Supporting Information
for DOI: 10.1055/s-0033-1338452
© Georg Thieme Verlag KG Stuttgart • New York 2013

Direct Domino Synthesis of Azido-dienoic Acids: Potential Linkers Units

Caroline Souris, Frédéric Frébault, Davide Audisio, Christophe Farès and Nuno Maulide*
Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1
45470 Mülheim an der Ruhr, Germany
E-mail: maulide@mpi-muelheim.mpg.de

Supporting Information

Table of contents

1. General procedure for lactone preparation S3
2. General procedure for azido dienoic acids preparation S4
3. Coupling constants comparison S8
4. Click reactions of azido dienes S9
5. Coupling reactions of azido dienes S13
6. Copies of ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra S16

General Methods: All glassware was oven dried at $80^{\circ} \mathrm{C}$ before use and all reactions were performed under an atmosphere of argon unless otherwise stated. All solvents were distilled from appropriate drying agents prior to use. All reagents were used as received from commercial suppliers unless otherwise stated. Neat infra-red spectra were recorded using a Perkin-Elmer Spectrum 100 FT-FTIR spectrometer. Wavelengths (v) are reported in cm^{-1}. Mass spectra were obtained using a Finnigan MAT 8200 or (70 eV) or an Agilent 5973 (70 $\mathrm{eV})$ spectrometer, using electrospray ionization (ESI). Accurate mass determinations were obtained on a Brucker APEX III FT-MS (7 T magnet). All ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ experiments were recorded using Bruker DPX-300, AV-400, AV-500 and AV-600 spectrometers at 300 K . Chemical shifts (δ) are quoted in ppm and coupling constants (J) are quoted in Hz . The 7.27 and 2.05 ppm resonance of residual CDCl_{3} and $\mathrm{CD}_{3} \mathrm{COCD}_{2} \mathrm{H}$ for proton spectra and 77.16 and 29.84 ppm resonance of CDCl_{3} and $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ for carbon spectra were used as internal references. Reaction progress was monitored by thin layer chromatography (TLC) performed on aluminium plates coated with keiselgel F_{254} with 0.2 mm thickness. Visualisation was achieved by a combination of ultraviolet light (254 nm) and acidic potassium permanganate or anisaldehyde. Flash column chromatography was performed using silica gel 60 (230-400 mesh, Merck and co.).
All the reactions were performed using a stock ethereal solution of bicyclic lactone $\mathbf{1}$ prepared according to the literature in a concentration typically ranging from 0.15 M to 0.25 M . No significant change in yields depending on the concentration of $\mathbf{1}$ was noted in the reactions reported on this study (provided that the concentration is in the range $0.15-0.25 \mathrm{M}$).

1. General procedure for lactone preparation:

2-pyrone ($500 \mathrm{mg}, 5.2 \mathrm{mmol}$) was dissolved in degassed $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and the resulting solution was irradiated at $-10^{\circ} \mathrm{C}$ using a water-cooled mercury arc lamp (Hanovia, 450 W) with a quartz filter. The reaction progress was followed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and usually 24 to 36 h was required to reach completion. After warming to room temperature, the solution was concentrated under vacuum in a cold bath to reach a volume of $5-10 \mathrm{~mL}$ and the concentration of $\mathbf{1}$ was repeatedly assayed by ${ }^{1} \mathrm{H}$-NMR. Solutions of $\mathbf{1}$ were stored at $4{ }^{\circ} \mathrm{C}$ and did not show any signs of decomposition after several weeks.
The synthesis of 3-substituted-2-pyrone was performed in accordance to the reported literature. ${ }^{[1]}$

2-oxabicyclo[2.2.0]hex-5-en-3-one (1a)

$1 a$

Data of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 a}$ matches those reported in the literature. ${ }^{[2]}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73$ (app t., $J 3.5,1 \mathrm{H}$), 6.54 (app. t, $J 1.9,1 \mathrm{H}$), 5.29 (dd, $J 4.5,1.9,1 \mathrm{H}$).

[^0]
4-methyl-2-oxabicyclo[2.2.0]hex-5-en-3-one (1b)

1b

Data of the ${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{1 b}$ matches those reported in the literature. ${ }^{[3] ~ 1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{dd}, J 4.5,2.5,1 \mathrm{H}), 6.55(\mathrm{~d}, J 2.5,1 \mathrm{H}), 5.15(\mathrm{~d}, J 4.5,1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$.

