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ABSTRACT
As deeper galaxy catalogues are soon to come, it becomes even more important to measure
large-scale fluctuations in the catalogues with robust statistics that cover all moments of the
galaxy distribution. In this paper, we reinforce a direct analysis of galaxy data by employing
the Germ–Grain method to calculate the family of Minkowski Functionals. We introduce a new
code, suitable for the analysis of large data sets without smoothing and without the construction
of excursion sets. We provide new tools to measure correlation properties, putting emphasis
on explicitly isolating non-Gaussian correlations with the help of integral-geometric relations.
As a first application, we present the analysis of large-scale fluctuations in the luminous red
galaxy sample of Sloan Digital Sky Survey data release 7 data. We find significant deviations
from the � cold dark matter mock catalogues on samples as large as 500 h−1 Mpc (more than
3σ ) and slight deviations of around 2σ on 700 h−1 Mpc, and we investigate possible sources
of these deviations.

Key words: methods: analytical – methods: data analysis – methods: statistical – cosmology:
observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

Over the past decade, huge progress has been made in accessing
the galaxy distribution at larger and larger scales. At each step of
this process, new and larger structures have been discovered, see
e.g. Einasto et al. (2011), Sylos Labini (2011), Park et al. (2012),
Clowes et al. (2013), Keenan, Barger & Cowie (2013), Whitbourn &
Shanks (2014). However, to verify the reality of these structures,
a robust statistical tool is mandatory (Nadathur 2013; Nadathur &
Hotchkiss 2014).

The most common tool for the characterization of large-scale
structure is based on two-point measures: the two-point correlation
function of the galaxy distribution and the complementary power
spectrum. They are particularly useful, as they can be related to the
power spectrum determined from the physics of the Early Universe.
Claims that structures on scales of several hundreds of megaparsecs
are compatible with the � cold dark matter (CDM) model are often
based on these lower order statistics. However, of course, they do
not allow for a complete characterization of the distribution. This
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needs higher order correlations that play an important role if the
density field is not Gaussian, especially when probing stages after
the formation of structure by gravitational collapse. Note, however,
that also the full knowledge of all higher order correlations does not
always characterize the distribution uniquely (Carron & Neyrinck
2012). As is well known, see e.g. Coles, Melott & Shandarin (1993),
Melott, Buchert & Weiß (1995), a smoothed-out non-linear structure
– even if smoothed over very large scales – is not described by
structure described in linear gravitational instability, where in this
latter, the distribution remains Gaussian, if it was so in the initial
data.

For this strongly clustered regime in the Late Universe, the
Minkowski Functionals that we are using in this paper provide a
compact and transparent framework to completely characterize the
galaxy distribution. As we shall see in Section 2, they include all
higher N-point correlations in a power series in the sample density.
We shall show in Section 5.3 that it is indeed not enough to include
only the lowest order contributions of this series. This means that
the values of the functionals that we determine significantly de-
pend on higher order clustering. As is also well known, only higher
order correlations are sensitive to the morphology of large-scale
structure.
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Due to this interesting property of including higher correlations in
a simple way, the Minkowski Functionals have been determined for
many galaxy and cluster surveys. The specific Germ–Grain model
that has been introduced into cosmology together with the fam-
ily of Minkowski Functionals in Mecke, Buchert & Wagner (1994),
Buchert (1995, see Schmalzing, Kerscher & Buchert 1996 for a brief
tutorial), and which will be briefly reviewed in Section 2.2, has been
used for example for the IRAS 1.2 Jy and PSCz surveys (Kerscher
et al. 1996b, 1998, 2001a), and the Abell/ACO cluster catalogue
(Kerscher et al. 1997). For an early sample of the Sloan Digital
Sky Survey (SDSS) catalogue (data release DR 3), the Minkowski
Functionals have been determined for smoothed isodensity con-
tours of the galaxy distribution in Hikage et al. (2003), which is
also the method employed in most work on Minkowski Functional
analysis of galaxy and cluster catalogues as well as in simulations
(Platzöder & Buchert 1996; Schmalzing & Buchert 1997; Sahni,
Sathyaprakash & Shandarin 1998; Sathyaprakash, Sahni & Shan-
darin 1998; Schmalzing et al. 1999b; Nakagami et al. 2004; Blake,
James & Poole 2013; Choi et al. 2013). A further, recently proposed
smoothing technique directly uses the Delauney tessellation of the
point distribution (Aragon-Calvo, Shandarin & Szalay 2010).

To robustly measure non-Gaussianity with the help of Minkowski
Functionals is mostly discussed for isotemperature contour maps of
the cosmic microwave background (Schmalzing & Gorski 1998;
Schmalzing, Takada & Futamase 2000; Hikage & Matsubara 2012;
Ducout et al. 2013; Modest et al. 2013; Munshi et al. 2013; Planck
Collaboration 2013), as well as for studies of the weak lensing
convergence field (Kratochvil et al. 2012; Petri et al. 2013).

One focus of this paper is the determination of non-Gaussian
features from Minkowski Functionals in three-dimensional galaxy
data, which has been addressed in Pratten & Munshi (2012)
and Codis et al. (2013). The other focus lies on reinforcing the
Germ–Grain method in the three-dimensional case to calculate the
Minkowski Functionals. We shall apply this method to the SDSS
DR 7. This release was chosen due to its complete angular cov-
erage of the SDSS survey region and the existence of a detailed
standard analysis of the two-point correlation properties in Kazin
et al. (2010). In order to be able to probe larger scales than before
in Hikage et al. (2003), we specifically use the luminous red galaxy
(LRG) sample of the DR 7 in the compilation of Kazin et al. (2010).
Newer and upcoming data will be analysed in forthcoming work.
Especially the full SDSS DR 12 catalogue, but also catalogues of
after-Sloan programmes, are targets for our optimized code.

The paper is organized as follows: Section 2 recalls basic prop-
erties of the Minkowski Functionals and briefly reviews the Germ–
Grain model for the direct analysis of the galaxy point process.
We discuss the usefulness of this model by collecting the ana-
lytical results that are known for the Minkowski Functionals of
this model, examine the Gauss–Poisson process, and introduce our
method to extract information on higher order correlations from the
Minkowski Functionals of the model. Section 3 describes the new
code that we use in order to efficiently calculate the Minkowski
Functionals in the Germ–Grain model for a large data set like the
SDSS LRG catalogue. Section 4 presents and discusses the results
for two different subsamples at different luminosity thresholds of
this catalogue as a first application of our methods. In Section 5, we
derive the values of some integrals over the two- and three-point cor-
relation function and study the deviations of the point distribution
from a Gauss–Poisson process and also from a lognormal distribu-
tion. We here explicitly demonstrate that the low-order correlations
are actually not enough to describe the structure in the data set. We
conclude in Section 6.

Figure 1. Properties of the scalar functionals: (1) Additivity, (2) Motion
invariance, (3) Conditional continuity.

2 M I N KOW S K I F U N C T I O NA L S O F T H E
G E R M – G R A I N MO D E L

Let us begin by a description of Minkowski Functionals in the
Germ–Grain model that we shall use here. For a more complete de-
scription see Mecke & Stoyan (2000), Schmalzing (1999), Beisbart
(2001) or Mecke (1994).

2.1 Minkowski Functionals

Minkowski Functionals are morphological descriptors of extended
bodies that rely on well-developed results in integral geometry.
In 3D Euclidean space, there are four of them that we shall label
V0 − V3. In the normalization we use, they are related to geometrical
properties of the body as follows:

V0 = V ; V1 = S

6
; V2 = H

3π
; V3 = χ. (1)

Here, V is the volume of the body, S is its surface area, H the integral
mean curvature of the surface and χ the Euler characteristic (the
integral Gaussian curvature of the surface).

The surprising fact, shown in Hadwiger (1957), is that every
other scalar functional that can be defined to describe a given body
and that fulfils the properties of motion invariance, additivity and
conditional continuity (sketched in Fig. 1), can be expressed as a
linear combination of the four functionals of equation (1).

Instead of working with the functionals Vμ, we will more often
need the corresponding densities vμ. They are simply defined by

vμ = Vμ/ |D| , (2)

where |D| is the volume within the survey boundary.

2.2 Germ–Grain model

The Minkowski Functionals as described in the previous section are
only defined for extended bodies. To use them for characterizing
the galaxy distribution, one has to define a procedure that trans-
forms the point distribution into a collection of extended objects.
The two major methods that are used so far to achieve this are
the construction of excursion sets (e.g. isodensity contours) and the
Germ–Grain model.

