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Abstract

Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there
are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge
for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral
replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the
intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the
extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of
experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the
infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the
viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear
export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays
infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of
infected cells and, thus, on the dynamics of virus-induced apoptosis or the host’s immune response. Hence, the proposed
model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to
include further levels of complexity toward a comprehensive description of infectious diseases.
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Introduction

Influenza A viruses continue to pose a serious threat to public

health causing three to five million cases of severe illness and up to

500,000 deaths during the annual epidemics [1]. In addition, novel

influenza strains that acquire the potential to infect and transmit

efficiently between humans can create pandemics like the 1918

Spanish Flu that killed millions worldwide [2]. Currently, there are

only two classes of direct-acting antivirals (DAAs) licensed for

influenza treatment: fusion inhibitors (adamantanes), which impair

virus entry, and neuraminidase blockers (oseltamivir and zanami-

vir) interfering with the release of progeny virus particles [3].

However, resistances against these drugs occur frequently [4,5]

urging the need for new antiviral agents [6].

In recent years, the discovery of new antiviral targets for

influenza treatment has received much attention. In particular,

compounds which interfere with host factors promise to be

effective antivirals as cellular factors are less susceptible to

mutation impairing viral escape strategies. Such compounds can,

for example, inhibit virus entry by removing cell surface receptors

as was shown for recombinant sialidases, or block viral RNA

transcription through PolII inhibition (for a detailed review of

cellular targets and their inhibitors see reference [6]). The

inhibition of essential cellular signaling cascades like Raf/MEK/

ERK signaling, NF-kB signaling, the PI3K/Akt pathway, or the

PKC signaling cascade is another promising strategy (reviewed in

[7]). Finally, viral proteins themselves are targets for antiviral

agents with new inhibitors of the viral neuraminidase, M2 ion-

channel, and polymerase on the horizon (reviewed in [8]).

With the advent of these DAAs influenza therapy has moved

beyond symptomatic treatment toward specifically targeting key

steps of viral replication. The development of new and more

potent drugs thus requires a deeper understanding of the viral life

cycle [6]. In general, the growth of influenza viruses within a host

involves at least two distinct scales: (i) the intracellular level of

infection where the virus synthesizes its proteins, replicates its

genome, and assembles new virions and (ii) the extracellular level

at which it infects new target cells and spreads throughout the

tissue. As DAAs can target both scales, understanding how these

levels interact and where to interfere to efficiently counteract an

infection is vital to the design of new antivirals.

In the past, mathematical modeling has provided valuable

insights into the kinetics of influenza A virus infection under drug

treatment ([9–13], reviewed in [14,15]). However, the majority of

studies focused exclusively on the extracellular level of infection

either neglecting or drastically simplifying intracellular events.

While such simplifications allow for the identification of critical

infection parameters from sparse data, they can influence model

predictions leading to an overly optimistic assessment of the

treatment efficiency required to suppress the infection [16]. Other

theoretical works examined how drugs affect specific replication

steps of different viruses inside an infected cell [17–19]. Yet, these
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approaches only consider a single round of infection and do not

account for the spread of the virus to new cells. Recently, Guedj

and colleagues showed that combining both levels in a model of

hepatitis C virus infection significantly improved its capability to

explain clinical observations [20,21]. However, as the authors only

included viral genome copies at the intracellular level their

approach is limited to the analysis of drugs that target genome

synthesis, degradation or packaging. Nevertheless, such studies

strongly suggest that integrating the intracellular life cycle of a

virus into a model for cell-to-cell transmission would facilitate a

systematic exploration of new drug targets. The resulting multi-

scale model can also yield a more realistic description of virus

infection [22,23] and more accurate estimates of key infection

parameters [16,20,24].

Recently, we developed a model of the complete intracellular

life cycle of influenza A virus comprising key steps from virus entry

to progeny virion release [25]. Here, we link this description to the

transmission of virus between host cells. We first show that this

integrated modeling approach successfully captures data on the

intracellular level of all three viral RNA species as well as on the

extracellular infection dynamics represented by virus titers and the

amount of infected cells. We then use the model to investigate

potential antiviral targets including the steps of virus entry, nuclear

trafficking, viral RNA and protein synthesis, and assembly/release.

We provide a ranking of these targets and show that the lifespan of

infected cells can be of particular importance for therapy success.

Finally, detailed information on the construction of the model is

provided in the Materials and Methods section at the end of this

manuscript.

Results

Multiscale model of influenza virus infection
Our description of the extracellular level of infection is based on

the classical model of viral kinetics within a host or cell population,

which accounts for uninfected cells, infected cells, and free virions

(reviewed in [14] and [15]). We augmented this framework by

explicit consideration of the number of apoptotic cells and by

modeling virus entry in more detail (Figure 1A). Once inside a cell,

the virus starts producing viral RNA and proteins. To track these

intracellular processes our multiscale model accounts for the age of

an infected cell, i.e., the time that has elapsed since its infection

(Figure 1B). The amount of each viral component inside an

infected cell over its infection age is simulated using a model of the

influenza A virus life cycle [25]. This submodel includes the

following essential features of viral replication (Figure 1C): the

production of viral mRNA and complementary RNA (cRNA)

from viral ribonucleoproteins (vRNPs), which contain the nega-

tive-strand viral genomic RNA (vRNA); the synthesis of viral

proteins; the encapsidation of newly produced cRNA and vRNA

into cRNPs and vRNPs, respectively, by the viral RNA-dependent

RNA polymerase (RdRp) and the nucleoprotein (NP); the nuclear

export of vRNPs regulated by the viral matrix protein 1 (M1) and

the nuclear export protein (NEP); and the assembly and release of

progeny virions (for further details see reference [25]). Integration

of both levels is achieved by assigning the age-dependent state of a

cell to the age-segregated cell population (Figure 1D). In the

model, intracellular replication primarily affects the extracellular

level via the virus release rate, which depends on the abundance of

viral proteins and RNA inside a cell and determines the amount of

virions released into the extracellular space. The extracellular level

in turn controls the number of infected cells and their lifespan.

