
J
H
E
P
0
3
(
2
0
1
4
)
0
7
8

Published for SISSA by Springer

Received: December 2, 2013

Accepted: February 17, 2014

Published: March 17, 2014

One-loop renormalization in a toy model of
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Abstract: We present a one loop calculation in the context of Hořava-Lifshitz gravity.

Due to the complexity of the calculation in the full theory we focus here on the study of

a toy model, namely the conformal reduction of the z = 2 projectable theory in 2 + 1

dimensions. For this value of the dimension there are no gravitons, hence the conformal

mode is the only physical degree of freedom, and thus we expect our toy model to lead to

qualitatively correct answers regarding the perturbative renormalization of the full theory.

We find that Newton’s constant (dimensionless in Hořava-Lifshitz gravity) is asymptotically

free. However, the DeWitt supermetric approaches its Weyl invariant form with the same

speed and the effective interaction coupling remains constant along the flow. In other

words, the would-be asymptotic freedom associated to the running Newton’s constant is

exactly balanced by the strong coupling of the scalar mode as the Weyl invariant limit is

approached. We conclude that in such model the UV limit is singular at one loop order,

and we argue that a similar phenomenon can be expected in the full theory, even in higher

dimensions.
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1 Introduction

The standard quantum field theory approach to a perturbative quantization of gravity is

notoriously hindered by the clash between renormalizability and unitarity. It was suggested

by Hořava [1] that the two could be reconciled if we are ready to give up another pillar of

standard quantum field theory, Lorentz invariance. By introducing a preferred spacetime

slicing, and constructing an action with sufficiently higher-order spatial derivatives, but

with at most two time derivatives, we can obtain a power-counting renormalizable theory

of gravity. Such models are now known as Hořava-Lifshitz gravity, or HL gravity for

brevity, and they have been the subject of much study. Despite the obvious drawback of

lost Lorentz invariance, which in particular forces such models to face big observational

challenges and fine tuning problems [2],1 the appealing feature of a renormalizable model

of gravity in the usual sense has made HL gravity an intensely studied topic.2 Oddly,

the renormalization properties of HL gravity, arguably their main motivation, are to date

their least explored feature.3 Almost nothing is known about loop corrections to the HL

action, and a full proof of renormalizability is still missing. In particular, we do not know

1A phenomenologically viable scenario that could avoid such fine-tuning problems has been proposed

in [3].
2Other motivations are found for example in cosmology [4], in the relation to causal dynamical triangula-

tions [5–7], and in the possibility of using HL gravity as a holographic dual to non-relativistic theories [8, 9].
3With of course few important exceptions [10–15].
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yet whether the theory is asymptotically free or if it suffers from triviality. Neither do we

know whether the theory flows towards general relativity in the infrared.

The reasons for the scarcity of results on the renormalization of HL gravity are easily

identifiable in the complexity of the required calculations, due to the lack of covariance

(or equivalently the need to introduce a unit timelike vector [16]), as well as to the large

number of terms present in the action of the most general model, i.e. the non-projectable

model without detailed balance [17]. A very common strategy in trying to make progress

in similar situations is to identify some essential features of the model we aim at, and study

a simplified version of it in which such essential features are maintained while most of the

complications are set aside.

One first simplification which we will adopt here, is to reduce the number of spacetime

dimensions. In classical general relativity, four is the smallest number of dimensions in

which the theory has propagating degrees of freedom, but three dimensional quantum

gravity has nevertheless been a very active field of research, due to the fact that it shares

many problematics with its higher-dimensional version [18]. In the case of HL gravity, the

three dimensional case might be even more interesting, because while gravitons are still

absent, the new scalar degree of freedom associated to the breaking of full diffeomorphism

invariance is still present, thus allowing us to concentrate on it without the distraction

from the gravitons. In fact, lower dimensional models of HL gravity have already received

some attention [19–22]. However, it turns out that in order to study the running of all the

couplings at one loop order, even in three dimensions, and for the simple z = 2 projectable

model, some technical annoyances persist. In order to simplify matters as much as possible,

and to get a glimpse over the questions we raised above about renormalization, we will

adopt one second main simplification, i.e. after having gauge-fixed lapse and shift, we will

quantize only the conformal mode of the spatial metric. A similar conformal reduction

has also been widely adopted as a toy model in other contexts. One example, close to

our setting, is the use of conformally reduced gravity models in studying the asymptotic

safety scenario [23–27]. It is actually somewhat surprising that anything can be learned

from such a reduction in the case of standard isotropic gravity, as in general relativity the

scalar mode is not a propagating degree of freedom. Quite on the contrary, in the case of

three-dimensional HL gravity, the scalar mode is the only physical degree of freedom, as

gravitons are absent and the longitudinal modes are killed by the constraints, and therefore

we might expect the conformally reduced model to be much closer to the full theory.