In order to determine isodensity contours, the point particle distri-
bution is smoothed into a continuous density field. The surfaces of a
given density threshold then provide the boundaries of the body that
we are going to analyse. The values of the four Minkowski Func-
tionals (volume, surface area, mean curvature, Euler characteristic)
can then be determined as a function of the (over)density that is
used to determine the isodensity contours (Schmalzing & Buchert
1997). This method is commonly employed in the community (see
the reference list in the introduction), and it has also been used for
the SDSS data in Hikage et al. (2003).
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Minkowski functionals of redshift surveys 243

Figure 2. By increasing the radius of Balls around the points {x1, . . . , xN }
up to the maximum radius R, more and more Balls intersect and a complex
structure develops.

In the Germ–Grain model, the point distribution of galaxies is
converted into a set of extended bodies by decorating each galaxy
with a Grain (here a Ball of radius R, but any shape of Grain could
in principle be used to take into account internal morphologies).
Instead of the (over)density, the (equal) radius of these Balls can be
used as a diagnostic parameter, i.e. to present the values of the four
functionals as a function of scale (the radius R of the Balls; Mecke
et al. 1994). This results in quite complex structures as shown in
Fig. 2. Also, this method has been used quite extensively in the past
to characterize galaxy and cluster distributions, e.g. in Kerscher
et al. (1996b, 1997, 1998, 2001a), Platzöder & Buchert (1996) and
for other statistics in Kerscher et al. (1999), but it has not become a
standard analysis tool in cosmology. With this paper, we emphasize
the advantages of this direct method to analyse galaxy data.

Comparing the two methods, the Germ–Grain model has several
important advantages over the construction of excursion sets:

(i) it can be implemented in an easy and robust manner. This
simplicity also implies, that

(ii) we have an analytical understanding of the relation of the
average Minkowski Functional (densities) to the connected corre-
lation functions of the underlying point distribution, through which
also the global contribution of Poisson noise is explicitly known;

(iii) the global functionals are represented by their local contri-
butions (so-called Partial Minkowski Functionals). This local infor-
mation can be used to extract subsamples with given environmental
properties. The partial functionals form the basis of image analy-
sis techniques, since they allow us to extract filamentary or cluster
galaxies from a distribution, even if these morphological properties
are strongly diffused by Poisson noise (Platzöder & Buchert 1996).1

These useful relations, e.g. between the connected correlation func-
tions and the average Minkowski Functional densities, as well as the
image analysis properties of partial functionals have been demon-
strated in Schmalzing (1999).

1 See also Mantz, Jacobs & Mecke (2008) for a more recent application of
Minkowski Functionals in image analysis.

2.3 Statistical interpretation

Thus far, the Germ–Grain Minkowski Functionals were mainly used
for a comparison of individual samples. These comparisons made
use of the property of the Minkowski Functionals to provide a
morphological characterization of the galaxy distribution in the
analysed sample: if the Germ–Grain Minkowski Functionals differ
for two samples, these are morphologically distinct (Kerscher et al.
1998).

In addition to this comparison of individual point sets, we here
also want to extract some information on the statistical properties of
the point distribution that underlie these individual galaxy data sets.
We, therefore, interpret an observed or simulated galaxy sample,
as usual, as a particular realization of a point process with a priori
unknown statistical properties. This gives rise to an ensemble of
Minkowski Functionals {Vμ} or their corresponding densities {vμ},
respectively. As made explicit in Appendix A, it can be shown that
the ensemble average of the densities vμ is related to the connected
correlation functions ξ n of the point process as follows:

〈v0〉 = 1 − e−�0V 0

〈v1〉 = �0V 1e−�0V 0 ,

〈v2〉 =
(

�0V 2 − 3π

8
�2

0V
2
1

)
e−�0V 0 ,

〈v3〉 =
(

�0V 3 − 9

2
�2

0V 1V 2 + 9π

16
�3

0V
3
1

)
e−�0V 0 . (3)

For a Poisson distribution, the quantities V μ are simply the
Minkowski Functionals Vμ(B) of the Balls of common radius R
that we use to obtain extended bodies:

V0 (B) = 4π

3
R3; V1 (B) = 2

3
πR2;

V2 (B) = 4

3
R; V3 (B) = 1. (4)

For a point distribution with structure, the V μ pick up contributions
that depend on the dimensionless connected correlation function of
order n + 1, ξ n + 1, as

V μ = Vμ (B) +
∞∑

n=1

(−�0)n

(n + 1)!

∫
D

d3x1 . . . d3xn

× ξn+1 (0, x1, . . . xn) Vμ

(
B ∩ Bx1 ∩ . . . ∩ Bxn

)
. (5)

The integrals run over the positions of the centres xi of the Balls Bxi
.

As it is the intersection of all Balls B ∩ Bx1 ∩ . . . ∩ Bxn that enters,
the integrals vanish for configurations where the xi are separated by
more than 2R. Therefore, determining the Minkowski Functionals
as a function of the Ball radius R probes the correlation of the point
distribution up to a scale of 2R. We shall exploit this property in
Section 5.

The introduction of the dimensionless version of the connected
correlation functions ξ n requires the assumption that the global
point process possesses a well-defined non-zero and stable (scale
independent) average density �0 = 〈�(r)〉, a requirement that is ex-
pected to hold for an existing homogeneity scale. Note, however,
that this assumption is not required for the Minkowski Functional
analysis itself. Also for expressing the 〈vμ〉 in terms of the statisti-
cal quantities describing the point process, one could work with the
dimensionfull connected correlation functions, without assuming
that �0 �= 0. We shall only need this condition for the extraction
procedure described in Section 2.5. The reasoning in that case is
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then, that we interpret the analysed sample as being a representative
realization of the full point process. We assume that it has a posi-
tive average density and estimate this background density �0 from
the sample. Of course, this regional estimate can be biased relative
to the true global value (assumed to exist): for an analysis of the
correlation properties well inside the survey region, we consider
this assumption as sufficiently accurate, since the estimation of the
correlation properties would be most strongly influenced on the
scale of the sample (on this scale the integral constraint requires
vanishing of the fluctuations). This subtlety is worth to be kept in
mind in future analyses.

2.4 Gauss–Poisson process

To get a better intuition about the influence of correlation functions
on the modified Minkowski Functionals V μ, we shall first consider
the case of a Gaussian distribution. For low enough average density
�0 and certain correlations ξ 2, a point distribution can be described
by a Gauss–Poisson process. Kerscher (2001) shows that for this to
be possible, the correlation function has to be non-negative, ξ 2 ≥ 0,
and the average density �0 has to satisfy

�0

∫
D

d yξ2 (| y|) ≤ 1, (6)

on the domain D of the point sample.
The resulting Gauss–Poisson process has the property that all

higher connected correlation functions ξ n for n > 2 are zero. This
drastically simplifies the expressions for the V μ. Equation (5) be-
comes

V μ = Vμ (B) − �0

2

∫
D

d3x1ξ2 (|x1|) Vμ

(
B ∩ Bx1

)
. (7)

We already gave the explicit expressions for the Minkowski Func-
tionals of the Balls Vμ(B) in equation (4). For a known correlation
function, it is in addition possible to calculate the contribution of
the second term. To this end, we have to determine the Minkowski
Functionals for the intersection of two Balls Vμ

(
B ∩ Bx1

)
. This

intersection has the form of a convex lens and it is easy to figure out
its volume and surface as a function of the distance r, separating
the centres of the Balls. For the mean curvature, the result can be
found in Mecke (1994). The form of the Vμ

(
B ∩ Bx1

)
in a spherical

coordinate system centred on B is then the following:

V0 (r) = 1

12
π (2R − r)2 (r + 4R) ; (8)

V1 (r) = 1

3
πR (2R − r) ; (9)

V2 (r) = 2

3
(2R − r) + 2

3
R

√
1 −

( r

2R

)2
arcsin

( r

2R

)
; (10)

V3 (r) = 1, (11)

where R is again the radius of the Balls. As they do not intersect if the
separation of the two centres is larger than 2R, Vμ

(
B ∩ Bx1

) = 0
for r > 2R. Therefore, the integral (7) reduces to

V μ = Vμ (B) − 2π�0

2R∫
0

Vμ (r) ξ2 (r) r2dr. (12)

To get a feeling what aspects of the correlation function these
integrals probe, we show the form of the window functions Vμ(r)r2

in Fig. 3.

Figure 3. Form of the integration windows Wμ(r) = Vμ(r)r2 in equations
(8)–(11) used in the integral (12), for a Ball radius of R = 60 h−1 Mpc.
The functionals of higher index μ probe the correlation function at larger
distances.

