

Lemma 10 Each case of the 2nd phase of the algorithm maintains the Block Property, and

preserves the feasibility of the current solution w.r.t. ri.

Proof: The proof is by induction on the number of steps made by the second phase of the

algorithm.

Induction base. The Block Property is obviously true for child blocks of the root block, by

the choice decided by the root block. Also, at this point the algorithm has not made any

changes, so the solution is 2-vertex connected.

Induction step. Assume that the Block Property holds for the block B that is currently

considered by the algorithm. We argue that after each of the cases in the phase 2, the Block

Property will be true for any child block of B. Also assume that the current solution is

feasible w.r.t. ri, and we will show that after each of the cases in phase 2, the solution will

still be feasible.

Let us consider case 1 of the 2nd phase. In this case B decides to retain the 1st phase

choices of the farthest going back edges from all child blocks of B. It is easy to check that

the Block Property is maintained for all the child blocks of B. Since the solution is not

modified in this case and by the induction assumption, the feasibility is preserved.

Let us now consider case 2 of the 2nd phase. Assume that either q 6= w

00, and for any

vertex s 2 [q; w

00

), r̂i
s

= 1, or q = w

00. B decides to pick a back edge e0 from a child block

B

0 into w

00, instead of the farthest going back edge, say e

B

0 , from B

0. We argue that this

preserves the feasibility. By Lemma 6 and by the choice of w00, e
B

0 goes into a vertex x in

path (w

00

; p℄ (where we assume that (w00

; p℄ contains just p, if p = w

00).

Claim 1. Deleting the farthest going back edge e

B

0 from B

0 and adding e

0, preserves the

feasibility.

Proof. This change obviously does not disconnect the solution graph. Assume towards a

contradiction that after the change some pair of the vertices with requirement 2 is separated

by a cut vertex . Then  must belong to [w

00

; x℄. But we know that w00 is above v, and that

there is a solution back edge e = (v; u). By the induction assumption the Block Property

holds for B, so u is above p, and so also above . Therefore  cannot be a cut vertex. Con-

tradiction.

For all other child blocks distinct from B

0, block B decides to retain their farthest

going back edges picked by the 1st phase. We see that part (1) of the Block Property is

maintained: for block B

0 the back edge e0 goes above the parent vertex of B0 since it goes

above w0, and w

0 is above or equal to the parent vertex of B0. For all other child blocks part

(1) of Block Property is obviously maintained. For illustrations, see cases in Figure 1.

We will now show that also removing tree edge (q; w0

) from the current solution main-

tains the feasibility and part (2) of the Block Property (it is easy to notice that this will not
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affect part (1) of the Block Property). We show that there is a simple cycle C in the current

solution such that [w0

; w

00

℄ is a chordal path w.r.t. C. Consider the following cases.

1. There is a child block of B attached above v: Let B00 be such block with the highest

attachment vertex. Then this attachment vertex is w0. The back edge coming into

w

00 may come from block B

00 or from a different child block. Assume first that it

comes from a different child block B

0

6= B

00. So the back edge(s) (r; r0) coming

from B

00 must go higher than w

00, but no higher than p, i.e. r 2 (w

00

; p℄. Assume that

the attachment vertex s for block B

0 is below v (the other case is similar). See (a) in

Fig. 1. By Claim 1, edge e0 belongs to the solution. It is easy to see that [w0

; w

00

℄ is a

chordal path in the cycle s
T

� x�w

00

T

� r� r

0

T

� w

0

T

� s. By Lemma 8 we can delete

tree edge (q; w0

), preserving the feasibility.

Now we argue that part (2) of the Block Property is maintained: for block B0 the path

through the ancestor vertices is w00

T

� p

A

� u� v and follows tree edges to the parent

vertex of B0; for block B

00 the path is r
T

� p

A

� u � v

T

� w

0 and follows tree edges

to the parent vertex of B00; for any other child block of B the argument uses the way

w

0

; w

00 were chosen (this gives that the attachment vertex of any child block is below

w

0 and the back edge goes into (w

00

; p℄) and the argument is similar. The path p

A

� u

exists by the induction assumption on the Block Property for B. And s

T

� x, r0
T

� w

0

exist, since the child blocks were not touched yet.

The other case to consider is when the back edge coming into w

00 comes from block

B

0

= B

00. This case is omitted, since it can be done in a similar way. See (b) in

Fig. 1.