Viral kinetics in the absence of drugs
To ensure an accurate calibration of both levels of the model,

we followed a two-way strategy. First, we conducted experiments

at a high multiplicity of infection (MOI), i.e., a high initial number

of virions per cell, which results in a single synchronous infection

round. This allowed us to measure the intracellular levels of the

three viral RNA species together with the number of released virus

particles and view them as the response of an average infected cell

(Figure 2A). We then performed flow cytometry of low MOI

experiments to assess the dynamics of multicycle infections where

the virus spreads throughout a cell population in successive waves

(Figure 2B). The model was fit simultaneously to both data sets

such that the intracellular part, i.e., the replication inside an

average infected cell agrees with the synchronous infection

experiments, while its combination with the extracellular model

captures the multicycle scenario. Hence, each infected cell behaves

according to the time courses shown in Figure 2A and a

population of such cells yields the dynamics in Figure 2B when

infection occurs at low MOI.

Simulation results on both levels are in good agreement with the

data showing, for instance, a rapid increase in viral mRNAs upon

infection (Figure 2A). In contrast, cRNA and vRNA synthesis does

not start until 3–4 h post infection (hpi) as the accumulation of

viral proteins is required for genome replication [26]. Between 3

and 4.5 hpi our model underestimates the cRNA level. However,

it does capture the amount of mRNA and vRNA. Since all three

viral RNA species are tightly related the model is relatively

constrained. Thus, some deviations are to be expected as the

model has to balance these time courses as well as the data on the

extracellular level. In the late phase of infection progeny vRNPs,

which provide the template for cRNA and mRNA, leave the

nucleus to be incorporated into new virus particles. This causes a

shutdown of RNA synthesis around 5–6 hpi. At the same time, the

first progeny virions leave the cell. Hence, the eclipse phase, i.e.,

the delay between infection and virus release, is approximately 6 h

(Table 1). After this delay virus production increases as more viral

components accumulate before it starts declining toward the end

of the productive infection phase when proteins and later genome

copies become limiting (Figure 1D). These intracellular dynamics

fit well with the progression of infection on the extracellular level

(Figure 2B) considering that typical errors of adherent cell

numbers are in a range of 10–20% due to variations introduced

Author Summary

Influenza A viruses are contagious pathogens that cause
an infection of the respiratory tract in humans, commonly
referred to as flu. Each year seasonal epidemics occur with
three to five million cases of severe illness and occasionally
new strains can create pandemics like the 1918 Spanish Flu
with a high mortality among infected individuals. Current-
ly, there are only two classes of antivirals licensed for
influenza treatment. Moreover, these compounds start to
lose their effectiveness as drug-resistant strains emerge
frequently. Here, we use a computational model of
infection to reveal the steps of virus replication that are
most susceptible to interference by drugs. Our analysis
suggests that the enzyme which replicates the viral
genetic code, and the processes involved in virus assembly
and release are promising targets for new antivirals. We
also highlight that some drugs can change the dynamics
of virus replication toward a later but more sustained
production. Thus, we demonstrate that modeling studies
can be a tremendous asset to the development of antiviral
drugs and treatment strategies.

Multiscale Modeling of Influenza Virus Infection
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by the measurement technique, handling and trypsinization. Most

of the cells become infected between 12 and 19 hpi in the second

and third wave of infection. Virus-induced apoptosis then causes a

decline in cell numbers within the next two days. At 32 hpi, we

observe a large discrepancy between the model and the data.

However, this single time point can be regarded as an outlier since

the measured total cell concentration increased by 30% between

24 and 32 hpi (data not shown). It is highly unlikely that such an

increase occurs this late in infection. The good agreement of the

model with the infectious virus titer provides further evidence for

this. The titer shows an initial drop due to the attachment of seed

virus to cells before it increases reaching its maximum around

30 hpi.

Next, we checked the predictive capabilities of the model by

comparing it to measurements at different infection conditions that

were not used for model construction. These simulations

successfully capture the shift of infection dynamics in the presence

of higher and lower amounts of virus particles in the inoculum

(Figure 3A). In addition, the virus titer prediction for a low seed

virus concentration is in good agreement with experiments

whereas for higher MOI virus production is overestimated

(Figure 3B). We conclude that the model is in good agreement

with the intracellular and extracellular dynamics of influenza A

virus infection and can be of predictive value especially for low

MOI regimes where multiple infection rounds occur, which

resembles the in vivo situation more closely than single round

experiments that use high MOI.

A major advantage of the proposed multiscale model is that it

integrates the time course of intracellular virus replication with cell

death dynamics. This allows us to assess whether the lifespan of an

infected cell constrains virus production. From the measurements

in Figure 2B, we obtain the average lifespan of an infected cell as

25 h (Table 1). Approximately at the same time virus release

would stop due to the depletion of viral components (Figure 1D).

Nevertheless, many cells may die before the end of this productive

phase dependent on how much individual survival times vary

around the mean. Models of viral infection usually assume that the

probability of cell death is independent of time, i.e., that survival

times follow an exponential distribution (see references [24] for

more details and alternatives). Using this assumption, we find that

most cells indeed die within 25 h with more than one quarter

succumbing to apoptosis before reaching the peak in virus release

(Figure 4). Hence, cell death can affect the number of virus

particles an average cell produces.

Effects of drug treatment
Models of viral infection can be used to simulate the efficiency

of antiviral treatment. While previous studies have mostly

considered general effects of drugs on cell infection or virus

production [9,11,14], our multiscale approach can also predict

how drug interference affects the intracellular viral life cycle.