To calculate these integrals for the standard �CDM structure, it
is useful to express them directly in terms of the power spectrum.
Inserting the Fourier transform of ξ 2(r) gives

V μ = Vμ (B) − �0

π

∞∫
0

P (k) Wμ (k, R) k2dk, (13)

with the functions

W0 (k, R) = 4π(sin(kR) − kR cos(kR))2

k6
; (14)

W1 (k, R) = −2πR(kR sin(2kR) + cos(2kR) − 1)

3k4
; (15)

W2 (k, R) = −4(kR sin(2kR) + cos(2kR) − 1)

3k4

+ 2

3

R

k

π/2∫
0

sin(φ) sin(2kR sin(φ))φdφ; (16)

W3 (k, R) = sin(2kR) − 2kR cos(2kR)

k3
. (17)

As W0(k, R) is simply the square of the Fourier transform of a top
hat window function, V 0 can be related to another well-known sta-
tistical property of a point distribution, namely the matter variance
in a sphere of radius R:

σ 2 (R) = 1

(2π)3

∫
d3kP (k)

∣∣∣W̃B(R) (k)
∣∣∣2

. (18)

This means that V 0 and V 3 are directly related to the two-point
quantities by

V 0 = 4π

3
R3

(
1 −

4π
3 R3�0

2
σ 2 (R)

)
, (19)

and

V 3 = 1 − 2π�0

2R∫
0

ξ2 (r) r2dr. (20)

The other two modified functionals V 1, V 2 are not as directly related
to other well-known quantities, but probe additional aspects of the
form of the correlation function defined by their weights in Fig. 3.
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2.5 Extracting higher order correlations

As we have seen in the previous section, we can directly derive
certain integrals over the two-point correlation function from the
Minkowski Functionals of a Gauss–Poisson point distribution. For a
more general point distribution this is no longer straightforward, but
we can use the fact that we know the exact form of the dependence
of 〈vμ〉 on the average density of the point process �0. For a single
sample, of course, this density is fixed. By random subsampling of
the original sample, however, we can create (noisier) samples of a
lower average density. In this way, we can determine the 〈vμ〉 not
only as a function of the radius of the Balls, but also as a function
of the density of the point distribution. This allows us to extract the
integrals over the correlation functions in (5) as follows.

Let us assume that we are able to measure the 〈vμ〉 accurately for
a given density. By repeating this measurement for several densities
�0, we get an approximation to the functional dependence of vμ on
�0. Then, by inverting the system (3), we can derive from the mea-
sured values of 〈vμ(�0)〉 the corresponding functional dependence

of V μ on �0. Calling this empirical function Ṽ μ (�0), we know that
it can be written as a series expansion in �0 of precisely the form
(5). This means that, if we can compute the coefficients of this se-
ries, we shall obtain the corresponding weighted integrals over the
correlation functions. Taylor expanding Ṽ μ (�0) around �0 = 0, we
obtain

Ṽ μ (�0) =
∞∑

n=0

Ṽ
(n)

μ (0)

n!
�n

0 ,

where the exponent (n) stands for the nth derivative of Ṽ μ (�0) with
respect to �0. These derivatives can now be directly related to the
coefficients of the expansion (5). Writing this expansion in short as

V μ =
∞∑

n=0

b
μ
n+1

(n + 1)!
(−�0)n ,

with b1 = Vμ(B), we deduce that

b
μ
n+1 =

∫
D

ξn+1 (0, x1, . . . xn) Vμ

(
B ∩ Bx1 ∩ . . . ∩ Bxn

)
× d3x1 . . . d3xn = (n + 1) (−1)n Ṽ

(n)

μ (0) . (21)

This implies that we are able to quantitatively determine, how much
the point distribution deviates from a pure Gauss–Poisson distribu-
tion. The ‘Gaussian part’ is related to the first derivative of Ṽ μ (�0)
at zero density, and it especially allows us to compare the result to
other independent measurements of σ 2(R) and ξ 2(R) via the rela-
tions (19) and (20).

To carry out this procedure in practice, we estimate 〈vμ〉 by
the Minkowski Functional density vμ of the given realization of
the point process. For densities lower than the original density,
we average vμ of several random subsamples. To determine how
accurate this estimate is, we use the average and fluctuations of
the individual vμ in an ensemble of mock samples produced from
simulations. This allows us to test, whether the observed sample is
consistent with the simulated cosmology.

For the three-point functions, the quantity with the simplest
weight functions in the integral reads

b0
3 =

∫
D

d3x1d3x2d3x3ζ (|x1 − x3| , |x2 − x3| , |x1 − x2|)

× θ (R − |x1|) θ (R − |x2|) θ (R − |x3|) . (22)

The other integrals of the three-point function are more complicated
and we would not write them out explicitly. We calculate them
numerically, using our code to determine Vμ

(
B ∩ Bx1 ∩ Bx2

)
for

the cases where μ �= 0.
To characterize the deviation of the galaxy distribution in the

SDSS from a Poisson and a Gauss–Poisson distribution, we shall
determine the coefficients b

μ
n+1 in Section 5 for n ≤ 2.

3 T H E N E W C O D E PAC K AG E : M I N KOW S K I-4

As described in the previous section, we can learn a lot about the
structure in the galaxy distribution in the Universe and especially
about the magnitude of higher order correlations, if we are able to
calculate the Minkowski Functional densities vμ accurately.

With this paper, we provide the MINKOWSKI-4 package, built on
the new code CHIPMINK (Code for High-speed Investigation of Partial
Minkowski Functionals), which is a completely revised version of
a code based on previous work by Jens Schmalzing and Andreas
Rabus in 1998, see Rabus (1998). The package compiles modules
to compute the Minkowski Functionals of a given point sample
for the Germ–Grain model [which generalizes the Boolean Grain
model – where the Germs are those of a Poisson process (Stoyan,
Kendall & Mecke 1987) – to arbitrary point distributions]. It extracts
correlation properties of the point set in the form of the Minkowski
functional densities (3) and the modified Minkowski Functionals
V μ. Optionally, it also delivers the full set of Partial Minkowski
Functionals of the environmental morphology of every point in the
sample.

3.1 Computation of the Germ–Grain model

The computational methods for the Germ–Grain model of the
Minkowski Functionals (henceforth abbreviated as MFs) heavily
rely on the work of Mecke, Buchert and Wagner in Mecke et al.
(1994) and are therefore also strongly related to the works of
Kerscher and collaborators (Kerscher et al. 1997, 1998, 2001a,b).

As outlined in Section 2.2, a sphere of radius r (the so-called
Grain or Ball) is placed around each point of the sample, the Germ.
The union of the Balls then forms the structure Br ,

Br =
N⋃

i=1

B(xi ; r). (23)

When we increase the Balls’ radius r up to a maximum radius R,
a more and more complex structure develops, see Fig. 2. Thus, the
radius 0 ≤ r ≤ R serves as a diagnostic parameter.

In the Germ–Grain model, the global MFs – apart from the vol-
ume – are localized on the surface of the structure and can be
determined by means of the so-called partition formula (see e.g.
Schmalzing & Diaferio 2000),

Vμ(Br ) =
N∑

i=1

V (i)
μ + 1

2

N∑
i,j=1

V (ij )
μ + 1

6

N∑
i,j ,k=1

V (ijk)
μ , (24)

where V (i)
μ is the contribution of the Ball around xi (at given radius

r), and where V (ij )
μ and V (ijk)

μ are those of its intersection with one,
respectively, two neighbours.

3.2 Partial MFs

The global MFs can be calculated by adding up Partial MFs as-
signed to each Grain, see for example Mecke et al. (1994) and in an
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Figure 4. The left-hand figure shows the covered surface area of a sphere
around xi when intersected with a second sphere as well as the intersection
circle. The right-hand figure illustrates the intersection of three spheres. The
triple point can be found above the centre point of the circumcircle of the
triangle generated by the three centre points xi , xj , xk .

application Schmalzing & Diaferio (2000),

Vμ(Br ) =
N∑

i=1

Vμ(xi ; r), (25)

where Vμ(xi ; r) are the Partial MFs of the Ball around xi with
radius r. These can be determined by the local intersections of the
Balls. Since only neighbours within 2r around a point contribute to
its Partial MFs, we determine a neighbourlist for each point of the
sample before the actual calculation, which consists of the points
within a distance of two times the maximum radius (as well as the
point itself).

The statistical weight of intersections of more than three Balls is
zero, see Mecke et al. (1994); therefore, we only take into account
intersection circles of two Balls and intersection points of three
Balls, the so-called triple points, see Fig. 4. The MFs’ volume
densities are defined by

vμ(Br ) = 1

|D |
N∑

i=1

Vμ(xi ; r), (26)

where |D| denotes the volume of the sample mask.
In summary: for any given point xi of the sample, we calculate

(for each radius r up to the maximum radius R)

(i) the uncovered surface area Ai of the Ball around that point,
(ii) the intersection circles of the Ball around that point with

any of its neighbours; here, �ij is the uncovered arc length, i.e. the
uncovered segment of the intersection circle of the Balls around xi

and xj ,
(iii) the triple points of the intersection with the Balls around any

two neighbours, where εijk is called spherical excess; it can be cal-
culated using the formula of l’Huilier and denotes the contribution
of the triple points to the Partial Euler characteristic.

