Supporting Information:

Sulfoxide-mediated Umpolung of Alkali Halide Salts

Sebastian Klimczyk, Xueliang Huang, Christophe Farès and Nuno Maulide* Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany maulide@mpi-muelheim.mpg.de

Table of Contents

Part I: Experimental Part: 2
General Information 2
α-Functionlisation of carbonyl compounds: 4
General Procedure for the α-functionalisation of ketones: 4
Bromolactonisation: 14
General Procedure for the bromolactonisation 14
Part II: Spectral Data for new compounds 17
Part III: Crystallographic Information 26
Crystal Structure of cis-4k 26
Crystal Structure of 4n 31
Crystal Structure of 6d 36

Part I: Experimental Part:

General Information

Unless otherwise stated, all glassware was oven dried and all reactions were carried out under an argon atmosphere using standard schlenk techniques. Dried acetonitrile was purchased from Acros Organics, and was stored under Argon. All commercially available reagents were purchased from Acros Organics, Alfa Aesar, Fluka AG or Sigma Aldrich and were used without further purification. Beta-Ketoesters ${ }^{1}$ and unsaturated carboxylic acids ${ }^{2}$ were prepared according to literature methods. Reaction progress was monitored by thin layer chromatography (TLC) performed on plastic plates coated with silica gel F_{254} with 0.2 mm thickness. Visualization was achieved by ultraviolet light (254 nm). Flash column chromatography was performed using silica gel 60 (230-400 mesh, Merck and co.). Neat infra-red spectra were recorded using a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Wavelengths (v) are reported in cm^{-1}. Mass spectra were obtained using a Finnigan MAT 8200 or $(70 \mathrm{eV})$ or an Agilent $5973(70 \mathrm{eV})$ spectrometer, using electrospray ionization (ESI). All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV-500 $\left({ }^{1} \mathrm{H}: 500.4 \mathrm{MHz} ;{ }^{13} \mathrm{C}\right.$: $125.8 \mathrm{MHz})$ or on a Bruker DPX $300\left({ }^{1} \mathrm{H}: 300.1 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 75.5 \mathrm{MHz}\right)$. All spectra were recorded in CDCl_{3}, chemical shifts were given in parts per million (ppm, δ), referenced to the peak of tetramethylsilane, using the solvent as internal standard ($\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}: 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}$: $77.16 \mathrm{ppm})^{3}$. Coupling constants were quoted in $\mathrm{Hz}(J) .{ }^{1} \mathrm{H}$ NMR Spectroscopy splitting patterns were designated as singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), septet (se), octet (o). Splitting patterns that could not be interpreted or easily visualized were designated as multiplet (m) or broad (br).

Reaction Optimization:

Entry:	Salt:	Additive:	Reaction time [h]:	Activating agent:	Conversio n [\%]:	Yield [\%]: ${ }^{b}$
1	TBACl	---	28	TFAA 1.2 eq .	Very low	Traces
2	NaCl		26		88	29 [50] ${ }^{\text {c }}$
3		15-crown-5 10%	24		61	39 [53] ${ }^{\text {c }}$
4	LiCl	---	25		100	$44\left[\mathrm{nd}^{d}\right]^{c}$
5			19.5	TMSOTf 1.2 eq.		77
6	FeCl_{3}		18.5			72
7			20	TMSOTf 1.5 eq.		78
8	LiCl		2			84
9	NaCl		2			84
10	CsCl		7			88
11	CaCl_{2}		23			84
12	MgCl_{2}		24			84

Table 2: Screening of different sulfoxides. ${ }^{a}$

Entry:	Sulfoxide:	Reaction time [h]:	Yield [\%]:
$\mathbf{1}$	$\mathrm{Me}_{2} \mathrm{SO}$	19.5	75
$\mathbf{2}$	$(\mathrm{Ph})_{2} \mathrm{SO}$	8	83^{b}
$\mathbf{3}$	PhMeSO_{2}	2	84
$\mathbf{4}$	$\left(\mathrm{p}-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{MeSO}$	2	80
$\mathbf{5}$	$\left(\mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right) \mathrm{MeSO}$	1	59

${ }^{a}$ - Reactions were carried out in dry acetonitrile, at room temperature. All yields refer to pure, isolated compounds. ${ }^{b}-90 \%$ conversion.

α-Functionlisation of carbonyl compounds:

General Procedure for the $\boldsymbol{\alpha}$-functionalisation of ketones:

A suspension of ketone (0.5 mmol), methyl phenyl sulfoxide ($70.7 \mu \mathrm{l}, 84.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), trimethylsilyl trifluoromethansulfonate ($135.8 \mu 1,166.6 \mathrm{mg}, 0.75 \mathrm{mmol})$ and the corresponding sodium halide ($35.1 \mathrm{mg}, 0.6 \mathrm{mmol}(\mathrm{NaCl}) ; 62.2 \mathrm{mg}, 0.6 \mathrm{mmol}(\mathrm{NaBr})$) in acetonitrile (1 ml) was stirred for the mentioned time. The mixture was subsequently hydrolysed with water (10 ml), extracted with methyl tert-butyl ether ($3 \times 10 \mathrm{ml}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was evaporated in vacuo, and the crude product was purified by column chromatography on silica gel.

Ethyl 1-chloro-2-oxocyclohexanecarboxylate (4a):

The compound was prepared according to the general method using ethyl 2oxocyclohexanecarboxylate ($0.5 \mathrm{mmol}, 85.11 \mathrm{mg}, 80.3 \mu \mathrm{l}$). Stirring for 2 hours and purification by column chromatography using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a yellowish oil ($\mathrm{R}_{f}=0.07,86 \mathrm{mg}, 0.42$ $\mathrm{mmol}, 84 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=4.30(2 \mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.76(\mathrm{~m}$, $1 \mathrm{H}), 2.44$ (ddd, $J=14.1,8.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=199.85$, $167.39,73.64,63.05,39.76,38.99,26.84,22.30,14.0 \mathrm{ppm}$

The spectral data correlate to those reported in the literature. ${ }^{4}$

Ethyl 1-chloro-2-oxocyclopentanecarboxylate (4b):

The compound was prepared according to the general method using ethyl 2-
 oxocyclopentanecarboxylate ($0.5 \mathrm{mmol}, 78.09 \mathrm{mg}, 74.4 \mu \mathrm{l}$). Stirring for 4.5 hours and purification by column chromatography using n-pentane / ether (10:1) as eluent, gave the title compound as a colourless oil $\left(\mathrm{R}_{f}=0.1,62.9 \mathrm{mg}, 0.33 \mathrm{mmol}\right.$, 66%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.68(\mathrm{~m}, 1 \mathrm{H}), 4.28$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.22-1.98$ $(\mathrm{m}, 2 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($7 \mathbf{5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=206.31,167.38$, $69.78,63.28,38.54,35.50,19.25,14.15 \mathrm{ppm}$
The spectral data correlate to those reported in the literature. ${ }^{4}$

Methyl 1-chloro-2-oxocycloheptanecarboxylate (4c):

The compound was prepared according to the general method using methyl 2-oxocycloheptanecarboxylate ($0.5 \mathrm{mmol}, 85.11 \mathrm{mg}, 78,1 \mu \mathrm{l}$). Stirring for 4 hours and purification by column chromatography using n-pentane / ether (10:1) as eluent, gave the title compound as a colourless oil ($\mathrm{R}_{f}=0.13,88.5 \mathrm{mg}, 0.43 \mathrm{mmol}$, 86%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=3.82(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{ddd}, J=12.7,7.6,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.73-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=15.4,9.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=15.5,7.9,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.94-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=202.52$, $168.70,76.11,53.76,40.72,37.81,29.23,25.41,24.83 \mathrm{ppm}$
The spectral data correlate to those reported in the literature. ${ }^{4}$

Ethyl 1-chloro-2-oxocyclooctanecarboxylate (4d):