Figure 5A shows simulation results that illustrate the impact of

DAAs on the amount of virus particles an infected cell releases. In

our model, inhibitors of viral mRNA synthesis, protein translation,

Figure 1. Schematic depiction of the multiscale model. (A) The extracellular level of infection comprises the growth and death of uninfected
cells, their infection by free virions, the production of virus by infected cells, viral clearance/degradation, virus-induced apoptosis, and the lysis of
apoptotic cells. (B) Infected cells are further segregated according to their infection age, i.e., the time that has elapsed since their infection. (C) The
intracellular state of an infected cell is simulated using the model of influenza virus replication by Heldt et al. (see text and reference [25] for details).
(D) Both levels are coupled via the age-dependent virus production rate, which depends directly on the internal state of a cell and determines the
number of virions released into the extracellular space.
doi:10.1371/journal.pcbi.1003372.g001

Multiscale Modeling of Influenza Virus Infection
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and virus assembly/release are highly effective in reducing virus

production even at low drug efficacy. Note that antivirals usually

show a maximum efficacy above 90% [9,10,27]. At these levels,

inhibitors of mRNA splicing, cRNA/vRNA synthesis, and nuclear

export are also very successful. Intriguingly, inhibition of the two

steps of RNA replication can, however, lead to an increase in virus

release for low-efficacy drugs. A similar result can be observed

when targeting M1 binding and the encapsidation of viral RNAs

by NP. Figure 5B shows the simulated time courses of different

viral components in response to selected low-efficacy drugs. As

expected, the inhibition of viral transcription leads to lower

mRNA levels, which impairs protein synthesis and virus release

(Figure 5B upper panel). We also observe a minor increase in

cRNAs and vRNAs during the early phase of infection due to

lower M1 protein levels. Based on experimental evidence [28–30],

M1 acts as a negative regulator of cRNA and mRNA synthesis in

our model [25]. Together with NEP, it binds to vRNPs controlling

their nuclear export. Once outside the nucleus, vRNPs can no

longer serve as templates for the two positive-strand RNAs. In

addition, M1 proteins fulfill a second role during virus assembly

where they form the inner hull of virus particles as their most

abundant viral component [31]. Hence, inhibition of particle

assembly/release also results in higher M1 levels, a stronger

negative regulation of RNA synthesis, and lower RNA levels

besides reducing virus release (Figure 5B middle panel). This type

of regulation also causes the increase in virus titers seen upon weak

inhibition of cRNA synthesis (Figure 5B lower panel). The

reduction in RNA levels in the early phase of infection leads to

a lower abundance of M1 proteins. The resulting lack of inhibition

allows a faster synthesis of RNAs during later stages and

consequently a higher rate of virus release. Since the release of

virions further drains the pool of M1 proteins, our model predicts

a sustained production of virus particles for these drug efficacies.

Figure 5B highlights an interesting aspect of viral replication.

There may be regimes where a higher overall number of viruses

can be produced at the expense of an early virus release. Yet, such

an advantage would clearly depend on the lifespan of an infected

cell and on whether cell death by virus-induced apoptosis or the

immune response shortens it (Figure 6). While the inhibition of

cRNA synthesis may lead to higher titers in our system, drug

treatment has hardly any influence on virus production when

apoptosis occurs at twofold of its estimated rate (Figure 6C 16–

26). For an even shorter lifespan of infected cells the antiviral may

be deemed effective reducing particle production to half its pre-

treatment level (Figure 6C 46). Hence, the effect of a drug on viral

replication has to be judged with respect to cell death dynamics to

correctly evaluate treatment potential.

Apart from reducing particle production, antivirals can also

delay the spread of the virus providing time for the immune system

to counteract infection. Figure 7A illustrates the evolution of virus

titers in a susceptible host cell population under simulated drug

treatment. Again, inhibitors of viral RNA and protein synthesis

almost completely suppress viral replication. Therefore, these

drugs protect most of the host cells from infection (Figure 7B).

Nevertheless, a few cells become infected and produce virus

causing the titer to only slowly decline. In contrast, drugs targeting

Figure 2. The multiscale model captures the intracellular and extracellular level of infection. Curves represent model fits to experimental
infections of MDCK cells with influenza A/PR/8/34 (H1N1) depicted by symbols. (A) Levels of vRNA, cRNA (dashed, %) and mRNA (solid, #) of
segment 5 (encoding NP) and the amount of virus particles produced by an average infected cell in a synchronous, single round infection experiment
(MOI = 6). Particle numbers correspond to the amount of hemagglutinating virus particles and were calculated from virus titer measurements by HA
assay using Equation (12). Bars indicate the standard deviation of three independent experiments (two for the 9 and 10 hpi measurements). (B)
Concentration of uninfected (solid, #), infected (dashed, %) and apoptotic (dash-dotted, D) cells and infectious virus titer during multicycle infection
(MOI = 0.1). Time courses were adopted from Isken et al. and are representative of three independent experiments [35].
doi:10.1371/journal.pcbi.1003372.g002

Multiscale Modeling of Influenza Virus Infection
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virus entry, i.e., fusion, endocytosis and binding to the cell surface,

are less successful in decreasing peak titers but delay infection by

up to 50 h. However, they do not prevent the cell population from

becoming infected. Note that, in this scenario, peak titers are

primarily constrained by the number of available cells. When cells

are depleted virus production ceases and titers decrease with the

rate of viral clearance.

Discussion

Viral infections cover several scales, a form of complexity that

computational modeling is poised to address [32]. In this study, we

developed a model that integrates the main stages of influenza A

virus infection within a host: the intracellular replication of the

virus and its extracellular transmission to new host cells. This

multiscale approach accurately captures a variety of in vitro

measurements, provides insights into virus growth across different

scales, and aides the development of DAAs.

The limited quantity and diversity of experimental data still

represents a significant bottleneck for models of extracellular viral

kinetics and their validation [15]. A promising approach to close

this gap is to incorporate detailed information on the intracellular

viral life cycle. Our model of virus replication was previously

validated against a variety of experimental studies including data

on virus binding, fusion, RNA synthesis, and regulation by viral

proteins [25]. In combination with the quantitative RNA levels

presented here, it provides a detailed picture of intracellular events

and their impact on virus production. For instance, it yields a delay

of 6 h between infection and virus release and suggests that virus

production increases for another 7 h as viral components

accumulate. While the length of the eclipse phase is in good

agreement with estimates from other modeling studies (7 h for

MDCK cells in bioreactors [33], 0.22–6 h for cultivations in a

hollow-fiber system [11] and 6 h for human infection [9]),

previous models have assumed that virus production proceeds at

a constant rate in the productive phase. Since simulations are quite

sensitive to such assumptions [16,24], multiscale modeling can

lead to more realistic estimates of key infection parameters [20],

which were shown to greatly support the design of antiviral

Table 1. Parameter estimates from data in Figure 2.