We will derive the form of the divergences arising in the effective action of our toy

model at one loop, and translate them into beta functions for the renormalization group

running of the dimensionless couplings. We will see that while the running of Newton’s

constant might suggest a realization of asymptotic freedom, the situation is complicated

by the running of the DeWitt supermetric, leading to an effective coupling which remains

finite at all scales.

We will begin in section 2 by presenting the model, while in section 3 we will introduce

the background field splitting and illustrate the peculiarities of the field content in three

dimensions. In section 4 we will discuss the symmetries of the model, and we will introduce

gauge-fixing and ghosts for the quantization procedure. Later, in section 5 we will explain
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the general one-loop algorithm and introduce the effective coupling. Finally, in section 6

our main calculation and results will be detailed, followed by a discussion of the results in

section 7.

2 The action

We assume a spacetime topology R × Σ, with Σ a closed two-dimensional manifold, and

we choose Euclidean signature for the spacetime metric, which we will decompose ac-

cording to the standard ADM splitting, keeping the spacetime nomenclature despite the

Euclidean signature.

Following [1], a HL gravity theory is constructed by giving mass dimension −z to the

time coordinate, [t] = −z, and standard dimension to the spatial coordinates, [xi] = −1,

and by building an action invariant under foliation-preserving diffeomorphisms. Power-

counting renormalizability in d + 1 dimensions is obtained by choosing z = d, and by

including in the bare Lagrangian all the possible local operators compatible with the sym-

metries and with mass-dimension up to 2z. The latter condition, together with the di-

mensions assigned to time, automatically implies that no more than two time derivatives

appear in the action, thus preserving unitarity, at least in the naive sense. At the same time

the inverse propagator now contains up to 2z powers of spatial derivatives, thus improving

convergence of the loop integrals. One obtains a super-renormalizable theory for z > d,

and a non-renormalizable one for z < d. We are interested in the just renormalizable case

in 2 + 1 dimensions, hence we will consider the theory with z = 2. Such model was first

considered in [19], but with detailed balance condition for the potential, which for d = 2

leads to no potential at all. Here we will study the case without detailed balance, which

was also considered in [20, 21].

There are two main versions of HL gravity, respectively known as projectable and non-

projectable version. The projectable version is characterized by a spatially constant lapse

function, N = N(t), and its most generic z = 2 action reads

S =
2

κ2

∫

dt d2xN
√
g
{

λK2 −KijK
ij − 2Λ + cR+ γ R2

}

, (2.1)

where g is the determinant of the spatial metric, R its Ricci scalar, N the lapse function,

Kij the extrinsic curvature of the leaves of the foliation, and K its trace. The coupling κ2 is

proportional to Newton’s constant, and Λ is the cosmological constant, while λ and γ char-

acterize the deviations from full diffeomorphism invariance (λ = 1 and γ = 0 corresponding

to general relativity in 2+1 dimensions4). In particular, λ defines a one-parameter family

of deformed DeWitt supermetrics

Gijkl =
1

2

(

gikgjl + gilgjk
)

− λ gijgkl , (2.2)

with λ = 1 being the standard case, and λ = 1
2 being the Weyl invariant one [19, 28].

4Note that we have chosen the sign of the kinetic term in such a way that the quadratic action for the

conformal mode has the correct sign for λ = 1, unlike in general relativity. This makes sense in 2 + 1

dimensions because there are no gravitons.
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In the non-projectable version, the restriction on the lapse is lifted, and the action can

contain many more terms [21]:

S =

∫

dt d2xN
√
g

{

2

κ2
(

λK2 −KijK
ij − 2Λ + cR+ γ R2

)

+ c1D
2R

+c2 ai a
i + c3 (ai a

i)2 + c4Rai a
i + c5 ai a

iDj aj

+ c6 (D
j aj)

2 + c7 (Di aj)(D
i aj)

}

.

(2.3)

Here ai = Di lnN is the acceleration vector and Di the spatial covariant derivative.

