supplementary materials


su2486 scheme

Acta Cryst. (2012). E68, o2635    [ doi:10.1107/S1600536812034071 ]

4-Bromo-2-[(E)-(2-{2-[(2-{[(E)-5-bromo-2-hydroxybenzylidene]amino}phenyl)sulfanyl]ethylsulfanyl}phenyl)iminomethyl]phenol

H. Kargar, R. Kia and M. N. Tahir

Abstract top

The asymmetric unit of the title compound, C28H22Br2N2O2S2, comprises half of a Schiff base ligand, the whole molecule being generated by a crystallographic inversion center located at the mid-point of the C-C bond of the central methylene segment. Intramolecular O-H...N and O-H...S hydrogen bonds make S(6) and S(5) ring motifs, respectively. In the crystal, there are no significant intermolecular interactions.

Comment top

In continuation of our work on the crystal structures of Schiff base ligands (Kargar et al., 2011; Kia et al., 2010), we synthesized and determined the X-ray crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises half of a Schiff base ligand. The whole molecule is generated by a crystallographic inversion center located in the middle of the C14—C14i bond of the methylene segment [Symmetry code: (i) -x, -y+1, -z+1]. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. Intramolecular O—H···N and O—H···S hydrogen bonds make S(6) and S(5) ring motifs, respectively (Table 1; Bernstein et al., 1995).

There are no significant intermolecular interactions in the crystal structure.

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff base ligands see, for example: Kargar et al. (2011); Kia et al. (2010).

Experimental top

The title compound was synthesized by adding 5-bromosalicylaldehyde (2 mmol) to a solution of 2-(2-(2-aminophenylthio)ethylthio)benzenamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Light-yellow needle-like crystals of the title compound, suitable for X-ray structure analysis, were obtained by slow evaporation of a solution in ethanol at room temperature over several days.

