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Hierarchical Bayes Model for Predicting
Effectiveness of HIV Combination Therapies

Jasmina Bogojeska and Thomas Lengauer

Abstract

HIV patients are treated by administration of combinations of antiretroviral drugs. The very
large number of such combinations makes the manual search for an effective therapy practically
impossible, especially in advanced stages of the disease. Therapy selection can be supported by
statistical methods that predict the outcomes of candidate therapies. However, these methods are
based on clinical data sets that have highly unbalanced therapy representation.

This paper presents a novel approach that considers each drug belonging to a target
combination therapy as a separate task in a multi-task hierarchical Bayes setting. The drug-specific
models take into account information on all therapies containing the drug, not just the target
therapy. In this way, we can circumvent the problem of data sparseness pertaining to some target
therapies.

The computational validation shows that compared to the most commonly used approach that
provides therapy information in the form of input features, our model has significantly higher
predictive power for therapies with very few training samples and is at least as powerful for
abundant therapies.

KEYWORDS: hierarchical Bayes modelling, HIV combination therapies, statistical models,
classification
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1 Introduction

More than 33 million people worldwide live with the human immunodeficiency
virus 1 (HIV-1) (UNAIDS/WHO, 2010). Causing the acquired immunodeficiency
syndrome (AIDS), with no cure or vaccine in sight, HI'V-1 infected patients are cus-
tomarily treated with combinations of several antiretroviral drugs. Although these
drug cocktails remain effective much longer than monotherapies based on single
drugs, they eventually are defeated by the evolution of the virus to resistance. In
such a case the physician administers a new therapy by taking into account informa-
tion on the resistance-relevant mutations present in the most abundant viral strain(s)
in the patient’s blood serum and on the previously administered drugs. The exten-
sive set of resistance-relevant mutations in the viral genome and the large number of
potential combination therapies resulting from the increasing number of antiretro-
viral drugs renders their manual assessment practically impossible. The availability
of large clinical data sets has paved the way for statistical methods that offer an au-
tomated procedure for predicting the outcome of a potential antiretroviral therapy.
An estimate of the therapy outcome can assist physicians in choosing a successful
regimen for an HIV patient.

The clinical data contain samples from applications of many different drug
combinations over many years. The evolving trends in treating HIV patients result
in a highly unbalanced representation of different therapies in the available clinical
data sets: while for some therapies many samples exist, for others there are very
few. Furthermore, the existing statistical methods commonly used for predicting
outcomes of HIV therapies use both the viral genotype and the drugs comprising
the corresponding therapy as input features. Thus, such methods do not provide
explicit models for the effects of each drug comprising the target therapy on its re-
sponse. Furthermore, if the respective model is simple, which is desirable in the
face of curbing overtraining, it can have problems appropriately modeling inter-
actions between drugs and mutations. Specifically linear models cannot take into
account such interactions. Such models must rely on additional information, e.g.,
in the form of predicted resistance factors or genetic barriers to drug resistance, to
afford an accurate prediction.

The method we present here affords a simple, direct, effective and efficient
approach to modeling the response to HIV combination therapies based on the hi-
erarchical Bayes paradigm. The individual drugs comprising each therapy combi-
nation are considered as separate tasks in a multi-task model that learns their ad-
ditive effects on the therapy outcome from the available clinical data. In this way,
the model makes use of the abundance of samples involving each individual drug.
Doing so improves the predictive power on target therapies that are scarcely rep-
resented in the clinical database. In this paper, we demonstrate that our approach
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delivers better predictions than the most common approaches, which use the drug
information regarding a target therapy as part of the input and apply standard sta-
tistical learning methods. Furthermore, our approach allows for interactions among
the input features (e.g., resistance-relevant mutations) of the different drugs since,
instead of encoding the drugs comprising the therapies as input features, each drug
is considered a separate task in a multi-task learning setting.

The performance of the model is assessed via the so-called therapy-stratified
cross-validation scenario that stratifies for the abundance of target therapies in the
training data set. Alternatively, in order to take into account the evolving trends in
composing drug combination therapies over time we use a time-oriented validation
scenario: our models are trained on data from the more distant past, while their per-
formance is assessed on data from the more recent past. In both validation scenarios
the results of our method are compared to those of a method that mimics the most
common approach used for predicting outcomes of combination therapies, which
trains a linear model by supplying the drug information from the target therapy as
part of the input. Moreover, in the time-oriented validation scenario our method is
also compared to a therapy-specific approach that trains a separate model for each
different therapy by using information available from similar therapies.

