Angewandte Chemie

Supporting Information
© Wiley-VCH 2013

69451 Weinheim, Germany

Formal Ring-Opening/Cross-Coupling Reactions of 2-Pyrones: Iron-Catalyzed Entry into Stereodefined Dienyl Carboxylates** Chang-Liang Sun and Alois Fürstner*
anie_201307028_sm_miscellaneous_information.pdf

Supporting Crystallographic Information

Figure S-1. Structure of compound $\mathbf{5 a}$ in the solid state. Anisotropic displacement parameters are drawn at the 50\% probability level, hydrogen atoms are omitted for clarity.

X-ray Crystal Structure Analysis of Compound 5a. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}, M_{r}=140.18 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.33 \times 0.09 \times 0.04 \mathrm{~mm}$, monoclinic, space group $P 2_{1} / c, a=7.3045(4) \AA, b=$ $7.2696(4) \AA, c=15.0537(9) \AA, B=94.071(3)^{\circ}, V=797.35(8) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.168$ $\mathrm{g} \cdot \mathrm{cm}^{3}, \lambda=1.54178 \AA, \mu\left(C u-K_{\alpha}\right)=0.670 \mathrm{~mm}^{-1}$, Empirical absorption correction ($\mathrm{T}_{\min }=0.84$, $\mathrm{T}_{\max }=0.98$), Bruker AXS Proteum X8 diffractometer, $5.89<\theta<65.08^{\circ}$, 17835 measured reflections, 1359 independent reflections, 1069 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.052[I>2 \sigma(I)]$, $w R_{2}=0.132$, 96 parameters, extinction coefficient $=0.010(2), \mathrm{H}$ atoms riding, $S=1.039$, residual electron density $0.3 /-0.2$ e \AA^{-3}.

CCDC-953753 contains the supplementary crystallographic data for this paper. This information can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Determination of the Stereostructure by NMR

According to a previous study, ${ }^{1}$ the four possible isomers of 3,5-dimethyl-2,4-alkadienoic acids show the following characteristic signals in their ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$:

$$
\begin{aligned}
& (2 Z, 4 E): \mathrm{Me}^{\mathrm{b}}: \approx 2.03 \mathrm{ppm} ; \mathrm{H}^{\mathrm{b}}: \approx 6.46 \mathrm{ppm} \\
& (2 Z, 4 Z): \mathrm{Me}^{\mathrm{b}}: \approx 2.03 \mathrm{ppm} ; \mathrm{H}^{\mathrm{b}}: \approx 6.40 \mathrm{ppm} \\
& (2 E, 4 E): \mathrm{Me}^{\mathrm{b}}: \approx 2.25 \mathrm{ppm} ; \mathrm{H}^{\mathrm{b}}: \approx 5.72 \mathrm{ppm} \\
& (2 E, 4 Z): \mathrm{Me}^{\mathrm{b}}: \approx 2.25 \mathrm{ppm} ; \mathrm{H}^{\mathrm{b}}: \approx 5.73 \mathrm{ppm} \\
& \\
& (2 Z, 4 E): \mathrm{Me}^{\mathrm{b}}: \approx 18.5 \mathrm{ppm} ; \mathrm{Me}^{\mathrm{a}}: \approx 25.5 \mathrm{ppm} \\
& (2 Z, 4 Z): \mathrm{Me}^{\mathrm{b}}: \approx 25.5 \mathrm{ppm} ; \mathrm{Me}^{\mathrm{a}}: \approx 23.7 \mathrm{ppm} \\
& (2 E, 4 E): \mathrm{Me}^{\mathrm{b}}: \approx 19.6 \mathrm{ppm} ; \mathrm{Me}^{\mathrm{a}}: \approx 18.3 \mathrm{ppm} \\
& (2 E, 4 Z): \mathrm{Me}^{\mathrm{b}}: \approx 23.8 \mathrm{ppm} ; \mathrm{Me}^{\mathrm{a}}: \approx 19.6 \mathrm{ppm}
\end{aligned}
$$

This pattern allows the two isomers 5 a and $\mathbf{6 a}$ of 3,5-dimethyl-2,4-hexadienoic acid formed by the pyrone ring opening/cross coupling under different experimental conditions to be unambiguously assigned (Figure S-2); in addition, the configuration of the $2 Z$-isomer was corroborated by X-ray diffraction (see above). Based on this evidence, all other products were assigned analogously; a representative example (5e) is shown in Figure S-3.

Figure S-2. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra (CDCl_{3}) of $\mathbf{6 a}$ (top) and 5 a (bottom) shows the characteristic shift differences of the two geometric isomers

[^0]

Figure S-3. The configuration of compound $\mathbf{5 e}$ was assigned based on the characteristic shift pattern in its ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra.

General. All reactions were carried out in flame-dried glassware under Argon. All solvents were purified by distillation over the drying agents indicated and were transferred under Argon: THF (Mganthracene), diethyl ether (Mg-anthracene), dichloromethane $\left(\mathrm{CaH}_{2}\right)$, acetonitrile (CaH_{2}), triethylamine $\left(\mathrm{CaH}_{2}\right)$, hexane $(\mathrm{Na} / \mathrm{K})$, toluene $(\mathrm{Na} / \mathrm{K})$. HOAc and MeOH were used as received. Flash chromatography: Merck silica gel 60 (230-400 mesh). IR: Nicolet FT-7199 spectrometer, wavenumbers in cm^{-1}. MS (EI): Finnigan MAT 8200, MS (CI): Finnigan MAT 95, MS (ESI) ESQ 3000; accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker DPX 300, AV 400 or AV 500 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.24 \mathrm{ppm}, \delta_{\mathrm{C}}=77.0 \mathrm{ppm}\right)$ and the chemical shifts converted to the TMS scale. Unless stated otherwise, all commercially available compounds (Acros, Sigma-Aldrich, Fluka, Alfa Aesar, Lancaster, Strem) were used as received.

Substrates

2-Pyrone, 4,6-dimethyl-2-pyrone, 6-pentyl-2-pyrone, coumarin, and 4H-chromen-4-one were purchased and used as received; compounds $4 i,{ }^{2} \mathbf{4 k},{ }^{3} \mathbf{4 j},{ }^{4} \mathbf{4 I},{ }^{5}$ and 13^{6} were prepared according to the literature.