The compound was prepared according to the general method using ethyl
 2-oxocyclooctanecarboxylate ($0.5 \mathrm{mmol}, 99.13 \mathrm{mg}, 95.3 \mu \mathrm{l}$). Stirring for 5.5 hours and purification by column chromatography using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a colourless oil $\left(\mathrm{R}_{f}=0.23,101 \mathrm{mg}, 0.44 \mathrm{mmol}, 87 \%\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=4.25(2 \mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.28$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{tdd}, J=16.6,8.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $=204.44,167.76,77.25,63.06,38.07,34.13,29.28,25.68,23.99,22.93,13.97 \mathrm{ppm}$
The spectral data correlate to those reported in the literature. ${ }^{5}$

2-Acetyl-2-chlorocyclohexanone (4e):

The compound was prepared according to the general method using 2acetylcyclohexanone ($0.5 \mathrm{mmol}, 70.1 \mathrm{mg}, 65.9 \mu \mathrm{l}$). Stirring for 3.5 hours and purification by column chromatography using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a colourless oil ($\left.\mathrm{R}_{f}=0.13,56 \mathrm{mg}, 0.32 \mathrm{mmol}, 64 \%\right) .{ }^{1} \mathbf{H}$ NMR (300 MHz, $\mathbf{C D C l}_{3}$): $\delta=2.98$ (ddd, J = $10.0,9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.67-2.53(\mathrm{~m}, 1 \mathrm{H})$, 2.41-2.29 (m, 1H), 2.36(s, 3H), 2.18-2.05 (m, 1H), 2.04-1.91 (m, 2H), 1.89-1.74 (m, 2H) ppm; ${ }^{13} \mathbf{C}$ NMR ($7 \mathbf{5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=203.18,201.26,76.88,38.92,37.86,27.13,26.95$, 21.61 ppm

The spectral data correlate to those reported in the literature. ${ }^{6}$

Ethyl 2-chloro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (4f):

The compound was prepared according to the general method using
 ethyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (0.5 mmol , $109.13 \mathrm{mg}, 104 \mu \mathrm{l})$. Stirring for 3.5 hours and purification by column chromatography using i-hexane / ethyl acetate ($30: 1$) as eluent, gave the title compound as a colourless oil ($\mathrm{R}_{f}=0.09,112 \mathrm{mg}, 0.44 \mathrm{mmol}, 89 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.10$ (dd, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{ddd}, J=14.9,9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.84(\mathrm{~m}$, $2 \mathrm{H}), 2.61-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=$ $187.79,167.60,142.67,134.53,129.83,129.14,128.90,127.43,70.96,63.25,35.15,25.74$, 14.10 ppm

The spectral data correlate to those reported in the literature. ${ }^{7}$

Methyl 2-chloro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (4g):

The compound was prepared according to the general method using methyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (0.5 mmol , 102.11 mg). Stirring for 3 hours and purification by column chromatography, using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a yellowish oil ($\left.\mathrm{R}_{f}=0.09108 \mathrm{mg}, 0.46 \mathrm{mmol}, 91 \%\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=8.10$ (dd, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.29$ (ddd, $J=15.0,9.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.60-$ $2.47(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=187.71,168.17,142.69,134.62,129.71$, 129.20, 128.92, 127.47, 70.87, 53.98, 35.19, 25.71 ppm

The spectral data correlate to those reported in the literature. ${ }^{7}$

Ethyl 2-chloro-6-methoxy-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (4h):

The compound was prepared according to the general method using ethyl 6 -methoxy-1-oxo-1,2,3,4-tetrahydronaphthalene-2carboxylate ($0.5 \mathrm{mmol}, 124.14 \mathrm{mg}$). Stirring for 2.5 hours and purification by column chromatography using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a yellowish oil $\left(\mathrm{R}_{f}=0.11,129 \mathrm{mg}, 0.43\right.$ mmol, 86\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.8$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.26$ (ddd, $J=$ $13.5,9.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=186.60,167.83,164.55,145.29,131.74,123.14,114.22$, $112.62,70.94,63.18,55.72,35.27,26.08,14.12 \mathrm{ppm}$

The spectral data correlate to those reported in the literature. ${ }^{7}$

Ethyl 5-chloro-4-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-5-carboxylate (4i):

The compound was prepared according to the general method using ethyl 4-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-5-carboxylate (0.5 $\mathrm{mmol}, 112.14 \mathrm{mg}, 92.4 \mu \mathrm{l}$). Stirring for 5 hours and purification by column chromatography using i-hexane / ethyl acetate (20:1) as eluent, gave the title compound as a colourless oil ($\left.\mathrm{R}_{f}=0.13,120 \mathrm{mg}, 0.46 \mathrm{mmol}, 93 \%\right) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=7.44(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.29 (ddd, $J=17.4,9.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 (dt, $J=17.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (ddd, $J=$ $14.1,9.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=14.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=182.40,167.47,154.84,133.71,126.04,124.53,70.41,63.34,36.77$, 22.63, 14.12 ppm . IR (neat): $v=3111,2937$ 1756, 1731, 1679, 1523, 1400, 1274, 1243, 1223, 1086, 1035, 1014, 908, 712, 695. MS (EI): m/z (\%) = 258 (10), 223 (57), 177 (13), 151 (29), 124 (100), 96 (36). HRMS (ESIpos): calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{ClNaS}$: 281.0009, found: 281.0008.

2-Chloro-2-methyl-3,4-dihydronaphthalen-1(2H)-one (4j):

The compound was prepared according to the general method using ethyl 2-
 methyl-3,4-dihydronaphthalen-1(2H)-one ($0.5 \mathrm{mmol}, 80.1 \mathrm{mg}, 75.8 \mu \mathrm{l})$. Stirring for 3 hours and purification by column chromatography using ihexane / ethyl acetate ($30: 1$) as eluent, gave the title compound as a colourless solid $\left(\mathrm{R}_{f}=0.26\right.$, $80.8 \mathrm{mg}, 0.42 \mathrm{mmol}, 84 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=8.11(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-$ $3.32(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=14.5,4.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (ddd, $J=14.5$, $11.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=191.54$, 143.19, $133.94,129.89,129.08,128.85,127.14,67.69,38.59,26.79,26.14 \mathrm{ppm}$.
The spectral data correlate to those reported in the literature. ${ }^{8}$

Ethyl 5-(tert-butyl)-1-chloro-2-oxocyclohexanecarboxylate (4k):

The compound was prepared according to the general method using ethyl 50.17 , meso, colourless oil that can be cystalized from pentane at $-20^{\circ} \mathrm{C}(60 \mathrm{mg}, 0.23 \mathrm{mmol}$, $46 \%) . \mathrm{R}_{f}=0.1$, colourless oil ($15 \mathrm{mg}, 0.07 \mathrm{mmol}, 14 \%$). Cis-4k: ${ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta=4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{td}, J=14.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.26(\mathrm{~m}, 3 \mathrm{H})$, $2.10(\mathrm{ddd}, J=13.1,6.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{tt}, J=12.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{ddd}, J=26.3,13.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=$ 201.60, 167.83, 72.66, 63.06, 41.61, 39.48, 36.42, 32.26, 27.69, 27.56, 14.17 ppm . IR (neat): $v=2947,2866,1738,1368,1251,1011,791$. MS (EI): m/z (\%) = 260 (23), 245 (10), 197 (54), 169 (31), 141 (15), 123 (10), 83 (15), 69 (13), 67 (15), 57 (100), 55 (47), 53 (10), 43 (15), 41 (52), 29 (49). HRMS (ESIpos): calc. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{ClNa}$ 283.1071, found: 283.1068. Trans-4k: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=4.39-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{dt}, J=13.1,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.70(\mathrm{ddd}, J=14.3,3.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{td}, J=14.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=11.5$, $5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{tt}, J=12.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{ddd}, J=26.3$, $12.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=199.00,167.41,74.28,63.04,45.79,42.38,39.97,32.68,27.86,27.55,13.99 \mathrm{ppm}$. IR (neat): $v=2961,2873,1759,1737,1723,1368,1250,1225,1046,1018,742$. MS (EI): m / z $(\%)=260(10), 197(50), 169(41), 140(33), 123(14), 95(11), 83(16), 67(14), 57(100), 55$ (29), 41 (40), 27 (11) . HRMS (ESIpos): calc. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{ClNa}$: 283.1071, found: 283.1071.