2. All child blocks of B are attached below or at v: then v = w

0. Let e0 be the back

edge coming from a child block B

0 of B and such that e0 goes into the lowest vertex

in (v; p℄. Then the lowest vertex is exactly w

00. Let the other end of e0 be x. Let also

s be the attachment vertex for block B

0. By Claim 1 we know that e0 is in the current

solution graph. See (c) in Fig. 1.

By the induction assumption on the Block Property for B, path p

A

� u exists. And

s

T

� x exists, since the child blocks were not touched yet. Now [w

0

; w

00

℄ is a chordal

path in the cycle v
T

� s

T

� x� w

00

T

� p

A

� u� v. By Lemma 8, tree edge (q; w0

) can

be deleted.

Part (2) of the Block Property is now true for B0, since the path is w00

T

� p

A

� u � v

and then the path follows tree edges into the parent vertex of B0. For the other child

blocks, B decided to retain the choice of the first phase. The argument that the

changes maintain the Block Property for these blocks is similar.
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This concludes the proof of the induction step as well as the proof of Lemma 10.

Lemma 11 The set I of MARKED vertices is an independent set in G
i

. Also all the vertices

in I have the requirement of 2.

Proof: Let us focus on case 1 of the second phase. Only in this case s was chosen into I ,

and it had r̂

i

s

= 2. By the definition of w0, d
T

(s) = 2. By the choice of w00, there is no

back edge into s from any child block of B. s has no tree edge from any child block, and

so has no edge from any child block of B. Therefore, by Lemma 7, s has no edge from any

offspring block.

Notice that s 2 I must be in the current block B. This is because s cannot be the parent

vertex of B, since it has no back edge into it from any child block. By Lemma 9 the parent

vertex p has such back edge. So, s must be below p but also above v, and so s is in B. Also,

all the blocks are disjoint. Therefore, a block can have at most one vertex in I . We know

also that a vertex in I has no edge from any descendant block of the block that contains

that vertex. This means that there are no edges between vertices in I .

Theorem 1 The above algorithm is a linear time 3=2-approximation algorithm for the

unweighted f1; 2g-VC problem.

Proof: Correctness of the algorithm follows from the discussion in Section 2.1, Lemmas 2

and 10. We now prove the approximation guarantee of the phase-1; 2 algorithm in case of a

2-VC subproblem on G

i

. Notice that if a block was not labeled MARKED, then some tree

edge was deleted from the block, so it was labeled FREE. And so the number of picked

edges is at most the number of edges of the DFS tree, plus the number of blocks labeled

MARKED, which is jIj. Thus the size of the solution is at most n
i

� 1 + jIj. By Lemma

11, I is an independent set in G

i

of requirement two vertices. Thus, by Lemma 4, we have

opt(G

i

) � 2jIj and also opt(G

i

) � n

i

. Putting these together gives that the number of

edges is bounded by n

i

� 1 + jIj � opt(G

i

) � 1 +

1

2

opt(G

i

) �

3

2

opt(G

i

). The algorithm

can easily be implemented to run in linear time.

2.3 Algorithms for f1; 2g-EC

2.3.1 Application of the previous algorithm

We apply the algorithm of Section 2.2 to obtain a 3=2-approximation algorithm for f1; 2g-

EC. By the decomposition in Section 2.1 (and Section 2.1.2), we can focus on a 2-VC

subproblem G

i

with r

i defined in Section 2.1.2, and assume that there is a vertex pair

u; v 2 V (G

i

) with r

i

uv

= 2. This subproblem is f1; 2g-EC problem on a 2-VC graph G

i

.
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We run on G

i

the phase-1; 2 of the previous algorithm w.r.t. f1; 2g-VC (ri is treated as VC

requirements on G

i

). By Theorem 1 the algorithm produces a 3=2-approximate solution

to f1; 2g-VC on G

i

. Since the lower bound in Lemma 4 also applies and the solution is

feasible to f1; 2g-EC, this gives a 3=2-approximate solution for f1; 2g-EC.

2.3.2 Simple algorithm

We show now that a simple modification of the algorithm of Khuller and Vishkin [11]

leads to a 3=2-approximation algorithm for f1; 2g-EC. Let G = (V;E) be a given instance

of f1; 2g-EC with r

uv

2 f1; 2g for any vertex pair u; v 2 V . We find a DFS spanning tree

of G and keep all the tree edges in our solution subgraph H . Whenever the DFS backs-up

over a tree edge e, we check whether e is a cut-edge of our current H (i.e. none of the back

edges in H covers e). If yes, and if the cut (S; �S) given by e separates some vertex pair

x; y with r

xy

= 2, then we add the farthest going back edge that covers e into H . Also, we

“mark” the cut (S; �S). Here S means the vertex set of the subtree below e, and fx; yg is

separated by (S;

�

S) if S has exactly one of x; y.