With these quantities, the Partial MFs read (see Mecke et al. 1994;
Mecke & Stoyan 2000 for more details)

V1(xi ; r) = Ai

6
;

V2(xi ; r) = Ai

3πr
− 1

2

∑
j

dij �ij

6π
;

V3(xi ; r) = Ai

4πr2
− 1

2

∑
j

dij �ij

4πr · ρij

+ 1

3

∑
j<k

εijk

4π
, (27)

Figure 5. To avoid boundary effects when calculating the Partial MFs, we
only take those points into account, which are more than two times the
maximum Germ radius away from the survey mask.

where dij = ‖ xi − xj ‖ ≤ 2r denotes the distance of two points,
and ρij = √

r2 − (dij /2)2 the radius of its intersection circle.
The use of the Partial MFs also has the advantage that one can

obtain an error estimate for the fluctuations of Vμ(Br ) by calculating
the variance of the values of the Partial MFs.

3.3 Treatment of boundaries

The family of MFs allows a complete deconvolution of the bound-
ary, based on the principal kinematical formula, see for example
the review of Kerscher (Kerscher 2000, and references therein).
Note that this formula involves all the functionals of the family;
for individual functionals, the boundary cannot be corrected with
this powerful tool. Most of the previously cited papers refer to
this method for the boundary correction. The principal kinematical
formula reads

mμ(Br ) = Mμ(Br ∩ W )

M0(W )
−

μ−1∑
ν=0

(
μ

ν

)
mν(Br )

Mμ−ν(W )

M0(W )
, (28)

where Mμ(Br ) are the MFs, and mμ(Br ) their mean volume densi-
ties as defined in Kerscher (2000). W denotes the boundaries, i.e. the
survey mask or window. For an example illustrating these bound-
ary corrections, we recommend Kerscher, Schmalzing & Buchert
(1996a), for an application to a galaxy catalogue see e.g. Kerscher
et al. (1997).

Unlike in these previous papers, we here calculate the Partial MFs
only for points more than twice the maximum radius away from the
boundary, i.e. the sample mask, see Fig. 5. Thus, we create a shrunk
‘calculation window’ D2R and do not have to take into account any
boundary effects. Naturally, if the survey mask is full of holes, we
neglect a lot of galaxies this way, so this approach is better suited for
modern galaxy catalogues like the SDSS and after-SDSS surveys.

However, it is important to note that the neglected points do count
when it comes to calculating Partial MFs, since their Balls intersect
with Balls inside of the window. Therefore, they have to be part of
the neighbourlists.

The MFs volume densities (26) now take the form

vμ = 1

|D2R |
N∑

i=1

χD2R
(xi)Vμ(xi ; r), (29)
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where

χD2R
(xi) =

{
1 if xi ∈ D2R

0 if xi /∈ D2R

(30)

is the characteristic function of the shrunk window. As mentioned
in Schmalzing & Diaferio (2000), these quantities are minus esti-
mators for the MF’s volume densities. Minus estimators only pro-
vide unbiased estimates if applied to stationary point processes, as
investigated by Kerscher (1999). Hence, we use volume-limited
subsamples of the catalogues when carrying out the structure
analysis.

3.4 The structure volume

Since the volume of the structure is not localized on its surface, we
cannot calculate it in the way outlined above. However, to achieve
analogy to the three other functionals, and in view of the possibility
of parallel computing, our goal was to determine the volume by
means of adding up the partial functionals.

We do this as follows: first, we throw a number of randomly
distributed points yi into the shrunk mask D2R of the sample; sec-
ondly, we determine neighbourlists for the random points. These
neighbourlists consist of the thrown point as the centre and the real
galaxies in its vicinity, i.e. points of the sample we analyse, within a
distance of twice the maximum radius, see Fig. 6; thirdly, in a sec-
ond Poisson process, we throw random points into the Ball around
yi , i.e. B( yi ; r), and determine whether the random point is covered
by a Ball around any of the real neighbours or not. This way, we
calculate the fraction of volume covered by the structure in that
local area. Hence, we defined a Partial MF v0( yi ; r) for the volume
similar to the other three (strictly speaking, we defined the volume
density of the Partial MF); the last step for obtaining the global
volume density of the structure consists of adding up the v0( yi ; r)

Figure 6. For any randomly thrown point yi , we generate the list of real
neighbours, i.e. consisting of galaxies of the used sample. The Balls around
all points within a distance of 2r around yi intersect with the Ball B( yi ; r).
The volume fraction of the structure within B( yi ; r) is then calculated by a
Monte Carlo integration.

and normalizing them by the number of random points, say M, for
which we calculated the volume fraction,

v0 = 1

M

M∑
i=1

v0( yi ; r) . (31)

If we are interested in the absolute value of the structure’s volume
within the shrunk windows, we obtain it by multiplying the global
volume fraction by the window’s volume. Note: only the third and
fourth step of the volume fraction calculation are executed by the
CHIPMINK code itself, whereas the primary steps are data preparation.
So instead of throwing points into the shrunk window D2R in the
first step, one can throw them into the original survey mask and
create neighbourlists for all of them. Thus, calculations for different
maximum radii or specific areas of the survey mask can be carried
out with subsamples of this set of neighbourlists.

For consistency checks, we also provide two other methods for
the calculation of the structure volume. However, these methods
only calculate the global volume fraction and they do not use the
Partial MFs defined in this section.

4 A PPLI CATI ON: THE SDSS LRG SAMPLE

We shall now apply the code described in the previous section to two
different data sets. First, to the LRG (Eisenstein et al. 2001) sample
of the SDSS (York et al. 2000) DR7 (Abazajian et al. 2009), and,
secondly, to the mock catalogues drawn from �CDM simulations
of the SDSS volume performed by the LasDamas2 collaboration
McBride et al. (2009).

4.1 The data

From the SDSS DR7 LRG data described in Abazajian et al. (2009),
we use in particular the samples extracted by Kazin et al. (2010). For
selecting them the authors used the following criteria: the galaxy
has an SDSS spectrum, is not in an area around bright stars, has a
sector completeness of at least 60 per cent, a redshift in the range
0.16–0.47 and a colour- and k-corrected magnitude between −21.2
and −23.1. The details of the selection can be found in Kazin et al.
(2010). After this pre-selection, the sample contains 105 831 LRGs.

We neglect the small amount of area in the southern galactic
regions from the DR7 sample, as our code requires contiguous re-
gions (note that boundaries can be corrected by integral-geometrical
means; this property is exploited in our previous codes). In addition,
in order to have simpler boundaries, we choose to restrict ourselves
to a region with RA ∈ [132◦, 235◦] and Dec. ∈ [−1◦, 60◦].

With the radial selection we have to make sure that the sample
we obtain is volume limited. According to Kazin et al. (2010), the
sample is volume limited up to a redshift of 0.36 for a magnitude
of −21.2 and up to a redshift of 0.44, if we select galaxies with a
magnitude brighter than −21.8. This implies that we shall analyse
two different samples derived from the pre-selected galaxies: a first
one that we shall refer to as the ‘dim sample’ with a magnitude cut
at −21.2 and a redshift in the range z ∈ [0.16, 0.35], and a second
one to which we refer to as the ‘bright sample’ with a magnitude
cut at −21.8 and a redshift in the range z ∈ [0.16, 0.44]. With these
requirements, the ‘dim sample’ contains 41 375 galaxies and the
‘bright sample’ 22 386.

2 See http://lss.phy.vanderbilt.edu/lasdamas/ for information on the project
and for downloading the samples.

MNRAS 443, 241–259 (2014)

 at M
PI G

ravitational Physics on Septem
ber 16, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://lss.phy.vanderbilt.edu/lasdamas/
http://mnras.oxfordjournals.org/


248 A. Wiegand, T. Buchert and M. Ostermann

Figure 7. Example of the galaxy distribution in the ‘dim sample’. The
projection is extracted from a slice of a thickness of 22.5 h−1 Mpc from the
maximally fitting cube.

In order to compare the structure in the galaxy data to the model
of gravitational structure formation, we use mock data samples
provided by the LasDamas2 Collaboration (McBride et al. 2009).
These authors simulated structure formation in a �CDM model with
�� = 0.75 in boxes of 2.4 h−1 Gpc for 12803 particles. They iden-
tify haloes with a friends-of-friends algorithm, and populate them
with mock galaxies using a halo occupation distribution (HOD). The
HOD parameters are chosen as to reproduce small-scale clustering
of the observed LRG sample. From 40 independent N-body simu-
lations, LasDamas provides 160 sky-based mock galaxy catalogues
for the northern SDSS region that we use.

We further modify the basic catalogues they provide by also
removing regions around bright stars3 and performing the same
angular cut as for the SDSS data samples. This results in catalogues
that contain on average 46 710 galaxies for the ‘dim sample’ and
22 181 galaxies for the ‘bright sample’.