3-Acetyl-3-chlorodihydrofuran-2(3H)-one (41):

 The compound was prepared according to the general method using acetyldihydrofuran-2($3 H$)-one ($0.5 \mathrm{mmol}, 64.07 \mathrm{mg}, 53.8 \mu \mathrm{l}$). Stirring for 5 hours and purification by column chromatography using n-pentane / ether (10:1) as eluent, gave the title compound as a colourless oil ($\left.\mathrm{R}_{f}=0.09,54.3 \mathrm{mg}, 0.33 \mathrm{mmol}, 67 \%\right)$. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=4.56-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}), 2.50$ (ddd, $\mathrm{J}=14.1,6.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=198.32,170.14,67.46$, 66.10, 35.26, 26.06 ppm

The spectral data correlate to those reported in the literature. ${ }^{5}$

Ethyl 2-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4m):

The compound was prepared according to the general method using ethyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate $(0.5 \mathrm{mmol}, 102.11$
$\mathrm{mg}, 78.5 \mu \mathrm{l}$). Stirring for 5 hours and purification by column chromatography using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a yellowish oil ($\left.\mathrm{R}_{f}=0.14,94 \mathrm{mg}, 0.40 \mathrm{mmol}, 79 \%\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.86(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 4.27(2 \mathrm{q}, J=7.1,2 \mathrm{H}), 4.09(\mathrm{~d}, J$ $=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$, $\mathbf{C D C l}_{3}$): $\delta=195.27,167.26,150.73,136.55,132.66,128.73,126.44,126.12,68.12,63.58$, $43.55,14.10 \mathrm{ppm}$
The spectral data correlate to those reported in the literature. ${ }^{4}$

Ethyl 5-bromo-2-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4n):

The compound was prepared according to the general method using ethyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (0.5 $\mathrm{mmol}, 141.56 \mathrm{mg})$. Stirring for 6 hours and purification by column chromatography using i-hexane / ethyl acetate ($30: 1$) as eluent, gave the title compound as a yellow solid ($\left.\mathrm{R}_{f}=0.09,130 \mathrm{mg}, 0.41 \mathrm{mmol}, 82 \%\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.71(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.07$ (d, $J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=194.09,166.81,152.15,132.46,132.22,131.47,129.79,127.14,67.89$, $63.73,43.08,14.08 \mathrm{ppm}$. IR (neat): $v=3090,2986,2927,1759,1718,1590,1578,1413$, 1318, 1263, 1240, 1204, 1181, 1113, 1054, 1014, 885, 859, 818, 742, 708. MS (EI): m/z (\%) $=318$ (5), 281 (88), 253 (22), 243 (20), 235 (100), 225 (23), 209 (38), 136 (26), 101 (21), 74 (13), 29 (35) . HRMS (ESIpos): calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{BrClNa}$: 338.9394, found: 338.9391.

Ethyl 2-chloro-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (40):

The compound was prepared according to the general method using ethyl 5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (0.5 $\mathrm{mmol}, 117.5 \mathrm{mg}, 104.9 \mu \mathrm{l})$. Stirring for 6 hours and purification by column chromatography using i-hexane / ethyl acetate (8:2) as eluent, gave the title compound as a yellow oil ($\left.\mathrm{R}_{f}=0.14,78 \mathrm{mg}, 0.29 \mathrm{mmol}, 58 \%\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta=7.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J$
$=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=193.30,167.46,166.82,153.94,127.90$, $125.67,116.84,109.57,68.65,63.51,56.03,43.51,14.12 \mathrm{ppm}$. IR (neat): $v=2981,2944$, 1755, 1712, 1595, 1491, 1446, 1304, 1256, 1179, 1075, 1019, 843, 659. MS (EI): m/z (\%) = 268 (8), 233 (44), 195 (16), 187 (100), 177 (12), 161 (23), 29 (12). HRMS (ESIpos): calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{ClNa}$ 291.0394, found: 291.0390 .

2-Chloro-2-phenylcyclohexanone (4p):

The compound was prepared according to the general method using 2phenylcyclohexanone ($0.5 \mathrm{mmol}, 87.1 \mathrm{mg}$). Stirring for X hours and purification by column chromatography using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a colourless oil $\left(\mathrm{R}_{f}=0.14,77.2 \mathrm{mg}, 0.37\right.$ mmol, 74\%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.40(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=8.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, \mathrm{J}=14.5,7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 1 \mathrm{H})$, 2.09-1.98(m, 1H), $1.92(\mathrm{tt}, \mathrm{J}=12.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{ddd}, \mathrm{J}=13.3,8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=203.54,138.72,128.91,128.72,127.16,76.82,41.89$, 39.17, 27.45, 22.83 ppm

The spectral data correlate to those reported in the literature. ${ }^{8}$

Ethyl 2-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5a):

The compound was prepared according to the general method using
 ethyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (0.5 mmol , 102.11 $\mathrm{mg}, 78.5 \mu \mathrm{l}$). Stirring for 5 hours and purification by column chromatography using i-hexane / ethyl acetate ($30: 1$) as eluent, gave the title compound as a yellowish oil ($\mathrm{R}_{f}=0.07,115.1 \mathrm{mg}, 0.40 \mathrm{mmol}, 80 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.87$ $(\mathrm{d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 2 \mathrm{H}), 4.29(2 \mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.21(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=195.30,167.15,150.30,136.41,132.39,128.69,126.43$, $126.09,63.69,58.61,43.99,14.08 \mathrm{ppm}$
The spectral data correlate to those reported in the literature. ${ }^{9}$

Ethyl 2,5-dibromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (5b):

The compound was prepared according to the general method using ethyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (0.5
mmol, 141.6 mg$)$. Stirring for 1.5 hours and purification by column chromatography using i hexane / ethyl acetate (30:1) as eluent, gave the title compound as a colourless solid ($\mathrm{R}_{f}=0.24$, $168.1 \mathrm{mg}, 0.46 \mathrm{mmol}, 93 \%) .{ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(2 \mathrm{q}, ~ J=7.1,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=18.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : δ $=194.16,166.75,151.77,132.44,132.08,131.24,129.78,127.17,63.88,58.16,43.55$, 14.09 ppm . IR (neat): $v=3097,2989,1748,1714,1578,15921414,1317,1260,1235,1206$, 1182, 1032, 1013, 986, 910, 858, 837, 775, 731, 709, 680. MS (EI): m/z (\%) =362 (1), 281 (55), 235 (100), 209 (31), 180 (13), 101 (23), 75 (23), 29 (44) . HRMS (ESIpos): calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Br}_{2} \mathrm{Na}: 382.8889$, found: 382.8888 .

Ethyl 2-bromo-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (5c):

The compound was prepared according to the general method using
 ethyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (0.5 mmol , $109.13 \mathrm{mg}, 104 \mu \mathrm{l})$. Stirring for 3.5 hours and purification by column chromatography using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a colourless oil ($\mathrm{R}_{f}=0.07,134.6 \mathrm{mg}, 0.49 \mathrm{mmol}, 90 \%$). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=8.10(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.29-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.11-$ $2.90(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dt}, J=9.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (75 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=187.69,167.47,142.49,134.44,129.66,129.18,128.88,127.41,65.25$, 63.39, 35.80, 26.94, 14.07 ppm

The spectral data correlate to those reported in the literature. ${ }^{7}$

Ethyl 5-bromo-4-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-5-carboxylate (5d):

The compound was prepared according to the general method using
 ethyl 4-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-5-carboxylate (0.5 $\mathrm{mmol}, 112.14 \mathrm{mg}, 92.4 \mu \mathrm{l}$). Stirring for 5 hours and purification by column chromatography using i-hexane / ethyl acetate ($30: 1$) as eluent, gave the title compound as a colourless oil ($\mathrm{R}_{f}=0.08,140.3 \mathrm{mg}, 0.46 \mathrm{mmol}, 92 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=7.44(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(2 \mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.29-3.11 (m, 2H), 3.05 (ddd, $J=14.1,8.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.64(\mathrm{dt}, J=14.2,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=182.46,167.32,154.48$, 133.57, 126.15, 124.47, 64.42, 63.49, 37.56, 23.79, 14.09 ppm . IR (neat): $v=3082,3119$,

2979, 1746, 1674, 1526, 1401, 1277, 1240, 1227, 1187, 1123, 1087, 1026, 999, 907, 873, 718, 690. MS (EI): m/z (\%) = 223 (63), 177 (31), 151 (64), 124 (100), 96 (47), 45 (11), 29 (15). HRMS (ESIpos): calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{BrNaS}: 324.9505$, found: 324.9508.