4-butyl-2-oxabicyclo[2.2.0]hex-5-en-3-one (1c)

1c

Compound 1c was obtained as a yellow solution in diethyl ether in quantitative yield according to the general procedure. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, J 4.4,2.4,1 \mathrm{H})$, $6.51(\mathrm{~d}, J 2.4,1 \mathrm{H}), 5.13(\mathrm{~d}, J 4.4,1 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J 7.1$, $3 \mathrm{H})$.

2-tosyl-2-azabicyclo[2.2.0]hex-5-en-3-one (1e)

1e

The lactam 1e was prepared according to the literature. Data of the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of $\mathbf{1 e}$ matches those reported in the literature. ${ }^{[4]}$

[^1]
2. General procedure for azido dienoic acids preparation:

5-azidopenta-2,4-dienoic acid synthesis 4a-d:

In a schlenk flask, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9.0 \mathrm{mg}, 8 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ was evacuated/backfilled with Argon three times and dissolved in THF (3.1 mL). TMS- $\mathrm{N}_{3}(36 \mu \mathrm{~L}, 0.312 \mathrm{mmol}, 2.0$ equiv.) was added to the stirred solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. After 5 min , an etheral solution of lactone $\mathbf{1}\left(0.20 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 0.78 \mathrm{~mL}, 0.156 \mathrm{mmol}, 1.0$ equiv.) was added dropwise to the mixture and the mixture was then stirred at $0^{\circ} \mathrm{C}$ for 2 days. The solution was quenched with water and $\mathrm{Et}_{2} \mathrm{O}$ was added to the mixture. The organic phase was extracted three times with saturated NaHCO_{3}. The aqueous phases were acidified using 1 M HCl , extracted three times with EtOAc and the combined extracts were evaporated to give the azido diene.

Reaction was performed using both NaN_{3} and TMS- N_{3} as nucleophile in absence or presence of $\mathrm{Pd} . \mathrm{NaN}_{3}$ proved to be a suitable nucleophile for the reaction. It afforded diene $\mathbf{4 a}$ in 65% yield as a mixture of $E, E / Z, E$ in a $1: 1$ ratio. On the other hand, $T M S-\mathrm{N}_{3}$ led to complete formation of the desired product $\mathbf{4 a}$ as single isomer. Moreover, in the absence of Pd^{0}, a notoriously slow background reaction leading to the same product takes place.

The reaction was performed up to 3.0 mmol scale affording the desired dienoic acid $\mathbf{4 a}$ in 350 mg . Compound 4 a was obtained as a yellow powder in 81% yield according to the general procedure. FTIR (neat) $v_{\max } 2926,2567,2283,2103,1673,1619,989 ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 7.30(\mathrm{dd}, J 15.4,11.4,1 \mathrm{H}), 7.01(\mathrm{~d}, J 13.2,1 \mathrm{H}), 6.18(\mathrm{dd}, J 13.2,11.4,1 \mathrm{H})$, $5.90(\mathrm{~d}, J 15.4,1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 167.8,142.6,138.8,120.7,118.2$; HRMS (ESI) exact mass calculated for $[M]^{+}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ requires m / z 139.0380, found m / z 139.0382.

(2Z,4E)-5-azido- N-tosylpenta-2,4-dienamide (4a')

4'a

Compound 4a' was obtained together with its E, E-isomer 4 a when the reaction was performed at room temperature using NaN_{3} as nucleophile. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$) $\delta 7.30(\mathrm{dd}, J 13.3,11.5,1 \mathrm{H}), 6.90(\mathrm{~d}, J 13.3,1 \mathrm{H}), 6.71(\mathrm{~d}, J 11.5,1 \mathrm{H}), 5.62(\mathrm{~d}, J 11.2,1 \mathrm{H})$.
(2E,4E)-5-azido-2-methylpenta-2,4-dienoic acid (4b)