Our treatment of various issues encountered in data taking, which
should be included in the mock galaxy selection, is not complete.
It does not take problems like e.g. sector completeness or fibre
collisions into account. To deal with these issues, the necessary
weights could probably be included into equation (25), but we leave
it for a more thorough analysis in future work to figure out the exact
form of this weighting. For the purpose of this paper, testing the
code and a general analysis of the influence of higher clustering we
do not need this precision.

Instead of considering the MFs in redshift space, we convert
all redshifts into comoving distances using the distance redshift
relation of a �CDM model with �� = 0.75. An example of the
galaxy distribution in the ‘dim sample’ is shown in Fig. 7. It also
helps to recall the dimensions of the sample. The thickness of the
z-shell of the ‘dim sample’ z ∈ [0.16, 0.35] is 507 h−1 Mpc. The
thickness of z-shell of the ‘bright sample’ 730 h−1 Mpc. The largest

2 See http://lss.phy.vanderbilt.edu/lasdamas/ for information on the project
and for downloading the samples.
3 We use the software mangle Swanson et al. (2008) to apply the mask
that can be found in the NYU value-added catalogue (Blanton et al. 2005;
Padmanabhan et al. 2008).

cube that fits into our ‘dim sample’ region has a side length of
452 h−1 Mpc; Fig. 7 presents a slice of this cube. In Wiegand (2012),
two independent cubes of this size have been used to demonstrate
the stability of the MFs throughout the sample.

4.2 The functionals on different scales

We now turn to the analysis of the samples defined in the previous
section. In this analysis, we compare the structure in the observed
samples to the structure in the mock samples. For this comparison
it is crucial to know, how precise our results for the MF densities
are. To estimate these errors, we determine the MF densities for
each of the 160 mock samples and calculate the error bars from
the resulting fluctuation. For comparison, we also calculated the
error bars from random subsampling jackknife realizations drawn
from the data and consisting of 80 per cent of the points of the
samples. They turn out to be of the same magnitude. Finally, we
also compared them to the error estimate that the CHIPMINK code
determines directly from the fluctuations of the Partial MFs. Also
in this case, the error bars are close to those determined from the
mocks, even though systematically smaller by a few per cent. So,
for a first estimate of the errors already the output of the code is
quite useful.

There are two possible reasons for the MF densities (3) to fluc-
tuate between different realizations. First, the N−point correlation
functions of the point distribution in different realizations may be
different. Then, the integrals (21) and therefore the coefficients in
the expansion (5) vary and lead to fluctuations in the measured vμ.
But the series (5) indicates that also a different average density �0

of the sample will lead to a change of the measured vμ. This means
that we have to ensure that all the realizations approximately have
the same density, if we really want to compare the structure of the
point distribution. Otherwise, the analysis of the influence of (higher
order) correlations in the point distribution would be spoiled by a
fluctuation in �0.

To ensure that all realizations have the same density �0, we imple-
ment a random choice of ≈80 per cent of the sample that discards all
configurations that do not have the desired density. Due to slightly
different average densities of the mock and data samples this frac-
tion is not exactly 80 per cent, but is adjusted to give the same
average density for the mocks and the data.

4.2.1 The ‘dim sample’

Fig. 8 shows the MF densities obtained from this procedure and the
code described in Section 3.

We plot the average from 244 random 80 per cent realizations of
the ‘dim sample’. The functionals were evaluated for Balls of 40
different radii with a spacing of about 1 h−1 Mpc. They are shown
as the (red) points in Fig. 8.

The selection of 80 per cent of the points results in an average
density of �0 = 7.7 × 10−5 h3 Mpc−3. For the mock catalogues, we
also extract 244 configurations of this average density �0 from each
of the 160 simulated samples and calculate the average value for
the MFs of each mock with the same radii of the Balls. The mean
value and the error bars are then calculated from the mean and the
variance of these 160 averages.

The upper four plots in Fig. 8 indicate that the determination of
the MF densities is quite robust. The 1σ error bands around the
average are barely visible. The values for a Poisson distribution
with the same density lie far away from both mocks and observed
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Figure 8. Top four: the four Germ–Grain MF densities for the SDSS LRG ‘dim sample’ compared to those of the corresponding LasDamas mock galaxies
and those of a Poisson distribution. The errors and average for the mock samples are obtained taking 160 different mock realizations.Bottom four: the same
quantities, but with the average of the mock sample subtracted to make the error bars more visible. The dark shaded regions are the 1σ , the light shaded regions
2σ error bands.

galaxies, a clear indication of the presence of structure (which is of
course not surprising). For the curves of the mocks and observed
galaxies, however, it is harder to distinguish them.

In order to facilitate the comparison of the observed and mock
results, the lower four plots of Fig. 8 show the residuals obtained
by subtracting the average of the mocks. Most of the 40 points lie
in the 1σ and 2σ bands around the average of the mocks, but some
points deviate more strongly.

In order to quantify how significant the resulting deviation actu-
ally is, we calculate the χ2 values using the standard relation,

χ2 :=
∑

ij

(
vd

μ(ri) − vm
μ (ri)

)
Ĉ−1

ij

(
vd

μ(rj ) − vm
μ (rj )

)
, (32)

where vd
μ(ri) are the functionals measured from the SDSS, vm

μ (ri) is

the average of all mocks and Ĉ−1
ij is the inverse covariance matrix

of the 40 points, estimated from the 160 mock realizations. We use
the unbiased estimator of Hartlap, Simon & Schneider (2007) for
Ĉ−1, which takes into account that the estimate is based on a finite
number of mock samples.

The resulting χ2 values are shown in the first column of Table 1.
They are significantly higher than the average of the χ2 distribution
of 40 points. In order to quantify the deviation, we convert the p-
value corresponding to the value of χ2 into standard deviations of a
Gaussian random variable, where the p-value is taken to correspond
to the two sided deviation. The deviation is larger than 3σ for all
of the four MFs. As this is surprising regarding the plots, and to
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Table 1. χ2 values for the deviation of the ‘dim sample’ from the
LasDamas mocks for the MF densities vμ and the modified functionals
V μ. σG quantifies the p−value that corresponds to this χ2, in terms of
standard deviations of a Gaussian. χ2

I quantifies the deviation, if we would
assume statistical independence of the points. The data for vμ are plotted in
the lower panel of Fig. 8. The χ2 is done over 40 degrees of freedom for vμ,
and over 20 degrees of freedom for V μ.

χ2 σG χ2
I σG I χ2 σG χ2

I σG I

v0 78.7 3.66 21 10−2 V 0 43.9 3.17 11 0.1
v1 111.0 5.65 33 0.3 V 1 68.7 5.13 15 0.2
v2 81.2 3.83 53 1.7 V 2 65.1 4.87 17 0.4
v3 93.3 4.62 68 2.9 V 3 62.9 4.71 30 1.8

illustrate the amount of correlation in the data, we also list the χ2

values we would obtain, if the data points were independent. We do
this by taking the diagonal of the covariance matrix before inverting
it. The resulting χ2

I values are in good agreement with the visual
impression given the residuals in Fig. 8.

4.2.2 The ‘bright sample’

We applied the same procedure to the ‘bright sample’. In this case,
randomly choosing 80 per cent of the points corresponds to a density
of �0 = 2.1 × 10−5 h3 Mpc−3. The resulting differences of the MF
densities of the mocks to those of the SDSS ‘bright sample’ are
shown in Fig. 9. The reduced galaxy density allows us to go to larger
scales, due to the larger volume and a more restrictive selection.
This is possible, because it needs a larger radius of the Balls to fill
the observed volume completely. Therefore, the structure saturates
for larger values of R only. The downside is, however, that we
have less points and therefore a less precise determination of the
average functionals. The plots in Fig. 9 show a similar deviation as
those for the ‘dim sample’. When we evaluate the significance of
this discrepancy, however, we find that it is less pronounced. The χ2

values calculated with equation (32) and shown in Table 2, are much

Table 2. Same as Table 1, but for the ‘bright sample’. The data for vμ are
plotted in Fig. 9 and those for V μ in the lower panel of Fig. 10. The χ2 is
done over 40 degrees of freedom for vμ, and over 20 degrees of freedom for
V μ.

χ2 σG χ2
I σG I χ2 σG χ2

I σG I

v0 56.6 2.02 105 5.4 V 0 35.3 2.36 112 7.8
v1 52.6 1.71 74 3.3 V 1 26.0 1.38 80 5.9
v2 50.8 1.56 82 3.9 V 2 31.7 1.99 66 4.9
v3 36.0 0.46 70 3.0 V 3 28.4 1.65 48 3.5

lower than for the ‘dim sample’. This is somewhat surprising but,
apparently, the deviations follow more closely the form imposed by
the correlation pattern.