Compound 1. The solution of triflic anhydride ($4.23 \mathrm{~g}, 15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was slowly added at
Cotf $-20^{\circ} \mathrm{C}$ to a stirred solution of 4-hydroxy-6-methyl-2-pyrone ($1.43 \mathrm{~g}, 11 \mathrm{mmol}$) and triethylamine ($1.52 \mathrm{~g}, 15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL). Once the addition was complete, the cooling bath was removed and stirring continued overnight at ambient temperature. For work up, the mixture was washed with HCl aq (1 M) and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The combined organic phases were dried over MgSO_{4} and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 8:1) to give the title compound as a pale yellow oil $(2.35 \mathrm{~g}, 83 \%)$. The spectral and analytical data were identical to those reported in the literature. ${ }^{71} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.33(\mathrm{~s}, 3 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}$,CDCl 3) : $\delta=20.3$, $99.6,102.4,118.4\left(q, J_{C, F}=318.8 \mathrm{~Hz}\right)(113.6,116.8,120.0,123.2), 160.9,161.5,165.5 . \mathrm{MS}(E \mathrm{I}): \mathrm{m} / \mathrm{z}$ (\%) 258 (100), 229 (51), 165 (7), 123 (20), 113 (27), 97 (100), 69 (98).

Representative Procedure for the Preparation of 6-Alkyl-2-pyrone Derivatives. 6-Ethyl-4-methyl-2H-pyran-2-one (4e). ${ }^{8,9}$ A mixture of ethyl 3-methyl-2-butenoate ($0.64 \mathrm{~g}, 5 \mathrm{mmol}$) and propanoyl chloride ($0.55 \mathrm{~g}, 6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to a stirred and cooled suspension of $\mathrm{AlCl}_{3}(1.60 \mathrm{~g}, 12 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at a rate as to maintain gentle reflux. Once the addition was complete, the mixture was stirred under reflux for 3 h before it was cooled and carefully decomposed by slowly pouring it into excess ice-water. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic layer were dried over MgSO_{4} and evaporated. The residue was added to a mixture of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ and HOAc (20 mL) and the resulting solution stirred at $40{ }^{\circ} \mathrm{C}$ until TLC control indicated complete conversion. The mixture was carefully poured into crushed ice and the resulting phase was neutralized with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Extraction of the aqueous layer with EtOAc ($3 \times 30 \mathrm{~mL}$), drying of the combined organic phases over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the solvent gave a residue that was purified by flash chromatography (hexane/EtOAc, 4:1) to give the title compound as a yellow liquid ($529 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.0,21.4,26.8,104.8,110.6,156.2$, 163.3, 166.0. IR (film, cm^{-1}): 2981, 1769, 1731, 1712, 1698, 1643, 1561, 1437, 1408, 1377, 1225, 1133,

[^1]1063, 1030, 995, 913, 891, 861, 830. MS (EI): m / z (\%) 138 (52), 110 (62), 109 (100), 95 (85), 67 (8), 53 (81), 39 (9).

The following compounds were prepared analogously:
Compound 4d. ${ }^{8,9}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.72(\mathrm{~m}, 1 \mathrm{H})$,
 $5.81(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.1,21.5,32.5,103.4,110.6$, 156.2, 163.2, 169.5. IR (film, cm^{-1}): 3082, 2973, 2936, 2877, 1769, 1724, 1698, 1642, 1561, 1442, 1409, 1378, 1366, 1311, 1226, 1123, 1081, 1068, 1026, 974, 942, 881, 835. MS (EI): m / z (\%) 152 (22), 124 (18), 109 (100), 53 (28), 27 (5).

Compound 4f. Yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91-0.95(\mathrm{~m}, 2 \mathrm{H}), 1.04-1.08(\mathrm{~m}, 2 \mathrm{H})$,
 1.68-1.75 (m, 1H), $2.09(\mathrm{~s}, 3 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 8.0, 14.0, 21.3, 104.4, 109.4, 156.5, 163.0, 165.5. IR (film, cm^{-1}): 3082, 3014,1713 , 1638, 1549, 1442, 1415, 1378, 1227, 1189, 1161, 1062, 1028, 952, 864, 850, 811. MS (EI): m / z (\%) 150 (65), 122 (100), 109 (40), 93 (25), 79 (61), 69 (10), 53 (55), 39 (21), 27 (14). HRMS (EI): m/z: calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ [M]: 150.06794, found: 150.06808.

Compound $4 \mathrm{~g} .{ }^{8,9}$ Pale yellow syrup. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.14(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.4$,
 $36.7,40.4,107.8,111.7,155.8,159.6,162.6$. IR (film, cm^{-1}): 2967, 1843, 1768, 1724, 1698, 1647, 1562, 1441, 1406, 1379, 1294, 1226, 1132, 1032, 980, 929, 891, 853, 831. MS (EI): m/z (\%) 174 (8), 172 (24), 146 (10), 144 (31), 109 (53), 95 (100), 79 (6), 53 (51), 27 (14). HRMS (EI): m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Cl}[M]$: 172.02895, found: 172.02911.

Compound $4 \mathrm{~h} .{ }^{10}$ A mixture containing compound $\mathbf{4 g}(172.5 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{NaI}(300 \mathrm{mg}, 2 \mathrm{mmol})$ in anhydrous acetone was refluxed for 20 h . Evaporation of the solvent followed by flash chromatography (hexane/EtOAc, 4:1) furnished the title compound as a pale yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.16(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.39$ ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $5.91(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.6,21.5$, $37.5,107.2,111.7,155.8,161.2,162.6$. IR (film, cm^{-1}): 3416, 3074, 3040, 2982, 2957, 2915, 2854, 2287, 1717, 1641, 1616, 1561, 1471, 1438, 1425, 1399, 1373, 1328, 1293, 1243, 1226, 1171, 1154, 1144, 1118, 1024, 969, 948, 916, 876, 853, 844, 737. MS (EI): m/z (\%) 264 (29), 236 (8), 136 (7), 109 (100), 95 (9), 79 (13), 53 (41). HRMS (EI): m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{I}$ [M]: 263.96450, found: 263.96473.