Compound 3b was obtained in quantitative yield according to the general procedure. The cyclobutene slowly ring opens at room temperature to give to diene $\mathbf{4 b}$. After the reaction the mixture contains 3b and 4b in a $1: 1$ ratio. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \mathbf{4 b}: \delta 7.21(\mathrm{~d}, J$ 12.1, 1H), 6.94 (d, $J 13.1,1 \mathrm{H}$), 6.25 (dd, J 13.1, 12.1, 1H), 1.89 (d, $J 1.4,3 \mathrm{H}$); 3b: 6.44 (d, J $2.8,1 \mathrm{H}), 6.32(\mathrm{dd}, J 2.8,0.9,1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$,
$\mathrm{CD}_{3} \mathrm{COCD}_{3}$) 4b: $\delta 169.3,137.2,135.9,116.1,58.2,12.5 ; \mathbf{3 b}: \delta 174.6,145.1,136.7,126.5$, 65.7, 18.9; HRMS (ESI) exact mass calculated for [M] $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ requires m / z 153.0538, found $m / z 153.0538$.

(E)-2-((E)-3-azidoallylidene)hexanoic acid (4c)

4c

3c

Compound $\mathbf{3 c}$ was obtained in 47% yield according to the general procedure. The cyclobutene slowly ring opens at room temperature to give to diene $\mathbf{4 c}$. After the reaction the mixture contains $\mathbf{3 c}$ and $\mathbf{4 c}$ in a 1:2.8 ratio. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \mathbf{4 c}: \delta 7.21(\mathrm{~d}, J 12.3$, $1 \mathrm{H}), 6.97$ (d, $J 13.1,1 \mathrm{H}), 6.27$ (app. t, $J 12.3,1 \mathrm{H}), 2.41$ (m, 2H), 1.43-1.29 (m, 5H), 0.92-0.88 (m, 2H); 3c: $\delta 6.49(\mathrm{~d}, J 2.8,1 \mathrm{H}), 6.33(\mathrm{~d}, J 2.8,1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 2.41-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.43-$ $1.29(\mathrm{~m}, 5 \mathrm{H}), 0.92-0.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \mathbf{3 c}: \delta 167.7$, 137.6, 137.0, 135.9, 115.9, 32.8, 23.3, 14.4, 14.3.

5-azido- N-tosylpenta-2,4-dienamide 4d:

$T=R T \quad E, E-4 d / E, Z-4 d '$ ratio: 4.4:1
$T=0^{\circ} \mathrm{C} \quad E, E-4 d / E, Z-4 d$ ratio: 1:0

4d

Compound $4 \mathbf{d}$ was obtained as a brown oil in 62% yield according to the general procedure. FTIR (neat) $v_{\max } 3155,2102,1669,1600,1447,1080 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta$ 7.92 (d, $J 8.2,2 \mathrm{H}), 7.41$ (d, $J 8.2,2 \mathrm{H}), 7.25$ (dd, $J 15.0,11.7,1 \mathrm{H}), 7.03$ (d, $J 13.3,1 \mathrm{H}), 6.11-$ $6.03(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 164.0,145.5,142.5,140.5$, 138.0, 130.2 (2C), 129.1 (2C), 120.7, 117.9, 21.5.

(2Z,4E)-5-azido- N-tosylpenta-2,4-dienamide (4d')

Compound 4d' was obtained together with its E, E-isomer $4 d$ when the reaction was performed at room temperature, a mixture of E, E - and Z, E - 5 -azido- N-tosylpenta-2,4dienamide $\mathbf{4 d}$ and $\mathbf{4 d}{ }^{\prime}$ were obtained in a 4.4:1 ratio. $\mathbf{4 d} \mathbf{d}^{\prime}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta$ 7.96 (d, $J 8.0,2 \mathrm{H}$), 7.35 (d, $J 8.0,2 \mathrm{H}$), $7.29-7.24$ (m, 1H), 6.49 (app. t, $J 11.5,1 \mathrm{H}$), 6.39 (d, $J 13.8,1 \mathrm{H}), 5.49(\mathrm{~d}, J 10.9,1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.