Parameter Value 95% CIa

FInf cells=virionð Þ 1b 0.47–1

k
Apo
I h{1

� �
3.2861022 (2.26–5.90)61022

k
Apo
T h{1

� �
7.3561023 (4.89–11.09)61023

kBind
M1 molecules:hð Þ{1 2.4361024 (0.59–4.35)61024

kFus h{1
� �

9.5661023 (3.95–21.31)61023

kLys h{1
� �

6.3961022 (4.64–8.83)61022

kRel virions=hð Þ 586 170–2650c

k
Syn
C h{1

� �
5.29 1.97–9.33

k
Syn
M h{1

� �
d 502 245–814

k
Syn
V h{1

� �
32.18 13.90–61.96

tapo hð Þe 24.9 14.3–36.3

teclipse hð Þf 5.7 5.1–6.5

a95% confidence intervals provided by the quantiles Q0.025 and Q0.975 of 2000
bootstrap replicates [56].
bOne is the upper bound of this parameter as no more cells can become
infected than virions fuse with endosomes.
cEstimates reached the lower and upper parameter bounds.
dSynthesis rate of an mRNA of average length. In the model, transcription is
length dependent with a rate of 8.536105 nucleotides/h (see reference [25] for
details).
eThe average lifespan of an infected cell was calculated as k

Apo
T zk

Apo
I

� �{1

,
which includes the eclipse phase.
fThe end of the eclipse phase was defined as the time when the virus release
rate rRel tð Þw1 virion=h. Note that this includes the steps of virus entry. The
delay between fusion and virus release is only 2 h.
doi:10.1371/journal.pcbi.1003372.t001

Figure 3. Model predictions reproduce data for different
infection conditions. The model fit from Figure 2 (dashed, %) was
used to predict the percentage of uninfected cells (A) and the infectious
virus titer (B) for infections at an MOI of 1024 (solid, #) and of 3 (dash-
dotted, D), respectively. These predictions were compared to data sets
not used for model construction. Measurements were adopted from
Isken et al. and are representative of three independent experiments
[35].
doi:10.1371/journal.pcbi.1003372.g003

Figure 4. Cell death constrains virus production. Survival
probability of an infected cell (solid) and virus production rate over
the infected cell age neglecting cell death (dashed) and considering cell
death (dash-dotted).
doi:10.1371/journal.pcbi.1003372.g004

Multiscale Modeling of Influenza Virus Infection
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treatment [34].

We estimate the lifespan of an infected cell as 25 h (including the

eclipse phase), which is in the range of other studies (reviewed in

[15]). Virus production would cease around the same time due to

the depletion of viral components in the cell. Nevertheless, most of

the cells in our simulations die before the end of the productive

phase as survival times vary significantly around the mean.

Following the majority of models for viral infection, we assumed

an exponential distribution of the survival time. Yet, a recent study

suggested that other distributions may be more appropriate to

capture viral kinetics [24]. In principle, our model is ideal to

accommodate such assumptions since the apoptosis rate can be

Figure 5. Inhibition of viral RNA synthesis, translation, or assembly/release efficiently impairs virus production. (A) Simulated impact
of drugs targeting the indicated steps of intracellular virus replication with varying efficacy. Colors indicate the fold change in the total number of
virus particles an average infected cell produces over its lifetime compared to the drug-free regime. Numbers in circles correspond to the examples
shown in B. (B) Time courses of selected viral components during drug treatment with 50% efficacy. Columns correspond to components depicted in
the scheme. Dashed and solid lines are time courses in the absence and presence of drugs, respectively. All components were normalized to their
maximum in the drug-free regime.
doi:10.1371/journal.pcbi.1003372.g005

Multiscale Modeling of Influenza Virus Infection
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chosen freely as a function of the infected cell age. However, our

simulations (Figure 2) and data on apoptosis induction during

single-cycle infections [35] do not justify more complex approaches.

Although in good agreement with the data, our simulations

underestimate the intracellular level of cRNA between 3 and

4.5 hpi. Yet, both the mRNA and vRNA level are captured nicely.

This might be due to a differential regulation of viral transcription

and replication unaccounted for in the model so far. Such control

could, for instance, be mediated by NP (reviewed in [36]), NEP

[37] or small viral RNAs [38]. However, the contribution of these

mechanisms is still a matter of controversial debate and

quantitative data is lacking preventing us from incorporating this

type of regulation in the model. We, thus, chose to keep our

mathematical framework as simple and constrained as possible.

Nevertheless, the model simultaneously captures a rich pool of

data indicating that it incorporates the key steps of in vitro influenza

virus infection.

When testing the model against data for different infection

conditions that were not used for construction, we also noticed an

overestimation of virus production for high MOI. In our model,

peak virus titers primarily depend on the initial cell concentration,

which was comparable in the three experiments and the number

of virions each cell produces. The cell-specific virus yield follows

from the intracellular replication dynamics and the lifespan of an

infected cell (i.e. the yield equals the integral under the dash-dotted

virus production curve in Figure 4). Hence, the observed decrease

in virus production at high MOI can be explained in two ways. On

the one hand, factors present in the inoculum may impair

intracellular virus replication reducing the rate of virus production.

Defective interfering particles could be such factors [39]. On the

other hand, the inoculum can contain substances such as

interferons that may reduce the lifespan of an infected cell by

increasing apoptosis induction [35]. Experimental work is in

progress to discriminate between these two hypotheses.