The non-projectable version is clearly more demanding at a technical level, in particular

from a renormalization group point of view, as even in the simplified setting of 2 + 1

dimensions we have twelve couplings to take care of. For such reason, we will in the

following restrict ourselves to the projectable theory (2.1), in which case, as a consequence

of the Gauss-Bonnet theorem, we have also the simplification

∫

dt d2xN
√
gR =

∫

dtN

∫

d2x
√
g(2)R = 4π χ

∫

dtN , (2.4)

with χ the Euler characteristic of the spatial manifold Σ.

3 Background field method and metric decomposition

For our one-loop calculation we will make use of the background field method, which entails

the linear splitting

gij → gij + ǫ hij ; N → N + ǫ n ; Ni → Ni + ǫ ni , (3.1)

where {hij , n, ni} are the quantum fluctuations, {gij , N,Ni} the background fields and ǫ

is a perturbative parameter which we will set at a later stage. The background fields are

in principle generic and off-shell, however, for practical purposes it suffices to choose a

background that will allow us to discern the invariants of interest. In our case, it will be

enough to consider a generic gij and to restrict N = 1 and Ni = 0.

Concerning the fluctuation fields, it is convenient to use the trace-traceless

decomposition

hij = ĥij +
1

2
gijh , (3.2)

with gij ĥij = 0. In general dimension, the traceless metric fluctuation ĥij can be further

decomposed in transverse and longitudinal components, but in two dimensions it is well

known that transverse traceless tensors form a finite dimensional vector space. In partic-

ular, on a closed manifold of genus g there are precisely (6g − 6) independent transverse

traceless tensors for g > 1, just two for g = 1, and no such tensors for g = 0. In other

words, we just recalled the well-known fact that any metric on a 2-dimensional manifold is

conformal to a diffeomorphism-equivalent class of constant curvature metrics:

gij = e2φg̃ij . (3.3)
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Here g̃ij is a metric of constant curvature, and the ensemble of such metrics modulo dif-

feomorphism is known as the moduli space of the manifold, which has the same dimension

as the vector space discussed above, which actually is the cotangent space at g̃ij to the

moduli space. Hence, once we fix the topology, the metric g̃ij carries only gauge degrees of

freedom plus a finite number of global degrees of freedom. We will forget about the latter

in what follows, a safe way to do that being of course to choose spherical topology for the

spatial slices.

The two decompositions (3.1)–(3.2) and (3.3) obviously coincide at the linear level,

upon the identification φ = h/4, while at higher orders they lead to inessential differences

in the off-shell effective action. The approximation we will employ in the following consists

in discarding all the quantum fluctuations associated to the metric g̃ij , which then will

be treated as a background quantity, or equivalently, in discarding the traceless fluctua-

tions ĥij .

4 Symmetries and gauge fixing

The action (2.1) is invariant under foliation-preserving diffeomorphisms, i.e. it is invariant

under the coordinate reparametrization

xi → xi + ζi(~x, t) , (4.1)

t → t+ ζ(t) . (4.2)

At leading order, the transformations of the fluctuation fields are (dots stand for time

derivatives)

hij → hij +Di ζj +Dj ζi + ζ ġij , (4.3)

ni → ni + gij ζ̇
j + ζj Dj Ni +Nj Di ζ

j + ζ̇ Ni + ζ Ṅi , (4.4)

n → n+ ζ̇ N + ζ Ṅ + ζjDjN , (4.5)

and on a background such that N = 1 and Ni = 0, they simplify to

hij → hij +Di ζj +Dj ζi + ζ ġij , (4.6)

ni → ni + gij ζ̇
j , (4.7)

n → n+ ζ̇ . (4.8)

We can use a time-dependent diffeomorphism to gauge-fix n = ni = 0. There is in

this case a residual symmetry, corresponding to time-independent spatial diffeomorpishms

ζi = ζi(~x), which could be fixed by a de Donder-type gauge fixing on a single slice. A

standard canonical analysis [19] shows that the constraints of the theory preserve such

gauge fixing under time evolution, thus killing the longitudinal components of the metric

fluctuations, and leaving us with only the scalar mode. However, in a correct one-loop path

integral quantization, the longitudinal modes should be integrated over without restrictions

(at most just imposing the single-slice gauge-fixing as in [29]). Our conformal reduction
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will consist in not performing such functional integration, thus freezing the longitudinal

modes as if they had been eliminated by the constraints.