3. Coupling constants comparison

Diene	X	R	Nu	Solvent	$\begin{aligned} & \delta\left(\mathrm{H}_{2}\right) \\ & (\mathrm{ppm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \delta\left(\mathrm{H}_{3}\right) \\ & (\mathrm{ppm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \delta\left(\mathrm{H}_{4}\right) \\ & (\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & \hline \delta\left(\mathrm{H}_{5}\right) \\ & (\mathrm{ppm}) \\ & \hline \end{aligned}$	$\begin{gathered} { }^{3} \mathrm{~J}\left(\mathrm{H}_{3} \mathrm{H}_{2}\right) \\ (\mathrm{Hz}) \\ \hline \end{gathered}$	$\begin{gathered} { }^{3} \mathrm{~J}\left(\mathrm{H}_{4} \mathrm{H}_{3}\right) \\ (\mathrm{Hz}) \\ \hline \end{gathered}$	$\begin{gathered} { }^{3} \mathrm{~J}\left(\mathrm{H}_{5} \mathrm{H}_{4}\right) \\ (\mathrm{Hz}) \\ \hline \end{gathered}$	Geometry
4a	-OH	-H	$\mathrm{N}_{3}{ }^{-}$	Acetone	5.9	7.3	6.2	7.0	15.4	11.4	13.2	E,E
4b	-OH	-Me	$\mathrm{N}_{3}{ }^{-}$	Acetone	--	7.2	6.3	7.0	--	12.0	13.1	E,E
4 c	-OH	-Bu	$\mathrm{N}_{3}{ }^{-}$	Acetone	--	7.2	6.3	7.0	--	12.3	13.1	E,E
4d	-NHTs	-H	$\mathrm{N}_{3}{ }^{-}$	Acetone	6.0	7.3	6.1	7.0	15.0	11.7	13.3	E,E
4a'	-OH	-H	$\mathrm{N}_{3}{ }^{-}$	Acetone	5.6	6.7	7.3	6.9	11.5	11.5	13.3	Z,E
4d'	-NHTs	-H	$\mathrm{N}_{3}{ }^{-}$	Acetone	5.5	6.5	7.2	6.4	11.5	11.5	13.8	Z,E

4. Click reactions of azido dienes

General procedure: To a mixture of azido diene $\mathbf{4 a}(15 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv.) and the corresponding acetylene ($0.21 \mathrm{mmol}, 2.0$ equiv.) in THF (0.5 mL) was added a solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.2$ equiv.) in water $(0.25 \mathrm{~mL})$ followed by a solution of sodium ascorbate ($13 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.6$ equiv.) in water (0.25 mL). The reaction mixture was stirred at room temperature for 12 h . Ethyl acetate was added to the mixture and the resulting solution was washed with three times with 1 M HCl . The organic phase was dried over MgSO_{4} and the solvent was removed under vacuum to afford the desired 1-4 triazole 5 .

(2E,4E)-5-(4-(methoxymethyl)-1H-1,2,3-triazol-1-yl)penta-2,4-dienoic acid (5a)

5a

Compound 20a was obtained as a yellow paste in 80% yield. FTIR (neat) $v_{\text {max }} 3094,2931$, 2887, 1677, 1644, 1619, 1044, 993; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}$, $J 14.2,1 \mathrm{H}), 7.50(\mathrm{dd}, J 15.1,11.4,1 \mathrm{H}), 7.21$ (dd, $J 14.2,11.4,1 \mathrm{H}), 6.17$ (d, $J 15.1,1 \mathrm{H}), 4.55$ $(\mathrm{s}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 167.3,146.5,141.8,132.4,128.8$, 122.1, 119.2, 66.0, 58.1; HRMS (ESI) exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$ requires m / z 208.0726, found $m / z 208.0728$.

5b

Compound $\mathbf{5 b}$ was obtained as a beige solid in 79%. FTIR (neat) $v_{\max } 3127,2932,2531$, 1671, 987, $937 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J 14.0,1 \mathrm{H}), 7.95$ (dd, $J 8.3,1.2,2 \mathrm{H}), 7.55(\mathrm{dd}, J 15.4,11.5,1 \mathrm{H}), 7.47(\mathrm{t}, J 7.6,2 \mathrm{H}), 7.38(\mathrm{t}, J 7.5,1 \mathrm{H}), 7.23$ (dd, $J 14.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J 15.4,1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 167.2$, 148.6, 141.7, 132.5, 131.3, 129.9 (2C), 129.3, 126.5 (2C), 124.9, 119.3, 119.2; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ requires $m / z 242.0923$, found m / z 242.0924.
(2E,4E)-5-(4-butyl-1H-1,2,3-triazol-1-yl)penta-2,4-dienoic acid (5c)