As this correlation pattern is different for the modified MFs V μ,
we also want to study their deviations from the mock samples and
show them in Fig. 10. The upper four plots show them together with
the Poisson case. This latter is very simple for V μ as it consists of
the functionals of a Ball, equation (4). The values and error bars
have been obtained by calculating the V μ for every realization and
taking the average and variance of these values. As the errors grow
rapidly beyond 60 h−1 Mpc (in diameter), we only plot the V μ up
to this scale. The reason for this growth is that around 60 h−1 Mpc,
the volume becomes largely filled with the Balls, and therefore,
the measurement has to become more and more accurate to give
correct values after the removal of the exponential damping factor
e−�0V μ . Considering the scales where the errors are still controllable
leaves us with the 20 points in Fig. 10. The χ2 values of their
deviation are summarized in the second part of Table 2. The reduced
χ2 values are a bit higher than for the densities vμ, but also not
significant.

5 N O N - G AU S S I A N C O R R E L AT I O N S

Inspecting Figs 9 and 10, it is not clear whether the origin of the
slight deviation of the data from the mocks is already present for

Figure 9. The same quantities as in the lower four plots of Fig. 8, but for the bright ‘sample’. The dark shaded regions are the 1σ , the light shaded regions 2σ

error bands.
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Figure 10. Top four: the four modified Germ–Grain MFs V μ of the SDSS LRG ‘bright sample’ and the LasDamas mock galaxies. The errors and average for
the mock samples are obtained taking 160 different mock realizations. The Poisson case is simply given by the MFs of a single ball (see equation 4). Bottom
four: the same quantities, but with the average of the mocks subtracted to make the error bars more visible. The dark shaded regions are the 1σ error bands,
the light regions correspond to 2σ .

the two-point statistics, or whether it is due to a difference in the
non-Gaussian properties showing up in the three- and N -point con-
tributions to the series (5). To address this question more thoroughly,
we use the method introduced in Section 2.5. This method requires
to measure the MFs as a function of �0, and to extract for every
scale R the function Ṽ μ (�0).

The procedure we use is the following: first, we choose 24 dif-
ferent densities corresponding to a fraction f between 0.05 and 0.8
of the full density of �0 = 2.6 × 10−5 h3 Mpc−3. For each of these
densities, we generate a large number of realizations (from about
15 000 for f = 0.05 down to 244 for f = 0.8). For each of these
realizations, we determine the modified MFs V μ as a function of

the Ball radius R. For each R, we take the average over all the
realizations and arrive at an Ṽ μ (�0) evaluated at 24 points. We add
the value of V μ at �0 = 0 as the 25th point, which is simply the MF
of a Ball (see equation 4) with the respective radius R. From these
25 points, we want to derive the first coefficients in the expansion
(5) which, by equation (21), is equivalent to the determination of
the components of a polynomial fit to Ṽ μ (�0).

As the resampling of the points introduces an important amount of
correlation between the realizations and as the r-dependence of the
vμ also contains some correlation, we use the 160 mock samples
to estimate the covariance matrix for the points of the empirical
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function Ṽ μ (r, �0). We use Ṽ μ (�0) at four different distances r and
use its values at 20 of the 25 �0 points. This gives us a covariance
matrix of dimension 80 × 80. This is still quite large, given that we
only have 160 mock samples: there is an important uncertainty in
the estimation of the covariance matrix. In addition to the use of the
unbiased estimator of Hartlap et al. (2007), as in Section 4.2, we,
therefore, need to take into account the propagation of the errors in

the estimated covariance matrix to the values we want to measure.
For doing so, we use the prescription in Percival et al. (2014).
This considerably increases our error bars. We use the resulting
covariance matrix for a polynomial fit of fourth order to the average
Ṽ μ (r, �0) for all the mock samples and for the SDSS. With equation
(21) this gives us the coefficients b2–b4 for both the mock samples
and the SDSS.

Figure 11. Top four: the four Minkowski integrals of the two-point correlation function, i.e. cμ
2 from equation (33), for the SDSS LRG ‘bright sample’ (lower

points, red) and one of the corresponding mock samples (upper points, blue). The error bars are 1σ errors for the parameters from the fit Ṽ μ (�0) with a
polynomial of fourth order in �0. The theoretical curves are calculated from the matter power spectrum corresponding to the parameters of the simulation using
equation (13). As c0

2 corresponds to σ 2, we also plot the result of a standard estimation of σ 2 for the observed galaxies. Bottom four: the same quantities but all
divided by the theoretical prediction of the LasDamas power spectrum. The value of the straight line indicates the bias between the linear correlation function
and the correlations in the ‘bright sample’. The line following the trend of the SDSS data corresponds to the theoretical prediction for a power spectrum with
the Planck parameters �m ≈ 0.32. The χ2 values are given in Table 3.
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We finally divide these coefficients by the corresponding power
of the volume and arrive at an estimate of the integrals

c
μ
n+1 = b

μ
n+1

V n+1
0 (B)

= 1

V n+1
0 (B)

∫
D

d3x1 . . . d3xn

× ξn+1 (0, x1, . . . xn) Vμ

(
B ∩ Bx1 ∩ . . . ∩ Bxn

)
, (33)

where V0(B) is the volume of a Ball of radius R.

5.1 Integrals of the two-point correlation function

The results for the coefficients c
μ
2 , i.e. those involving an integral

over the two-point correlation function, are shown in the upper
four plots of Fig. 11. As described in Section 2.4, the first quantity
plotted, c0

2, is related to the matter variance in spheres of radius R. In
fact, from equations (33) and (19), one can see that c0

2 = σ 2. So, the
first plot of Fig. 11 compares different ways of calculating σ 2. The
data and mock points and their error bars are derived from the MFs
using the method just described. The points of σ 2

emp. are calculated
from the observed sample with the usual estimator for the matter
variance in spheres of radius R,

σ 2 (R) = E
[
M (R)2

] − E [M (R)]2

E [M (R)]2 , (34)

where M(R) is the integrated matter density of the sphere and E [X]
is the average over all spheres.

The third way of calculating σ 2 is direct integration of the theo-
retical power spectrum using equation (13) which, for c0

2, directly
becomes equation (18). For the form of P(k), we use the parametriza-
tion of Eisenstein & Hu (1998) that includes the effects of baryons.
However, we use the form without their oscillations. We normalize
the amplitude of the power spectrum to match the amplitude of the
mocks. This gives a linear bias of b ≈ 2.37, i.e. σ 2

mock = b2σ 2
lin..

In the V1–V3 plots of Fig. 11, we use the power spectrum with
the same normalization and equation (13) for the theory prediction.
The first plot of Fig. 11 shows that all three ways of calculating σ 2

are overall in agreement. This is also true for the plots derived from
V 1–V 3, but there is also a deviation of the coefficients c

μ
2 of the

observed galaxies from those of the simulated mock galaxies. On
small scales they start quite close, but on larger scales the devia-
tion becomes more important. It is interesting to see that the mocks
are indeed well described by the theoretical power spectrum that
entered into their simulation. This shows that the simulations and
the extraction procedure give a consistent picture. The observed
galaxies, however, deviate slightly from the simulated cosmology.
This means that, even though the overall normalization of the cor-
relation function is correct by the consistency of the σ 2 results,
other features of the correlation function are not captured equally
well.

The lower four plots of Fig. 11 show the same quantities, but
divided by the theoretical prediction for the simulated cosmology.
This removes the general trend and allows a more detailed compari-
son. Thus, in these plots, the scales on the y-axis have only a relative
meaning: the value y = 1 marks the (scale-dependent) integrated
mock power spectrum for �m = 0.25. The value of ≈5.6 for the
straight mock line corresponds to the squared bias of the mocks
b2. The line going through the points of the SDSS data, represents
the c

μ
2 calculated from a Planck �m ≈ 0.32 power spectrum for

comparison. Fig. 11 shows that the mild deviations of the MFs for
the data and the mock galaxies, as found in Figs 9 and 10, already
occur at the level of the first correction to the leading Poisson term
in the expansion V μ, equation (5) (but they are a bit less significant

Table 3. χ2 values for the SDSS data points in the lower panel of Fig. 11
from the theoretical curves. The table on the left compares the (red) SDSS
points to the straight line of the LasDamas cosmology. The table on the right
compares them to the dashed line of the Planck cosmology. The χ2 values
are over 4 degrees of freedom.

χ2 σG χ2
I σG I χ2 σG χ2

I σG I

c0
2 11.4 2.30 16 3.0 c0

2 8.24 1.73 3.7 0.76
c1

2 5.11 1.09 12 2.4 c1
2 0.75 0.07 0.25 0.01

c2
2 8.84 1.84 10 2.0 c2

2 1.34 0.18 0.15 0.003
c3

2 3.22 0.64 7.7 1.6 c3
2 0.35 0.02 0.14 0.003

here without the higher order information, see Table 3). We shall
turn to the influence of the higher orders in the next section.