The paper is structured as follows. After summarizing related work we
present the details of the method and its application to predicting responses of an-
tiviral combination therapies in Section 2. In Section 3 we describe the data sets,
the validation settings and present the results of the computational experiments.
Section 4 discusses the results and concludes our paper.

1.1 Related Work

Various statistical learning methods, including artificial neural networks, decision
trees, random forests, support vector machines (SVMs) and logistic regression
(Wang, Larder, Revell, Harrigan, and Montaner, 2003, Lathrop and Pazzani, 1999,
Altmann, Beerenwinkel, Sing, Savenkov, Diumer, Kaiser, Rhee, Fessel, Shafer,
and Lengauer, 2007, Larder, Wang, Revell, Montaner, Harrigan, De Wolf, Lange,
Wegner, Ruiz, Prez-Elas, Emery, Gatell, DArminio Monforte, Torti, Zazzi, and
Lane, 2007, Deforche, Cozzi-Lepri, Thays, Clotet, Camacho, Kjaer, Van Laethem,
Phillips, Moreau, Lundgren, and Vandamme, 2008, Rosen-Zvi, Altmann, Pros-
peri, Aharoni, Neuvirth, Snnerborg, Schiilter, Struck, Peres, Incardona, Kaiser,
Zazzi, and Lengauer, 2008, Altmann, Ddaumer, Beerenwinkel, Peres, Biich, Rhee,
Sonnerborg, Fessel, Shafer, Zazzi, Kaiser, and Lengauer, 2009, Prosperi, Altmann,
Rosen-Zvi, Aharoni, Borgulya, Bazso, Sonnerborg, Schiilter, Struck, Ulivi, Van-
damme, Vercauteren, and Zazzi, 2009), have been used to predict the virological
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response to HIV combination therapies. For all these methods the drugs compris-
ing the corresponding therapy are provided as input features. Thus, these methods
do not generate separate models for the effects of the individual drugs on the ther-
apy outcome. Furthermore, such models do not address the problem of uneven
and sparse representation of therapies in the HIV training data. Some approaches
(Bickel, Bogojeska, Lengauer, and Scheffer, 2008, Bogojeska, Bickel, Altmann,
and Lengauer, 2010) deal with the aforementioned issue by estimating a separate
model for each combination therapy which uses the training samples from all ther-
apies with properly derived sample weights. The weights reflect the similarities
between the target therapy and the corresponding therapies of all training samples.
While these therapy-specific models achieve very good accuracy (Bogojeska et al.,
2010), their AUC (Area Under the ROC Curve) performance can be improved.

The hierarchical Bayes paradigm (Gelman, Carlin, Stern, and Rubin, 2004)
can easily be applied to multi-task modeling and, therefore, is widely used in
the machine learning community (Evgeniou and Pontil, 2004, Yu, Tresp, and
Schwaighofer, 2005, Dudik, Schapire, and Phillips, 2005, Teh, Jordan, Beal, and
Blei, 2006). Our work is inspired by the work of Evgeniou and Pontil (2004) who
present a feature mapping method for multi-task learning with support vector ma-
chines based on a hierarchical Bayes approach. Bickel (2009) shows that a revised
version of this method with a logistic loss function is equivalent to a hierarchical
Bayes model. In this paper we adapt this method to the problem at hand which
yields a novel method that models the individual effects of the drugs on therapy
outcome.