2-Bromo-2-methyl-3,4-dihydronaphthalen-1(2H)-one (5e):

The compound was prepared according to the general method using ethyl 2-methyl-3,4-dihydronaphthalen-1(2H)-one ($0.5 \mathrm{mmol}, 80.1 \mathrm{mg}, 75.8 \mu \mathrm{l})$. Stirring for 0.3 hours and purification by column chromatography using i hexane / ethyl acetate (30:1) as eluent, gave the title compound as a yellowish oil $\left(\mathrm{R}_{f}=0.17\right.$ $107.6 \mathrm{mg}, 0.45 \mathrm{mmol}, 90 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.11(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-$ $3.31(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=14.5,4.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{ddd}, J=14.5$, $11.34 .7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=191.54,143.19$, $133.94,129.89,129.08,128.85,127.14,67.69,38.59,26.79,26.14 \mathrm{ppm}$.
The spectral data correlate to those reported in the literature. ${ }^{10}$

Ethyl 3-bromo-2-hydroxycyclohex-1-enecarboxylate (7a):

The compound was prepared according to the general method using ethyl
 2-oxocyclohexanecarboxylate ($0.5 \mathrm{mmol}, 85.11 \mathrm{mg}, 80.3 \mu \mathrm{l}$). Stirring for 3.5 hours and purification by column chromatography using i-hexane / ethyl acetate ($30: 1$) as eluent, gave the title compound as a colourless oil $\left(\mathrm{R}_{f}=0.1,65.6 \mathrm{mg}, 0.26 \mathrm{mmol}, 53 \%\right) .{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=12.09(\mathrm{~s}, 1 \mathrm{H}), 4.75-$ $4.66(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{td}, J=11.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-$ $2.17(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=172.45,166.63,100.05,61.10,46.07,32.34$, 22.46, 17.97, 14.33 ppm .

1-(3-Bromo-2-hydroxycyclohex-1-en-1-yl)ethanone (7b):

The compound was prepared according to the general method using ethyl 2-
 acetylcyclohexanone ($0.5 \mathrm{mmol}, 70.1 \mathrm{mg}, 65.9 \mu \mathrm{l}$). Stirring for 3.5 hours and purification by column chromatography using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a colourless oil $\left(\mathrm{R}_{f}=0.09,87.6\right.$ $\mathrm{mg}, 0.40 \mathrm{mmol}, 80 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=15.18(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{ddd}, J=15.9,5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}$,

3H), $2.15-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=203.40$, $172.40,107.12,46.47,31.92,26.33,24.14,18.42 \mathrm{ppm}$.

Ethyl 1-bromo-2-oxocyclohexanecarboxylate (8a):

The compound was prepared according to the general method using ethyl 2-
 oxocyclohexanecarboxylate $(0.5 \mathrm{mmol}, 85.11 \mathrm{mg}, 80.3 \mu \mathrm{l})$. Stirring for 3.5 hours and purification by column chromatography using i-hexane / ethyl acetate (30:1) as eluent, gave the title compound as a colourless oil ($\mathrm{R}_{f}=12,99.0 \mathrm{mg}, 0.40$ $\mathrm{mmol}, 80 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-2.80(\mathrm{~m}$, $2 \mathrm{H}), 2.44(\mathrm{ddd}, J=14.5,9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.66(\mathrm{~m}, 4), 1.29(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=199.24,167.62,67.65,63.05,40.64$, 38.96, 26.89, 23.26, 13.95 ppm .

The spectral data correlate to those reported in the literature. ${ }^{9}$

Large Scale preparation of 4a:

A suspension of ethyl 2-oxocyclohexanecarboxylate ($10 \mathrm{mmol}, 1.70 \mathrm{~g}, 1.61$ $\mathrm{ml})$, methyl phenyl sulfoxide ($12 \mathrm{mmol}, 1.68 \mathrm{~g}, 1.41 \mathrm{ml}$) and $\mathrm{NaCl}(12$ mmol, 0.70 g) in acetonitrile (20 ml), was treated with trimethylsilyl trifluoromethansulfonate ($15 \mathrm{mmol}, 3.33 \mathrm{~g}, 2.72 \mathrm{ml}$). The resulting reaction mixture was stirred at room temperature for 6.5 hours, and was subsequently hydrolised with water (75 ml). The aqueous layer was separated and washed with MTBE ($3 \times 125 \mathrm{ml}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Column chromatography over silica using i-hexane : ethyl acetate $30: 1$ as eluent afforded the title compound as colourless oil $(\mathrm{Rf}=0.07 ; 1.84 \mathrm{~g}, 8.99 \mathrm{mmol}, 89 \%)$.

Bromolactonisation:

General Procedure for the bromolactonisation

A suspension of $\mathrm{NaBr}(0.6 \mathrm{mmol}, 62 \mathrm{mg})$ and methyl phenyl sulfoxide $(0.6 \mathrm{mmol}, 84.12 \mathrm{mg}$, $70.7 \mu \mathrm{l}$) in acetonitrile (2 ml) was treated with trimethylsilyl triflate $(0.75 \mathrm{mmol}, 166.6 \mathrm{mg}$, $135.8 \mu \mathrm{l})$. Subsequent dropwise addition of cyclisation precursor (0.5 mmol) yielded a colorless solution that was stirred until the formation of bromine, colour change to yellow, indicates the end of the reaction. The resulting solution was hydrolised with a $5 \% \mathrm{NaHCO} 3-$ solution (10 ml), and extracted with ethyl acetate (3 x 10 ml). The combined organic layers were dried over Na2SO4, and evaporated in vacuo. Further purification was carried out by colomn chromatography on silica gel, to yield the desired product.

5-(bromomethyl)dihydrofuran-2(3H)-one (10a):

The compound was prepared according to the general method using 4-pentenoic acid ($0.5 \mathrm{mmol}, 50.1 \mathrm{mg}, 51.3 \mu \mathrm{l}$). Stirring for 25 minutes and purification by column chromatography using i-hexane / ethyl acetate (7:3) as eluent, gave the title compound as a colourless oil $\left(\mathrm{R}_{f}=0.13,85.0 \mathrm{mg}, 0.47 \mathrm{mmol}, 95 \%\right) .{ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0}$
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=4.79-4.73(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.63-$ $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $=176.28,77.96,34.14,28.49,26.35 \mathrm{ppm}$.
The spectral data correlate to those reported in the literature. ${ }^{11}$

5-(bromomethyl)-3,3-dimethyldihydrofuran-2(3H)-one (10b):

The compound was prepared according to the general method using 2,2-dimethyl-4-pentenoic acid ($0.5 \mathrm{mmol}, 64.1 \mathrm{mg}, 68.7 \mu \mathrm{l}$). Stirring for 25 minutes and purification by column chromatography using i-hexane / ethyl acetate (9:1) as eluent, gave the title compound as a colourless oil $\left(\mathrm{R}_{f}=0.11,75.0 \mathrm{mg}, 0.36\right.$ $\mathrm{mmol}, 73 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=4.63(\mathrm{dt}, J=11.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J$ $=10.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=10.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=12.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}$, $J=12.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=$ 181.03, 74.79, 42.09, 40.70, 33.69, 25.05, 25.03 ppm .

