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Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices
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We demonstrate the experimental implementation of an optical lattice that allows for the gen-
eration of large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using
laser-assisted tunneling in a tilted optical potential we engineer spatially dependent complex tun-
neling amplitudes. Thereby atoms hopping in the lattice accumulate a phase shift equivalent to the
Aharonov-Bohm phase of charged particles in a magnetic field. We determine the local distribution
of fluxes through the observation of cyclotron orbits of the atoms on lattice plaquettes, showing that
the system is described by the Hofstadter model. Furthermore, we show that for two atomic spin
states with opposite magnetic moments, our system naturally realizes the time-reversal symmetric
Hamiltonian underlying the quantum spin Hall effect, i.e. two different spin components experience

opposite directions of the magnetic field.

PACS numbers: 03.65.Vf, 03.75.Lm,67.85.-d,73.20.-r

Ultracold atoms in optical lattices constitute a unique
experimental setting to study condensed matter Hamil-
tonians in a clean and well controlled environment [1],
even in regimes not accessible to typical condensed mat-
ter systems [2]. Especially intriguing is their promising
potential to realize and probe topological phases of mat-
ter, for example, by utilizing the newly developed quan-
tum optical high-resolution detection and manipulation
techniques [3, 4]. One compelling possibility in this di-
rection is the quantum simulation of electrons moving in
a periodic potential exposed to a large magnetic field, de-
scribed by the Hofstadter-Harper Hamiltonian [5, 6]. For
a filled band of fermions, this model realizes the paradig-
matic example of a topological insulator that breaks
time-reversal symmetry — the quantum Hall insulator.
Moreover, the atomic realization of time-reversal sym-
metric topological insulators based on the quantum spin
Hall effect [7] promises new insights for spintronic appli-
cations.

The direct quantum simulation of orbital magnetism
in ultracold quantum gases is, however, hindered by the
charge neutrality of atoms, which prevents them from
experiencing a Lorentz force. Overcoming this limitation
through the engineering of synthetic gauge potentials is
currently a major topic in cold-atom research. Artificial
magnetic fields were first accomplished using the Corio-
lis force in a rotating atomic gas [8, 9] and later by in-
ducing Berry’s phases through the application of Raman
lasers [10, 11]. Recently, staggered magnetic fields in op-
tical lattices were achieved using laser induced tunneling
in superlattice potentials [12] or through dynamical shak-
ing [13]. In one dimension, tunable gauge fields have been
implemented in an effective “Zeeman lattice” [14] and
using periodic driving [15]. Furthermore, the free-space
spin Hall effect was observed using Raman dressing [16].
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FIG. 1. Experimental setup. The experiment consists of a
3D optical lattice, where the vertical lattice isolates different
planes. The lattice constants within each plane are |d;| =
Ai/2, with ¢ = z,y. Along y, bare tunneling occurs with
strength J, while tunneling along x is inhibited by a magnetic
field gradient B’, which introduces an energy offset between
neighboring sites of (a) A for |1) atoms and (b) —A for |])
atoms. An additional pair of laser beams (red arrows) with
wave vectors |ki| =~ |ka| = 27/Ak and frequency difference
w = w1 —wz = A/l is used to restore resonant tunneling with
complex amplitude K. This realizes an effective flux of (a)
® = /2 for |T) atoms and (b) —® for |}) atoms.

Despite intense research efforts, 2D optical lattices fea-
turing topological many-body phases have so far been
beyond the reach of experiments.