Compound 4r. ${ }^{8,9}$ Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.64-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.34$
 $(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.4,24.2,26.2,33.3,33.6,51.6,105.9$, 110.8, 156.1, 163.2, 164.1, 173.7. IR (film, cm^{-1}): 2953, 2869, 1729, 1644, 1561, 1437, 1408, 1377, 1199, 1174, 1078, 1029, 857. MS (EI): m/z (\%) 224 (13), 192 (21), 164 (7), 149 (9), 137 (100), 109 (40), 95 (13), 53 (30). HRMS (ESI ${ }^{+}$): m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$247.09362, found: 247.09408.

[^2]Compound 7. ${ }^{11}$ Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.10(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H})$,
 $1.20(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.51-2.59(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.26(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 1 H), 6.16 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (dd, $J=6.4 \mathrm{~Hz}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.2,-4.7,17.9,24.0,25.7,44.2,66.2,104.8,113.4,143.5$, 162.8, 163.9. IR (film, cm^{-1}): 2956, 2930, 2893, 2857, 1732, 1636, 1559, 1472, 1463, 1378, 1362, 1255, 1217, 1128, 1091, 995, 939, 893, 836, 807, 776, 721, 661. MS (EI): m/z (\%) 268 (0.1), 211 (100), 167 (32), 159 (5), 139 (32), 111 (17), 95 (4), 73 (21), 59 (4), 39 (6). HRMS (ESI ${ }^{+}$): m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$: 291.13841 , found: 291.13869.

Compound 10. ${ }^{8,9}$ Pale yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.32$ $\mathrm{Me} \quad(\mathrm{m}, 8 \mathrm{H}), 1.59-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H})$, $5.92(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,21.4,22.5,26.8,28.8,28.9$, 31.6, 33.6, 105.6, 110.5, 156.1, 163.3, 165.0. IR (film, cm^{-1}): 2954, 2927, 2856, 1724, 1644, 1561, 1465, 1441, 1406, 1377, 1224, 1148, 1132, 1105, 1024, 961, 833, 816, 724, 681. MS (EI): m/z (\%) 208 (32), 180 (12), 163 (8), 151 (6), 137 (36), 124 (37), 109 (100), 95 (64), 82 (35), 67 (14), 53 (73), 41 (26). HRMS (EI): m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}[M]$: 208.14615, found: 208.14633.

Compound $4 \mathrm{~m} .{ }^{5}$ 4-Fluorobenzyl bromide ($1.13 \mathrm{~g}, 6 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.03 \mathrm{~g}, 7.5 \mathrm{mmol})$ were added to a solution of 4-hydroxy-6-methyl-2-pyrone ($0.63 \mathrm{~g}, 5 \mathrm{mmol}$) in anhydrous DMF
 and the resulting mixture was stirred for 3 h under Ar. For work up, the mixture was diluted with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4} and evaporated, and the resiude purified by flash chromatography (hexane/EtOAc, $3: 1$) to give the title compound as a white solid ($585 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.21(\mathrm{~s}, 3 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H})$, $5.48(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.8$, $69.9,88.5,100.4,115.7+115.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=22.1 \mathrm{~Hz}\right), 129.7+129.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=8.0 \mathrm{~Hz}\right), 130.22+130.25\left(\mathrm{~d}, J_{F-C}=\right.$ $3.0 \mathrm{~Hz}), 161.7+164.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=246.2 \mathrm{~Hz}\right), 162.3,164.8,170.1$. IR (film, $\left.\mathrm{cm}^{-1}\right): 1742,1727,1651,1605$, 1571, 1515, 1458, 1379, 1322, 1259, 1226, 1188, 1161, 1148, 1040, 1015, 953, 867, 825, 816. MS (EI): $m / z(\%) 234(4), 150(3), 109(100), 83(9), 43(4)$. HRMS (ESI ${ }^{+}$): m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FO}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 257.05846, found: 257.05844.

Compound 4q. A solution of TBSCl ($83 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise to a
 solution of 6 -hydroxymethyl-4-methyl-2 2 H -pyran-2-one ($70 \mathrm{mg}, 0.5 \mathrm{mmol})^{12}$ and imidazole ($37.4 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting mixture was stirred for 2 h . A standard extractive work up followed by flash chromatography (hexanes/EtOAc, 4:1) gave the title compound as a colorless solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.12(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.5,18.3,21.7,25.8,61.3,103.9,111.5,156.2,162.3,163.3$. IR (film, cm^{-1}): 2954, 2929, 2857, 2886, 1732, 1651, 1568, 1472, 1409, 1387, 1368, 1299, 1254, 1227, 1151, 1119, 1007, 954, 830, 779. MS (EI): m/z (\%) 239 (2), 197(100), 169 (51), 153 (4), 141 (5), 125 (11), 109 (4),

[^3]95 (59), 75 (42), 53 (9), 41 (8). HRMS (ESI ${ }^{+}$: m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 277.12314$, found: 277.12304.

Iron Catalyzed Cross Coupling of 4-Triflyloxy-2-pyrones

Representative Procedure: Preparation of 4-Isopropyl-6-methyl-2H-pyran-2-one (2c). A solution of isopropylmagnesium bromide (2 M in THF, $1.25 \mathrm{mmol}, 0.63 \mathrm{~mL}$) was quickly added via syringe at $-78{ }^{\circ} \mathrm{C}$ to a vigorously stirred solution of $\mathrm{Fe}(\mathrm{acac})_{3}(8.8 \mathrm{mg}, 0.025 \mathrm{mmol}$,$) and$ 4-trifloxy-6-methyl-2-pyrone ($129.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (5.0 mL) and NMP (0.5 mL). Stirring was continued at this temperature for 20 min before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The pH value of the aqueous phase was adjusted to $2 \sim 3$ by addition of $\mathrm{HCl}(1 \mathrm{M})$ before it was extracted with EtOAc ($5 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 6:1) to give the title compound as a colorless oil $(59.7 \mathrm{mg}, 78 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.14(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.63(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.8$, 21.2, 33.5, 104.1, 107.5, 161.4, 163.7, 165.8. IR (film, cm^{-1}): 2967, 2932, 2876, 1721, 1644, 1560, 1467, 1449, 1385, 1366, 1341, 1291, 1224, 1181, 1147, 1126, 1105, 1072, 1026, 979, 941, 871, 850, 829, 687. MS (EI): m / z (\%) 152 (34), 124 (35), 109 (100), 81 (15), 65 (5), 53 (7), 43 (42), 39 (11). HRMS (EI): m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ [M]: 152.08379, found: 152.08373.