For the construction and calibration of our model, we mostly

relied on cell culture experiments due to the limited diversity of

available in vivo data. Currently, virus titers are the type of data

most frequently used for in vivo models (reviewed in [14]) as they

are easily attainable from infected individuals and animals. In

principle, four parameters are sufficient to describe such titer

curves constraining the level of detail one can incorporate into a

mathematical model [24]. In contrast, in vitro systems provide

access to a variety of information like the number of available cells,

their infection status or the intracellular level of viral RNAs. This

wealth of data was a prerequisite for the development of our

multiscale model. However, now that the model has been

established future studies may want to implement modifications

to closer resemble the in vivo situation. For instance, the growth

and death of uninfected cells is usually neglected in acute infection

models as target cell dynamics are assumed to be slow compared

to infection [14]. Furthermore, virus loss in the lung is caused by

active processes such as phagocytosis and mucociliary clearance as

opposed to degradation in cell culture experiments and may,

hence, be faster. However, the most prominent feature of in vivo

infections our model is currently lacking is the immune system.

Although a number of models were proposed that incorporate an

immune response none of them agreed completely with the variety

of experimental data available [40]. Implementing an adequate

description of the immune response, thus, remains one of the

major challenges in viral kinetic modeling today [14,40–42].

Modeling intracellular replication in detail allowed us to

simulate the effect of DAAs on the amount of virions an average

infected cell produces. Given a drug efficacy above 90%

inhibitors of viral transcription, replication, protein synthesis,

nuclear export, and assembly/release proved to be most

successful in mitigating replication. Indeed, antivirals targeting

virus release in the form of neuraminidase inhibition are widely

used in influenza treatment today. To exploit this target in the

future new compounds are, however, required as the emergence

of drug-resistant strains is on the rise [8]. Inhibitors of the viral

polymerase are a promising alternative. During viral replication

polymerases engage in an autocatalytic reaction where they

synthesize cRNA from vRNA and vice versa. In addition, they

transcribe the viral genome into mRNAs for new polymerases.

Interrupting this positive feedback has detrimental consequences

for all major viral components in our model. In agreement with

this, compounds which specifically inhibit viral transcription

efficiently impair influenza A virus replication in cell culture and

mice [43]. Similarly, favipiravir (T-705), an inhibitor of influenza

virus RNA polymerase activity [44], is potent against influenza

viruses in vitro and in vivo [45,46] and has entered clinical trials

recently [47] demonstrating the potential of viral RdRps as drug

Figure 6. Cell death affects therapy success. (A) Virus production rate over the age of an infected cell in the absence of drugs (solid) and during
inhibition of cRNA synthesis with 50% efficacy (dashed). (B) Different survival probabilities for an infected cell assuming that virus-induced apoptosis
occurs with the rate estimated from data in Figure 2B (16, solid line) or at twofold (26, dashed line) and fourfold (46, dash-dotted line) its rate. (C)
Total amount of virus particles released by an infected cell considering the combination of different production rates and survival probabilities.
doi:10.1371/journal.pcbi.1003372.g006
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targets. Our model could be used to test different dosing regimes

and support such clinical trials.

In other studies, interference with the assembly of viral

polymerase complexes by 25-amino-acid peptides [48] or small

molecule inhibitors [49] has been shown to inhibit viral

replication. In contrast, RdRp formation has hardly any

influence on virus production in our model unless the drug

efficacy well exceeds 99%. This discrepancy most likely

originates from the kinetics of polymerase assembly in our

model. Due to the lack of quantitative data, we assumed that

polymerases form from their three subunits according to mass

actions kinetics [25]. Rather than the formation itself subunit

availability represented the kinetic bottleneck for RdRp assem-

bly in simulations. In light of the above mentioned experimental

studies, future models may need to revise this assumption if

polymerase assembly is at the focus of investigation. Reconciling

model predictions that are initially inconsistent with data

provides an ideal opportunity to also refine our understanding

of the underlying biology but it requires experiments specifically

designed to resolve the discrepancy.

Instead of reducing peak virus titers, our model predicts that

inhibitors of virus entry mainly delay in vitro infection, which is in

agreement with previous studies [11]. This is because they only

decrease the infection rate of cells instead of impairing the

processes responsible for viral component production resulting in

similar cell-specific virus yields. The treatment success of such

inhibitors may, hence, depend on mechanisms, which take

advantage of the delay and clear infection.

Intriguingly, some of our simulations yield regimes where

treatment can also lead to an increase in virus production at the

expense of early virus release. From an evolutionary perspective this

regime might not be beneficial as faster growing strains would out-

compete such variants. However, during treatment it may,

nevertheless, occur. We show that the lifespan of an infected cell

determines whether a slower but more efficient virus production

leads to higher titers. An antiviral treatment that was rejected based

on the survival times of infected cells in cell culture may thus even be

successful when lifespans are shorter. In vivo, the latter is indeed very

likely as the immune response increases cell death rates [42,50].

Also, virus strain-dependent factors such as the expression of the

Figure 7. Inhibition of virus entry delays infection. (A) Simulated effect of drugs targeting the indicated steps of virus infection with an efficacy
of 95%. Colors indicate the log10 virus titer. Numbers in circles correspond to the examples shown in B. (B) Concentration of uninfected target cells
and virus titer in the absence of drugs (solid line) and during treatment with inhibitors of virus fusion (dashed) and mRNA synthesis (dash-dotted) at
95% efficacy.
doi:10.1371/journal.pcbi.1003372.g007
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PB1-F2 protein can lead to faster cell death [51]. Screening

approaches for antiviral compounds may, hence, benefit from using

conditions that mimic the cell survival times observed in vivo.

In summary, we have developed a multiscale model of in vitro

influenza A virus infection which integrates the intracellular level

of viral replication and the extracellular level of cell-to-cell

transmission. We are optimistic that such models will contribute

to the development of antiviral drugs, support clinical trials and

provide a platform for the establishment of more detailed infection

models in the future. To achieve this goal, next-generation models

will need to incorporate the immune response, pharmacokinetics

and comprehensive information on virus-host interactions. Multi-

scale modeling provides an ideal framework for such an endeavor

as diverse cellular processes can be simulated individually and

incorporated as separate modules into a unifying framework.