5c

Compound $\mathbf{5 c}$ was obtained as a white solid in 81% yield. FTIR (neat) $v_{\text {max }} 3123,2930,1672$, 1643, $989 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J 14.2,1 \mathrm{H}), 7.49(\mathrm{dd}, J$ $15.2,11.5,1 \mathrm{H}), 7.13$ (dd, $J 14.2,11.5,1 \mathrm{H}), 6.14$ (d, $J 15.2,1 \mathrm{H}), 2.71(\mathrm{t}, J 7.6,2 \mathrm{H}), 1.69-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J 7.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 167.4$, 149.6, 142.0, 132.7, 124.3, 120.1, 118.3, 32.1, 25.7, 22.9, 14.07; HRMS (ESI) exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ requires $m / z 220.1090$, found $m / z 220.1091$.
(2E,4E)-5-(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazol-1-yl)penta-2,4-dienoic acid (5d)

5d

Compound 5d was obtained as a yellow powder in quantitative yield following a modified procedure: $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and sodium ascorbate were not added to the mixture and after completion of the reaction, the solvent was simply removed to afford $\mathbf{5 d}$. The alkyne substrate used for was synthetised (Hydrobromination/elimination) according to the reported literature. ${ }^{[5]}$ FTIR (neat) $v_{\max } 2922,2859,1683,1619,1049,995 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta$ 7.71 (d, $J 13.6,1 \mathrm{H}), 7.50(\mathrm{dd}, J 15.4,11.9,1 \mathrm{H}), 7.26$ (dd, $J 13.6,11.9,1 \mathrm{H}), 6.20$ (d, $J 15.4$, $1 \mathrm{H}), 2.96(\mathrm{t}, J 6.7,2 \mathrm{H}), 2.88(\mathrm{t}, J 6.7,2 \mathrm{H}), 1.89-0.86(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 167.7,145.7,142.4,134.5,130.4,124.2,119.4,29.5,26.9,26.8,25.4,25.1$, 21.7. HRMS (ESI) exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ requires $m / z 246.1259$, found $m / z 246.1248$.
(2E,4E)-5-(4-(((3aR,6S,6aS)-3-(bis(4-methoxyphenyl)(phenyl)methyl)-6-(4-carboxybutyl)-2-oxohexahydro- 1 H -thieno[3,4-d]imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)penta-2,4-dienoic acid (5e)

5e

Compound $\mathbf{5 e}$ was obtained as a colourless oil in 63% yield. The biotin substrate used for was synthetised (methyl ester formation, protection and alkylation) according to the reported

[^2]literature. ${ }^{[6]}$ Upon work-up conditions, saponification of the methyl ester was observed yielding the diacid 5e. FTIR (neat) $v_{\text {max }}$ 2950, 1733, 1712, 1650, 1603, 1238, 702; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J 14.3,1 \mathrm{H}), 7.56(\mathrm{dd}, J 15.3,11.3,1 \mathrm{H}), 7.28$ (dd, $J 14.3,11.3,1 \mathrm{H}), 7.27-7.22$ (m, 5H), 7.08 (d, $J 8.8,2 \mathrm{H}$), 7.03 (d, $J 8.8,2 \mathrm{H}$), 6.81 (d, J $9.1,2 \mathrm{H}), 6.78$ (d, $J 9.1,2 \mathrm{H}$), 6.22 (d, $J 15.3,1 \mathrm{H}$), 4.75 (d, $J 15.2,1 \mathrm{H}), 4.55$ (dd, $J 9.4,4.9$, $1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J 15.2,1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}$, $2 \mathrm{H}), 2.28$ (dd, $J 12.8,4.0,1 \mathrm{H}), 1.95$ (dd, $J 12.8,6.1,1 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 174.8,167.4,161.3,159.3,159.2,145.0,144.6,141.7$, $136.5,136.3,132.4,132.3$ (2C), 132.2 (2C), 130.6 (2C), 128.0 (2C), 127.3, 124.8, 122.7, $119.3,113.3$ (2C), 113.2 (2C), 73.6, 63.8, 63.7, 55.4 (2C), 55.2, 39.7, 38.3, 34.0, 29.7, 29.4, 25.3. HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}\right)$ requires $m / z 746.2611$, found $m / z 746.2619$.