In order to implement the gauge condition we add the gauge-fixing action

Sgf =
1

2α2

∫

dtN

∫

d2x
√
g n2 +

1

2β2

∫

dt

∫

d2x
√
g ni n

i , (4.9)

and take the limit α → 0 and β → 0, which leads to a complete decoupling of n and ni.

Since the fluctuations of lapse and shift transform linearly in the time derivative,

the Fadeev-Popov operator reads M = ∂t. In order to avoid problems inherent to the

non positivity of such an operator we employ for the ghost sector the square root of the

determinant of the squared Fadeev-Popov operator, namely
√

det(−M2), which also leads

to better properties under the RG flow [30]. The corresponding ghost action is then

Sgh =

∫

dtN

∫

d2x
√
g
{

c̄ ∂2
t c+ c̄i ∂

2
t c

i + b ∂2
t b+ bi ∂

2
t b

i
}

, (4.10)

being ci and c Grassmannian complex fields, and bi and b real bosonic fields. The limit

α → 0 and β → 0 can be performed at the level of the second variation of the action, after

the rescaling n → αn and ni → β ni. It is clear that in such limit the fields n, and ni

will only survive in the gauge-fixing term, and we can set them to zero when writing the

variation of S. The gauge-fixing action is clearly non-dynamical and its integration in the

path integral will only give an ultralocal contribution to the action (proportional to δ(3)(0))

which we do not keep track of. Concerning the ghosts, they will produce a determinant of

−∂2
t to some power, which can only contribute to the renormalization of the cosmological

constant term.

5 One-loop setup

We want to evaluate the one-loop beta functions of the dimensionless coupling κ, λ and γ,

in order to study their renormalization group flow, and determine whether the theory is

asymptotically free or not. The one-loop effective action can be written as5

Γ = Stot + ℏS1−loop +O(ℏ2), S1−loop =
1

2
STr ln(S

(2)
tot) , (5.1)

where

Stot = S + Sgf + Sgh , (5.2)

S(2) indicates the second functional derivative respects to the fields and STr is a supertrace

(it includes a factor two for complex fields and a factor minus for Grassmann fields).

As usual, S1−loop will contain some UV divergences, which, being the theory renor-

malizable, we will be able to absorb in a renormalization of the bare couplings. The

dependence of the renormalized couplings upon the renormalization scale will determine

the beta functions.

5Occasionally we display Planck’s constant ℏ as a loop expansion parameter.
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The first step of the one-loop calculation is the evaluation of the second functional

derivative of the action. To that end, we use the splitting (3.1), under which the action

decomposes as

S[gij + ǫ hij ] = S[gij ] + ǫ δS[gij ;hij ] + ǫ2 δ2S[gij ;hij ] +O(ǫ3) . (5.3)

S(2)[gij ] = δ(2)S/δhklδhmn|h=0 can easily be read off from δ2S[gij ;hij ] by stripping off the

fluctuation fields. As we already discussed, we will use the decomposition (3.2) and discard

the traceless contributions ĥij , thus having simply hij =
1
2gijh. Expanding up to the second

order in the fluctuations, we first note that in d = 2 the variation of the metric determinant

√
g → √

g

(

1 + ǫ
1

2
h+O(ǫ3)

)

, (5.4)

has no part which is quadratic in the trace mode, and thus the bare cosmological constant

will not enter in the one-loop correction of the action. And due to (2.4), also the coupling

c in (2.1) will not appear in S1−loop.

Finally, as we are not interested here in discussing the renormalization of the cosmo-

logical constant, and as the gauge-fixing and ghost term can only contribute to that, we

will forget both about the lapse and shift fluctuations as well as about the ghosts.6 We are

thus left with a second variation depending only on the trace mode, namely

δ2S[gij ;hij ] =
1

2κ2

∫

dt d2x
√
g

{(

λ− 1

2

)

(∂th)
2 + γ h(D4 + 2RD2 +R2)h

}

. (5.5)

When perturbatively quantizing general relativity, the perturbative expansion parameter

ǫ is chosen to be equal to κ, so that the kinetic term for the graviton be canonically

normalized. In the present case we see that such choice is not enough, as the operator

in (5.5) depends on the two couplings λ and γ, and there is no choice by which we could

remove both of them. We should notice however that from a canonical point of view what

should be normalized to one half is really the coefficient of (∂th)
2, all the rest being part

of the potential. Restricting our analysis to the case λ > 1
2 (for λ < 1

2 the operator has the

wrong sign, we should start again from (2.1) and flip the signs of the extrinsic curvature

terms), we thus conclude that the effective perturbative coupling is

ǫ =
κ

(λ− 1
2)