To show the approximation guarantee, we use the following simple analysis. The num-

ber of tree edges in H is at most n � 1 which is at most opt(G). Also, the number of

the back edges in H is equal to the number of “marked” cuts (S; �S). Because of the DFS

tree property and the way back edges were chosen, any two such cuts are edge disjoint.

Therefore the optimal solution to the problem must have at least 2 edges in each of these

cuts. This gives that the number of these cuts is at most 1

2

opt(G). Thus finally the size of

the solution is at most 3

2

opt(G).

2.4 Local optimization heuristics

2.4.1 General Local Optimization Heuristic

Let � be a minimization problem on G = (V;E), where we want to find a spanning

subgraph of G with minimum number of edges and which is feasible for (or w.r.t.) problem

�. Given a positive integer j let us define the j-opt heuristic as the algorithm which given

any feasible solution H � G to problem �, repeats, if possible, the following operation:

� if there are subsets E
0

� E n E(H); E

1

� E(H) (jE
0

j � j, jE
1

j > jE

0

j) such that

(H n E

1

) [ E

0

is feasible w.r.t. �, then set H  (H n E

1

) [ E

0

.

The algorithm outputs H , if it cannot perform any more of such operations on H . We

say that such output solution is j-opt w.r.t. �. Note that if jE
0

j = 0, then the operation is

equivalent to deleting edges E
1

from the current solution, preserving the feasibility w.r.t. �.

If jE
0

j = j, then we call the operation above a j-opt exchange. If j is a fixed constant, the

algorithm can be implemented to run in polynomial time.
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Let G = (V;E) be a given instance of the f1; 2g-VC(EC) problem. We use the decom-

position from section 2.1 for f1; 2g-VC and f1; 2g-EC. By Lemmas 2 and 3 it suffices to

consider a 2-VC subproblem G

i

of G, where the requirement function r

i was defined for

each of the problems in section 2.1, and we assume that there is a vertex pair u; v 2 V (G

i

)

with r

i

uv

= 2.

Let E be an ear decomposition of a 2-connected graph. Let E 0 � E be a subset of ears

of the ear decomposition E . We say that set E 0 is terminal in E if: (1) every ear in E 0 is a

pendant ear of E , (2) for every pair of ears S; T 2 E 0 there is no edge between an internal

vertex of S and an internal vertex of T , and (3) every ear in E 0 is open.

Let G = (V;E) be a given instance of the f1; 2g-VC(EC)-SNDP problem. We use

the decomposition from Section 2.1 for f1; 2g-VC and f1; 2g-EC. By Lemmas 2 and 3 it

suffices to consider a 2-VC subproblem G

i

of G, where the requirement function r

i was

defined for each of the problems in Section 2.1, and we assume that there is a vertex pair

u; v 2 V (G

i

) with r

i

uv

= 2. For simplicity, in what follows we drop the subscript and

superscript i from G

i

, n
i

and from r

i

; r̂

i.

2.4.2 Local optimization heuristic for f1; 2g-VC

The local optimization algorithm for f1; 2g-VC is as follows. Let H be any 2-VC spanning

subgraph of G (e.g. H = G). First we run the 1-opt heuristic on H w.r.t. 2-vertex connec-

tivity. Let H 0 be the output 2-vertex connected spanning subgraph of G, i.e. H 0 is 1-opt

w.r.t. 2-VC. Now, compute an open ear decomposition E of H 0 (see Proposition 1). Notice,

that E does not contain 1-ears, since they are redundant w.r.t. 2-VC and therefore were re-

moved by the 1-opt heuristic. Let E
2

be the set of all 2-ears in E . Let also E
2

= P

1

[ P

2

,

where a 2-ear S 2 P
1

iff for the internal vertex s of S we have r̂
s

= 1, and P
2

= E

2

n P

1

.

The second step of the algorithm is: for any 2-ear S 2 P
1

, remove one of the (two) edges

of S, from the current solution H

0. Output the final H 0 as the solution. This finishes the

description of the algorithm.