The following compounds were prepared analogously:
Compound 2b. The reaction was performed in $\mathrm{Et}_{2} \mathrm{O}$; pale yellow solid (74\%). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right): \delta=0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.60(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$, $2.32(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1$, 19.8, 22.7, 25.7, 28.1, 29.1, 29.3, 29.3, 29.5, 29.6, 29.6, 29.7, 31.9, 32.8, 35.2, 105.6, 109.6, 160.5, 161.3, 163.5. IR (film, cm^{-1}): 2922, 2853, 1732, 1645, 1562, 1465, 1377, 1228, 1028, 848, 721. MS (EI): m/z (\%) 306 (8), 263 (6), 249 (6), 235 (4), 193 (9), 179 (4), 165 (3), 151 (8), 137 (99), 124 (100), 109 (18), 96 (70), 81 (12), 67 (10), 55 (12), 43 (43). HRMS (ESI ${ }^{+}$): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Na}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 329.24505$, found: 329.24510.

Compound 2d. Colorless oil (74\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88$ (d, J = $6.6 \mathrm{~Hz}, 6 \mathrm{H}$), 1.78-1.88 $(\mathrm{m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=19.7,22.2,27.8,44.5,105.7,110.4,159.4,161.2,163.2$. IR (film, cm^{-1}): 3382, 2961, 2874, 1732, 1646, 1467, 1370, 1217, 1167, 942, 819. MS (EI): m/z (\%) 166 (38), 151 (14), 138 (7), 124 (31), 109 (8), 96 (100), 81 (7), 67 (14), 53 (9), 43 (75), 27 (9). HRMS (EI): m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}[M]$: 166.09921, found: 166.09938.

Compound 2e. Pale yellow oil (60%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.77-1.84(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, $2.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.13(\mathrm{~m}$, 3H), 7.18-7.22 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.7,29.5,34.4,35.0,105.4$, 109.6, 126.0, 128.3, 128.4, 141.0, 160.0, 161.4, 163.3. MS (EI): m/z (\%) 228 (28), 124 (100), 104 (9), 96 (70), 91 (20), 77 (7), 65 (8), 43 (24). HRMS (ESI ${ }^{+}$): m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$251.10449, found: 251.10425.

Iron Catalyzed Ring Opening/Cross Coupling

Representative Procedure for the Iron-Catalyzed Ring-Opening/Cross Coupling of 2-Pyrones to afford (2E,4E)-Configured Diene Carboxylic Acids. Preparation of (2E,4E)-5-Methyldeca-2,4-dienoic Acid (6c). A solution of $\mathrm{MeMgBr}\left(3 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 0.75$ $\mathrm{mmol}, 0.25 \mathrm{~mL}$) was quickly added via syringe to a rapidly stirred solution of $\mathrm{Fe}(\mathrm{acac})_{3}(4.4 \mathrm{mg}, 5 \mathrm{~mol} \%, 0.0125 \mathrm{mmol})$ and 6-pentyl-2-pyrone $4 \mathrm{c}(41.5 \mathrm{mg}, 0.25 \mathrm{mmol})$ in diethylether (5.0 mL) and toluene $(5.0 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. The mixture was allowed to reach ambient temperature while stirring for 40 min . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the pH of the aqueous layer adjusted to $2^{\sim} 3$ upon addition of $\mathrm{HCl}(1 \mathrm{M})$. The aqueous layer was extracted with EtOAc ($5 \times 20 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 6:1) to give the title compound in the form of colorless crystals ($41.9 \mathrm{mg}, 92 \%$) $(2 E, 4 E):(2 Z, 4 E)>10: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.89$ $(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=$ $15.1 \mathrm{~Hz}, 1 \mathrm{H}$) , $6.03(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=11.8,15.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 14.0, 17.4, 22.5, 27.3, 31.5, 40.3, 117.7, 123.0, 143.4, 152.1, 172.9. IR (film, cm^{-1}): ~3600-2300 (br), 2935, 2857, 1683, 1623, 1608, 1416, 1309, 1282, 1237, 1171, 977, 939, 884, 693. MS (EI): m/z (\%) 182 (9), 167 (7), 137 (14), 125 (6), 122 (6), 111 (100), 97 (36), 93 (21), 81 (37), 79 (25), 77 (14), 67 (18), 55 (34), 41 (30), 29 (14). HRMS (EI): m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ [M]: 182.13054, found: 182.13068.

The following compounds were prepared analogously:
Compound 6b. White solid $(88 \%,(2 E, 4 Z):(2 Z, 4 Z)=8: 1)$; the NMR spectra are in full accord with those reported in the literature; ${ }^{13}$ IR (film, cm^{-1}): ~3600-2300 (br), 1686, 1628, 1606, 1417, 1373, 1277, 1201, 1138, 994, 948, 871, 687. MS (EI): m/z (\%) 112 (59), 97 (100), 67 (58), 65 (21), 55 (17), 43 (18), 41 (57), 39 (58). HRMS (EI): m/z: calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$ [M]: 112.05233, found: 112.05243 .

Compound 6d. The reaction was performed in THF at $0^{\circ} \mathrm{C} \rightarrow$ RT; colorless oil $(82 \%,(2 Z, 4 E):(2 E, 4 E)=$

1:8). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.04(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}), 2.27-2.37(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), \sim 10.0-13.5(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.8,20.1,21.2,37.9,116.9,125.9,148.6,157.6,172.6$ IR (film, cm^{-1}): ~3600-2400 (br), 2981, 2935, 1690, 1638, 1561, 1439, 1378, 1292, 1255, 1202, 1157, 1032, 991, 946, 886, 849, 730, 683. MS (EI): m/z (\%) 168 (0.48), 125 (100), 111 (7), 107 (14), 97 (8), 91 (11), 79 (11), 67 (8), 55 (6), 41 (9). HRMS (EI): m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ [M]: 168.11491, found: 168.11503.