2 Methods

In what follows we derive the multi-task hierarchical Bayes learning method for the
problem of predicting the outcomes of HIV drug combination therapies. Our goal
is to model the effects of the drugs comprising a target combination therapy on its
outcome by using the viral genotype information and the available information on
previously administered drugs as input features. Since the individual drugs com-
prising the combination therapies appear in many samples we can consider each
drug as a separate task in a multi-task setting. We use an additivity assumption to
model the combined effects of the individual drugs comprising a target therapy on
its response. Clearly this assumption is a gross simplification of the complex and
little understood process of drug interaction. Still, the drug additivity approach is
a widely used simple assumption in a situation where little information is available
on actual interactions, and it exhibits good prediction performance. The sum of
the drug-specific contributions provides a score quantifying the propensity of the

Published by De Gruyter, 2012 3

Brought to you by | Max Planck eBooks
Authenticated
Download Date | 7/3/18 11:37 AM



Satistical Applicationsin Genetics and Molecular Biology, Vol. 11 [2012], Iss. 3, Art. 11

therapy to be effective. For each drug model we have a comparatively data-rich
scenario, thus avoiding the necessity to make predictions on the basis of only very
few informative samples.

2.1 Hierarchical Bayes Model

In the hierarchical Bayes setting the posterior probability p(w, @|D) is computed
by using the likelihood p(D|w) of the training data D under model parameters w,
the prior probability p(w|¢@) of model parameters w under hyperparameters ¢, and
the prior p(¢@) of the hyperparameters ¢@:

p(w,9|D) = p(D|w)p(w|9)p(@). (1)

A

Then, the maximum a posteriori (MAP) estimate of the model parameters (W, ) =
argmaxw,o p(W, @|D) is used for the final prediction y = argmax, p(y|x,W) for a
target sample X.

A multi-task problem with several related tasks that share a common prior
can easily be realized in the hierarchical Bayes framework. Let wy,...,w, denote
the task parameters of each of the n different tasks appearing in the training data
D = {(x1,y1,11),- -, X, Ym>tm) }, and D, = {(x;,yi,t;) € D|t; =t} is the training
data for task 7. All task parameters have the same prior probability p(w,|@) and are
conditionally independent given the prior. The posterior is then given by:

p(Wi,...,Wn,@|D1,....Dy) = p(@) [ [ p(D:|W:) p(Wi| @) 2)
t

where the parameters are approximated with a MAP estimate. Intuitively, the prior
models what all tasks have in common, while the task parameters capture task-
specific information.

2.2 Outcome Prediction for HIV Combination Therapies

Let x denote the input features that comprise the viral genotype and the drug his-
tory for the specific therapy example. The input is represented with a binary vector,
where the part corresponding to the viral genotype indicates the occurrence of a
set of resistance-relevant mutations (Johnson, Brun-Vezinet, Clotet, Giinthrad, Ku-
ritzkes, Pillay, Schapiro, and Richman, 2008), and the part corresponding to the
drug history comprises the drugs known to be part of previous therapies. To fur-
ther clarify this notation, assuming for the sake of simplicity that there are only
five resistance-relevant mutations and three antiretroviral drugs, the binary vector
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x =(0,1,0,1,1,0,1,1) indicates a sample where the resistance mutations 2, 4 and
5 have occurred and drugs 2 and 3 were known to be a part of previous therapies.
Let z denote the therapy combination encoded as a binary vector that indicates the
individual drugs comprising the therapy. The label y indicates the success (1) or
failure (-1) of each sample therapy. Let D = {(x1,y1,21),---,(Xm,Ym,Zm)} denote
the training data set. The most common approach in the field trains a single statisti-
cal model (e.g., a linear logistic regression model) on all available therapy samples
in the data set. Here the information on the individual drugs comprising the target
therapy is encoded in a binary vector and supplied together with the other input fea-
tures. In what follows we will present the details of the derivation of a hierarchical
Bayes model that predicts the outcomes of HIV combination therapies.

The goal is to train a classifier f; : x — y that correctly predicts the outcome
for an HIV combination therapy z. We model the class likelihood p(y|x,z) with
a logistic regression model that calculates predictions of the effectiveness of ther-
apies by using the assumption that the drugs making up the target therapy have a
cumulative effect on its outcome. This is reflected in the formula:

1
= 3
PO ) = b (o Ty WIX)) @

where z denotes the set of drugs comprising the combination therapy and w, are the
model parameters of the individual drugs, i.e., the drug-specific weights pertaining
to the resistance-relevant mutations and the previously administered drugs. These
drug parameters are trained via the multi-task hierarchical Bayes framework where
each drug is considered a separate task. The model parameters w, for each drug are
drawn from a common Gaussian prior wy ~ N(wo, 62I) with a mean drawn from a
Gaussian hyperprior wy ~ N(0, O'VZVOI). In this way all tasks (drugs) are related and
their similarity is modeled with the common Gaussian prior. In fact, some drugs
are more similar than others in that they belong to the same drug class or evoke a
similar genomic fingerprint in terms of viral resistance mutations. More formally,
all task parameters w; deviate to some extent from a mean function wg (in our case
the mean of the Gaussian prior). The smaller the distance between two distinct drug
parameters Wy, and w, the more similar the effects of drugs d; and d>.