1/2
. (5.6)

Absorbing ǫ into the second variation, and integrating by parts, equation (5.5) can now be

rewritten as

δ2S =
1

2

∫

dt d2x
√
g hD h , (5.7)

being

D = − 1√
g
∂t
√
g ∂t +

γ

λ− 1
2

(D2 +R)2 . (5.8)

6Note that this is not an approximation: we have discussed the gauge-fixing and ghosts in section 4

precisely in order to show that they cannot contribute to the renormalization of the dimensionless couplings.
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6 Divergences and beta functions

The supertrace in (5.1) reduces in our case to a single trace over the conformal mode of

the spatial metric, which we will evaluate by means of a heat kernel expansion. First, we

regulate the trace of the logarithm by rewriting it as7

S1−loop =
1

2
Tr ln(D) = −1

2

∫ +∞

1

Λ4

ds

s
Tr e−sD , (6.1)

being D ≡ δ2S
δhδh the operator (5.8), s a proper time variable, and Λ a UV cutoff of mass

dimension one (note that [s] = −4 due to the unusual mass-dimension of the time coor-

dinate), not to be confused with the cosmological constant, which from now on will not

appear anymore. If the operator D has zero or negative modes, then expression (6.1) will

need also an IR cutoff on the upper extreme of integration.

The integrand e−sD can be considered as the diagonal part of an operator

H(x, x′, s;D) =< x| e−sD |x′ > , (6.2)

which satisfies the heat equation

(∂s +D)H = 0 , (6.3)

with boundary condition

lim
s→0+

H(x, x′, s;D) =
1√
g
δ2(x− x′) . (6.4)

A well known feature of the heat kernel is that it admits in the limit s → 0+ an expansion

series in powers of s, which in the present case reads

H(x, x, s;D) =
∞
∑

n=0

s
n
2
−1 an(x;D) , (6.5)

the an coefficients being scalars built out of geometric tensors and their derivatives. Plug-

ging (6.5) into (6.1), and exchanging sum and integral, we immediately find that for n > 2

we can safely take the Λ → ∞ limit, and that all the UV divergences are contained in the

first three terms of the expansion. By simple dimensional analysis we expect logarithmic

divergences proportional to a2, and we expect the latter to be a linear combination of the

squares of the intrinsic and extrinsic curvatures of the spatial slices.

6.1 Heat kernel expansion

As a result of the heat kernel expansion, we write

1

2
Tr ln(D) = − 1

2

∫ 1

µ4

1

Λ4

ds

s
Tr e−sD

= − 1

2

∫ 1

µ4

1

Λ4

ds

s2

∫

dt d2x
√

ĝ
{

a0 + s
1

2 a1 + s a2 +O
(

s
3

2

)}

,

(6.6)

7A more rigorous procedure for regularizing the functional trace would consist in using a zeta function

regularization [31], however, as the final result is the same, we stick here to this more simplistic regulariza-

tion scheme.
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where we have introduced also an IR cutoff µ on the proper time integral, which in the

Wilsonian picture plays the role of a renormalization scale.

Whereas in the isotropic case the an coefficients of the corresponding heat kernel

expansion have been worked out by many different means and for many different operators,

very little is available about the anisotropic case. Luckily, for the case at hand we can take

advantage of the computations done in [32]. In fact, we can recognize that the action (5.7)

is almost the same as the one considered in that work, the only differences (beside our

background choice N = 1 which is unimportant) being the replacement D2 → D2 +R and

the presence of the coupling γ/(λ− 1
2), both of which are easily taken care of.

Concerning the presence of the coupling, we can simply notice that it can be dealt

with by introducing the auxiliary spatial metric

ĝij =

(

λ− 1
2

γ

) 1

2

gij , (6.7)

so that (5.7) now reads

δ2S =
1

2

(

γ

λ− 1
2

) 1

2 ∫

dt d2x
√

ĝ h

{

− 1√
ĝ
∂t
√

ĝ ∂t + (D̂2 + R̂)2
}

h , (6.8)

where D̂ is the spatial covariant derivate constructed from the auxiliary metric ĝij , and

R̂ the associated curvature. The coefficient (γ/(λ − 1
2))

1/2 in front of the integral decou-

ples when taking the logarithm of the second functional derivative, giving an ultra-local

contribution which can then be discarded. We thus are left with the operator

D̂ = − 1√
ĝ
∂t
√

ĝ ∂t + (D̂2 + R̂)2 , (6.9)

for which we can use the results of [32], in combination with [33], which we recall in

appendix A.