In this Letter, we demonstrate the first experimental
realization of an optical lattice that allows for the gen-
eration of large tunable homogeneous artificial magnetic
fields. The technique is based on our previous work on
staggered magnetic fields [12]. The main idea is closely



related to early proposals by Jaksch and Zoller [17] and
subsequent work [18, 19]. However, it does not rely on the
internal structure of the atom, which makes it applicable
to a larger variety of atomic species including fermionic
atoms like °Li and K. We use laser-assisted tunneling
in a tilted optical lattice through periodic driving with a
pair of far-detuned running-wave beams [20, 21]. In con-
trast to techniques based on near-resonant laser beams,
heating of the atomic cloud due to spontaneous emission
is negligible [22]. The position-dependence of the on-
site modulation introduced by the running-wave beams
leads to a spatially-dependent complex tunneling ampli-
tude. Therefore, an atom hopping around a closed loop
acquires a non-trivial phase, which mimics an Aharonov-
Bohm phase. In our setup we realize a uniform effective
flux of ® = /2 per plaquette, whose value is fully tun-
able. We study resonant laser-assisted tunneling in the
tilted optical potential and reveal the local distribution
of fluxes by partitioning the lattice into isolated four-site
square plaquettes. Furthermore, we show that for two
spin-states with opposite magnetic moments, [1) and |J),
our coupling scheme directly gives rise to a non-Abelian
SU(2) gauge field that results in opposite magnetic fields
for |1) and |}) particles. In the presence of such a gauge
field the tight-binding Hamiltonian is time-reversal sym-
metric and corresponds precisely to the one underlying
the quantum spin Hall effect [7, 23].

Our experimental setup consists of an ultracold gas
of 8"Rb atoms held in a three-dimensional optical lat-
tice created by three mutually orthogonal standing waves
of laser light at wavelengths A, = Ay = 767nm and
A, = 844nm. The depth of the lattice along z is cho-
sen deep enough to suppress tunneling between indi-
vidual planes, typically V., = 30(1) E,., where E,; =
h?/(2mA?), i € {z,y, 2}, are the corresponding recoil en-
ergies and m is the mass of an atom. A magnetic field
gradient B’ along x is used to generate a linear poten-
tial of amplitude +A between neighboring sites, depend-
ing on the internal state of the atom [Fig. 1]. We use
two Zeeman states with opposite magnetic moments de-
noted as spin-up [1) = |F = 1,mr = —1) and spin-down
) =|F =2,mp=-1). For A > J,, with J, being the
bare coupling along x, tunneling is inhibited and can be
restored resonantly using a pair of far-detuned running-
wave beams with a frequency difference w = A/ [Fig. 1].
The local optical potential created by these two beams
is Vk(r) = VP2cos’(qr/2 + wt/2), with q = ky — ko
being the wavevector difference. This gives rise to a
time-dependent on-site modulation term with spatially-
dependent phases ¢, , = q R, where R = mdx+ndy de-
notes the lattice site (m,n). In the high-frequency limit,
hw > J;, i € {z,y}, the system can be described by an

b12
‘ L

i Bx o
X 0 10 20 30 40
B’ (mG/um)

FIG. 2. Laser-assisted tunneling in a tilted optical lattice. (a)
Schematic of the initial state used to study laser-assisted tun-
neling in the presence of a magnetic field gradient B’. Atoms
are initially prepared in even sites with at most one atom
per lattice site, while odd sites are left empty. (b) Measured
frequency difference wyes = w1 — w2, where atoms resonantly
tunnel from even to odd sites, as a function of the magnetic
field gradient B’. The finite value at B’ = 0 is due to a small
additional magnetic field gradient [22]. The solid line is a lin-
ear fit to our data. The inset shows a typical spectroscopy
measurement for B’ = 17.5mG/um, where the fraction of
atoms on odd sites moqq is measured as a function of the
frequency difference w to determine the resonance frequency
wres. The solid line shows the fit of a Lorentzian-function to
our data.

effective time-independent Hamiltonian
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where the sign of the phase factor is positive for |1)
atoms and negative for ||) atoms. In the limit of
A > V¥ the effective coupling strengths along x and
y are K = J,J1 (VE/(V24)) ~ J,V2/(2V2A) and
J = JyJo (V2/(V2A)) = J,, where J, () are the Bessel
functions of the first kind [24]. We note that the spin-
dependent Peierls phase factors directly arise from the
spin-dependent Zeeman coupling to the real applied mag-
netic field gradient.