Let n denote the number of different drugs in our data set and D; =
{(xi,yi,zi) € D|d € z;} denote all training samples whose corresponding therapies
contain the drug d. In the following we derive the log-posterior of all parameters
given the data in accordance with Equation 2 and the assumptions made in the pre-
vious paragraph.
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2 2
logp(W1,..., W, Wo|D1,...,Dp, Oy, , Oy)

n
o< logN(wo|0,00,) + Y logN(wa|wo, o31)
n d=1

+), ) logp(ylx,z,wy) )
d

1(x,y,2)€Dy

205, 4 20w
=Y Y log(l+exp(-y Y wix)) ©)
d=1(x,y,z)€Dy dez

205, i 200
— Z log(1+ exp(—y(|z|wo+ Zvd)Tx)) (6)
d=1(x,y,z)€Dy dez

204 /= 200
n o Z|G
Y X toetexp(—y(My 1 ¥ vy T) g
d=1(x,y,z)€Dy Ow dez
2
A\
B % — Y log(1+exp(—yv'@(x,2))) ®)

Equation 4 uses Equation 2 to derive the logarithm of the posterior proba-
bility. In Equation 5 the Gaussian density functions are expanded up to constant
terms. Since wy ~ N(Wo, szvl) each individual drug parameter w, can be replaced
by w; = wo + v, yielding Equation 6 where |z| is the number of drugs comprising

the therapy z. In Equation 7 wy is replaced with c;—vszo- Finally, in the last Equation

8 the vector v denotes the concatenation of all parameter vectors v = [vy,..., V]
. . O;
and ®(x,z) is a new feature mapping defined as follows. Let ¢, = [|Z|m:v° ,z| denote

an extension of the therapy vector z, where each vector component is a vector itself
with identical elements and dimension equal to the dimension of the input feature
vector X. The new feature mapping is then given by ®(x,z) = ¢, - [X,...,X] (where

6
Brought to you by | Max Planck eBooks

Authenticated
Download Date | 7/3/18 11:37 AM



Bogojeska and Lengauer: Hierarchical Bayes HIV Models

- denotes componentwise vector multiplication). In other words, it maps the input
features of the training samples to a new feature space that provides a separate set
of dimensions for each drug comprising the target therapy: the feature vector x for
a given training sample is copied to the sections corresponding to the drugs com-
prising the target therapy z; all other sections except the first one are filled with
zeros; the first section is shared by all drugs and models their similarity. For ex-
ample, let us assume that a target drug combination z comprises only two drugs
z={d,,dr|d) < dp,dy,dr € 1,...,n}. Then for given input features x the feature
mapping ®(x,z) is given by:

20w,
Ow

D(x,z) = x,0,....0,, x ., 0,....,0 , x 0,...0f. 9)

Loodi—1 4 di+1,...d—1 d2 dy+1,..n

As can be observed from Equation 8, by using the feature mapping ®(x,z) we ob-
tain the objective function of a logistic regression model with model parameters v.
The dimensionality of the new input feature space is the dimension of x multiplied
by (n+1).

To summarize, the MAP estimate of the parameters of a hierarchical Bayes
model with Gaussian prior and hyperprior applied to the problem of predicting out-
comes of HIV therapies with drug additivity assumption is given by:

o T Ivi>
¥ = argmax {— Y log(1+exp(—yv (I)(X,z)))—?}. (10)
(x,y,z)eD w

We obtain the maximum Vv with logistic regression. Then the prediction of the label
(success probability) of a target therapy z administered to a sample X is given by:
1

y = areg max . 11
A (  exp(C 19T B(x,2))) (b

We will refer to this method as drug additivity Bayes. A slightly modified
version of the drug additivity Bayes is the drug additivity + hist Bayes described as
follows. For each of the drugs comprising a target combination therapy two tasks
are created: one for the case when the drug is administered for the first time to the
considered patient, and another one for the case when the drug was administered
previously in the patient’s drug history. Once the tasks are defined, a task additivity
assumption is applied, and the model is derived in the same way as the drug addi-
tivity Bayes. The dimensionality of the input feature space of the new model is the
dimension of x multiplied by (2n+ 1).