The spectral data correlate to those reported in the literature. ${ }^{11}$

3-(bromomethyl)-2-oxaspiro[4.5]decan-1-one (10c):

The compound was prepared according to the general method using 1allylcyclohexanecarboxylic acid ($0.5 \mathrm{mmol}, 84.1 \mathrm{mg}, 76.5 \mu \mathrm{l}$). Stirring for 20 minutes and purification by column chromatography using i-hexane / ethyl acetate (9:1) as eluent, gave the title compound as a colourless oil $\left(\mathrm{R}_{f}=0.17\right.$, $105.0 \mathrm{mg}, 0.42 \mathrm{mmol}, 85 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=4.69-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.57$ (dd, $J=10.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=10.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.1,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.87-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{dd}, J=9.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.22(\mathrm{~m}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=180.67,75.12,45.13,38.19,34.19,34.07,32.30$, 25.32, 22.24, 22.16 ppm . IR (neat): $v=2931,2856,1760,1448,1338,1265,1185,1154$, 1019, 936, 859, 656. MS (EI): m/z (\%) = 246 (9), 191 (18), 178 (27), 167 (16), 153 (24), 123 (18), 107 (10), 81 (100), 69 (15), 67 (44), 55 (22), 53 (11), 41 (35), 39 (18), 27 (11). HRMS (ESIpos): calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{BrNa}$ 269.0147, found: 269.0148.

5-(bromomethyl)-4-methyldihydrofuran-2(3H)-one (10d):

The compound was prepared according to the general method using 3-methylpent-4-enoic acid ($0.5 \mathrm{mmol}, 57.1 \mathrm{mg}, 60.7 \mu \mathrm{l}$). Stirring for 30 minutes and purification by column chromatography using i-hexane / ethyl acetate (8:2) as eluent, gave the title compound as a colourless oil $\left(\mathrm{R}_{f}=0.16,80.7 \mathrm{mg}, 0.42\right.$ mmol, 84%) The compound appears as $1: 1$ mixture of diastereoisomers. ${ }^{1}$ H NMR ($\mathbf{3 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=4.69(\mathrm{dt}, J=7.8,5.6 \mathrm{~Hz})$ and $4.27(\mathrm{dt}, J=6.2,4.8 \mathrm{~Hz})(1 \mathrm{H}), 3.58(2 \mathrm{dd}, J$ $=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=11.2,4.5 \mathrm{~Hz})$ and $3.43(\mathrm{dd}, J=10.7,7.8 \mathrm{~Hz})(1 \mathrm{H}), 2.87-$ $2.46(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{dd}, J=16.7,3.3 \mathrm{~Hz})$ and $2.25(\mathrm{dd}, J=17.7,8.0 \mathrm{~Hz})(1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8$ $\mathrm{Hz}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz})(3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.76,175.44,84.64$, 81.00, 37.46, 36.76, 34.27, 32.66, 32.45, 28.63, 18.64, 13.19 ppm.

The spectral data correlate to those reported in the literature. ${ }^{11}$

5-bromo-4-phenyldihydrofuran-2(3H)-one (10e):

The compound was prepared according to the general method using 3-phenylpent-4-enoic acid $(0.5 \mathrm{mmol}, 88.1 \mathrm{mg}, 79.1 \mu \mathrm{l})$. Stirring for 70 minutes and purification by column chromatography using i-hexane / ethyl acetate (8:2) as eluent, gave the title compound as a colourless $\left(\mathrm{R}_{f}=0.26\right.$, $87 \mathrm{mg}, 0.34 \mathrm{mmol}, 68 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.47-7.14(\mathrm{~m}, 5 \mathrm{H}), 4.95$ (q)
and $4.67-4.60(\mathrm{~m})(1 \mathrm{H}), 3.90(\mathrm{ddd}, J=8.8,6.3,3.8 \mathrm{~Hz})$ and $3.73-3.46(\mathrm{~m})(2 \mathrm{H}), 3.31-2.73$ (m, 3H) ppm. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=175.77$, 174.70, 138.73, 136.46, 129.51, $129.19,128.35,128.26,128.06,127.25,84.33,82.23,45.26,43.85,37.00,26.37,32.76,29.74$ ppm. IR (neat): $v=3031,2924,1778,1603,1497,1455,1419,1327,1274,1188,1165$, 1140, 1030, 994, 970, 908, 807, 760, 700. MS (EI): m/z (\%) = 254 (7), 104 (100). HRMS (ESIpos): calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{BrNa}$: 276.9834, found: 276.9836.

Part II: Spectral Data for new compounds

cis-4k

$\stackrel{0}{0}$	$\stackrel{\infty}{\infty}$
$\underset{\sim}{i}$	$\stackrel{1}{1}$

trans-4k

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
NoNộNơơo

4n

210	190	170	150	130	110	90	80	70	60	50	40	30	0	10	

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012

or on
$\stackrel{i n}{\%}$
$\stackrel{7}{7}$

6b

12.
.0

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

そig
$\stackrel{\bullet}{\sim} \stackrel{\text { n }}{\sim}$

10e

Part III: Crystallographic Information

Crystal Structure of cis-4k

Table 1. Crystal data and structure refinement.

Identification code	7438	
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ClO}_{3}$	
Color	colourless	
Formula weight	$260.75 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Temperature	100 K	
Wavelength	$0.71073 \AA$	
Crystal system	TRICLINIC	
Space group	$\mathbf{P} \overline{\mathbf{1}},(\mathbf{n o . 2})$	
Unit cell dimensions	$\mathrm{a}=6.176(2) \AA$	$\alpha=80.717(6)^{\circ}$.
	$\mathrm{b}=10.530(3) \AA$	$\beta=79.276(5)^{\circ}$.
	$\mathrm{c}=10.911(3) \AA$	$\gamma=83.643(6)^{\circ}$.
Volume	$685.8(4) \AA^{3}$	
Z	2	
Density (calculated)	$1.263{\mathrm{Mg} \cdot \mathrm{m}^{-3}}$	
Absorption coefficient	$0.274 \mathrm{~mm}^{-1}$	
$\mathrm{~F}(000)$	280 e	
Crystal size	$0.23 \times 0.11 \times 0.05 \mathrm{~mm}^{3}$	
θ range for data collection	$1.92 \mathrm{to} 31.51^{\circ}$.	

Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
$-9 \leq \mathrm{h} \leq 9,-15 \leq \mathrm{k} \leq 15,-15 \leq 1 \leq 15$
12193
4407 [$\left.\mathrm{R}_{\text {int }}=0.0595\right]$
3055
98.4 \%

Semi-empirical from equivalents
0.75 and 0.47

Full-matrix least-squares on F^{2}
4407 / 0 / 158
1.020
$\mathrm{R}_{1}=0.0527 \quad \mathrm{wR}^{2}=0.1113$
$\mathrm{R}_{1}=0.0923 \quad \mathrm{wR}^{2}=0.1265$
0.526 and $-0.646 \mathrm{e} \cdot \AA^{-3}$