From [32] we can directly borrow the extrinsic curvature terms in a2, as the R̂ term

in (6.9) cannot contribute to those. For the terms depending only on the Ricci scalar,

we observe that the time derivatives cannot contribute to those and hence we can ad hoc

choose a time-independent metric and use the standard results from [33]. Putting things

together, we find

a2 = − 1

64π

(

K̂ij K̂
ij − 1

2
K̂2

)

. (6.10)

The coefficient (6.10) does not contain powers of the expected R̂2 term, a result true for

any operator of the type (D2 +X)2 in d = 2 [33], and in agreement with the X = 0 case

of [32]. As a consequence, we can deduce that no renormalization of the overall coupling

of R2 will take place. Similarly using [33], as explained in appendix A, we also obtain

a0 =
1

16π
, a1 =

7

48π3/2
R̂ . (6.11)
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Plugging (6.10) and (6.11) into (6.6) and integrating over the proper time we find

1

2
T̂r ln(D̂) =− 1

2

∫

dt d2x
√

ĝ

{

(Λ4 − µ4)
1

16π
+ (Λ2 − µ2)

14

48π3/2
R̂

+ ln

(

Λ

µ

)

1

16π

{

−K̂ij K̂
ij +

1

2
K̂2

}

+O
(

1

Λ2

)}

.

(6.12)

The only term of our interest is the logarithmic divergence, which we can now rewrite as

S1−loop
log =

1

32π

(

λ− 1
2

γ

) 1

2

ln

(

Λ

µ

) ∫

dt d2x
√
g

{

Kij K
ij − 1

2
K2

}

, (6.13)

having used (6.7) to express it in terms of the original metric gij .

6.2 Beta functions

We can now reabsorb the logarithmic divergencies by rewriting the bare couplings as gb,i =

gR,i+δgi, being gb,i the bare coupling of the local operator Oi(x), δgi a counterterm chosen

so to cancel the divergences and gR,i the renormalized coupling. More specifically, we define

the renormalized couplings as

2

κ2R
=

2

κ2
− 1

32π

(

λ− 1
2

γ

) 1

2

ln

(

Λ

µ

)

,

2λR

κ2R
=

2λ

κ2
− 1

64π

(

λ− 1
2

γ

) 1

2

ln

(

Λ

µ

)

,

2 γR
κ2R

=
2 γ

κ2
.

(6.14)

We can now solve the first of (6.14) obtaining the expression of the renormalized coupling

κ2, which reads

κ2R =
κ2

(

1− κ2

64π

(

λ− 1

2

γ

)

1

2

ln
(

Λ
µ

) )

= κ2

(

1 +
κ2

64π

(

λ− 1
2

γ

) 1

2

ln

(

Λ

µ

)

)

+O(ℏ2) , (6.15)

which used back in (6.14) leads to

λR = λ+
1

64π

κ2

γ1/2

(

λ− 1

2

) 3

2

ln

(

Λ

µ

)

+O(ℏ2) ,

γR = γ



1 +
κ2

64π

(

λ− 1
2

γ

) 1

2

ln

(

Λ

µ

)



+O(ℏ2) .

(6.16)

The beta functions can be evaluated by stating the independence of the bare coupling

from the renormalization scale µ, i.e. µ∂µ gb = µ∂µ gR + µ∂µ δg = 0, which leads to the
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system of beta functions

βκ2 = µ∂µ κ
2
R = − κ4

64π

(

λ− 1
2

γ

) 1

2

,

βλ = µ∂µ λR =

(

λ− 1
2

)

κ2
βκ2 ,

βγ = µ∂µ γR =
γ

κ2
βκ2 .