Since we use Gaussian priors in our Bayes models, we can employ the trust-
region Newton method for training logistic regression (Lin, Weng, and Keerthi,
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2008). This is an efficient implementation for sparse data sets with large number
of features and samples. With this approach our models are trained in about one
second, albeit the increased dimensionality of the input feature space and the large
number of training samples. The Bayes methods have two tuning parameters: one

replacing the fraction ‘Z‘G% in the feature mapping ®(x,z) and one for the regular-
izer in Equation 10.

3 Experiments and Results

3.1 Data Sets

The training data are extracted from the EuResist database (Rosen-Zvi et al., 2008)
that contains information on 93014 antiretroviral therapies administered to 18325
HIV (subtype B) patients from several countries in the period from 1988 to 2008.
This information includes the individual drugs that comprise a therapy, virus load
measurements (copies of viral RNA per ml blood plasma, c¢p/ml) during the course
of a therapy, all available therapies administered to each patient, as well as consen-
sus sequences of the predominant viral strains in the patients’ blood. We include a
therapy as a sample in the training data if there is a viral sequence obtained shortly
before the therapy was started (up to 90 days before) and if it can be assigned a
label (success or failure) based on the virus load values measured during its course.
The information on the viral genotype is given in terms of the presence of any from
a set of predefined resistance-relevant mutations (based on the list in Johnson et al.
(2008)) encoded with a binary vector. We consider 70 resistance-relevant mutation
positions. The therapy label is determined as in Bogojeska et al. (2010): if the virus
load drops below 400 ¢p/ml in the period from 21 days after the start of the therapy
to its end we label it successful (1); otherwise we label it failing (—1). We repre-
sent the individual drugs comprising each therapy by a binary vector indicating the
presence or absence of all drugs appearing in the data set. Finally, we end up with
a training set that includes 6750 labeled therapy samples with 805 distinct therapy
combinations.

Figure 1 depicts a histogram of the frequencies of the different combination
therapies in the training data set: almost 500 therapies occur less than five times; for
almost all therapies there are no more than 50 samples. While there are many rare
therapies, there is a reasonable number of samples in which each of the different
drugs appear.
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Figure 1: Histogram that groups the 805 distinct combination therapies in our la-
beled training data set based on their corresponding number of available training
examples. The image displays the uneven therapy representation in the data where
almost 500 therapies are represented with less than five samples.

3.2 Validation Settings

The quality of our approach is assessed in two validation scenarios: the therapy-
stratified cross-validation scenario and the time-oriented validation scenario. In
what follows we provide the details on each of them.

Therapy-stratified cross-validation scenario. In order to provide an assessment
of the performance of a target method that stratifies for therapy abundance in
the training data set, we introduce the therapy-stratified cross-validation scenario.
We start by describing the procedure of creating therapy-stratified cross-validation
folds. First, all available samples are grouped in therapy bins based on their corre-
sponding therapies. Then we populate the cross-validation folds with samples: the
folds are repeatedly visited one after the other and one sample is assigned to each
fold at a time; the assigned samples are chosen at random from the therapy bins,
which are traversed in a round-robin fashion. In this way we make sure that both
infrequent and abundant therapy samples are distributed evenly among the cross-
validation folds. In the following we detail the therapy-stratified cross-validation

Published by De Gruyter, 2012 9

Brought to you by | Max Planck eBooks
Authenticated
Download Date | 7/3/18 11:37 AM



Satistical Applicationsin Genetics and Molecular Biology, Vol. 11 [2012], Iss. 3, Art. 11

scenario that we applied for our computational experiments. We first construct a
separate test set, that comprises 20% of the available data, by selecting one fold
from a five-fold therapy-stratified cross validation. Then, we conduct a 10-fold
therapy-stratified cross validation on the remaining data and use it for the model se-
lection. At the end, we report the cross-validation results and evaluate the selected
model on the separate test set.