Compound $6 \mathbf{e}$. The reaction with hexylmagnesium bromide was performed at $-30^{\circ} \mathrm{C}$ for 60 min ; the

product was isolated as a colorless oil in $84 \%((2 E, 4 Z)$:other isomers >10 : 1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.33(\mathrm{~m}, 6 \mathrm{H})$, 1.39-1.45 (m, 2H), $1.80(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H})$, $5.74(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,19.8,22.6,24.4,28.2,29.3,31.6,33.1,115.9,128.5$, 143.4, 157.2, 171.1. IR (film, cm^{-1}): 2927, 2857, 1686, 1620, 1597, 1467, 1418, 1376, 1291, 1251, 1178, 1146, 933, 890, 725. MS (EI): m/z (\%) 210 (1), 195 (4), 125 (100), 109 (8), 97 (15), 81 (10), 67 (10), 55 (8), 43 (12). HRMS (ESI ${ }^{+}$: m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]$: 233.15115, found: 233.15120.

[^4]Compound 6f. The reaction with $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{MgBr}$ was performed at $-30^{\circ} \mathrm{C}$ for 60 min ; the product was isolated as a colorless oil in $82 \%((2 E, 4 Z)$:other isomers $>10: 1) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.73-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.26-$ $7.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=19.7,24.3,30.1,32.8,35.8,116.4,125.8,128.3,128.4$, 128.9, 142.0, 142.6, 157.0, 171.9. IR (film, cm^{-1}): 3027, 2933, 1682, 1618, 1496, 1453, 1375, 1291, 1253, 1181, 891, 749, 699. MS (EI): m/z (\%) 244 (0.3), 229 (52), 140 (29), 125 (9), 104 (100), 96 (49), 91 (44), 81 (26), 77 (12), 65 (11), 53 (7), 43 (52). HRMS (Cl): m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}\left[M+H^{+}\right]$: 245.15395, found: 245.15415.

Representative Procedure for the Iron-Catalyzed Ring-Opening/Cross Coupling of 2-Pyrones to

afford (2Z,4E)-Configured Diene Carboxylic Acids. Preparation of (Z)-3,5-Dimethyldodeca-2,4-dienoic Acid (11). A solution of MeMgBr (3 M in $\mathrm{Et}_{2} \mathrm{O}, 2.5 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was quickly added via syringe to a rapidly stirred solution of $\mathrm{Fe}(\mathrm{acac})_{3}(44.5 \mathrm{mg}, 0.125 \mathrm{mmol})$ and pyrone $10(520 \mathrm{mg}, 2.5 \mathrm{mmol})$ in diethylether (25 mL) and toluene (25 mL) at $-30^{\circ} \mathrm{C}$. Stirring was continued for 20 min at this temperature before the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and the pH of the aqueous layer adjusted to $2 \sim 3$ upon addition of $\mathrm{HCl}(1 \mathrm{M})$. The aqueous layer was extracted with EtOAc ($5 \times 20 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 6:1) to give the title compound in the form of a pale yellow liquid ($460.5 \mathrm{mg}, 83 \%$), $(2 Z, 4 E)$: others $\left.>20: 1,{ }^{1} \mathrm{H} \mathrm{NMR}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.88(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 8 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}$, $1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), ~ \sim 9.5-13.5(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,18.6,22.7,25.7,27.8,29.2$, $31.8,40.9,116.7,123.4,143.5,156.2,171.0$. IR (film, cm^{-1}): ~3600-2400 (br), 2926, 2855, 1685, 1625, 1592, 1440, 1377, 1289, 1251, 1201, 1161, 1028, 934, 853, 722, 707. MS (EI): m/z (\%) 224 (4), 209 (9), 179 (6), 125 (100), 111 (6), 107 (14), 95 (11), 93 (12), 79 (12), 67 (7), 55 (9), 41 (16). HRMS (EI): m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}[M]$: 224.17744, found: 224.17763.

The following compounds were prepared analogously:
Compound 5a. Colorless crystals ($96 \%,(2 Z: 2 E>20: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.76(\mathrm{~s}, 3 \mathrm{H}), 1.86$
 (s, 3H), $2.05(\mathrm{~s}, 3 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), ~ \sim 10.5-13.0(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.4,25.6,27.3,116.6,123.7,140.0,156.0,171.0$. IR (film, cm^{-1}): ~3600-2400 (br), 2981, 2935, 1690, 1638, 1561, 1439, 1378, 1292, 1255, 1202, 1157, 1032, 991, 946, 886, 849, 730, 683. MS (EI): m/z (\%) 140 (4), 125 (100), 112 (4), 97 (53), 96 (9), 82 (8), 81 (23), 79 (22), 69 (8), 67 (6), 55 (7), 53 (8), 43 (37), 41 (15), 39 (11). HRMS (EI): m/z: calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}[M]: 140.08372$, found: 140.08373 .

Compound 5b. The reaction was performed at $-60^{\circ} \mathrm{C}$ for 40 min ; white solid $(86 \%,(2 Z, 4 E):(2 Z, 4 Z)=$ 1:7); the NMR spectra are in full accord with those reported in the literature; ${ }^{13}$ IR
 (film, cm^{-1}): ~3600-2300 (br), 1679, 1635, 1600, 1433, 1247, 1224, 1000, 961, 839, 780. MS (EI): m/z (\%) 112 (59), 97 (100), 67 (58), 65 (21), 55 (17), 43 (18), 41 (57), 39 (58). HRMS (EI): m / z : calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}[M]$: 112.05233, found: 112.05243.