(6.17)

Since the right-hand side of (6.17) are O(ℏ) we can substitute the bare couplings with the

renormalized one everywhere in the beta functions. Now we can use (6.17) to find

µ∂µ

(

λR − 1
2

γR

)

=
1

γR
βλ − λR − 1

2

γ2R
βγ = 0 , (6.18)

so that
(

λR − 1
2

γR

)

= b , (6.19)

being b a constant. Inserting (6.19) in the first of (6.17) we can solve the differential

equation for κ2R, obtaining

k2R(µ) =
64π

b1/2 (ln µ
µ0

+ C)
, (6.20)

where C is an integration constant fixed by the boundary condition at some initial scale

µ = µ0. Using (6.19) and (6.20) in (6.17) we can integrate the remaining two beta functions

obtaining the flow of the renormalized couplings λR and γR, which respectively read

λR(µ) =
1

2
+

C1

ln µ
µ0

+ C
, (6.21)

γR(µ) =
C2

ln µ
µ0

+ C
, (6.22)

being C1 and C2 other two integration constants. Moreover, inserting (6.21) and (6.22)

in (6.19) we can see that b = C1/C2.

We observe that the running coupling (6.20) has the standard behavior of an asymp-

totically free coupling, running to zero for µ → ∞. However, we note that also λR − 1
2 and

γR have the same behavior, a fact which leads to a problem for the perturbative treatment

of HL gravity. We have argued before that the effective perturbative coupling is ǫ, and

substituting (6.22) and (6.21) in (5.6), we find the renormalized coupling to be

ǫ2R =
κ2R

λR − 1
2

=
64π C

1/2
2

C
3/2
1

, (6.23)

so that it does not run to zero in the ultraviolet limit, but instead it remains constant

along the renormalization group flow. That is, the coupling ǫ is marginal at one-loop

order. Since the parameter ǫ characterizes the interaction strength of the theory, we are

then in a situation in which the strength of the interaction remains finite at all scales, in

particular meaning that the theory is not asymptotically free.
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7 Conclusions

We have presented here a one-loop calculation in the context of Hořava-Lifshitz gravity.

Due to the complexity of the full theory we restricted our analysis to a toy model, namely

the conformal reduction of the projectable theory in 2+1 dimensions. For this particular

choice of the dimension the conformal mode of the spatial metric is the only degree of

freedom of the theory, thus we expect that the conformal reduction captures the main

qualitative features of the model. We have evaluated the renormalization group flow at a

one-loop level for the dimensionless couplings of the model, in order to better understand

the UV properties of such type of theories, and in particular to assess whether they can

be asymptotically free. Although we found that Newton’s constant runs towards zero

value in the UV, we also discovered that the coupling λ flows to one half as fast as the

Newton constant, implying that the perturbative parameter ǫ remains finite at all scales,

thus spoiling the hopes of asymptotic freedom of the theory.

Looking back at (5.5), we can interpret the origin of such situation as a competition

between the would-be asymptotic freedom of Newton’s constant, and the strong coupling

phenomenon that occurs when approaching λ = 1/2. The latter is indeed a singular limit,

in which the scalar mode is non-propagating. A similar strong-coupling phenomenon was

pointed out in [34] in relation to the supposed IR limit λ → 1 of the full HL theory,

and it can be generically expected that some form of strong coupling or discontinuity

will be associated to the disappearance of degrees of freedom due to enhanced symmetry,

as for example in the massless limit of gravitons [35, 36]. In our case, the enhanced

symmetry could be traced back to an anisotropic version of Weyl invariance at λ = 1/2

and γ = 0 [19]. In analogy to the isotropic case, where scale invariance and unitarity

of a quantum field theory imply conformal invariance (up to anomalies) in two [37] and

seemingly four dimensions [38, 39], we might expect to have anisotropic Weyl invariance at

a fixed point of the renormalization group in HL gravity (again up to anomalies [28, 32, 42]),

and we can thus conjecture that our conclusion will apply also to the full theory, at least

for what concerns λ. As we have restricted our theory to the projectable case, we miss

the necessary terms to make the spatial part Weyl invariant [28], but anisotropic Weyl

invariance could be realized at a fixed point with γ 6= 0 for the non-projectable model.

We should emphasize that while in [1, 19] a two-parameter family of fixed points was

correctly identified, what we found here means that only one of them is reached by the

interacting theory. In order to better explain such point, it might be useful to look at

a similar situation, by recalling what happens for a massless scalar field theory in four-

dimensional curved spacetime with non-minimal coupling ξ Rφ2. Being quadratic in the

scalar field, we could include the non-minimal coupling term in the free action, and as ξ is

dimensionless we deduce that it defines a one-parameter family of fixed points. However,

the beta function for the quartic self-interaction coupling g and the coupling ξ in the

MS-scheme read respectively [40, 41]

βg =
3 g2

(4π)2
, βξ =

g

(4π)2

(

ξ − 1

6

)