Methods

Model of the extracellular level
We used an age-segregated infection model for adherent cells,

which follows from the general population balance [23], to

describe the dynamics of uninfected target cells (T ), infected cells

(I ), and their apoptotic counterparts Ta and Ia, respectively

dT

dt
~mT{rInf T{k

Apo
T T , ð1Þ

LI

Lt
z

LI

Lt
~{ k

Apo
T zk

Apo
I tð Þ

� �
I t,tð Þ, ð2Þ

dTa

dt
~k

Apo
T T{rInf Ta{kLysTa, ð3Þ

dIa

dt
~

ð?
0

k
Apo
T zk

Apo
I tð Þ

� �
I t,tð ÞdtzrInf Ta{kLysIa, ð4Þ

with

m~
mmax

Tmax

Tmax{T{

ð?
0

I t,tð Þdt

� �� 	
z

,

where uninfected cells grow with specific rate m or undergo

apoptosis with rate k
Apo
T . Growth can occur with a maximum

specific rate mmax to a maximum concentration of Tmaxcells

assuming that all non-apoptotic cells occupy a finite surface area.

The infection rate is denoted rInf and will be discussed at the end

of this section. In Equation (2), infected cells have the age t and

undergo virus-induced apoptosis with an age-dependent rate

k
Apo
I tð Þ. Since infection creates cells with age zero, we obtained

the boundary condition I t,t~0ð Þ~rInf T . Apoptotic target cells in

Equation (3) can either become infected or undergo cell lysis with

rate kLys. The same lysis rate is used for apoptotic infected cells.

Assuming that there are no infected cells in the beginning

(I t~0,tð Þ~0), we can rewrite Equation (2) in terms of an

algebraic equation

I t,tð Þ~ rInf t{tð ÞT t{tð Þexp {
Ð t

0 k
Apo
T zk

Apo
I að Þda

� �
, t§t§0,

0, twt§0,

(
ð5Þ

where I t,tð Þ can be interpreted as the infection age density such

that
Ð t2

t1
I t,tð Þdt gives the number of infected cells with age

between t1 and t2. Equation (5) illustrates that cells which have

age t at time t were infected at time t{t. The integral term

accounts for cell loss due to apoptosis. Using Equation (5) instead

of Equation (2), thus, allows us to track the infection front

precisely.

The equation for infectious virus particles (V ) in the extracel-

lular space follows as

dV

dt
~

ð?
0

rRel tð ÞI t,tð Þdt{k
Deg
V Vz

X
n

kDis
n VAtt

n {kAtt
c,n BnV

h i
,ð6Þ

with

Bn~Btot
n TzTað Þ{VAtt

n ,

kDis
n ~

kAtt
c,n

k
Eq
c,n

and

n[ hi,lof g,

where rRel denotes the age-dependent virus production rate. We

assumed that virions are degraded or cleared with rate k
Deg
V . The

binding of virus particles to target cells was modeled as described

before [25]. In brief, we considered two types of binding sites (Bn):

high-affinity (n~hi) and low-affinity (n~lo) sites. The virus

attaches to or dissociates from these sites with rates kAtt
c,n and

kDis
n , respectively, whereby the latter rate follows from the

equilibrium constant kEq
c,n. The concentration of free binding sites

was calculated from their total number per cell (Btot
n ), the

concentration of target cells, and the concentration of attached

virus particles (VAtt
n ). In this notation each virion occupies one

binding site. Note that we did not consider binding to infected cells

as neuraminidase expression on the cell surface limits superinfec-

tion [52].

In order to account for drug effects on virus entry, we defined

equations for the concentration of attached virions (VAtt
n ) on the

surface of target cells (considering both T and Ta) as well as for

virions in the endosomes of these cells (VEn)

dVAtt
n

dt
~kAtt

c,n BnV{ kDis
n zkEn

� �
VAtt

n { rInf zrLys
� �

VAtt
n , ð7Þ

dVEn

dt
~kEn VAtt

hi zVAtt
lo

� �
{kFusVEn{ rInf zrLys

� �
VEn ð8Þ

where kEn and kFus denote the endocytosis and fusion rate,

respectively. The first two terms in Equation (7) account for virus

binding and dissociation as well as for endocytosis. The last term

quantifies the loss of virions with cells that leave the compartment

of interest, i.e., with cells leaving the population of target cells by

infection or cell lysis with rate rInf and rLys, respectively. Equation

(8) accounts for the endocytosis of virions attached to both types of

binding sites, the fusion of virions with the endosomal membrane,
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and again the loss of particles due to infection and lysis of target

cells.

Since we consider a cell ‘infected’ as soon as viral genome copies

enter its cytoplasm, the infection rate rInf follows from the fusion

rate in Equation (8)

rInf ~FInf kFusVEnh TzTað Þ{1
� �

, ð9Þ

with

h TzTað Þ{1
� �

~
TzTað Þ{1

, TzTaw0,

0, TzTaƒ0,

(

where FInf corresponds to the number of cells which become

productively infected upon the fusion of one virion. This number

cannot exceed one but may become lower if several virions are

required to cause productive infection. While the first part of

Equation (9) represents the number of cells that become infected

per hour, the fraction serves two purposes: substituted in

Equations (7) and (8) it provides the number of viruses per target

cell and in Equations (1) and (3) it yields the fraction of non-

apoptotic and apoptotic target cells, respectively, to total target

cells. Similarly, the lysis rate of apoptotic target cells rLys can be

derived as

rLys~kLysTah TzTað Þ{1
� �

: ð10Þ

Model of the intracellular level
The intracellular level of infection was essentially modeled as

described before [25]. In brief, a set of ordinary differential

equations was used to simulate virus entry, viral RNA and protein

synthesis, and virus assembly. In contrast to the original

description, we modified the equation of the virus release rate

rRel tð Þ~kRel Vp
cyt
M1

Vp
cyt
M1z8KVrel

P
j

Pj

PjzNPj
KVrel

, ð11Þ

with

j[ RdRp, HA, NP, NA, M1, M2, NEPf g,

where release depends on the abundance of progeny vRNPs in the

cytoplasm (Vp
cyt
M1) and structural viral proteins (Pj ) with KVrel

denoting the number of virus particles for which components must

be present in order to reach half the maximum release rate. In its

new form, rRel can only increase to a maximum rate of kRel

assuming that there is only a limited number of host factors

available for virus budding. This change was implemented to

avoid unrealistically high virus production rates that occurred in

some treatment regimes.