Compound 5c. The reaction was performed at $-60^{\circ} \mathrm{C}$ for 40 min ; white solid, (94\%, $(2 E, 4 E):(2 Z, 4 E)<1: 10) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.89(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.25-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.58$
($\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.99(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=11.8,1 \mathrm{H}), \sim 10.0-13.5(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,16.7,22.5,27.5,31.6,40.7,113.9,121.5,142.9,152.4,172.1$. IR (film, cm^{-1}): ~3600-2300 (br), 2929, 2858, 1682, 1623, 1591, 1440, 1289, 1228, 930, 892, 825, 726. MS (EI): m/z (\%) 182 (9), 167 (7), 137 (14), 125 (6), 122 (6), 111 (100), 97 (36), 93 (21), 81 (37), 79 (25), 77 (14), 67 (18), 55 (34), 41 (30), 29 (14). HRMS (EI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ [M]: 182.13054, found: 182.13068.

Compound 5d. Colorless crystals ($92 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.04$ (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.39(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H})$,
 ~10.5-13.0 (br, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.8,21.1,25.7,37.6,116.9$, 121.6, 147.7, 156.8, 171.6. IR (film, cm^{-1}): ~3600-2400 (br), 2963, 2874, 1683, 1621, 1439, 1377, 1288, 1252, 1203, 1156, 1084, 1028, 940, 851, 704. MS (EI): m/z (\%) 168 (0.35), 153 (2), 125 (100), 111 (4), 107 (8), 97 (11), 91 (5), 79 (7), 67 (6), 55 (6), 43 (18). HRMS (EI): m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}[M]$: 168.11520, found: 168.11503.

Compound 5e. Colorless crystals (93\%, (2Z,4E):(2E,4E) > 20:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.06$ (t, J
 $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}$, $1 \mathrm{H}), ~ \sim 10.5-13.0(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.4,18.5,25.6,33.5$, 116.7, 122.3, 144.6, 156.4, 171.5. IR (film, cm^{-1}): ~3600-2500 (br), 2969, 2938, 2879, 1682, 1624, 1591, 1439, 1377, 1290, 1249, 1199, 1178, 1156, 1031, 998, 937, 887, 849, 705. MS (EI): m / z (\%) 154 (1.29), 139 (10), 125 (100), 109 (9), 97 (16), 93 (11), 79 (10), 67 (11), 55 (11), 43 (24), 41 (16), 39 (13). HRMS (EI): m/z: calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ [M]: 154.09946, found: 154.09938.

Compound 5f. Colorless crystals ($90 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.56-$ $0.60(\mathrm{~m}, 2 \mathrm{H}), 0.65-0.69(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 5.65(\mathrm{~s}$, $1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), ~ \sim 10.5-13.0(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.6,16.2,20.2$, COOH 25.7, 116.5, 121.8, 144.3, 155.9, 171.5. IR (film, cm^{-1}): ~3600-2400 (br), 3085, 2978, 1683, 1613, 1439, 1381, 1256, 1150, 1022, 950, 929, 848, 814, 704, 681. MS (ESI $): m / z 167[M+H]$, $333\left[2^{*} M+H\right.$], 355 [$\left.2 * M+N a\right]$. HRMS (EI): m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}[M]$: 166.09923, found: 166.09938.

Compound 5g. White solid (90\%, ($2 Z, 4 E$): $(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.74(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), \sim 10.5-13.0(\mathrm{br}$,

$1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.2,25.4,42.6,43.1,117.6,126.3,137.3$, 155.5, 171.3. IR (film, cm^{-1}): ~3500-2300 (br), 2911, 2762, 2585, 1679, 1641, 1595, 1431, 1384, 1277, 1248, 1193, 926, 863, 843, 738, 714. MS (EI): m/z (\%) 188 (0.06), 173 (7), 125 (100), 109 (9), 97 (30), 91 (7), 79 (10), 67 (10), 53 (9), 43 (33). HRMS (EI): m/z: calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Cl}[M]$: 188.06058, found: 188.06041.

Compound 5h. White solid ($68 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.73(\mathrm{~s}, 3 \mathrm{H})$,
 $2.05(\mathrm{~m}, 3 \mathrm{H}), 2.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}$, $1 \mathrm{H}), ~ \sim 10.5-13.0(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.35,17.9,25.4,44.3$, 117.5, 125.9, 139.7, 155.6, 171.0. IR (film, cm^{-1}): ~3700-2400 (br), 2964, 1682, 1621, 1435, 1378, 1290, 1250, 1170, 1026, 943, 887, 725. MS (ESI ${ }^{+}$): m/z $281[M+H]$. HRMS (ESI ${ }^{+}$): m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{IO} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 302.98559, found: 302.98524 .

Compound 5i. White solid ($72 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.91(\mathrm{~s}, 3 \mathrm{H})$,
 $1.93(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), \sim 9.5-13.0(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.0,27.9,55.3,90.2,118.1,146.2,171.1,172.1$. IR (film, cm^{-1}): ~3400-2400 (br), 2923, 2852, 1731, 1681, 1639, 1566, 1440, 1377, 1298, 1202,

1169, 1129, 1078, 1040, 928, 794, 721. MS (EI): m/z (\%) 156 (2), 141 (19), 112 (82), 97 (100), 79 (81), 67 (90), 53 (18), 44 (12). HRMS (CI): m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{3}\left[M+H^{+}\right]$: 157.08635, found: 157.08647.

Compound 5j. White solid ($80 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.92(\mathrm{~s}, 3 \mathrm{H})$,
 $1.96(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), \sim 10.5-13.0(\mathrm{br}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=21.0,28.0,56.9,93.5,94.1,117.9,146.4,168.2$, COOH 172.6. IR (film, cm^{-1}): ~3500-2300 (br), 2938, 1676, 1633, 1568, 1416, 1374, 1288, 1217, 1199, 1147, 1017, 982, 922, 829, 720. MS (EI): m/z (\%) 186 (2), 171 (3), 154 (3), 141 (4), 124 (5), 109 (3), 95 (6), 83 (21), 55 (13), 45 (100). HRMS (EI): m/z: calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}$ [M]: 186.08903, found: 186.08921.