For the chosen propagation of the running-wave beams
shown in Fig. 1 and Ax = 2A,, we obtain a phase
factor ¢, = 7/2(m + n) [22]. Therefore the phase
accumulated on a closed path around a plaquette is
+® = +7/2, depending on the spin of the particle, and
the corresponding gauge field is given by A = —(hd®(z +
y)/(dzdy),0,0) &, where &, is the Pauli z-matrix. A dif-
ferent value of the flux ® could be achieved by changing
the wavelength Ai or the angle between the running-
wave beams.

To study laser-assisted tunneling in the presence of the
magnetic field gradient B’, we loaded a Bose-Einstein
condensate of about 5 x 10* atoms in an initial state,
where all atoms populated even sites with at most one
atom per site, while odd sites were left empty [Fig. 2(a)



and [22]]. The final lattice depths, V, = 5.0(1) E,, and
V, = 40(1) E,,,, were chosen to yield a negligible tun-
nehng along y and a bare tunnel coupling along z of
Jz/h = 0.26(1)kHz. Due to the magnetic field gra-
dient, tunneling was inhibited along x and all atoms
stayed in even sites. The running-wave beams were then
switched on for 4 ms with strength V2 = 9.9(2) E, g,
where E,x = h%/(2m\%). Afterwards we measured the
fraction of atoms transferred to odd sites noqq as a func-
tion of the frequency difference w for a fixed value of the
magnetic field gradient. Even-odd resolved detection was
achieved by transferring atoms in odd sites to a higher
Bloch band and applying a subsequent band-mapping
sequence [22, 25]. As shown in the inset of Fig. 2(b)
atoms are transferred resonantly to odd sites when the
frequency of the running-wave beams matches the energy
offset A between neighboring sites. We measured the res-
onance frequency w5 for various values of the magnetic
field gradient and observed a large tunability up to about
A/h ~ 10kHz [Fig. 2(b)].

The spatial distribution of the local fluxes induced by
the running-wave beams was revealed by a series of mea-
surements in isolated four-site square plaquettes using
optical superlattices. This was achieved by superimpos-
ing two additional standing waves along x and y with
wavelength \;; = 2)\;, i € {z,y}. The resulting potential
along x is V(z) = Vi sin® (kp/2 + 0, /2) + V, sin? (k,2),
where V, is the depth of the “long” lattice. The su-
perlattice potential along y is given by an analogous
expression. The depths of the lattices and the relative
phases, ¢, and ¢,, can be controlled independently. For
¢z = ¢y, = 0 we realize symmetric double well po-
tentials along x and y to isolate individual plaquettes
[Fig. 3]. Due to the presence of the magnetic field gra-
dient, the plaquettes are tilted along x, with an energy
offset A for |1) atoms and —A for ||) atoms. The four
sites of the plaquette are denoted as A, B,C, D [Fig. 3].
The experiment started by loading spin-polarized sin-
gle atoms into the ground state of the tilted plaquettes:
|99) = (14) + 1D))/VE and [93) = (|B) + C))/v2,
for |1) and |}), respectively [Fig. 3(a) and [22]]. After
switching on the running-wave beams the atoms cou-
ple to the B and C sites (|1) atoms) and A and D
sites (|}) atoms). Without the artificial magnetic field,
the atoms would oscillate periodically between left and
right, but due to the phase imprinted by the running-
wave beams the atoms experience a force perpendicular
to their velocity similar to the Lorentz force acting on a
charged particle in a magnetic field. We measured the
time evolution of the atom population on different bonds
(Nieft = Na+ Np, Nyight = N + N, Ny = No + Np,
and Ngown = Na + Np), with N, being the atom popu-
lation per site (¢ = A, B,C, D), by applying the even-
odd resolved detection along both directions indepen-
dently [22]. From this we obtained the mean atom po-

