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For a stationary and axisymmetric black hole, there is a natural way to split the fields into a probe sector
and a background sector. The equations of motion for the probe sector enjoy a significantly enhanced
symmetry on the black hole horizon. The extended symmetry is conformal in four dimensions, while in
higher dimensions it is much bigger. This puts conformal symmetry at the bottom of the ladder of
symmetries that can arise on black hole horizons in generic dimensions.

DOI: 10.1103/PhysRevD.89.064066 PACS numbers: 04.50.Gh, 04.60.-m, 04.70.Dy, 11.30.-j

A black hole is characterized by the presence of a
horizon. So symmetries attached to the horizon presumably
hold the key to the mysteries of black holes. There has been
good evidence for this in relation to the black hole entropy.
For extremal black holes, one can zoom in the near

horizon region and find evidence that quantum gravity in
this background is dual to a conformal field theory in a state
having the same Bekenstein-Hawking entropy as the black
hole (see, e.g., [1,2]). For nonextremal black holes, one can
similarly calculate the black hole entropy through a
putative dual conformal field theory by imposing certain
boundary conditions on (near) the horizon and finding
conformal symmetries there (see, e.g., [3–7]).
All these works rely on imposing extra conditions on a

chosen boundary, but sometimes one can find more than
one working boundary condition for a given background.
Since the dynamics governing the properties of a black hole
is unique, this raises the question of whether external
information like an artificial boundary condition is neces-
sary in calculating the black hole entropy.
In this respect, we have found previously that some

conformal symmetries actually emerge on the black hole
horizons by themselves [8]. (See also [5,9,10].) The
construction only depends on a few very general properties
needed for the metric to describe a black hole,1 but requires
no extra boundary conditions. Since the radial direction is
interpreted as the renormalization scale, such symmetries
can be viewed as emergent from the duality perspective.
The purpose of this paper is to show that, in higher

dimensions (D > 4), the emergent symmetry group is in
fact much larger than that of the conformal symmetries. As
a proof of principle, we will only present the result for the
simplest nontrivial case. Comparing to four dimensions,
gravity in higher dimensions is known to display much
richer features, such as more possibilities for the topology

of a horizon [11]. What we find here adds another
potentially useful piece to the category.
Our starting point is the metric for a stationary and

axisymmetric black hole,

ds2 ¼ f

�
−
Δ
v2

dt2 þ dr2

Δ

�
þ hijdθidθj

þ gabðdϕa − wadtÞðdϕb − wbdtÞ; (1)

where the details are explained in [8]. Here we only note that
ϕa and t are ignorable coordinates: f; v; hij; gab and wa only
depend on r and θi, while Δ ¼ ΔðrÞ; the horizon is located
at r0 with Δðr0Þ ¼ 0, where all other functions are regular.
One can write (1) as ds2 ¼ ~GμνdXμdXν ¼ HIJdxIdxJþ
GABdyAdyB, where xI ∈ fr;θig and yA ∈ fϕa; tg. Reducing
the Einstein-Hilbert action on the ignorable coordinates ϕa

and t, we find
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; (2)

where ~k ¼ D − k, k ¼ ½Dþ1
2
� is the total number of ignorable

coordinates, T is the total age of the system, ~R and R are the
Ricci scalar for ~Gμν and HIJ, respectively, H ¼ det jHIJj ¼
f
Δ det jhijj, G ¼ det jGABj ¼ −g=ϱ, g ¼ det jgabj, and

ϱ ¼ v2
fΔ. The indices from HIJ have been suppressed in (2).