Compound 5k. White solid $(88 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.91(\mathrm{~s}, 6 \mathrm{H})$,
 $4.93(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 5 \mathrm{H}), \sim 10.5-13.0(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=21.2,28.0,70.5,91.4,118.2,127.8,128.3,128.6,135.4$, 146.4, 170.1, 172.4. IR (film, cm^{-1}): 3032, 2915, 1728, 1650, 1566, 1453, 1375, 1248, 1138, 1093, 1015, 892, 808, 733, 695. MS (EI): m/z (\%) 188 (0.31), 145 (2), 131 (2), 91 (100), 83 (51), 65 (12), 55 (2), 39 (3). HRMS (ESI ${ }^{+}$: m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 255.09909, found: 255.09917.

Compound 5I. White solid ($85 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.91(\mathrm{~s}, 3 \mathrm{H})$, $1.94(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.96(\mathrm{~m}, 2 \mathrm{H})$,
 7.28-7.31 (m, 1H), ~10.5-13.0 (br, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.3$, 28.0, 55.2, 70.4, 91.5, 113.2, 113.8, 118.2, 119.9, 129.7, 136.9, 146.4, 159.8, 170.0, 172.4. IR (film, cm^{-1}): 3424, 2938, 1703, 1626, 1603, 1587, 1564, 1490, 1464, 1388, 1361, 1266, 1234, 1179, 1155, 1112, 1040, 1020, 873, 818, 785, 738, 694. MS (EI): m/z (\%) 262 (0.35), 218 (2), 162 (17), 135 (4), 121 (100), 91 (17), 83 (27), 78 (9), 77 (7), 65 (5), 51 (2), 41 (3), 39 (4). HRMS (EI): m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left[M+N a^{+}\right]: 285.10966$, found: 285.10973.

Compound 5m. White solid ($86 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.89(\mathrm{~s}, 3 \mathrm{H})$,
 $1.91(\mathrm{~s}, 3 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.37$ ($\mathrm{m}, 2 \mathrm{H}$), ${ }^{\sim} 9.5-13.0(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.2,28.0,69.8$, $91.4,115.5+115.7\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=21.1 \mathrm{~Hz}\right), 118.1,129.7+129.8\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=8.5 \mathrm{~Hz}\right)$, $131.15+131.18\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=3.0 \mathrm{~Hz}\right), 146.5,161.5+163.9\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=245.4 \mathrm{~Hz}\right), 169.9,172.2 . \operatorname{IR}\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right):$ $3358,2931,1888,1693,1604,1562,1509,1454,1417,1365,1220,1156,1096,1012,821,760,704$, 666. MS (EI): m/z (\%) 250 (2), 150 (2), 109 (100), 83 (13), 69 (2), 57 (2), 39 (4). HRMS (ESI ${ }^{+}$): m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{FNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 273.08969, found: 273.08974.

Compound 5n. Colorless oil (78\%, ($2 Z, 4 E$): $(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.09(\mathrm{~s}, 6 \mathrm{H})$,
 0.92 (s, 9H), $1.71(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, COOH ~10.5-13.0 (br, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.4,15.6,18.4,25.5,25.9$, 68.2, 117.4, 122.0, 141.1, 155.6, 171.3. IR (film, cm^{-1}): ~3500-2500 (br), 2929, 2856, 1684, 1632, 1594, 1443, 1250, 1200, 1112, 1079, 938, 833, 774, 707, 671. MS (EI): m/z (\%) 240 (10), 213 (7), 195 (4), 171 (28), 169 (20), 127 (7), 125 (16), 115 (5), 97 (6), 89 (21), 75 (100), 73 (44), 59 (8), 43 (12). HRMS (ESI $\left.{ }^{+}\right): m / z$: calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}\left[M+N a^{+}\right]$: 293.15424, found: 293.15434.

Compound 5o. Colorless oil $(72 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.50(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.4,24.3,25.6,27.1,33.9,40.2,51.5,116.9,123.9,142.2,155.9,170.4,174.2$ IR (film, cm^{-1}): ~3600-2500 (br), 2938, 1735, 1682, 1624, 1589, 1435, 1375, 1251, 1200, 1144, 1083, 1021, 927, 852, 706. MS (EI): m/z (\%) 209 (0.84), 196 (3), 181 (3), 163 (2), 149 (5), 125 (100), 107 (25), 97 (19), 81 (10), 67 (12), 55 (9). HRMS (ESI ${ }^{+}$: m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]: 263.12525$, found: 263.12538.

Compound 5p. Colorless oil ($68 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.05(\mathrm{~d}, \mathrm{~J}=$
 $6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.49(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.7,21.2,25.9,37.1,114.6,121.1,138.9,164.9,171.0$. IR (film, cm^{-1}): ~3600-2400 (br), 2967, 2933, 2875, 1697, 1625, 1465, 1415, 1384, 1291, 1238, 1183, 1023, 943, 871, 667. MS (EI): m/z (\%) 168 (0.48), 153 (100), 125 (19), 111 (41), 97 (12), 83 (16), 67 (17), 55 (14), 43 (87). HRMS (EI): m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ [M]: 168.11496, found: 168.11503.

Compound 5q. Pale yellow oil ($84 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.88(\mathrm{~d}, \mathrm{~J}=$
 $6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.69$ ($\mathrm{s}, 1 \mathrm{H}$), $5.97(\mathrm{~s}, 1 \mathrm{H}), ~ \sim 9.0-12.0(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.0,22.4$, 26.4, 27.1, 48.9, 117.2, 122.7, 138.7, 159.1, 171.3. IR (film, cm^{-1}): ~3600-2400 (br), 2957, 2931, 2870, 1689, 1618, 1465, 1415, 1368, 1291, 1246, 1194, 1164, 979, 884, 822, 712. MS (EI): m/z (\%) 182 (2), 167 (100), 139 (9), 125 (25), 111 (23), 96 (12), 81 (19), 67 (8), 55 (10), 43 (69), 27 (7). HRMS (EI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ [M]: 182.13051, found: 182.13068.