a T 04 F T T T T 7
1) .
> >
i 2
. Z ot 1
AL e oY ., |21
04 -08 -02 -01 0 01 01 0 o1 02 03 04
(X)dx (X)/dx
Da ____aC D ____HC
A ““L A%
\/\/\/\/\/ -~ \/\/\/\/\/ -
| v | v
b r T T T T T 01 F T T T T 7
arHlh 1)
O o ©
> - o 8 o 1
S or g
S /Q\\! Z;_m L J
-0.1f
R Time (el | 2
04 03 02 01 0 o1 " 01 0 o1 02 03 04
(X)/dx (X)/dx
D, ____IC ____AaC
TR ST
N\ANAS v \/\/\/\/‘\/ v
- —mm e v

FIG. 3. Quantum cyclotron orbits obtained from the mean
atom positions along z and y, (X)/d. and (Y)/d, for
J/K = 2 [22]. Every data point is an average over three
individual measurements. The solid gray lines show the fit
of the theoretically expected evolution to the data, which
was obtained from a numerical calculation solving the time-
dependent Schrodinger equation of the 4 x4 Hamiltonian. The
oscillation amplitudes and offsets were fitted independently
along = and y, whereas the time offset 7 = 0.12(5) ms and
flux ® = 0.73(5) x m/2 were fixed (see main text and Sup-
plementary Information [22]). The schematics illustrate the
superlattice potentials used to partition the lattice into pla-
quettes together with the initial state for |1) atoms (green)
and [|) atoms (blue) and the direction of the flux. The su-
perlattice potential along x is shifted by one lattice constant
for the experimental results in (b) with respect to the ones in
(a) to demonstrate the uniformity of the artificial magnetic
field.

sitions along  and y, (X) = (Nright — Niet)dz/2N and
(Y) = (Nup—Ndown)dy /2N, with N being the total atom
number. As shown in Fig. 3(a), the mean atom position
follows a small-scale quantum analog of the classical cy-
clotron orbit for charged particles. Starting with equally
populated sites A and D, spin-up atoms experience a
force along y, which is perpendicular to the initial veloc-
ity and points towards the lower bond in the plaquette
(A and B sites). Spin-down atoms, initially with oppo-
site velocity, also move towards the lower bond. There-
fore the chirality of the cyclotron orbit is reversed, re-



vealing the spin-dependent nature of the artificial mag-
netic field [Fig. 3(a)]. The value of the magnetic flux
per plaquette ® = 0.73(5) x 7/2, measured in our previ-
ous work [12], is used for the fits in Fig. 3. The difference
from ® = /2, expected for a homogeneous lattice, stems
from the smaller distance between lattice sites inside the
plaquettes when separated.

To further demonstrate the uniformity of the magnetic
field we performed the same set of measurements in pla-
quettes shifted by one lattice constant along x. This was
achieved by changing the relative phase between the two
standing waves along z from ¢, = 0 [Fig. 3(a)] to p, =7
[Fig. 3(b)]. The chirality of the obtained cyclotron orbits
remained unchanged, which implies that a homogenous
magnetic flux is present in the system.

In analogy to the spin Hall effect observed in solid state
devices [26], we measured the particle current perpendic-
ular to the initial motion as a function of spin imbalance
ny —ny, where ny (ny) is the fraction of spin-up (-down)
atoms. The experimental sequence started from a Mott
insulator of unit filling, with each atom prepared in a su-
perposition of |1) and [{). We then loaded single atoms
into the ground-state of the lower bond of the plaquettes,
which has an equal weight on A and B sites [Fig. 4(a)],
and measured the mean atom position (X) /d,. We ob-
tained an oscillation amplitude for a spin-polarized state
of A(xy = —0.28(2) for |{) atoms and A x) = 0.26(4) for
[1) atoms. As can be seen in Fig. 4(b), the evolution is
almost perfectly mirrored for the two spin components.
The measured oscillation amplitude as a function of the
spin imbalance ny — n) shows that the current depends
linearly on the spin imbalance and reverses sign when
flipping the spin [Fig. 4(c¢)].