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}). U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x		y	z
			U_{eq}	
$\mathrm{C}(1)$	$0.8979(2)$	$0.9475(2)$	$0.7481(1)$	$0.020(1)$
$\mathrm{C}(2)$	$0.8259(2)$	$0.8239(2)$	$0.7164(1)$	$0.020(1)$
$\mathrm{C}(3)$	$0.8472(2)$	$0.7056(2)$	$0.8171(1)$	$0.019(1)$
$\mathrm{C}(4)$	$0.7136(3)$	$0.7398(2)$	$0.9430(1)$	$0.022(1)$
$\mathrm{C}(5)$	$0.7997(3)$	$0.8553(2)$	$0.9833(1)$	$0.024(1)$
$\mathrm{C}(6)$	$0.7983(2)$	$0.9720(2)$	$0.8841(1)$	$0.021(1)$
$\mathrm{C}(7)$	$0.7832(3)$	$0.5815(2)$	$0.7765(1)$	$0.022(1)$
$\mathrm{C}(8)$	$0.9298(3)$	$0.5561(2)$	$0.6512(2)$	$0.030(1)$
$\mathrm{C}(9)$	$0.8246(3)$	$0.4647(2)$	$0.8752(2)$	$0.032(1)$
$\mathrm{C}(10)$	$0.5391(3)$	$0.5932(2)$	$0.7603(2)$	$0.027(1)$
$\mathrm{C}(11)$	$0.8395(2)$	$1.0663(2)$	$0.6553(1)$	$0.021(1)$
$\mathrm{C}(12)$	$0.5365(3)$	$1.1766(2)$	$0.5637(2)$	$0.025(1)$
$\mathrm{C}(13)$	$0.4446(4)$	$1.2805(2)$	$0.6407(2)$	$0.042(1)$
$\mathrm{Cl}(1)$	$1.1919(1)$	$0.9336(1)$	$0.7447(1)$	$0.026(1)$
$\mathrm{O}(1)$	$0.7278(2)$	$1.0797(1)$	$0.9049(1)$	$0.027(1)$
$\mathrm{O}(2)$	$0.9629(2)$	$1.1466(1)$	$0.6026(1)$	$0.032(1)$
$\mathrm{O}(3)$	$0.6295(2)$	$1.0660(1)$	$0.6417(1)$	$0.024(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

-			
$\overline{\mathrm{C}}(1)-\mathrm{C}(2)$	$1.531(2)$	$\mathrm{C}(1)-\mathrm{C}(11)$	
$1.532(2)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.547(2)$	$\mathrm{C}(1)-$
$\mathrm{Cl}(1)$	$1.7999(15)$	$\mathrm{C}(2)-\mathrm{C}(3)$	
$1.534(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.539(2)$	$\mathrm{C}(3)-$
$\mathrm{C}(7)$	$1.558(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	
$1.536(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.502(2)$	$\mathrm{C}(6)-$
$\mathrm{O}(1)$	$1.210(2)$	$\mathrm{C}(7)-\mathrm{C}(9)$	
$1.531(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.538(2)$	$\mathrm{C}(7)-$
$\mathrm{C}(10)$	$1.539(2)$	$\mathrm{C}(11)-\mathrm{O}(2)$	
$1.2042(19)$	$\mathrm{C}(11)-\mathrm{O}(3)$	$1.3330(18)$	$\mathrm{C}(12)-$
$\mathrm{O}(3)$	$1.457(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	
$1.486(3)$			

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11) 111.93(12) \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$112.58(13) \mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(6)$
$109.23(14) \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cl}(1) 110.31(11) \mathrm{C}(11)-\mathrm{C}(1)-\mathrm{Cl}(1)$	$108.32(10)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Cl}(1) 104.10(9) \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) 114.21(12) \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	
$107.86(14) \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7) 111.82(12) \mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	$114.59(12)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3) 11.77(13) \mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$111.68(13) \mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(5)$
$124.38(14) \mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(1) 120.21(15) \mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$115.41(15)$
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8) 107.29(15) \mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	$109.13(14) \mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$
$108.87(13) \mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(3) 109.77(13) \mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(3)$	$109.82(13)$
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(3) 111.86(14) \mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(3)$	$125.41(15) \mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(1)$
$125.74(14) \mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(1) 108.85(13) \mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(13) 110.30(14)$	
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(12) 117.43(13)$	

Table 4. Anisotropic displacement parameters (\AA^{2}).
The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a *^{*} b^{*} U_{12}\right]$.

U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{C}(1) 0.012(1)$	0.027(1)	0.019(1)	-0.003(1)	-0.003(1)	-0.002(1)
$\mathrm{C}(2) 0.020$ (1)	0.026(1)	0.013(1)	-0.002(1)	-0.003(1)	-0.003(1)
C(3) 0.016(1)	0.026(1)	0.014(1)	-0.001(1)	-0.003(1)	0.000(1)
C(4) 0.023(1)	0.027(1)	0.014(1)	0.000 (1)	-0.003(1)	-0.001(1)
C(5) 0.025(1)	0.032(1)	0.015(1)	-0.004(1)	-0.005(1)	-0.001(1)
$\mathrm{C}(6) 0.015(1)$	0.031(1)	0.019(1)	-0.006(1)	-0.004(1)	-0.003(1)
C(7) 0.022(1)	0.024(1)	0.018(1)	-0.001(1)	-0.005(1)	0.000(1)
$\mathrm{C}(8) 0.032(1)$	0.031(1)	0.025(1)	-0.009(1)	0.000(1)	-0.002(1)
$\mathrm{C}(9) 0.040$ (1)	0.027(1)	0.030(1)	0.000(1)	-0.015(1)	-0.002(1)
$\mathrm{C}(10) 0.024(1)$	0.030(1)	0.028(1)	-0.004(1)	-0.009(1)	-0.004(1)
C(11)0.019(1)	0.026(1)	0.017(1)	-0.002(1)	-0.002(1)	-0.003(1)
$\mathrm{C}(12) 0.025(1)$	0.029(1)	0.022(1)	0.003(1)	-0.009(1)	-0.001(1)
$\mathrm{C}(13) 0.052(1)$	0.036(1)	0.042(1)	-0.011(1)	-0.024(1)	0.012(1)
$\mathrm{Cl}(1) 0.013(1)$	$0.035(1)$	0.028(1)	-0.004(1)	-0.004(1)	-0.002(1)
$\mathrm{O}(1) 0.027(1)$	0.029(1)	0.026(1)	-0.008(1)	-0.004(1)	-0.002(1)
$\mathrm{O}(2) 0.024(1)$	0.036(1)	0.031(1)	0.008(1)	-0.004(1)	-0.010(1)
$\mathrm{O}(3) 0.020$ (1)	0.025(1)	0.025(1)	0.004(1)	-0.008(1)	-0.003(1)

Crystal Structure of 4n

Table 1. Crystal data and structure refinement.

Identification code	7469	
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrClO}_{3}$	
Color	yellow	
Formula weight	$317.56 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Temperature	100 K	
Wavelength	$0.71073 \AA$	
Crystal system	TRICLINIC	
Space group	$\mathbf{P} \overline{\mathbf{1}},(\mathbf{n o . 2})$	
Unit cell dimensions	$\mathrm{a}=6.3627(2) \AA$	$\alpha=84.098(4)^{\circ}$.
	$\mathrm{b}=9.1546(4) \AA$	$\beta=83.470(3)^{\circ}$.
	$\mathrm{c}=10.3192(3) \AA$	$\gamma=87.085(3)^{\circ}$.
Volume	$593.54(4) \AA^{3}$	
Z	2	
Density (calculated)	$1.777 \mathrm{Mg} \cdot \mathrm{m}^{-3}$	
Absorption coefficient	$3.680 \mathrm{~mm}^{-1}$	
$\mathrm{~F}(000)$	316 e	
Crystal size	$0.21 \mathrm{x} 0.16 \mathrm{x} 0.08 \mathrm{~mm}^{3}$	
θ range for data collection	$2.85 \mathrm{to} 35.01^{\circ}$.	
Index ranges	$-10 \leq \mathrm{h} \leq 10,-14 \leq \mathrm{k} \leq 14,-16 \leq 1 \leq 16$	

Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole

18941
$5224\left[\mathrm{R}_{\text {itt }}=0.0330\right]$
4775
99.7 \%

Gaussian
0.75 and 0.48

Full-matrix least-squares on F^{2}
5224/0/155
1.064
$\mathrm{R}_{1}=0.0243 \quad \mathrm{wR}^{2}=0.0576$
$\mathrm{R}_{1}=0.0291 \quad \mathrm{wR}^{2}=0.0599$
0.965 and $-0.663 \mathrm{e} \cdot \AA^{-3}$