5. Coupling reactions of azido dienes

General procedure for coupling of \boldsymbol{N}-nucleophiles: To a solution of azido diene $\mathbf{4 a}$ (15 mg , $0.11 \mathrm{mmol}, 1.0$ equiv.) and amine ($0.12 \mathrm{mmol}, 1.1$ equiv.) in $\mathrm{DCM}(2 \mathrm{~mL})$ were added HOBt (1-Hydroxybenzotriazole, $16 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.1$ equiv.) and EDCI ($23 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.1$ equiv.) at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature and stirred for $12 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{DCM}(5 \mathrm{~mL})$ were added and the organic layer was washed with saturated NaHCO_{3}, brine and dried over MgSO_{4}. The solvent was removed under vacuum and the product was purified by column chromatography on silica gel (pentane/EtOAc: 95/5) to afford the desired amides 6 .

[^3]

Compound 6a was obtained as a pale yellow oil in 55% yield. FTIR (neat) $v_{\max } 3303,2978$, 2939, 2106, 1719, 1513, 1147; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 8.23$ (s, 1H), 7.28 (br d, J $8.5,1 \mathrm{H}), 7.15$ (app. t, $J 12.7,1 \mathrm{H}), 7.05$ (d, $J 7.5,2 \mathrm{H}), 6.87$ (d, $J 12.7,1 \mathrm{H}), 6.74$ (d, $J 7.5,2 \mathrm{H}$), $6.11(\mathrm{~d}, J 14.8,1 \mathrm{H}), 6.05$ (app. t, $J 12.7,1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J 13.9,6.1,1 \mathrm{H}), 2.91(\mathrm{~d}$, $J 13.9,8.1,1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 171.7,165.8,157.1,137.8$, 136.9, 131.3 (2C), 128.7, 124.1, 118.6, 115.9 (2C), 81.6, 55.4, 37.8, 28.1 (3C); HRMS (ESI) exact mass calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}\right)$ requires m / z 381.1534, found m / z 381.1533.

(2E,4E)-5-azido-N-benzylpenta-2,4-dienamide (6b)

6b

Compound $\mathbf{6 b}$ was obtained as a white solid in 71% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ $\delta 7.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J 13.2,1 \mathrm{H}), 6.11-6.06(\mathrm{~m}$, 2H), 4.46 (d, $J 6.1,2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 166.1,140.7,137.5,136.7$, 129.2 (2C), 128.5 (2C), 127.8, 124.6, 118.7, 43.6; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{ONa}\right)$ requires $m / z 251.0900$, found $m / z 251.0903$.

General procedure for coupling of \boldsymbol{O}-nucleophiles: To a stirred solution of azido diene $\mathbf{4 a}$ ($0.07 \mathrm{mmol}, 1.0 \mathrm{eq}$) in DCM (1 mL) were added DMF (1 drop) followed by oxalyl chloride $(0.01 \mathrm{mmol}, 1.5 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$. After 30 min , the solution was added to a mixture of alcohol
($0.09 \mathrm{mmol}, 1.1 \mathrm{eq}$) and $\mathrm{NaH}(60 \%$ in mineral oil, $0.09 \mathrm{mmol}, 1.1 \mathrm{eq})$ in $\mathrm{DCM}(1 \mathrm{~mL})$. The resulting mixture was stirred for 12 h at room temperature. $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{DCM}(5 \mathrm{~mL})$ were added to the reaction mixture and the layers were separated. The organic phase was washed three times with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The solvent was removed under vacuum and the product was purified by column chromatography on silica gel (pentane/EtOAc: 6/4) to afford the desired ester 6 .