In conclusion, we have demonstrated a new type of op-
tical lattice that realizes the non-time reversal symmet-
ric Hofstadter-Harper Hamiltonian and the time-reversal
symmetric quantum spin Hall Hamiltonian for ultracold
atoms in optical lattices. Loading spin-polarized or two-
component Fermi gases into this lattice should allow one
to directly realize quantum Hall and Z5 topological insu-
lators with chiral and helical edge states for finite sized
systems. This system also opens the path to explore the
fractal band structure of the Hofstadter butterfly with ul-
tracold atoms [6]. The lowest band is topologically equiv-
alent to the lowest Landau level and exhibits a Chern
number of one [11, 17, 19, 27]. In future experiments the
ground-state properties, the effect of the Berry curvature,
and topological edge states could be studied [28-30]. The
chiral edge modes in this lattice could be directly revealed
in ladder systems exposed to a homogeneous magnetic
field, which constitute the smallest possible 2D systems
in which these states can be observed [31]. Moreover, our
work constitutes an important step towards the study of
the quantum Hall effect with ultracold atomic gases and
the creation of strongly-interacting fractional quantum
Hall-like liquids for bosonic and fermionic atoms [32].
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FIG. 4. Particle currents as a function of the spin imbalance
of the system. (a) Schematic of the initial state configura-
tion with one atom in a spin-mixture state of |}) and |1)
in the lower bond of each plaquette [22]. (b) Evolution of
the mean atom position along x for all particles in [|) (blue)
and all atoms in 1) (green) for J/h = 0.69(1) kHz, K/h =
0.38(1) kHz and A/h = 5.31(5) kHz. The solid lines show a fit
of the theoretically expected curve to the data obtained using
the same method as in Fig. 3 with a time offset 7 = 0.18(3) ms.
(c) Oscillation amplitude A xy = A%x) + AzX>
atom position (X) /d, as a function of the spin imbalance
ns — ny. BEvery data point is an average over two individ-
ual measurements. The insets show schematics of the initial
states together with the directions of the flux for all atoms
in |}) (blue) and |1) (green). The solid line is a linear fit to
our data, with the offset set to zero. The error bars show the
standard deviation of our data.

of the mean
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Appendix

PHOTON SCATTERING RATE

A major advantage of our scheme is the large detuning
of the running-wave beams from the atomic transition.
For typical experimental parameters we estimated the
photon scattering rate to be 2 x 1073s~! corresponding
to a lifetime of the sample of several minutes, making the
heating due to spontaneous emission negligible.

LOCAL PHASE DISTRIBUTION IN THE
LATTICE

As illustrated in Fig. 1 in the main text, bare tunneling
with amplitude J occurs along the y direction, while tun-
neling along the x direction is inhibited by a magnetic-
field gradient B’. The pair of far-detuned running-
wave beams then restores tunneling along that direction
with complex amplitude K. The time-dependent opti-
cal potential created by the interference between the two
beams gives rise to an on-site modulation with position-
dependent phases *¢,,,, = £7/2(m + n), where the
phase factors are positive for |1) atoms and negative for
|4) atoms. The local distribution of phases in the lat-
tice is illustrated in Fig. Al. For atoms in spin states
1) (1)), the induced phase increases (decreases) linearly
along the vertical and horizontal directions resulting in a
total flux of ® = w/2 (—®) per plaquette.
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FIG. Al. Schematic drawing of the local phase distribution
of the tunneling matrix elements induced by the pair of far-
detuned running-wave beams used to restore resonant tunnel-
ing along z for (a) |1) particles and (b) ||) particles.