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}).
U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x		y	z
			U_{eq}	
$\mathrm{Br}(1)$	$0.1754(1)$	$0.9117(1)$	$0.3558(1)$	$0.017(1)$
$\mathrm{Cl}(1)$	$0.6885(1)$	$0.1142(1)$	$0.2907(1)$	$0.016(1)$
$\mathrm{O}(1)$	$0.9735(1)$	$0.3554(1)$	$0.3563(1)$	$0.018(1)$
$\mathrm{O}(2)$	$0.7813(2)$	$0.4089(1)$	$0.0037(1)$	$0.023(1)$
$\mathrm{O}(3)$	$0.9856(1)$	$0.2210(1)$	$0.0820(1)$	$0.018(1)$
$\mathrm{C}(1)$	$0.6926(2)$	$0.3019(1)$	$0.2242(1)$	$0.012(1)$
$\mathrm{C}(2)$	$0.8052(2)$	$0.3914(1)$	$0.3163(1)$	$0.012(1)$
$\mathrm{C}(3)$	$0.6694(2)$	$0.5228(1)$	$0.3388(1)$	$0.012(1)$
$\mathrm{C}(4)$	$0.7109(2)$	$0.6425(1)$	$0.4052(1)$	$0.013(1)$
$\mathrm{C}(5)$	$0.5618(2)$	$0.7579(1)$	$0.4112(1)$	$0.014(1)$
$\mathrm{C}(6)$	$0.3744(2)$	$0.7508(1)$	$0.3526(1)$	$0.013(1)$
$\mathrm{C}(7)$	$0.3298(2)$	$0.6306(1)$	$0.2891(1)$	$0.014(1)$
$\mathrm{C}(8)$	$0.4813(2)$	$0.5155(1)$	$0.2825(1)$	$0.012(1)$
$\mathrm{C}(9)$	$0.4693(2)$	$0.3744(1)$	$0.2205(1)$	$0.014(1)$
$\mathrm{C}(10)$	$0.8224(2)$	$0.3165(1)$	$0.0890(1)$	$0.014(1)$
$\mathrm{C}(11)$	$1.1248(2)$	$0.2312(2)$	$-0.0413(1)$	$0.020(1)$
$\mathrm{C}(12)$	$1.3041(2)$	$0.1213(2)$	$-0.0226(1)$	$0.020(1)$

Table 3. Bond lengths $[\AA]$ and angles [${ }^{\circ}$].

$\operatorname{Br}(1)-\mathrm{C}(6)$	1.8932(11)	$\mathrm{Cl}(1)-\mathrm{C}(1)$	
1.7842(11)	$\mathrm{O}(1)-\mathrm{C}(2)$	1.2088(13)	$\mathrm{O}(2)-$
C(10)	1.1983(15)	$\mathrm{O}(3)-\mathrm{C}(11)$	
1.4629(15)	$\mathrm{O}(3)-\mathrm{C}(10)$	1.3236 (14)	C(12)-
C(11)	$1.4984(18)$	C(9)-C(8)	
$1.5075(15)$	C(9)-C(1)	1.5399(15)	C(8)-
C(7)	$1.3932(15)$	$\mathrm{C}(8)-\mathrm{C}(3)$	
1.3954(14)	$\mathrm{C}(2)-\mathrm{C}(1)$	$1.5693(15)$	C(2)-
C(3)	1.4672(15)	C(7)-C(6)	
$1.3938(16)$	$\mathrm{C}(5)-\mathrm{C}(4)$	1.3847(16)	C(5)-
C(6)	1.4043 (16)	$\mathrm{C}(1)-\mathrm{C}(10)$	
1.5352(16)	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.4022(15)$	
$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)$	116.13(10)	$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	
106.38(10)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	104.18(8)	C(7)-
C(8)-C(9)	127.56(10)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	
120.07(10)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	112.37(9)	$\mathrm{O}(1)-$
$\mathrm{C}(2)-\mathrm{C}(1)$	124.48(10)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	
128.96(10)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	106.55(8)	C(8)-
$\mathrm{C}(7)-\mathrm{C}(6)$	117.64(10)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	
119.39(10)	$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{Cl}(1)$	112.79(8)	C(9)-
$\mathrm{C}(1)-\mathrm{C}(2)$	105.36(8)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cl}(1)$	
108.67(7)	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{Cl}(1)$	110.44(7)	C(10)-
C(1)-C(9)	112.03(9)	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	
107.22(9)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	110.05(9)	C(8)-
$\mathrm{C}(3)-\mathrm{C}(4)$	121.94(10)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	
128.01(9)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	118.32(10)	$\mathrm{O}(2)-$
$\mathrm{C}(10)-\mathrm{O}(3)$	125.42(11)	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(1)$	
122.39(10)	$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(1)$	112.12(10)	C(7)-
$\mathrm{C}(6)-\mathrm{Br}(1)$	118.13(8)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	
122.61(10)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Br}(1)$	119.25(8)	

Table 4. Anisotropic displacement parameters (\AA^{2}).
The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a *^{*} b^{*} U_{12}\right]$.

$$
\begin{array}{llllll}
\mathrm{U}_{11} & \mathrm{U}_{22} & \mathrm{U}_{33} & \mathrm{U}_{23} & \mathrm{U}_{13} & \mathrm{U}_{12}
\end{array}
$$

$\mathrm{Br}(1) 0.016(1)$	$0.014(1)$	$0.021(1)$	$-0.003(1)$	$-0.002(1)$	$0.004(1)$
$\mathrm{Cl}(1) 0.018(1)$	$0.014(1)$	$0.017(1)$	$-0.001(1)$	$0.000(1)$	$0.000(1)$
$\mathrm{O}(1) 0.012(1)$	$0.023(1)$	$0.020(1)$	$-0.005(1)$	$-0.006(1)$	$0.004(1)$
$\mathrm{O}(2) 0.025(1)$	$0.025(1)$	$0.017(1)$	$0.000(1)$	$-0.002(1)$	$0.007(1)$
$\mathrm{O}(3) 0.018(1)$	$0.020(1)$	$0.014(1)$	$0.001(1)$	$0.003(1)$	$0.007(1)$
$\mathrm{C}(1) 0.012(1)$	$0.012(1)$	$0.014(1)$	$-0.002(1)$	$-0.002(1)$	$0.001(1)$
$\mathrm{C}(2) 0.010(1)$	$0.015(1)$	$0.011(1)$	$-0.002(1)$	$-0.002(1)$	$0.001(1)$
$\mathrm{C}(3) 0.010(1)$	$0.014(1)$	$0.011(1)$	$-0.002(1)$	$-0.002(1)$	$0.000(1)$
$\mathrm{C}(4) 0.012(1)$	$0.015(1)$	$0.012(1)$	$-0.002(1)$	$-0.003(1)$	$-0.001(1)$
$\mathrm{C}(5) 0.015(1)$	$0.014(1)$	$0.013(1)$	$-0.003(1)$	$-0.001(1)$	$-0.001(1)$
$\mathrm{C}(6) 0.013(1)$	$0.013(1)$	$0.013(1)$	$-0.001(1)$	$0.000(1)$	$0.002(1)$
$\mathrm{C}(7) 0.012(1)$	$0.015(1)$	$0.014(1)$	$-0.002(1)$	$-0.003(1)$	$0.002(1)$
$\mathrm{C}(8) 0.010(1)$	$0.014(1)$	$0.011(1)$	$-0.003(1)$	$-0.002(1)$	$0.001(1)$
$\mathrm{C}(9) 0.011(1)$	$0.016(1)$	$0.017(1)$	$-0.006(1)$	$-0.004(1)$	$0.002(1)$
$\mathrm{C}(10) 0.013(1)$	$0.017(1)$	$0.014(1)$	$-0.005(1)$	$-0.003(1)$	$0.002(1)$
$\mathrm{C}(11) 0.022(1)$	$0.023(1)$	$0.014(1)$	$-0.001(1)$	$0.003(1)$	$0.005(1)$
$\mathrm{C}(12) 0.018(1)$	$0.022(1)$	$0.020(1)$	$-0.008(1)$	$0.001(1)$	$0.004(1)$

Crystal Structure of 6d

Table 1. Crystal data and structure refinement.