Refinement top

The O-bound H atom was located in a difference Fourier map and constrained to refine on the parent atom with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 and 0.97 Å for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for A: -x, -y + 1, -z + 1]. Dashed lines show the intramolecular interactions
4-Bromo-2-[(E)-(2-{2-[(2-{[(E)-5-bromo-2- hydroxybenzylidene]amino}phenyl)sulfanyl]ethylsulfanyl}phenyl)iminomethyl]phenol top
Crystal data top
C28H22Br2N2O2S2F(000) = 644
Mr = 642.42Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2098 reflections
a = 13.9124 (18) Åθ = 2.5–28.8°
b = 5.4112 (7) ŵ = 3.28 mm1
c = 17.409 (2) ÅT = 296 K
β = 92.444 (7)°Needle, light-yellow
V = 1309.4 (3) Å30.35 × 0.14 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2879 independent reflections
Radiation source: fine-focus sealed tube1277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
φ and ω scansθmax = 27.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.393, Tmax = 0.694k = 64
10754 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0347P)2]
where P = (Fo2 + 2Fc2)/3
2879 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C28H22Br2N2O2S2V = 1309.4 (3) Å3
Mr = 642.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.9124 (18) ŵ = 3.28 mm1
b = 5.4112 (7) ÅT = 296 K
c = 17.409 (2) Å0.35 × 0.14 × 0.12 mm
β = 92.444 (7)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2879 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1277 reflections with I > 2σ(I)
Tmin = 0.393, Tmax = 0.694Rint = 0.093
10754 measured reflectionsθmax = 27.1°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.38 e Å3
S = 0.93Δρmin = 0.55 e Å3
2879 reflectionsAbsolute structure: ?
163 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.55873 (4)1.84843 (11)0.63714 (3)0.0707 (3)
S10.08346 (11)0.7463 (2)0.57293 (8)0.0622 (4)
O10.2265 (3)1.2258 (6)0.51696 (19)0.0684 (11)
H10.20921.13030.55660.103*
N10.2327 (3)0.9977 (8)0.6512 (2)0.0479 (10)
C10.2994 (4)1.3675 (9)0.5463 (3)0.0502 (13)
C20.3336 (4)1.5574 (10)0.5026 (3)0.0633 (16)
H20.30481.58890.45440.076*
C30.4094 (4)1.7013 (9)0.5286 (3)0.0577 (15)
H30.43221.82770.49810.069*
C40.4522 (3)1.6562 (9)0.6015 (3)0.0492 (13)
C50.4185 (3)1.4704 (9)0.6453 (3)0.0483 (13)
H50.44801.44040.69340.058*
C60.3408 (3)1.3230 (8)0.6206 (2)0.0439 (12)
C70.3043 (4)1.1325 (9)0.6696 (3)0.0510 (13)
H70.33521.10760.71740.061*
C80.1967 (3)0.8149 (9)0.7006 (3)0.0436 (12)
C90.2299 (4)0.7718 (10)0.7752 (3)0.0672 (16)
H90.27970.86710.79680.081*
C100.1892 (4)0.5876 (10)0.8175 (3)0.0692 (17)
H100.21090.56150.86810.083*
C110.1171 (4)0.4423 (10)0.7861 (3)0.0616 (15)
H110.09110.31570.81480.074*
C120.0836 (4)0.4857 (10)0.7114 (3)0.0595 (15)
H120.03380.38930.69030.071*
C130.1228 (3)0.6697 (9)0.6678 (3)0.0447 (12)
C140.0071 (4)0.4938 (9)0.5431 (2)0.0567 (14)
H14A0.03680.33790.55820.068*
H14B0.05430.50630.56710.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0767 (5)0.0794 (5)0.0547 (4)0.0273 (3)0.0120 (3)0.0093 (3)
S10.0652 (11)0.0659 (11)0.0537 (9)0.0180 (7)0.0170 (7)0.0023 (7)
O10.059 (3)0.091 (3)0.053 (2)0.020 (2)0.0163 (19)0.0036 (18)
N10.042 (3)0.054 (3)0.047 (2)0.011 (2)0.006 (2)0.007 (2)
C10.049 (3)0.059 (4)0.042 (3)0.000 (3)0.008 (2)0.008 (3)
C20.060 (4)0.085 (5)0.043 (3)0.002 (3)0.014 (3)0.016 (3)
C30.060 (4)0.070 (4)0.042 (3)0.008 (3)0.008 (3)0.010 (3)
C40.048 (3)0.057 (4)0.042 (3)0.009 (3)0.001 (2)0.003 (3)
C50.046 (4)0.060 (4)0.038 (3)0.007 (3)0.009 (2)0.003 (3)
C60.042 (3)0.052 (4)0.037 (3)0.001 (3)0.001 (2)0.003 (3)
C70.056 (4)0.057 (4)0.039 (3)0.007 (3)0.006 (3)0.003 (3)
C80.039 (3)0.047 (4)0.045 (3)0.008 (3)0.001 (2)0.001 (3)
C90.064 (4)0.084 (5)0.052 (4)0.023 (3)0.009 (3)0.007 (3)
C100.068 (5)0.083 (5)0.056 (4)0.011 (3)0.002 (3)0.013 (3)
C110.060 (4)0.061 (4)0.064 (4)0.008 (3)0.004 (3)0.013 (3)
C120.048 (4)0.067 (4)0.062 (4)0.014 (3)0.007 (3)0.001 (3)
C130.036 (3)0.047 (3)0.051 (3)0.003 (3)0.002 (2)0.000 (3)
C140.048 (3)0.060 (4)0.062 (3)0.009 (3)0.003 (3)0.005 (3)
Geometric parameters (Å, º) top
Br1—C41.894 (5)C6—C71.444 (6)
S1—C131.766 (5)C7—H70.9300
S1—C141.793 (5)C8—C91.379 (6)
O1—C11.354 (5)C8—C131.397 (6)
O1—H10.9026C9—C101.376 (6)
N1—C71.265 (5)C9—H90.9300
N1—C81.416 (5)C10—C111.369 (7)
C1—C21.377 (6)C10—H100.9300
C1—C61.413 (6)C11—C121.383 (6)
C2—C31.373 (6)C11—H110.9300
C2—H20.9300C12—C131.379 (6)
C3—C41.399 (6)C12—H120.9300
C3—H30.9300C14—C14i1.508 (8)
C4—C51.358 (6)C14—H14A0.9700
C5—C61.396 (6)C14—H14B0.9700
C5—H50.9300
C13—S1—C14104.3 (2)C9—C8—C13120.1 (5)
C1—O1—H1104.8C9—C8—N1125.2 (5)
C7—N1—C8123.0 (4)C13—C8—N1114.7 (4)
O1—C1—C2119.0 (4)C10—C9—C8119.8 (5)
O1—C1—C6121.3 (5)C10—C9—H9120.1
C2—C1—C6119.7 (5)C8—C9—H9120.1
C3—C2—C1121.3 (5)C11—C10—C9120.9 (5)
C3—C2—H2119.3C11—C10—H10119.5
C1—C2—H2119.3C9—C10—H10119.5
C2—C3—C4119.4 (5)C10—C11—C12119.3 (5)
C2—C3—H3120.3C10—C11—H11120.3
C4—C3—H3120.3C12—C11—H11120.3
C5—C4—C3119.7 (5)C13—C12—C11121.0 (5)
C5—C4—Br1120.4 (4)C13—C12—H12119.5
C3—C4—Br1119.9 (4)C11—C12—H12119.5
C4—C5—C6122.0 (4)C12—C13—C8118.8 (4)
C4—C5—H5119.0C12—C13—S1124.8 (4)
C6—C5—H5119.0C8—C13—S1116.3 (4)
C5—C6—C1117.7 (4)C14i—C14—S1107.8 (4)
C5—C6—C7120.8 (4)C14i—C14—H14A110.2
C1—C6—C7121.5 (4)S1—C14—H14A110.2
N1—C7—C6123.7 (5)C14i—C14—H14B110.2
N1—C7—H7118.1S1—C14—H14B110.2
C6—C7—H7118.1H14A—C14—H14B108.5
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.901.812.641 (5)151
O1—H1···S10.902.743.436 (4)135
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.901.812.641 (5)151
O1—H1···S10.902.743.436 (4)135
Acknowledgements top

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the research facility.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.

Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.