EXPERIMENTAL SEQUENCE

Magnetic field gradient

The magnetic field gradient B’ used to create the lin-
ear potential is produced by a quadrupole magnetic field.
Initially the minimum of the quadrupole field is aligned
with the position of the atomic cloud. An additional
single coil is then used to displace the minimum of the
magnetic trap along x from the atom position by gener-
ating a magnetic field offset By. However, the magnetic
field produced by the coil is not entirely homogeneous
but causes a small additional gradient Bj. The resulting
magnetic field gradient is therefore given by the sum of
the two: B’ + B{,. For the data depicted in Fig. 2(b) of
the main text we vary the strength of the quadrupole
field B’ without changing the offset field. The finite
value of the energy offset between neighboring sites of
A/h =1.30(4) kHz for B’ = 0 corresponds to By.

Initial state preparation on even sites

The initial state for the laser assisted-tunneling mea-
surements shown in Fig. 2 of the main text, was pre-
pared such that all atoms populated even sites of the
lattice with at most one atom per lattice site. We
started by loading a Bose-Einstein condensate in the
|F = 1,mp = —1)-Zeeman state into a 3D optical lattice
in the Mott-insulator regime with at most two atoms per
lattice site. The lattice was created by the “long lat-
tice” along = (A = 1534 nm), the “short lattice” along
y (Ay = 767nm) and the vertical lattice with wavelength
A, = 844nm. The lattice depths were Vi, = 30(1) Eyiq,
V, = 20.0(6) E,, and V, = 20.0(6) E,,, with E,; =
h?/(2mA?), i € {lz,y,z}, being the corresponding re-
coil energy. Afterwards we applied a filtering sequence
where we ramped up the lattices to Vi, = 104(3) E,i4,
V, = 100(3) E,y, V. = 120(4) E,, and transferred all

atoms to the |F = 2,mp = —1) state using a rapid adi-
abatic transfer (Landau-Zener sweep). This was done
by applying a microwave field at about 6.8 GHz together
with a sweep of the magnetic field offset over the reso-
nance. The sweep was slow enough (10ms) to stay adi-
abatic and to achieve almost complete population trans-
fer. In the |F =2,mp = —1) state, spin relaxation col-
lisions are strongly enhanced. If two atoms collide at
least one of them is transferred to the F' = 1 manifold
and enough energy is released to expel both atoms from
the trap [Al, A2]. After 50ms of waiting time nearly
all atoms in doubly occupied sites were removed from
the trap and the remaining atoms were transferred back
to the |F = 1,mp = —1) state using a second rapid adi-
abatic transfer. Then we decreased the lattice depths
to Vi = 52(2) By, Vy = 40(1) Eyy and V., = 30(1) E,.,
and ramped up the magnetic field gradient within 200 ms.
This time is chosen such that the magnetic field gradient
is stable over the duration of the experiment. After that,
the short lattice along x was ramped up within 20 ms to
V. = 40(1) E,., in order to load all atoms on the lower
energy wells of the tilted double well potentials. After
switching off the long lattice within 2 ms we lowered the
short lattice to its final value of V, = 5.0(1) E,,. This
sequence led to a state where all atoms only populated
even sites with at most one atom per lattice site.

Sequence and parameters for the cyclotron orbits

The experimental sequence for the cyclotron mea-
surements shown in Fig. 3 of the main text started
by loading a Bose-Einstein condensate in a 3D op-
tical lattice in the Mott-insulator regime created by
the two long lattices along x and y and the vertical
lattice at depths V; = 20.0(6) E,;, with E,; being the
corresponding recoil energy and i € {lz,ly,z}. For
the filtering sequence described above, we ramped up
the lattices to Viz = 70(2) Eyip, Viy = 70(2) Eyyy and
V. = 120(4) E,,. After all atoms in doubly occupied
sites were lost from the trap we either performed a
second Landau-Zener sweep to transfer all atoms to the
[1) = |F = 1,mp = —1) state (green data points) or we
left all remaining atoms in the ||) = |F =2,mp = —1)
state (blue data points). Then we lowered the lattice
depths to Vi, = 35(1) Ere, Viy = 35(1) Epy and
V, = 30(1) E,, and subsequently ramped up the mag-
netic field gradient to its final value within 250 ms. After
ramping up the short lattice along z within 15ms to
Ve = 40(1) E,, all |1) atoms were loaded in the left
wells, while all |]) atoms were loaded in the right wells.
To load the ground-state in the tilted plaquettes we split
the long lattice wells along y by switching on the short
lattice to V,, = 10.0(3) E,, within 0.1 ms. At the same
time we decreased the short lattice along x to its final
value V,, = 7.0(2) E;,. The dynamics were initiated by