The basic idea is to treat (2) as an action for the fields
GAB living in the fixed background of HIJ. Without
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1The analysis only depends on the general metric (1), which

covers other interesting objects such as black rings [11]. But we
will refer to all of them as black holes just for simplicity.
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considering the backreaction on HIJ, there is more
possibility for GAB than in the full theory. The extended
transformations found below will leave the equations of
GAB, i.e., δS=δGAB ¼ 0, invariant on the horizon, but will
not for δS=δHIJ ¼ 0. Although this may appear ad hoc, it is
not too much different from introducing an external field to
probe the black hole background [9,10]. In the present case,
HIJ is playing the role of a background, while GAB is
playing the role of a probe. As it happens, one relies on the
hope that the extended transformations could become a
symmetry of the full system when the Einstein-Hilbert action
is replaced by that of a complete theory of quantum gravity.
We will focus on the equations of GAB from now on.

Varying GAB, we find

δL¼
ffiffiffiffi
H

p h
EabδgabþEaδwaþEðg=ϱÞδ

ffiffiffiffiffiffiffiffi
g=ϱ

p
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; (3)
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where the index I goes over r and θi. One can first read off
the equations of motion Eab ¼ Ea ¼ Eðg=ϱÞ ¼ 0, which are
equivalent to (the indices A, B run over ϕa and t)

EAB ¼ −
1

2

∇
� ffiffiffiffiffiffiffi

−G
p ∂GAB

�
ffiffiffiffiffiffiffi
−G

p þ 1

2
∂GAC∂GBDGCD

−
2Λ

D − 2
GAB ∝

δS
δGAB ¼ 0: (5)

All the extended symmetries that we will find satisfy
ffiffiffiffi
H

p ∇IJIδ ∼ δEAB ∼OðΔÞ: (6)

Our calculation will rely on the following universal
property:

waðr; θiÞ ¼ wa
0ðrÞ þ wa

1ðr; θiÞΔþ � � � ; (7)

where “…” stands for higher order terms in the near
horizon limit. This property is necessary for any black
hole in (1) to have an intrinsically regular horizon. Our
construction will crucially depends on wa ≠ 0. In a coor-
dinate system that is static at the spatial infinity (with ϕa’s
normalized to be of period 2π), wa

0ðr0Þ ¼ Ωa is the constant
angular velocity of the horizon along ϕa. For a
Schwarzschild-like black hole without an intrinsic rotation,
one can first change to a rotating frame and then the same
construction can still be applied.
Because of the freedom in redefining the ignorable

coordinates, the action (2) has a rigid GLðk; RÞ symmetry,
GAB → ðV · G · VTÞAB, where V is a k × k constant matrix.

The scaling factor in GLðk; RÞ is orthogonal to all other
transformations and will not be needed here. We will only
focus on the SLðk; RÞ subsector in this work.2

In [8] it has been found that some SLð2; RÞ subsector of
this SLðk; RÞ can be extended, on the black hole horizon, to
a centerless Virasoro algebra (Witt algebra),

½δm; δn� ¼ ðm − nÞδmþn; m; n ¼ 0;�1;�2; � � � : (8)

To do this, one of the rotations (say ϕ1) is singled out,
labeled simply as ϕ, while all other rotations are indexed
with ~a, ~b, � � �, i.e.,

ðGABÞ ¼

0
B@

gϕϕ gϕ ~b −wϕ

g ~aϕ g ~a ~b −w ~a

−wϕ −w ~b − 1
ϱ þ w2

1
CA. (9)

Then one considers the SLð2; RÞ generators, which are k × k
matrices, with only the following nontrivial elements:

ðL1Þ1k ¼ −2ðL0Þ11 ¼ 2ðL0Þkk ¼ −ðL−1Þk1 ¼ 1: (10)

Using δG ¼ −ðL ·Gþ G · LTÞ, one can find how δ0 and
δ�1 act on the fields of GAB. Then the extension to other
generators is constructed. Technically, only δ�2 were given
explicitly in [8], which is enough to reconstruct the whole
algebra. Here we write down the general result,3

δmgϕϕ ¼ −ðmþ 1Þ
�
ðm − 1Þgϕϕ −m

wϕ

wϕ þmðm − 1Þ

×
w0ϕðwϕ − gϕϕwϕÞ

ðwϕÞ2Δ0=Δ

�
ðwϕÞm;
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2

�
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w ~a

wϕ þmðm − 1Þ

×
w0ϕðw ~a − g ~aϕwϕÞ

ðwϕÞ2Δ0=Δ

�
ðwϕÞm;