For simulations in Figure 1D and Figure 2A, the complete

intracellular model was used as described above. However, when

coupling the model to the extracellular level, we neglected virus

entry and initialized the model with a complete set of eight vRNPs

in the cytoplasm. Attachment, endocytosis, and fusion were

considered at the extracellular level instead (Equations (7) and (8)).

Integrated simulation approach
In order to ease the computational burden and allow for a more

intuitive interpretation of simulation results, we assumed that the

extracellular level has little or no influence on intracellular events,

i.e., that each infected cell behaves the same independent of the

time of infection and the extracellular environment. As shown by

Haseltine and colleagues, this assumption permits the selective

decoupling of both levels and reduces the model’s complexity

significantly [23]. Hence, we could first simulate intracellular virus

replication to calculate the virus release rate rRel as a function of

the infection age t. This rate was then used in Equation (6) to

simulate the extracellular level.

The intracellular submodel was solved numerically with the

CVODE routine from SUNDIALS [53] on a Linux-based system.

Model files and experiments were handled with the Systems

Biology Toolbox 2 [54] for MATLAB (R2010b The MathWorks

Inc.). We then used Euler’s method with a step size of Dt~0:05 h
to solve the extracellular model (Equations (1) and (3)–(8)). The

integrals in Equations (1), (4) and (6) were approximated in each

step by substituting Equation (5) for I t,tð Þ and using the rectangle

rule with a step size of Dt~0:05 h. To further reduce computa-

tional costs, the integral in Equation (5) was evaluated prior to

simulation following the same approach. The method was checked

for numerical accuracy against simulations using smaller step sizes

and by comparison to a discrete version of Equation (2) with a

large number of age classes.

Table S1 lists the initial conditions of all presented simulations.

Parameters of the intracellular model can be found in Table S2

and Table S3 shows parameter values for the extracellular model.

Table 2. Primer sets for the reverse transcription and real-time RT-qPCR.

Target Purpose Primer Name Sequence (59-39) Position (nt)

mRNA reverse transcription Oligo tagdTRT rev GTAAAACGACGGCCAGTTTTTTTTTTTTTTTTT polyA tail

real-time RT-qPCR Seg 5 Realtime for GGAAAGTGCAAGACCAGAAGAT 1388–1410

real-time RT-qPCR mRNA tagRealtime rev GTAAAACGACGGCCAGT tag sequence

cRNA reverse transcription Seg 5 tagRT rev GCTAGCTTCAGCTAGGCATCAGTAGAAACAAGGGTATTTTTCTT 1541–1565

real-time RT-qPCR Seg 5 Realtime for GGAAAGTGCAAGACCAGAAGAT 1388–1410

real-time RT-qPCR cRNA tagRealtime rev GCTAGCTTCAGCTAGGCATC tag sequence

vRNA reverse transcription Seg 5 tagRT for ATTTAGGTGACACTATAGAAGCGAGTGATTATGAGGGACGGTTGAT 192–215

real-time RT-qPCR Seg 5 Realtime rev CGCACTGGGATGTTCTTC 282–300

real-time RT-qPCR vRNA tagRealtime for ATTTAGGTGACACTATAGAAGCG tag sequence

doi:10.1371/journal.pcbi.1003372.t002
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Parameter estimation
Model parameters were estimated by fitting the complete

intracellular submodel (including the equations for virus entry) to

experimental virus titers per cell and the levels of vRNA, cRNA

and mRNA measured during high MOI infection (Figure 2A).

Simultaneously, the reduced model (excluding virus entry) was

coupled to the extracellular equations using the same parameters

and the complete multiscale model was fit to the time courses of

uninfected and infected cells, their apoptotic counterparts, and the

virus titer during low MOI infection (Figure 2B). Estimation was

performed using the fSSm algorithm for stochastic global

optimization [55]. In particular, the algorithm was used to

simultaneously minimize the least squares prediction error of all

measured state variables, whereby the error of each variable was

normalized by its respective maximum measurement value (e.g.

the deviation between measured and simulated vRNA level was

weighted by the maximum of the measured vRNA level). The

summed errors of the intracellular and extracellular part of the

model were then divided by the number of measurements,

respectively, and added to attain an overall measure of fit quality.

Since experiments indicated that real-time RT-qPCR detects free

viral RNAs from the seed virus supernatant, which may adhere to

cells but cannot enter them, we applied the first measurement

value as an offset to all simulation values of viral RNAs. Bootstrap

confidence intervals [56] were determined considering the

standard deviations in Figure 2A as well as a 20% error for cell

counts and 0.3 log for virus titers in Figure 2B.

Simulation of drug treatment
In order to simulate drug treatment with efficacy e, parameters

in the model which correspond to the drug’s target (Table S4) were

perturbed by 1{eð Þ. Treatment was assumed to occur at constant

efficacy starting from 0 hpi. For results in Figure 5A, the reduced

intracellular model was simulated first to determine the virus

release rate rRel . The total amount of virus particles produced by

an average infected cell over its lifetime (VRel
tot ) was then calculated

by considering cell death according to

VRel
tot ~

ð?
0

rRel tð Þexp {

ðt

0

k
Apo
T zk

Apo
I að Þda

� �
dt:

Cell culture and virus infection
For single round infections (Figure 2A), adherent MDCK cells

(ECACC No. 84121903) were grown in GMEM (GIBCO)

supplemented with 10% fetal calf serum (FCS) (PAN Biotech)

and 1% peptone (Lab M) using T175 flasks and incubated at 37uC
under a 5% CO2 atmosphere to maintain pH 7.2. One day before

infection, cells were washed twice with phosphate buffered saline

(PBS), detached and counted with a Vi-CELL XR (Beckman

Coulter). Subsequently, 1.756106 cells were seeded into 35 mm

dishes. Infection was performed using influenza A/Puerto Rico/

8/34 (Robert Koch Institute, #3138) with a seed virus preparation

containing 1.236108 infectious virus particles per mL. Prior to

infection, cells were washed twice with PBS and virus was added at

a multiplicity of infection (MOI) of 6 in 250 mL serum-free virus

maintenance medium (GMEM, GIBCO) containing 1% peptone

(Lab M) and 5 units/mL trypsin (GIBCO). Dishes were incubated

for 30 minutes at 37uC and 5% CO2 atmosphere before cells were

washed once with PBS and 1 mL virus maintenance medium was

added.