switching on the running-wave beams suddenly. The
final trap parameters .J, K, A were calibrated indepen-
dently for each measurement. The corresponding values
are given in the tables below:

spin J/h K/h A/h
(a) 1) 0.53(1) kHz 0.27(1) kHz 4.23(3) kHz

1) 0.53(1) kHz 0.28(1) kHz 4.56(2) kHz

spin J/h K/h A/h
(b) 1) 0.53(1) kHz 0.28(1) kHz 4.91(4) kHz

1) 0.53(1)kHz 0.29(1) kHz 4.36(2) kHz

The data points shown in Fig. 3 of the main text are
averaged over three individual measurements. The corre-
sponding standard deviations are depicted as error bars
in Fig. A2. Residual deviations of the data from the the-
ory curve can most likely be attributed to an imperfect
initial state preparation and off-resonant tunneling pro-
cesses.
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FIG. A2. Cyclotron orbits as shown in Fig. 3(a,b) of the main
text. Each data point is averaged over three individual mea-
surements. The error bars depict the corresponding standard
deviation.

Spin mixture and initial state preparation

For the measurements shown in Fig. 4 of the main
text, we loaded the atoms in a deep 3D optical lattice
created by the two long lattices and the vertical lattice,
Vie = 30(1) Eyig, Viy = 20.0(6) Eyy and V., = 20.0(6) E,...
For the filtering sequence they were ramped up to Vj, =
104(3) Eyiy, Viy = 70(2) Eyyy and V, = 120(4) E,., and af-
ter all doubly occupied sites were lost from the trap, we
were left with singly occupied sites and all atoms in the
|[{) state. In contrast to the sequence described above,

we stopped the second Landau-Zener sweep at different
times to create a superposition of |1) and |}). The frac-
tion of atoms in the |1) and [|) state was calibrated inde-
pendently by applying a Stern-Gerlach pulse at the be-
ginning of the time of flight for each sweep configuration.
Afterwards we decreased the lattices to Vi, = 52(2) E,i4,
Viy = 35(2) Eyyy and V., = 30(1) E,... Similar to the se-
quence described above we ramped up the short lattice
along y within 20ms at a finite relative phase ¢, # 0 in
order to load the atoms in every second site of the super-
lattice potential along y. Tunneling along that direction
was suppressed by the short lattice, V,, = 40(2) E,,. The
relative phase was then adiabatically changed to ¢, =0
within 40 ms, to create a symmetric double well poten-
tial. After that we ramped up the magnetic field gradient
within 250 ms and subsequently switched on the short lat-
tice along  within 2 ms to its final value V,, = 6.0(2) E,.
At this stage of the sequence |1) atoms were located in A
sites, while |]) atoms were located in B sites. Tunneling
along both directions was suppressed either by the mag-
netic field gradient (x) or a high potential barrier (y).
Then the running-wave beams were switched on adiabat-
ically within 7 ms to load the atoms into the ground state
of the lower bond of the plaquette, which has an equal
weight on A and B sites. Afterwards the dynamics were
initiated by lowering the barrier along y within 100 us to
its final value of V, = 9.0(3) E,.