The main idea to prove the lower bound below is to show that E
2

is terminal in E .

Lemma 12 The optimal solution to the f1; 2g-VC problem on G fulfills the following

opt(G) � jP

1

j+ 2jP

2

j.

Proof: Note, that H 0 is 1-opt w.r.t. 2-VC. We first prove the following claim.

Claim. E
2

is terminal in E .

Proof. Assume that E
2

is not terminal. Since every ear is open, either (1) or (2) in the

definition of a terminal set is not true.

Assume that: (1) is not true. Then there is a non pendant 2-ear S 2 E
2

with the internal

vertex s and edges e
1

= (s; s

1

); e

2

= (s; s

2

), and there must be an ear T 2 E such that

s is one of the end vertices of T . But then it is easy to see that one of e
1

; e

2

is redundant

depending on what is the second end vertex of T : e.g. if s; s
1

are end vertices of T , then
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deleting e

1

from H

0 and choosing T together with e

2

as a new ear gives a new open ear

decomposition (0-opt exchange). So H

0

n e

1

is 2-VC by Proposition 1 – contradiction with

1-optimality of H 0. The argument is similar if s; s
2

are end vertices of T or if none of s
1

; s

2

is an end vertex of T .

Assume that: (2) is not true. Then there are two 2-ears S; T 2 E
2

with the internal vertices

s; t and edges e
1

= (s; s

1

); e

2

= (s; s

2

), and ~e

1

= (t; t

1

); ~e

2

= (t; t

2

), respectively. And

there is an edge (s; t). It can easily be seen that it is always possible to delete some edge in

S and some in T , and add (s; t) to get a new open 3-ear from S; T . We omit here a simple

case analysis to see that. This gives a new open ear decomposition, and so a new 2-VC

solution (Proposition 1). This is a contradiction, since no 1-opt exchange is possible in H

0.

By Claim above, we see that set of all internal vertices in 2-ears forms an independent

set in G, so by a similar argument as in the proof of Lemma 4, it is obvious that jP
1

j+2jP

2

j

is a lower bound.

Theorem 2 The described algorithm is a local search based 7=4-approximation algorithm

for the unweighted f1; 2g-VC problem.

Proof: Feasibility. Let P
1

be the set of all internal vertices in the 2-ears in P
1

. After

removing some of the edges from the 2-ears inP
1

, the original ear decomposition E implies

an open ear decomposition of the graph G n P

1

. Thus G n P
1

is 2-VC by Proposition 1.

Also, the vertices in P

1

are not disconnected from G n P

1

.

Approximation guarantee. Notice that jE(H 0

)j � jP

1

j+2jP

2

j+

3

2

(n�jP

1

j� jP

2

j), where

jP

1

j + 2jP

2

j is the number of edges of the output solution that are in 2-ears (recall that for

any 2-ear in P
1

we have picked just one of its edges), and n� jP

1

j � jP

2

j is the number of

all other internal vertices lying in the ears of length� 3. The factor 3

2

is the worst case ratio

of the number of edges to the number of internal vertices in an `-ear in E n E
2

(` � 3). By

Lemma 12, opt(G) � jP
1

j+ 2jP

2

j. And using Lemma 4, opt(G) � n. Therefore, we have

jE(H

0

)j � jP

1

j+2jP

2

j+

3

2

(n� jP

1

j � jP

2

j) =

3

2

n�

1

2

jP

1

j +

1

2

jP

2

j �

3

2

opt(G)+

1

4

opt(G)

=

7

4

opt(G).

Remark. Theorem 2 generalizes a result for the 2-VC problem communicated by J. Cheriyan.

2.4.3 Local optimization heuristic for f1; 2g-EC

Using the algorithm from Section 6.1 and similar ideas as those in Section 2.3, we can give

a local optimization heuristic for the f1; 2g-EC with an approximation guarantee of 7=4.

We present here a special version of the local search heuristic based on ideas of Cheriyan

et al. [3]. We modify their approach to give a local search based 5=3-approximation algo-

rithm for f1; 2g-EC.
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For a given ear decomposition E , let E
`

denote the set of all `-ears in E , and V (E

`

) be

the set of all internal vertices of the ears in E
`

.

Let H be a 2-VC spanning subgraph of G. Compute an open ear decomposition F of

H . We show how to transform F into a new ear decomposition E (not necessarily open)

such that the set E
2

[ E

3

is terminal in E . E will constitute a spanning subgraph of G. We

will use a special version of 0-opt and 1-opt exchanges w.r.t. 2-EC. One can assume that F

does not contain 1-ears.