To correctly account for the loss of viral components due to

virus release, the total amount of virus particles leaving an average

infected cell was determined using the hemagglutination assay as

described previously by Kalbfuss et al. [57]. Titer measurements in

log10 HA units per test volume (log HAU/100 mL) can be

converted into hemagglutinating particles per mL by

cvirus~2|107:10 log HAU=100 mLð Þ, ð12Þ

assuming that at least one virus particle per erythrocyte (26107

cells/mL) is required to cause agglutination [58].

For detailed information on the multicycle experiment

(Figure 2B), the reader is referred to reference [35] from which

the measurements were adopted. In brief, adherent MDCK cells

were cultivated to confluence in T25-flasks and washed with PBS

prior to infection followed by addition of serum-free virus

maintenance medium (GMEM, GIBCO) containing 1% peptone

(Lab M) and 5 units/mL trypsin (GIBCO). Subsequently,

influenza A/Puerto Rico/8/34 was added at an MOI of 1024,

0.1 and 3. For each time point one T-flask was harvested and

adherent cells were trypsinized and pooled with the cells from the

supernatant. Aliquots of 106 cells were fixated with 1% parafor-

maldehyde (Sigma-Aldrich) and 70% ethanol (Carl Roth) and

stored at 220uC. Double staining for infection status and

apoptosis was performed using a fluorescein isothiocyanate

(FITC)-labeled anti-NP mAb (AbD Serotect) and a terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)

assay kit (Roche Diagnostics), respectively. Measurements were

collected using an Epics XL flow cytometer (Beckman Coulter). In

addition to flow cytometry, the infectious virus titer was measured

from the supernatant of T-Flasks using a TCID50 assay as

described before by Genzel and Reichl [59].

Real-time RT-qPCR
To extract viral RNAs, cells were washed once with PBS, lysed

and scraped from the dish. Lysates were stored at 280uC. RNA

was extracted using ‘‘INSTANT Virus RNA’’ (Analytik Jena)

according to the manufacturer’s instructions and stored at 280uC.

For the real-time RT-qPCR assay, priming strategies for the

differentiation of viral RNA species were adapted from Kawakami

et al. [60]. In brief, polarity specific and tagged primers (Table 2)

were used in reverse transcription as follows. 1 mL of RNA extract

was mixed with 1 mL primer (1 mM for cRNA and vRNA; 10 mM

for mRNA), 1 mL dNTPs (10 mM each) and filled up to 14.5 mL

with nuclease-free water. The mixture was incubated at 65uC for

5 min and subsequently cooled to 40uC for mRNA and 55uC for

cRNA and vRNA. Afterward, the reaction mixture (4 mL

56Reaction Buffer, 0.5 mL Maxima H-Minus Reverse Transcrip-

tase (200 U/mL) (Thermo Scientific) and 1 mL nuclease-free water)

was added. After incubation at 60uC for 30 min the reaction was

terminated at 85uC for 5 min.

Additionally, a 10-fold dilution series of the corresponding RNA

reference standards (5?1027 to 5 ng) each containing 350 ng

cellular total RNA was reverse transcribed. Subsequently, the RT

reaction was diluted to a final volume of 100 mL. Concentration of

viral RNA was determined in molecules per cell using ‘‘Rotor-

Gene SYBR Green PCR Kit’’ (Qiagen) and Rotor-Gene Q real-

time PCR cycler (Qiagen). 4 mL of the diluted cDNA were mixed

with 1 mL primer set and 5 mL reaction mixture. The cycle

conditions of the real-time PCR were 95uC for 5 min followed by

40 cycles of 95uC for 10 sec and 60uC for 20 sec. Finally, a

melting curve from 65uC to 90uC was performed. The concen-

tration of viral RNA was calculated based on the RNA reference

Multiscale Modeling of Influenza Virus Infection

PLOS Computational Biology | www.ploscompbiol.org 11 November 2013 | Volume 9 | Issue 11 | e1003372



standards with linear regression (Ct-value against log10 of number

of molecules). The number of viral RNA molecules (nmolecules) was

calculated based on the length of the fragment (Nbases (bp)),

nmolecules~
mtemplate

kNbases
:N{1

A
:109

,

where mtemplate (ng) is the mass of the template, k~340 Da=bp

denotes the average mass of one base, and N{1
A (mol21)

corresponds to the Avogadro constant. The number of RNA

molecules was then related to the number of cells (ncells (cells)) to

calculate the abundance of viral RNAs per cell (SQsample

(molecules/cell)). The final result was calculated by

SQsamples~
10

Ct{b
m FRT Veluate

ncells
,

using the coefficient for dilution of RT reaction (FRT ) and the

volume of RNA eluate (Veluate (mL)).
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Table S1 Initial conditions for the multiscale model. This table

lists all non-zero initial conditions that were used in simulations.

(DOC)

Table S2 List of parameters of the intracellular model. This

table lists all parameters that were used to simulate the

intracellular level of infection along with their units and additional

information on their source.

(DOC)

Table S3 List of parameters of the extracellular model. This

table lists all parameters that were used to simulate the

extracellular level of infection along with their units and additional

information on their source.

(DOC)

Table S4 Parameters corresponding to the drug targets in

Figure 5 and 7. This table shows which parameters in the model

correspond to the drug targets shown in Figure 5 and 7.

(DOC)
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