SITE-RESOLVED DETECTION

To detect the occupation numbers on the different
bonds in the plaquette, we apply two independent band
mapping sequences along x and y. In each experimental
run only one of the two sequences is applied. For the
mapping along x, atoms in sites B and C' are transferred
to the third Bloch band of the long lattice along x. A
subsequent band mapping technique allows us to deter-
mine the population in different Bloch bands by counting
the corresponding number of atoms [A3, A4]. The colors
used in Fig. A3(a) show the connection between the long-
lattice Brillouin zones and the corresponding lattice sites
for the mapping along x, Niest = Ng + Np (gray) and
Niight = Np + N¢ (blue). To obtain the population in
the lower and upper bonds we apply the same technique
along y. Figure A3(Db) illustrates the connection between
the lattice sites and Brillouin zones for the mapping se-
quence applied along y, with Ny, = N¢ + Np (green)
and Ngown = Na + Np (red).
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FIG. A3. Schematics of a four-site square plaquette and the
corresponding 1-D long-lattice Brillouin zones after applying
the mapping sequence (a) along z and (b) along y. The
grayscale images show a typical momentum distribution ob-
tained after 10 ms of time-of-flight.

NUMERICAL SIMULATIONS

Fitting functions of the time evolution of the mean
atom positions

In order to compare the measured evolutions of the
mean atom positions along x and y (shown in Fig. 3
and 4 of the main text) to the theory, we simulate the
dynamics of the system by solving the time-dependent
Schrodinger equation numerically. The corresponding
Hamiltonian is a 4 x 4-matrix written in the single-
particle basis for each site {|A4),|B),|C)|, D)} with pop-
ulations respectively given by N4, Ng, N, Np. The pa-
rameters in this Hamiltonian are J, K and ®. The tunnel
couplings J and K between neighboring sites are sketched
in Fig. A4 and their values were determined indepen-
dently via tunneling oscillations (see above). The flux
was measured in our earlier work [A5] and determined to
be & = 0.73(5) x w/2. The obtained time evolutions X (t)
and Y (t) are then fitted to our experimental data using
the following functions fx(t) = Xo+A<x>-X(t+7) and
fy(t)=Yo+Acys Y (t+7), with Xo, Ac x>, Y0, Acy>
being the fitting variables. A fixed time offset 7 is in-
troduced, because the finite ramping times (0.1 — 0.2 ms)
that initiate and freeze the dynamics prevent us from
determining the ¢ = 0 point a priori. To determine T,
we fitted the evolution for each data set independently
and used the average values as fixed time offsets for each
figure. For the data shown in Fig. 3 and 4, we obtain av-
erage values of 0.12(5) ms and 0.18(3) ms, respectively,
which differ slightly because of different experimental se-
quences.
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FIG. A4. Schematic drawings of a representative four-site
square plaquette showing the tunnel couplings used in the
4 x 4 Hamiltonian discussed in the text for (a) |1) particles
and (b) [{) particles.

Monte Carlo sampling of expected cyclotron orbits

Considering the uncertainty in our knowledge of the
parameters J, K, ®, and a potential detuning between
lattice sites in each direction of A, , = 0(30) Hz, we
can visualize the agreement between the orbits derived
from our model and those from our measurements as
follows. First, we assume each parameter J, K, ®, and
A,y follows a normal distribution with the mean and
standard deviation values reported above. Using these
distributions, we generate a sample of random parameter
values that are then used in our model Hamiltonian to
calculate the cyclotron orbits (a sampling procedure
sometimes called Monte Carlo sampling). The calculated
orbit is then rescaled in amplitude, offset and time delay
as described above. By repeating this procedure with
1000 samples, we produce as many cyclotron orbits and
plot them together with the data in Fig. A5.
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FIG. A5. Cyclotron orbits as shown and described in
Fig. 3(a,b) of the main text, with experimentally measured
cyclotron orbits (dots connected by green and blue solid lines),
expected calculated evolution (black solid lines); but now each
including 1000 trajectories from Monte Carlo samples (gray
lines) as decribed in the text.
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