, (7.1)
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and integrating them from a negative initial condition for the coupling g (so that it runs to

zero in the UV limit, instead of hitting a Landau pole) we find that ξ(µ) → 1/6 for µ → ∞,

independently on the initial value g(µ0) < 0. In this case ξ = 1/6 is the value at which

the theory shows conformal invariance at the classical level, and so analogously to our

situation it is a value which is preferred by the flow trajectories, being the only one among

the line of Gaussian fixed points that can be reached by the interacting theory. Of course

the analogy is limited to this observation, the scalar theory being truly asymptotically free

(albeit unbounded from below), and not loosing any degree of freedom as a consequence of

Weyl invariance.

For completeness, we should point out that whereas for the reasons just discussed

we expect the one-loop approach to the anisotropic Weyl invariant action to be a feature

that the full theory will share with our toy model, we have no argument to support an

analogous situation with the approach being such that the effective perturbative coupling

ǫ remains finite. Furthermore, even in our toy model, ǫ might cease to be marginal at two

loops or beyond. Only an explicit calculation could tell whether the additional degrees

of freedom of the full higher dimensional model, or higher loop effects, might change the

picture, however our toy model shows that potential troubles associated to strong coupling

could be expected.

A The heat kernel coefficients

In order to keep this paper as self-contained as possible, we recall here the results of [32]

and [33].

In [32], the authors studied the scalar theory described by the following action

S[φ; gij ] =
1

2

∫

dt d2x
√

ĝ Nφ D̂0 φ , (A.1)

where

D̂0 = − 1

N
√
ĝ
∂t

1

N

√

ĝ ∂t + D̂4 , (A.2)

and in order to find the associated conformal anomaly, they computed the first three

coefficients in the heat kernel expansion (6.5) for the operator D̂0, thus finding

a0 =
1

16π
, a1 =

1

48π3/2
R̂ , (A.3)

a2 = − 1

64π

(

K̂ij K̂
ij − 1

2
K̂2

)

. (A.4)

As explained in the text, our operator (6.9) differs from (A.2) in the spatial part, but

in order to compute the effect of that, we can choose a time-independent background and

exploit the results of [33], where the first three non-zero heat kernel coefficients for the

scalar operator

D2 = (−gµν ∇µ∇ν)
2 + V µν ∇µ∇ν +Bµ∇µ +X , (A.5)

– 13 –



J
H
E
P
0
3
(
2
0
1
4
)
0
7
8

were computed on a general d-dimensional manifold, and arbitrary tensors V µν , Bµ and

X. In this case the heat kernel expansion writes

H(x, x, s;D2) =
∞
∑

n=0

s
n−d
4 En(x;D2) , (A.6)

The result reads

E0(x;D2) =
1

(4π)
d
2

Γ(d4)

2 Γ(d2)
,

E2(x;D2) =
1

(4π)
d
2

Γ
(

d−2
4

)

2Γ
(

d−2
2

)

{

1

6
R+

1

2d
V

}

, (A.7)

E4(x;D2) =
1

(4π)
d
2

Γ(1 + d
4)

2 Γ(1 + d
2)

×
{

(d− 2)

(

1

90
RαβγδRαβγδ −

1

90
RαβRαβ +

1

36
R2 +

1

15
∇2R

)

+
d+ 4

6 (d+ 2)
∇2V − 2 (d+ 1)

3 (d+ 2)
∇α∇βV(αβ) +

1

4 (d+ 2)
V 2

+
1

2 (d+ 2)
V (αβ)V(αβ) +

1

6
V R− 1

3
V (αβ)Rαβ +∇αBα − 2X

}

.

where V = Vα
α and

V (αβ) =
1

2
(V αβ + V βα) . (A.8)

For our purposes we need to specialize (A.7) to d = 2, interpret ∇α as D̂α, take

V µν = 2ĝµνR̂ , Bµ = 0 , X = R̂2 , (A.9)

and multiply by an extra factor (4π)−1/2 because of the extra (time) dimension in the

trace. As a result we get

a0 =
1

16π
, a1 =

7

48π3/2
R̂ , a2 = 0 , (A.10)

which is the time-independent (vanishing extrinsic curvature) version of the heat kernel

coefficients we need for our one loop computation. Combining (A.10) with (A.4) we obtain

the full coefficients (6.11) and (6.10).

Open Access. This article is distributed under the terms of the Creative Commons
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