(2E,4E)-(3S,10S,13R,14S,17R)-14-hydroxy-10,13-dimethyl-17-(5-oxo-2,5-dihydrofuran-3-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 5-azidopenta-2,4-dienoate (6c)

Compound $\mathbf{6 c}$ was obtained as a colorless solid in 22% yield. FTIR (neat) $v_{\text {max }} 2929,2101$, 1746, 1701, 1602, 1165, 989; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 7.29(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, J$ $11.3,1 \mathrm{H}), 6.17(\mathrm{t}, J 11.8,1 \mathrm{H}), 5.93-5.87(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J 18.5,1 \mathrm{H}), 4.85(\mathrm{~d}, J 18.5,1 \mathrm{H})$, $3.28(\mathrm{~s}, 1 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.20(\mathrm{~m}, 18 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 176.3,174.6,160.8,124.4,123.9,117.8,115.6$, $110.5,85.5,74.1,70.7,51.8,50.6,42.5,40.4,40.3,36.2,36.0,33.6,31.4,31.4,27.6,27.4$, 25.8, 24.1, 22.1, 22.0, 16.2; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$ requires m / z 496.2806, found $m / z 496.2809$.
(S)-tert-butyl 3-(4-hydroxyphenyl)-2-((2E,4E)-5-(4-(methoxymethyl)-1H-1,2,3-triazol-1-yl)penta-2,4-dienamido)propanoate (7)

Compound 7 was obtained as a white solid in an overall yield of 26% and 48% via route A and B, respectively. FTIR (neat) $v_{\max } 3280,2928,1726,1514,1366,1227,1155 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J 14.3,2 \mathrm{H}), 7.43(\mathrm{~d}, J 8.1,1 \mathrm{H})$, 7.34 (dd, $J 14.9,11.5,1 \mathrm{H}), 7.13$ (dd, $J 13.8,11.5,1 \mathrm{H}), 7.05$ (d, $J 8.4,2 \mathrm{H}), 6.74$ (d, $J 8.5,2 \mathrm{H})$, $6.42(\mathrm{~d}, J 14.9,2 \mathrm{H}), 4.65(\mathrm{q}, J 7.5,1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.91(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta$ 171.86, 165.61, 157.43, 146.60, 137.22, 131.45, 128.81, 128.08, 122.07, 119.67, 116.30, 81.90, 66.15, 58.09, 55.44, 40.77, 37.76, 28.26; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Na}\right)$ requires m / z 451.1956, found $m / z 451.1952$.

$\stackrel{\star}{\circ}$

4a

$4 a$

FBT-FC-085-00 NOESYGPPH D8=3.2 $10 \mathrm{mg} \mathrm{d}-\mathrm{Ac} / 290.5 \mathrm{~K}$

3.4

4'a
1

dt, $11.2 \mathrm{~Hz}, 0.9 \mathrm{~Hz}$ H \qquad

$$
\begin{aligned}
& { }^{2} H l>{ }^{-10} \perp \\
& { }^{2} H 6 乙={ }^{00} \Omega \\
& H^{H} \Gamma_{\varepsilon} \sin \gamma
\end{aligned}
$$

$$
\left.2 H 8 \%={ }^{0}\right]_{\varepsilon}
$$

$$
\text { (papxpown) }={ }^{7} \int_{I_{\varepsilon}}
$$

	,	1			1	,	1		1	1	O	
240	220	200	180	160	140	120	100	80	60	40	20	ppm

5a

5b

5b

- 167.67
_ $^{1} 145.70$
-142.37
-134.51
-130.45
-124.20
-119.36

1	1	,	1	1	1	1	1		,	1	1	
240	220	200	180	160	140	120	100	80	60	40	20	ppm

[^0]: [1] F. Frebault, M. T. Oliveira, E. Wostefeld, N. Maulide J. Org. Chem. 2010, 75, 7962.
 [2] E. J. Corey; J. Streith J. Am. Chem. Soc. 1964, 86, 950.

[^1]: [3] M. Luparia, M. T. Oliveira, D. Audisio, F. Frébault, R. Goddard, N. Maulide Angew. Chem. Int. Ed., 2011, 50, 12631.
 [4] N. Gauvry, F. Huet, J. Org. Chem. 2001, 66, 583.

[^2]: [5] H. D. Verkruijsse, L. Brandsma Synthesis, 1978, 290.

[^3]: [6] A. D. Pehere, A. D. Abell, , J. Org. Chem. 2011, 76, 9514.