δmg ~a ~b ¼ 0; ⇒ δmϱ ¼ ϱðmþ 1ÞðwϕÞm;

δmwϕ ¼ −
�
wϕ þmðmþ 1Þ

2

gϕϕ

ϱwϕ

�
ðwϕÞm;

δmw ~a ¼ −
mþ 1

2

�
w ~a þm

g ~aϕ

ϱwϕ

�
ðwϕÞm; (11)

2Consequently, one has δ
ffiffiffiffiffiffiffi
−G

p ¼ δ
ffiffiffiffiffiffiffiffi
g=ϱ

p ¼ 0, which is then
assumed to be true for all the extended symmetries. Since this
assumption is made in the whole spacetime, it is not a boundary
condition that we set out to avoid. When this assumption is
dropped, one will be looking at an extension involving the
constant scaling factor of GLðk; RÞ. This possibility has not been
considered carefully.

3This result differs from that in [8] at the subleading order. The
result here satisfies the Witt algebra (8) at the leading order and
also obeys (6), while those in [8] satisfy the Witt algebra up to the
subleading order, but has δEAB ∼ Δ0ðr0Þ þOðΔÞ.
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where a “prime” means a derivative with respect to r.
Note the transformation of ϱ is always determined
by δ

ffiffiffiffiffiffiffiffi
g=ϱ

p ¼ 0 ⇒ δϱ ¼ ϱgabδgab.
The subleading terms (those containing a factor

1=ϱ ∼ Δ) are important for the symmetry to work.
Without them, one would have found

ffiffiffiffi
H

p ∇IJIδ ∼ δEAB ∼ Δ0ðr0Þ þOðΔÞ: (12)

But for extremal black holes, which has Δ0ðr0Þ ∼ TH ¼ 0,
where TH is the Hawking temperature of the black hole, the
symmetry works without the need for the subleading terms.
Technically this will bring a significant simplification over
the calculation when one tries to make the extension of the
full SLðk; RÞ algebra.4
Once there is an extension to the SLð2; RÞ subsector, the

dressing up of the rest of the SLðk; RÞ generators is
straightforward. One can simply do this by taking com-
mutators of the other SLðk; RÞ generators with (11)
repeatedly. In four dimensions, k ¼ 2 and the conformal
symmetry is all that is there. The simplest nontrivial case is
that of the five dimensional extremal black holes.
In five dimensions, k ¼ 3 and we will have the following

fields to consider: g11, g12, g22, w1, and w2. As said above,
one can drop the subleading ð1=ϱ ∼ ΔÞ-terms for extremal
black holes. After some effort, we find that all the
symmetry generators organize into the following two,
δþm;s and δ−m;s,

δþm;pg11 ¼
4

3
ðmþ 1Þg11ðw1Þmðw2Þp;

δþm;pg12 ¼
�
mþ 1

3
g12w2 þ pg11w1

	
ðw1Þmðw2Þp−1;

δþm;pg22 ¼ −2
�
mþ 1

3
g22w2 − pg12w1

	
ðw1Þmðw2Þp−1;

δþm;pw1 ¼ −ðw1Þmþ1ðw2Þp; δþm;pw2 ¼ 0;

δ−m;pg11 ¼ −2
�
pþ 1

3
g11w1 −mg12w2

	
ðw1Þm−1ðw2Þp;

δ−m;pg12 ¼
�
pþ 1

3
g12w1 þmg22w2

	
ðw1Þm−1ðw2Þp;

δ−m;pg22 ¼
4

3
ðpþ 1Þg22ðw1Þmðw2Þp;