Identification code
Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

7596
$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{3} \mathrm{~S}$
colourless
$303.17 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
$0.71073 \AA$
MONOCLINIC
P2 ${ }_{1} / \mathbf{c}$, (no. 14)
$a=12.069(4) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=9.881(3) \AA \quad \beta=94.300(5)^{\circ}$.
$\mathrm{c}=9.854(3) \AA \quad \gamma=90^{\circ}$.
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
$1171.9(6) \AA^{3}$
4
$1.718 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$3.674 \mathrm{~mm}^{-1}$
608 e
$0.253 \times 0.090 \times 0.063 \mathrm{~mm}^{3}$
2.67 to 35.75°.
$-19 \leq \mathrm{h} \leq 3,-3 \leq \mathrm{k} \leq 12,-3 \leq 1 \leq 15$

Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole

2100
$2010\left[\mathrm{R}_{\mathrm{int}}=0.0100\right]$
1848
45.4 \%

Gaussian
0.80 and 0.53

Full-matrix least-squares on F^{2}
2010/0/146
1.061
$\mathrm{R}_{1}=0.0241 \quad \mathrm{wR}^{2}=0.0648$
$\mathrm{R}_{1}=0.0272 \quad \mathrm{wR}^{2}=0.0668$
0.297 and $-0.220 \mathrm{e} \cdot \AA^{-3}$

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}).
U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x		y	z
$\mathrm{Br}(1)$	$0.1121(1)$	$0.1725(1)$	$0.8140(1)$	$0.016(1)$
$\mathrm{S}(1)$	$0.5211(1)$	$0.2579(1)$	$0.9638(1)$	$0.018(1)$
$\mathrm{O}(1)$	$0.2827(1)$	$-0.0911(2)$	$0.7417(2)$	$0.019(1)$
$\mathrm{O}(2)$	$0.0312(2)$	$-0.1104(2)$	$0.8432(2)$	$0.019(1)$
$\mathrm{O}(3)$	$0.1633(2)$	$-0.1917(2)$	$0.9958(2)$	$0.017(1)$
$\mathrm{C}(1)$	$0.3982(2)$	$0.1694(2)$	$0.9641(2)$	$0.014(1)$
$\mathrm{C}(2)$	$0.3903(2)$	$0.0773(2)$	$0.8591(2)$	$0.013(1)$
$\mathrm{C}(3)$	$0.2908(2)$	$-0.0051(2)$	$0.8304(2)$	$0.013(1)$
$\mathrm{C}(4)$	$0.1922(2)$	$0.0274(2)$	$0.9154(2)$	$0.013(1)$
$\mathrm{C}(5)$	$0.2297(2)$	$0.0750(2)$	$1.0596(2)$	$0.014(1)$
$\mathrm{C}(6)$	$0.3110(2)$	$0.1946(2)$	$1.0614(2)$	$0.017(1)$
$\mathrm{C}(7)$	$0.4852(2)$	$0.0773(2)$	$0.7797(2)$	$0.016(1)$
$\mathrm{C}(8)$	$0.5609(2)$	$0.1705(2)$	$0.8226(2)$	$0.017(1)$
$\mathrm{C}(9)$	$0.1165(2)$	$-0.0980(2)$	$0.9127(2)$	$0.012(1)$
$\mathrm{C}(10)$	$0.1097(2)$	$-0.3245(2)$	$0.9912(2)$	$0.018(1)$
$\mathrm{C}(11)$	$0.1651(2)$	$-0.4147(3)$	$0.8919(3)$	$0.028(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

-			
$\operatorname{Br}(1)-\mathrm{C}(4)$	$1.961(2)$	$\mathrm{S}(1)-\mathrm{C}(1)$	
$1.722(2)$	$\mathrm{S}(1)-\mathrm{C}(8)$	$1.735(2)$	$\mathrm{O}(1)-$
$\mathrm{C}(3)$	$1.218(2)$	$\mathrm{O}(2)-\mathrm{C}(9)$	
$1.199(3)$	$\mathrm{O}(3)-\mathrm{C}(9)$	$1.333(3)$	$\mathrm{O}(3)-$
$\mathrm{C}(10)$	$1.462(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	
$1.376(3)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.497(2)$	$\mathrm{C}(2)-$
$\mathrm{C}(3)$	$1.460(3)$	$\mathrm{C}(2)-\mathrm{C}(7)$	$\mathrm{C}(4)-$
$1.435(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.539(2)$	$\mathrm{C}(7)-$
$\mathrm{C}(5)$	$1.533(3)$	$\mathrm{C}(4)-\mathrm{C}(9)$	
$1.539(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.535(3)$	
$\mathrm{C}(8)$	$1.343(3)$	$\mathrm{C}(10)-\mathrm{C}(11)$	
$1.517(3)$			

$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(8)$	$92.26(10)$	$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)$	
$115.9(2)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	$110.23(12)$	$\mathrm{C}(2)-$
$\mathrm{C}(1)-\mathrm{C}(6)$	$125.37(19)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{S}(1)$	
$124.35(16)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$121.61(14)$	$\mathrm{C}(1)-$
$\mathrm{C}(2)-\mathrm{C}(7)$	$113.33(18)$	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	
$124.98(17)$	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$123.26(14)$	$\mathrm{O}(1)-$
$\mathrm{C}(3)-\mathrm{C}(4)$	$120.80(19)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	
$115.88(16)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Br}(1)$	$104.30(12)$	$\mathrm{C}(5)-$
$\mathrm{C}(4)-\mathrm{Br}(1)$	$110.35(14)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	
$112.47(18)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	$113.35(14)$	$\mathrm{C}(9)-$
$\mathrm{C}(4)-\mathrm{Br}(1)$	$108.12(16)$	$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(3)$	
$107.78(15)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$112.99(14)$	$\mathrm{C}(1)-$
$\mathrm{C}(6)-\mathrm{C}(5)$	$110.15(15)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(2)$	
$112.39(17)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{S}(1)$	$111.77(13)$	$\mathrm{O}(2)-$
$\mathrm{C}(9)-\mathrm{O}(3)$	$125.9(2)$	$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(4)$	
$125.1(2)$	$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(4)$	$108.9(2)$	$\mathrm{O}(3)-$
$\mathrm{C}(10)-\mathrm{C}(11)$	$109.38(17)$		

Table 4. Anisotropic displacement parameters (\AA^{2}).
The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}

[^0]
[^0]: ${ }^{1}$ Brown, D. S.; Marples, B. A.; Smith, P.; Walton, L. Tetrahedron 1995, 51, 3587
 ${ }^{2}$ Nicolai, S.; Piemontesi, C.; Waser, J. Angew. Chem. Int. Ed. 2011, 50, 4680
 ${ }^{3}$ Gottlieb, H. E.; Kotlyar, V.; Nudelmann, A. J. Org. Chem. 1997, 62, 7512
 ${ }^{4}$ Bartoli, G.; Bosco, M.; Carlone, A.; Locatelli, M.; Melchiorre, P.; Sambri, L.; Angew. Chem. Int. Ed. 2005, 44, 6219.
 ${ }^{5}$ Frings, M.; Bolm, C. J. Org. Chem. 2009, 4085.
 ${ }^{6}$ Park, Y.-D.; Kim, J.-J; Cho, S.-D.; Lee, S.-G.; Falck, J. R.; Yoon, Y.-J. Synthesis 2005, 7, 1136.
 ${ }^{7}$ Cai, Y.; Wang, W.; Shen, K.; Wang, J.; Hu, X.; Lin, L.; Liu, X.; Feng, X. Chem. Commun. 2010, 46, 1250.
 ${ }^{8}$ Zhang, Y.; Shibatomi, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 15038.
 ${ }^{9}$ Akula, R.; Galligan, M. J.; Ibrahim, H. Synthesis 2011, 2, 347.
 ${ }^{10}$ Nakamura, Y.; Takeuchi, S; Ohgo, Y.; Yamaoka, M.; Yoshida, A.; Mikami, K. Tetrahedron 1990, 55, 4595.
 ${ }^{11} \mathrm{He}, \mathrm{Y} . ;$ Pu, Y.; Shao, B.; Yan, J. J. Heterocycl. Chem. 2011, 48, 695.