5.2 Integrals of the three-point correlation function

In addition to the integrals over the two-point correlation function
of the previous section, which are completely describing a Gauss–
Poisson point process, also the higher order terms are important for
a general point distribution. In this sense, the first corrections to the
Gaussian point distribution are the integrals c

μ
3 .

These integrals c
μ
3 are shown in Fig. 12. In comparison with

Fig. 11, we recognize that the amplitude of the c
μ
3 integrals is larger

by a factor of 5 than the integrals c
μ
2 . Like in Fig. 11, we also have

a slight but again less significant deviation for these quantities.
The lines in these plots are calculated from a tree-level bispectrum

using equation (22) and the bias of b = 2.37 as found from the two-
point normalization.

As described in the beginning of this section, we use a fit up to �4
0

and, therefore, we have also determined the coefficients c
μ
4 . How-

ever, the quality of the determination of those coefficients becomes
even worse than already for the c

μ
3 coefficients and therefore we do

not plot them here.

5.3 Importance of higher order correlations

To get an impression of how well the first four terms in the series
(5) already describe the MFs of the ‘bright’ galaxy sample, we use
the coefficients c

μ
2 (R)–c

μ
4 (R), as obtained from the fit to Ṽ μ (�0)

in the two previous sections, to calculate the V μ of equation (5) up
to n = 3.

This decomposition allows us to address another interesting ques-
tion: how non-Gaussian the point distribution actually is. For a pure
Gauss–Poisson point process, we have seen in Section 2.4 that a
truncation after n = 1 is exact. The comparison of the contribution
of c

μ
2 (R) with the other components c

μ
n+1 (R) provides a measure

of non-Gaussianity. This is only a meaningful test, however, if the
distribution can be Gaussian in the first place. Due to the posi-
tive definite matter density field � there are some restrictions, as
discussed around equation (6). For a Gauss–Poisson process to ex-
ist, the density must be low enough for a given amount of two-point
correlation. The precise relation between �0 and ξ 2 is that of equa-
tion (6):

�0

∫
D

d yξ2 (| y|) ≤ 1.

For the strongly clustered SDSS LRGs, this requirement is not
fulfilled for the full density of the sample. Also for 80 per cent
of the density like in Figs 9 and 10, where the density was �0 =
2.1 × 10−5 h3 Mpc−3, the two-point amplitude is too high to allow
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Figure 12. Top four: the four Minkowski integrals of the three-point correlation function, i.e. cμ
3 from equation (33), for the SDSS LRG ‘bright sample’ (lower

points, in red) and the average of the corresponding mock samples (upper points, blue). The error bars are the 1σ errors from the diagonal of the covariance

matrix of the fit of Ṽ μ (�0) with a polynomial of fourth order in �0. The lines are the integrals of equation (22) evaluated for the LasDamas cosmology. Bottom
four: the same quantities but all divided by the theoretical prediction of the LasDamas power spectrum. The value of the straight line indicates the (linear) bias
between the linear three-point correlation function and the correlations in the ‘bright sample’.

for a Gaussian approximation. So already from this condition, we
know that the point sample is not a Gaussian distribution. However,
for a sample having 30 per cent of the full density, i.e. �0 = 0.78 ×
10−5 h3 Mpc−3, the condition is (marginally) satisfied. Therefore,
we calculated the modified MFs for a large number of realizations

of 30 per cent of the ‘bright sample’ mocks in the same way as in
Section 4.2.

Fig. 13 shows the influence of the first three components
c

μ
n+1 (R) on the series of the modified MFs V μ. We con-

firm that the mock point catalogues are not a realization of a
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Figure 13. The four modified MFs V μ of 30 per cent of the ‘bright sample’, after subtraction of the average of the mocks. The (yellow) dotted line shows the
theoretical expectation for a pure Gauss–Poisson process of this density and this amount of two-point correlation. The (purple) dashed line gives the functionals
as derived from the expansion (5) truncated at �3

0 with the coefficients c
μ
2 –c

μ
4 as found in Sections 5.1 and 5.2.

Gauss–Poisson process and that higher order corrections are crucial
for the MFs.

With the inclusion of c
μ
3 and c

μ
4 , this truncated series is quite

good in describing the modified MF densities of the data up to a
scale of around 60 h−1 Mpc. For larger scales, the coefficients b

μ
n+1

become too big (even though the c
μ
n+1 decay with R, they decay

slower than V n+1
0 (B) and, therefore, the b

μ
n+1 grow), and the qual-

ity of the approximation becomes worse. This deviation from the
approximated function shows that, even for densities as low as the
present �0 = 0.78 × 10−5 h3 Mpc−3, the MFs include contributions
from galaxy correlations way beyond the standard two-point corre-
lations. This confirms the claim made in the introduction that they
are sensitive to higher order correlations. For higher densities these
contributions become even more important as V μ, equation (5), is
a power series in �.

5.4 Coefficients of a lognormal distribution

The non-Gaussianity investigated in the previous section is, of
course, not surprising. It is well known that the non-linear evolution
of the density field leads to deviations from the initial Gaussian dis-
tribution. A better model is provided by a lognormal distribution,
proposed by Coles & Jones (1991) and investigated in Colombi
(1994), Wang et al. (2011). Comparing it to simulations, it has been
shown to reproduce well the one-point function (see e.g. Kofman
et al. 1994) and has been used recently to enhance the extraction
of information from the two-point function (Neyrinck, Szapudi &
Szalay 2009; Seo et al. 2012). In comparison with a Gaussian dis-
tribution, however, it has the inconvenience not to be described by a
simple truncation of the V μ series. This is why we concentrated on

the Gaussian reference case in the previous section. Nevertheless,
the lognormal distribution has the interesting property that, even
though it contains an infinite number of higher order correlations,
they are not independent of the two-point properties; the knowledge
of the two-point function fixes the form of the higher order terms.
We shall exploit this property in this section to compare the c

μ
n+1 co-

efficients we extracted from the mock samples with the lognormal
prediction.

We first have to choose the two-point properties for which we use
the standard two-point correlation function for the LasDamas cos-
mology. Then, we can calculate, in principle, all higher connected
correlation functions for a multivariate lognormal distribution. In
practice, however, this quickly leads to long expressions, a combi-
natorial increase in the number of two-point functions. Therefore,
we only use connected correlation functions up to ξ 4.

Using the ξ constructed in this way, we can evaluate the series (5)
up to an index n = 4. However, we restrict ourselves to V0, because
the necessary integral can be expressed for any n in a rather compact
way.

Fig. 14 then shows the result. The two-point contribution matches
quite well, which is not surprising as it is the same as in the previ-
ous case. The integrals over the higher order correlation functions,
however, deviate quite strongly from the data measured from the
mock samples. This shows that higher order correlations can also
be crucial to test improved reference models.

6 C O N C L U S I O N

In this paper, we provided new analysis tools based on the
Germ–Grain model to calculate the family of MFs of point sets.
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Figure 14. Comparison of the coefficients c0
2–c0

4 defined in equation (33)
to those of a lognormal distribution with the same two-point function. For a
better visibility, the coefficients c0

n have been multiplied by V(B)3/4(n − 1) in
these plots.

The code is made available to the community with this paper that
complements the existing Germ–Grain codes. The advantage of the
former codes is still the possibility to deconvolve the boundaries,
which is especially needed for sparse catalogues with complicated
mask structure. The advantage of the new code has to be seen in
the fast performance for large samples, the possibility to study the
Partial MFs locally and in explicit relation to correlation properties
of the data sets.

As a first application of the new code, we also performed an
extensive analysis of the MFs of the SDSS LRG sample for the
Germ–Grain model. We favour this model because it provides a
direct way to analyse the data without additional smoothing, and
because it provides analytical relations between the MFs and the
N-point correlation functions of the galaxy distribution. We espe-
cially had a detailed look at those correlation properties to locate
the deviations found between the mock samples and the SDSS data.

In Section 4, we compared the MFs of the observed galaxies to
a grid of �CDM N-body simulations of the galaxy distribution,
for two different luminosity thresholds. In both cases, the MFs of

the observed and the simulated galaxy distributions show signifi-
cant disagreement. For the galaxies with the higher luminosity, this
difference is statistically less important than for the ‘dim’ LRG
sample.

Making use of the analytic relation to the correlation functions
provided in this paper, we derived in Section 5 some integrals over
the two- and three-point function of the galaxy distribution. We
compared the results to the prediction for structure in a perturbed
Friedmannian universe. We found that this prediction describes
quite well the simulated galaxy distribution, but fails to describe
the observed one.

We also showed that the galaxy distribution is clearly different
from a Gauss–Poisson distribution (and for higher orders also from
a lognormal distribution), which demonstrates how higher order
correlations are crucial to describe the observed structure. As pre-
viously often emphasized, it is necessary to address higher order
correlations for the purpose of determining morphological fluctu-
ations. It is not sufficient, if the density or the two-point measures
agree on selected samples, in order to conclude on the absence of
significant fluctuations or the reality of large structures.