The proof is by induction on the number k of ears in F = fQ

0

; Q

1

; : : : ; Q

k

g. If k = 1,

the claim is clear. Assume that the result holds for i�1 ears F 0

= fQ

0

; Q

1

; : : : ; Q

i�1

g, and

let E 0 = fQ0

0

; Q

0

1

; : : : ; Q

0

j�1

g be the corresponding ear decomposition with E 0
2

[E

0

3

terminal

in E 0.

Step 1. Consider the next (open) `0-ear Q
i

from F . Let Q
i

= v

1

; v

2

; v

3

; : : : ; v

`

0

+1

. We want

to “add” Q
i

to E 0. If the end vertices v
1

; v

`

0

+1

, of Q
i

are such that v
1

; v

`

0

+1

62 V (E

0

2

)[V (E

0

3

),

then we set Q0

j

= Q

i

. Otherwise, assume that v
1

; v

`

0

+1

are the internal vertices of some ears

in E 0
2

[ E

0

3

.

We consider first a case when v

1

is an end vertex of a 2-ear S 2 E 0
2

, and v

`

0

+1

62

V (E

0

2

)[V (E

0

3

). Assume that S = w

1

; v

1

; w

3

. See (a) in Figure 2. Define a new (`

0

+1)-ear

Q

0

j

= Q

i

+ e, where e is one of the edges of S. The other edge of S is deleted. e can be

chosen so that Q0

j

is open: if w
3

6= v

`

0

+1

, then e = (w

3

; v

1

) and Q

0

j

= w

3

; v

1

; v

2

; : : : ; v

`

0

+1

;

otherwise, if w
3

= v

`

0

+1

, then e = (w

1

; v

1

) and Q

0

j

= w

1

; v

1

; v

2

; : : : ; v

`

0

+1

. This is a 0-opt

exchange.

Assume now that v
1

is an end vertex of a 3-ear S 2 E 0
3

, and v

`

0

+1

62 V (E

0

2

) [ V (E

0

3

).

Let S = w

1

; v

1

; w

3

; w

4

. See (b) in Figure 2. In this case we define a new (`

0

+ 2)-ear

Q

0

j

= Q

i

+ (v

1

; w

3

) + (w

3

; w

4

) = w

4

; w

3

; v

1

; v

2

; : : : ; v

`

0

+1

, and edge (w

1

; v

1

) is deleted.

Notice that if w
4

= v

`

0

+1

, then the new ear Q0

j

is not open. This does not violate condition

(1) in the definition of the terminal set, since Q

0

j

has length at least 4. This is a 0-opt

exchange.

Set E 0 to be E 0[fQ0

j

g. This step forces condition (1) in the definition of the terminal set.

Step 2. In this step we fulfill condition (2) for the terminal set. Consider the ear decom-

position E 0 = fQ

0

0

; Q

0

1

; : : : ; Q

0

j

g defined by Step 1. If there is an edge e = (v; w) 2

E(G) n E(F) such that v; w 2 V (E

0

2

) [ V (E

0

3

), then we show that we can perform a 1-opt

exchange to avoid such edge e.

Assume first that v and w are internal vertices of some open 2-ears S; T 2 E 0
2

, then we

can delete an edge of S and an edge of T and add e to get a new open 3-ear T 0 in E 0: E 0 is set

to (E 0 n fS; Tg)[ fT 0

g. In detail, we proceed as follows. Let S = v

1

; v; v

3

, T = w

1

; w; w

3

.

W.l.o.g. we can assume that v
1

6= w

3

. Then we delete edges (v; v
3

) of S and (w;w

1

) of T .

The new 3-ear T 0

= v

1

; v; w; w

3

is then open. Finally, E 0 is set to (E 0 n fS; Tg)[ fT 0

g. See

(a) and (b) in Figure 3 for illustrations.

Assume now that e joins some two 2; 3-ears at least one of whom is a 3-ear. We show
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Figure 2: Cases for Step 1 of the local optimization based algorithm. Solid thick lines

represent the ears, dashed thin lines show a new ear Q0

j

in each of the two cases. In case (a)

if w
3

= v

`

0

+1

, then the new ear will be w
1

; v

1

; v

2

; : : : ; v

`

0

+1

instead of w
3

; v

1

; v

2

; : : : ; v

`

0

+1

.