δ−m;pw1 ¼ 0; δ−m;pw2 ¼ −ðw1Þmðw2Þpþ1; (13)

where m ∈ Z, p ≥ 0 for δþm;p and p ≥ −1 for δ−m;p. The
range on p is the minimal truncation of (13) which includes
all the SLð3; RÞ generators; but (6) is satisfied by arbitrary
values of m and p for both operators δ�m;p. However, since

all the fields are real while w1 and w2 can be negative, the
indices m and p only take integer values.
The algebra satisfied by (13) is

½δþm;p; δþn;q� ¼ ðm − nÞδþmþn;pþq;

½δ−m;p; δ−n;q� ¼ ðp − qÞδ−mþn;pþq;

½δþm;p; δ−n;q� ¼ pδþmþn;pþq − nδ−mþn;pþq: (14)

Let δ1m ¼ δþm and δ2m ¼ δ−m, with m ¼ ðm1; m2Þ standing
for the vector of indices, one cast the above algebra into an
even more compact form

½δim; δjn� ¼ mjδimþn − niδjmþn; (15)

where i; j ∈ f1; 2g. This algebra is formally a type of
generalization to the usual Witt algebra. It has the general
structure of that for the map R0n↦R0n, (where R0 means R
with the points 0 and �∞ pinched off) for which i; j ∈
f1; � � � ; ng andm ¼ fm1; � � � ; mng. It will be interesting to
see if (15) also appears in generic dimensions, for which we
expect n ¼ k − 1. [Loosely, one can first consider diago-
nally embedding SLð3; RÞ into SLð4; RÞ, then SLð4; RÞ
into SLð5; RÞ, and so on, and (15) is the most natural result
to expect.]
There is no fundamental obstacle to apply the same

construction to general situations. But for nonextremal
black holes, the subleading terms will make the calculation
significantly more involved. There is also the interesting
question of what happens if one starts with different
embeddings of SLð2; RÞ into SLðk; RÞ. The choice (10)
is a diagonal embedding of SLð2; RÞ into SLðk; RÞ. We
have also tried the principle embedding of SLð2; RÞ into
SLð3; RÞ, but without success. [Our preliminary result
suggests that, for SLð3; RÞ, there is no extension of the
principally embedded SLð2; RÞ to the Witt algebra.] It
should be interesting to find all possible algebras that can
arise from this construction in generic dimensions. Also,
the present construction is only based on the universal
properties of a black hole metric as described below (1) and
in (7), and this is independent of the topology of the black
hole horizon, so it gives the same result for, e.g., a
Emparan-Reall black ring and a five dimensional Myers-
Perry black hole.5

Our result indicates that, in higher dimensions, the
symmetry governing the near horizon physics of a black
hole could be much larger than the previously known
conformal symmetry. For black holes with multiple inde-
pendent rotating planes, it is known that each nonvanishing
rotation can give raise to a Virasoro algebra and each is as

4The possibility of an extension of the full SLðk; RÞ was first
suggested to me by Evgeny Skvortsov.

5It is possible that conspiracy among the metric elements in
certain solutions could give rise to further enlargement of the near
horizon symmetry, but this should be studied on a case by case
basis and is beyond the scope of the present work.
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good in reproducing the Bekenstein-Hawking entropy
through Cardy’s formula [12]. Although there is a huge
difference between our construction and the calculations
done previously, all the methods must be related somehow
if they are going to describe the same physics. Our result
then suggests that, through similarity transformations, the
different Virasoros corresponding to different rotations are
in fact equivalent to each other, and they are only part of a
even larger symmetry such as in (15).
At the moment, an obvious task is to find a way to

abstract physical information from the newly found sym-
metries, which we have not succeeded in doing yet.
Technically, this is partially due to the fact that the
symmetry found here is not the usual diffeomorphisms,
but is some internal gauge symmetry. As a result, the

successful techniques used in previous calculations (e.g.,
those mentioned at the beginning of this paper) are not
directly applicable here. Finding a way out of this is a major
goal of our next step. Apart from helping us understand the
properties of black holes in better detail, it is also possible
that the general features found in generic dimensions can
help us answer some of the more direct questions in four
dimensions.
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