Compound 5r. Pale yellow oil $(73 \%,(2 Z, 4 E):(2 E, 4 E)>20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.56(\mathrm{~s}$,
 $3 \mathrm{H}), 1.67-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.66(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=20.0,26.4,29.8,35.4,38.6,116.5,122.5,125.9,128.3,128.4,138.9$, 141.7, 159.6, 171.1. IR (film, cm^{-1}): ~3600-2500 (br), 3027, 2934, 2860, 1688, 1622, 1496, 1453, 1416, 1378, 1292, 1245, 1195, 1079, 1030, 873, 748, 699. MS (EI): m/z (\%) 244 (0.29), 229 (52), 140 (29), 125 (9), 104 (100), 96 (49), 91 (44), 81 (26), 77 (12), 65 (11), 53 (7), 43 (52). HRMS (CI): m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: \mathbf{2 4 5 . 1 5 3 9 5}$, found: 245.15415 .

Compound 8. The reaction was performed at $-60^{\circ} \mathrm{C}$ for 40 min ; colorless oil $(80 \%,(2 Z, 4 E):(2 E, 4 E)>$ $10: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.00(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, $1.15(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.37(\mathrm{~m}, 2 \mathrm{H}), 3.97-4.05(\mathrm{~m}, 1 \mathrm{H}), 5.60$ (d, J = 11.4 Hz, 3H), 6.97 (t, J = $11.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.9,-4.5,17.8,18.0,23.9,25.8,50.7,67.7,114.3,124.0,142.3,148.8,171.7$. IR (film, cm^{-1}): 3420, 2931, 2858, 1705, 1378, 1256, 1175, 1132, 993, 835, 777, 669. MS (EI): m/z (\%) 240 (5), 227 (17), 209 (15), 183 (34), 159 (62), 135 (9), 119 (17), 115 (26), 107 (17), 103 (21), 91 (11), 75 (100), 73 (90), 59 (13), 41 (9). HRMS (ESI ${ }^{+}$): m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}\left[M+N a^{+}\right]$: 307.16998, found: 307.16999.

Granulatamide B. Triethylamine ($45.5 \mathrm{mg}, 0.45 \mathrm{mmol}$), 1-hydroxybenzotriazole ($44.6 \mathrm{mg}, 0.33 \mathrm{mmol}$)
 and EDC $\cdot \mathrm{HCl}(86.3 \mathrm{mg}, 0.45 \mathrm{mmol})$ were added to a solution of tryptamine ($52.8 \mathrm{mg}, 0.33 \mathrm{mmol}$) and acid 11 ($67.2 \mathrm{mg}, 0.30$ mmol) in DMF (0.3 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was stirred overnight before the solvent was evaporated. The residue was treated with water $(15 \mathrm{~mL})$ and extracted with ethyl acetate
$(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed successively with aq. citric acid solution (5\%, 3
x 20 mL), sat. aq. $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue purified by flash chromatography (hexane/EtOAc, $4: 1$) to give the title compound as colorless oil ($90.0 \mathrm{mg}, 82 \%$). The spectral data are in agreement with those reported in the literature. ${ }^{14}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.32(\mathrm{~m}, 10 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}$, $1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{br}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,17.7,22.6,25.3,25.4$, $27.8,29.1,29.3,31.8,39.5,39.5,111.2,112.9,118.6,119.2,121.9,122.0,122.3,122.8,127.3,136.4$, 142.3, 145.8, 166.8. IR (film, cm^{-1}): 3403, 3278, 3056, 2925, 2853, 1643, 1598, 1522, 1456, 1435, 1375, 1339, 1260, 1229, 1097, 1031, 1010, 923, 841, 804, 737. MS (EI): m/z (\%) 366 (13), 267 (29), 224 (13), 143 (100), 130 (25), 124 (6), 95 (5), 77 (5), 55 (5), 43 (5). HRMS (ESI $): m / z$: calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{ONa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 389.25598$, found: 389.25633.

[^5]

(

$\underbrace{2}_{2 E, 4 Z / 2 Z, 4 Z \approx 8: 1}$

[^0]: 1 K. Koseki, Y. Takahashi, K. Shimazaki, T. Ebata, T. Chuman, K. Mori, Biosci. Biotechnol. Biochem. 1992, 56, 1728-1731.

[^1]: A. D. Wadsworth, J. Sperry, M. A. Brimble, Synthesis 2010, 15, 2604-2608.
 K. C. Majumdar, P. K. Basu, P. P. Mukhopadhyay, S. Sarkar, S. K. Ghosh, P. Biswas, Tetrahedron 2003, 59, 2151-2157.
 D. A. Burr, X. B. Chen, J. C. Vederas, Org. Lett. 2007, 9, 161-164.
 K. C. Majumdar, P. Debnath, A. K. Pal, S. K. Chattopadhyay, A. Biswas, Can. J. Chem. 2007, 85, 445-452.
 L. Liu, J. Hu, X.-C. Wang, M.-J. Zhong, X.-Y. Liu, S.-D. Yang, Y.-M. Liang, Tetrahedron 2012, 68, 5391-5395.
 J.-T. Pierson, A. Dumètre, S. Hutter, F. Delmas, M. Laget, J.-P. Finet, N. Azas, S. Combes, Eur. J. Med. Chem. 2010, 45, 864-869.
 8 G. Lohaus, W. Friedrich, J. P. Jeschke, Chem. Ber. 1967, 100, 658-677.
 9 A. O. Pittet, E. M. Klaiber, J. Agric. Food Chem. 1975, 23, 1189-1195.

[^2]: 10 L. Castedo, J. E. Borges, C. F. Marcos, G. Tojo, Synth. Commun. 1995, 25, 1717-1727.

[^3]: 11 a) T.-Y. Yuen, M. A. Brimble, Org. Lett. 2012, 14, 5154-5157; b) Y.-G. Suh, J.-K. Jung, S.-Y. Seo, K.-H. Min, D.Y. Shin, Y.-S. Lee, S.-H. Kim, H.-J. Park, J. Org. Chem. 2002, 67, 4127-4137; c) L. Anastasia, C. Xu, E. Negishi, Tetrahedron Lett. 2002, 43, 5673-5676.
 12 C. Bhakta, J. Indian Chem. Soc. 1985, 62, 380-382.

[^4]: 13 I. K. Cigić, J. Plavec, S. S. Možina, L. Zupančič-Kralj, J. Chromatogr. A 2001, 905, 359-366.

[^5]: 14 F. Reyes, R. Martín, R. Fernández, J. Nat. Prod. 2006, 69, 668-670.