1 3S

v w

v v w1 w3

v w

w1=v1 v3T

S T

e
e

3w=

(a) (b)

Figure 3: Some cases for Step 2 of the local optimization based algorithm. Solid thick lines

represent the ears and edge e, dashed thin lines show a new open 3-ear T 0 in each of the

two cases. In each case we delete edges (v; v
3

) and (w;w

1

).

one of the cases here when S 2 E 0
2

and T 2 E 0
3

, and S = v

1

; v; v

3

, T = w

1

; w; w

3

; w

4

. In this

case delete edge (v
1

; v) (or (v
3

; v)) and (w
1

; w). The new ear T 0 is T 0

= v

3

; v; w; w

3

; w

4

(or

T

0

= v

1

; v; w; w

3

; w

4

). Observe that T 0 might not be open, but its length is at least 4. Thus

the conditions for the terminal set are maintained. We then set E 0 to be (E 0nfS; Tg)[fT 0

g.

Other cases, when e joins two 2-ears or two 3-ears are quite similar, and we omit them.

Condition (3) of the terminal set is also maintained. This finishes the induction step.

Let E be the final ear decomposition obtained fromF by the above algorithm, and H 0 be

the graph corresponding to E . Let P
1

;P

2

be as defined in Section 6.1. Also E
3

= Q

1

[Q

2

,

where a 3-ear S 2 Q
1

iff for the internal vertices s
1

; s

2

of S we have r̂
s

1

= r̂

s

2

= 1, and

Q

2

= E

3

n Q

1

.
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For any 2-ear S 2 P
1

, remove one of the edges of S, from the current solution H

0.

For any 3-ear S 2 Q
1

, remove one of the (three) edges of S, from the current solution H

0.

Output the final H 0 as the solution. This concludes the description of the algorithm.

To prove the following lower bound we observe that E
2

[ E

3

is terminal in E .

Lemma 13 For the f1; 2g-EC problem on G we have opt(G) � jP

1

j + 2jP

2

j + 2jQ

1

j +

3jQ

2

j.

Proof: It obviously follows from Step 1 and 2 of the algorithm that for the final ear de-

composition E , E
2

[ E

3

will be terminal in E . (This was the way we were performing these

steps).

The 2jP
2

j+3jQ

2

j part of the lower bound follows from “terminality”, and from the fact

that each internal vertex of any ear in P
2

[ Q

2

has a requirement of 2, and so its degree in

any feasible solution must be at least 2. Similar argument applies to the part jP
1

j + 2jQ

1

j

of the lower bound, but now we argue about internal vertices of requirement 1.

Based on Lemma 13, we prove now the approximation guarantee of the given algorithm.

Theorem 3 The described algorithm is a local search based 5=3-approximation algorithm

for the unweighted f1; 2g-EC problem.

Proof: We have now the following estimate jE(H 0

)j � jP

1

j+2jP

2

j+2jQ

1

j+3jQ

2

j+

4

3

(n�

jP

1

j � jP

2

j � 2jQ

1

j � 2jQ

2

j). Here, jP
1

j+ 2jP

2

j+ 2jQ

1

j+ 3jQ

2

j is the number of edges

of the output solution that are in 2-ears and in 3-ears, and n� jP

1

j � jP

2

j � 2jQ

1

j � 2jQ

2

j

is the number of all internal vertices lying in the ears of length � 4.

By Lemma 13, opt(G) � jP
1

j + 2jP

2

j + 2jQ

1

j + 3jQ

2

j. We also have opt(G) � n.

Thus, jE(H 0

)j �

4

3

n +

2

3

jP

2

j +

1

3

jQ

2

j =

4

3

n +

1

3

(2jP

2

j + jQ

2

j) �

4

3

opt(G) +

1

3

opt(G)

=

5

3

opt(G).

3 Conclusions

We have presented approximation algorithms for the unweighted f1; 2g-VC and f1; 2g-EC

problems, based on depth-first-search methods and on local search heuristics. The depth-

first-search based algorithm for f1; 2g-VC gives a 3=2-approximation, but the algorithm

and its analysis is somehow complicated. The main feature of our local search algorithm

for f1; 2g-VC is its simlicity, but it gives a worse approximation guarantee. For f1; 2g-EC

we have given a very simple depth-first-search algorithm with a simple analysis. The per-

formance guarantees of the depth-first-search algorithms are tight with respect to the lower

bounds we use.
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