It will be interesting to see, which aspects of these results will
become more significant in larger and deeper surveys.
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A P P E N D I X A : D E R I VAT I O N O F E QUAT I O N (3 )

As we make heavy use of the analytic relation (3), we recall here the
derivation of this formula in the general formulation that we need
here. The version for the Poisson case has been shown in Mecke &
Wagner (1991). Schmalzing (1999) and Schmalzing et al. (1999a)
state the general case, but only sketch the derivation.

We shall prove equation (3) for a statistically homogeneous point
process on a three-dimensional supportD ∈ E

3. The key ingredients
for the proof will be the additivity and motion invariance of the
MFs, the principal kinematical formula and statistical homogeneity
(i.e. the motion invariance of statistical quantities characterizing the
point process).

To derive the relation for all four MFs in one go, we first define
the Minkowski polynomial as follows:

M (t ; K) =
3∑

μ=0

tμ

μ!
αμVμ (K) , (A1)
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with αμ = ωd−μ

ωd
and ωj = πj/2

�(j/2+1) . To recover the functionals, we
can take the derivatives

Vμ(K) = 1

αμ

∂μM(t ; K)

∂tμ
|t=0. (A2)

These Minkowski polynomials obey the additivity relation of the
MFs, ∀B1,B2 ∈ R (R is the ring of polyconvex bodies):

M (B1 ∪ B2) = M (B1) + M (B2) − M (B1 ∩ B2) . (A3)

So, for a collection of N Balls located at the positions ri [in short
B (r i) = Bi in the following], we have

M
(∪N

i=1Bi

) =
N∑

i=1

M (Bi) −
∑
i<j

M
(
Bi ∩ Bj

) + . . .

+ (−1)N+1 M (B1 ∩ . . . ∩ BN ) , (A4)

where M(B1∩. . . ∩BN) is the Minkowski polynomial of the inter-
section of the N Balls, which is 0 if they do not intersect.

Equation (3) describes the statistical average over an ensemble
of such realizations of the point process. To calculate these average
MFs for a point process described by a given set of N-point correla-
tion functions up to n = N, we weight such a configuration of Balls
with its probability

p ∝ �N (x1, x2, . . . , xN ) dV1dV2 . . . dVN. (A5)

�N(x1, x2, . . . , xN) = 〈�(x1). . . �(xN)〉 is the complete N-point corre-
lation function that is related to the probability of finding particles
at the N positions xn simultaneously. Abbreviating the integration
measure by∫

D
dτn =

∫
D

d3x1d3x2 . . . d3xn, (A6)

we, therefore, find for the average

〈M〉 = 1

NN

∫
D

dτN�N (x1, x2, . . . , xN ) M
(∪N

i=1Bi

)
=

N∑
n=1

(
N

n

)
N−n (−1)n+1

∫
D

dτn�n (x1, x2, . . . , xn)

× M
(
Bx1 ∩ Bx2 ∩ . . . ∩ Bxn

)
. (A7)

In the limit of an infinite structure N → ∞,

(
N

n

)
N−n → 1

n! , and

so

〈M〉 = 1 −
∞∑

n=0

(−1)n

n!

∫
D

dτn�n (x1, x2, . . . , xn)

× M
(
Bx1 ∩ Bx2 ∩ . . . ∩ Bxn

)
, (A8)

which is a result already obtained in Mecke et al. (1994) for the
individual functionals.

To pass from this expression which involves the complete N-point
correlations to the formulation in (3) with the connected N-point
correlation functions ξ n we need three ingredients:

(i) The principal kinematical formula∫
D

d3xM (A ∩ Bx) ∼mod(t4) M (A) M (B) (A9)

that connects the integral of the Minkowski polynomial of the inter-
section A ∩ Bx with a product of Minkowski polynomials when drop-
ping all terms involving powers of t larger than t3. Here, A, B ∈ R
and it is important that there is no function of x in the integral.

(ii) The motion invariance of the MFs

M
(
Ax ∩ Bx+ y

) = M
(
A0 ∩ By

)
.

(iii) The motion invariance of the correlation functions of a sta-
tistically homogeneous distribution

ξn ( y, y + x1, . . . , y + xn−1) = ξn (0, x1, . . . xn−1) .

With these ingredients we can now show the following formal
cumulant relation:

1 +
∞∑

n=1

mnt
n/n! = exp

( ∞∑
n=1

κnt
n/n!

)
, (A10)

connecting the ‘moments’

mn = 1

VD

∫
D

dτn�n (x1, . . . , xn) M
(
Bx1 ∩ . . . ∩ Bxn

)
(A11)

to the ‘cumulants’

κn = 1

VD

∫
D

dτn�
nξn (x1, . . . , xn) M

(
Bx1 ∩ . . . ∩ Bxn

)
. (A12)

The relation (A10) is satisfied if

mn =
∑

π

∏
B∈π

κ (Xi : i ∈ B) ,

where π is the set of all partitions of {1, . . . , n}. We already know
that there is such a relation connecting �n and the ξ n, because the
latter are the joint cumulants of the former, up to a factor involving
the background density � = �1 (x1) = 〈� (x1)〉 which is non-zero
and constant on the support D,

�n (x1, x2, . . . , xn) =
∑

π

∏
B∈π

�nξ (� (xi) : i ∈ B) .

To show that mn and κn as defined above also fulfil this condition,
we do a weighted integral on both sides

1

VD

∫
D

dτn�n (x1, . . . , xn) M
(
Bx1 ∩ . . . ∩ Bxn

)
=

∑
π

∏
B∈π

1

VD

∫
D

dτn�
nξ (� (xi) : i ∈ B) M

(
Bx1 ∩ . . . ∩ Bxn

)
(A13)

and find mn on the left-hand side. What we need to demonstrate is
that the products of ξ i become products of the related κ i.

This means that we have to break up the term
M

(
D ∩ Bx1 ∩ Bx2 ∩ . . . ∩ Bxn

)
into products of M corresponding

to the ξ . We show how this is done for one generic product.
Let B ∈ π be the partition {{1, . . . , i}, {i + 1, . . . , n}} and

j = n − i, then one of the products in equation (A13) consists of
two terms which are

1

VD

∫
D

dτnξi (x1, . . . , xi) ξj (xi+1, . . . , xn)

× M
(
Bx1 ∩ Bx2 . . . ∩ Bxi

∩ Bxi+1 ∩ Bxi+2 ∩ . . . ∩ Bxn

)
.

We can now make use of our assumption of a statistically homo-
geneous point distribution and make a change of coordinates from
x1, . . . , xi to x1, y1. . . , yi − 1, where the new coordinates yk are
simply yk = xk + 1 − x1

1

VD

∫
D

d3x1d3y1 . . . d3yj−1ξi (y1, . . . , yi−1)
∫
D

dτj ξj (xi+1, . . . , xn)

× M
(
Bx1 ∩ Bx1+y1 . . . ∩ Bx1+yi−1 ∩ Bxi+1 ∩ Bxi+2 ∩ . . . ∩ Bxn

)
.
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Due to statistical homogeneity, ξ i does not depend on x1 and we can
use the principal kinematical formula (A9) to split the M into

1

VD

∫
D

d3y1 . . . d3yj−1ξi (y1, . . . , yi−1) M
(
B0 ∩ By1 . . . ∩ Byi−1

)
×

∫
D

dτj ξj (xi+1, . . . , xn) M
(
Bxi+1 ∩ Bxi+2 ∩ . . . ∩ Bxn

)
.

Formally, we can reinsert the integral over x1, 1
VD

∫
d3x1, and when

we change the variables back to the redundant x1, . . . , xi we have

1

VD

∫
D

dτiξi (x1, . . . , xi) M
(
Bx1 ∩ Bx2 . . . ∩ Bxi

)
× 1

VD

∫
D

dτj ξj (xi+1, . . . , xn) M
(
Bxi+1 ∩ Bxi+2 ∩ . . . ∩ Bxn

)= κiκj.

Iterating this procedure in case of multiple terms of ξ i in the product
finally establishes the formal cumulant relation (A10).

So, inserting equations (A11) and (A12) into (A10), we find that
the average Minkowski polynomial of equation (A8) becomes

m : = 〈M〉
VD

= 1 − exp
∞∑

n=1

(−�)n

n!VD

∫
D

dτnξn (x1, x2, . . . , xn)

× M
(
Bx1 ∩ Bx2 ∩ . . . ∩ Bxn

)
. (A14)

It can be reconnected to the single MF densities of the structure by
taking the derivative

vμ = 1

αμ

∂μm (t)

∂tμ

∣∣∣∣
t=0

,

which then leads directly to equation (3), when, in addition, we
use again motion invariance in the exponent to recover the form of
Equation (5).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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