Time-oriented validation scenario. The trends of treating HIV patients change
over time as a result of the gathered practical experience with the drugs and the
introduction of new antiretroviral drugs. As in Bickel et al. (2008), Bogojeska et al.
(2010), our evaluation scenario accounts for this phenomenon by using a time-
oriented split when selecting the training and the test set. Such a setting is realistic
since it captures how a given model would perform on the recent trends of select-
ing combinations of drugs from established drug classes. We refer to this scenario
as time-oriented scenario and we apply it as follows. First, we order all available
training samples by their corresponding therapy starting dates. We then make a
time-oriented split by selecting the most recent 20% of the samples as the test set
and the rest as the training set. For the model selection we split the training set
further in a similar manner. We take the most recent 25% of the training set for
selecting the best model parameters and refer to this set as tuning set. Figure 2
depicts the different treatment trends in the training, tuning and test sets, generated
as explained in the text above. One can observe that, unlike the treatment trends in
the training set, the treatment trends in the tuning set closely resemble those in the
test set. This justifies the choice of the tuning set. We select the training and test
data with a time-oriented approach. So in order to make sure that we have a rea-
sonable amount of training samples for each individual drug that appears in the test
set, we remove the therapy samples which contain very recent drugs from our data
set. Our multi-task Bayes approach utilizes the high frequencies of samples involv-
ing the individual drugs to address the problem of the low frequencies of samples
corresponding to specific combination therapies. As a side remark, in practice one
cannot expect quality predictions for therapy samples comprising a drug for which
there are only few training samples. The resulting data set contains 6336 samples.

Model performance. We assess the performance of the target models by taking
the uneven representation of the different therapies into account. We do this by
grouping the therapies in the test set based on the number of samples they have in
the training set, and then measuring the model performance on each of the groups.
We thereby assess the performance of the models for the rare and the abundant ther-
apies, separately. We carry out the model selection based on AUC (Area Under the
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Figure 2: Distribution of the different combination therapies in the training, tuning
and test set chosen in the time-oriented scenario. The numbers on the x-axis rep-
resent the different therapy combinations ordered by their first appearance in our
clinical data: from older to newer. The y-axis depicts the density.

ROC Curve) results and use the AUCs to assess the model performance. In this way
we evaluate the quality of the ranking of the therapies based on their success prob-
abilities. For the comparison of the cross-validation performances of two methods
we use a paired t-test. In order to compare the performance of two methods on a
separate test set, the standard errors of the AUC values and the significance of the
difference of two AUCs are estimated as described in Hanley and McNeil (1983).
We use the ROCR package to plot the ROC curves (Sing, Sander, Beerenwinkel,
and Lengauer, 2005).

Reference methods. In our computational experiments we compare the perfor-
mance of the two multi-task Bayes methods described in our paper to those of two
reference approaches, namely the one-for-all model and the therapy-specific model.
The one-for-all method mimics the most common approach in the field where a sin-
gle linear logistic regression model is trained on all available therapy samples in the
data set. The information on the individual drugs comprising each of the therapies
is encoded in a binary vector and supplied together with the other input features.
The therapy-specific model represents the approaches that deal with the uneven and
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Table 1: AUCs with their corresponding standard errors for our two multi-task
Bayes models (drug additivity, drug additivity + hist) and the reference (one-for-
all) method. Generated by a 10-fold therapy-stratified cross validation for three
groups of test therapies: with 0 —7, 8 — 30 and more than 30 training samples, they
summarize the performance for both the rare and the abundant test therapy samples.

method multi-task Bayes one-for-all
drug additivity | drug additivity + hist
0—7(SE) | 0.771(0.016) 0.774(0.016) 0.749(0.015)
8 —30(SE) | 0.745(0.011) 0.738(0.012) 0.732(0.010)
> 30 (SE) | 0.772(0.017) 0.765(0.018) 0.759(0.012)

sparse therapy representation by training a separate model for each combination
therapy using not only the samples from the target therapy but also the available
samples from similar therapies with appropriate sample weights. It implements the
drugs kernel therapy similarity model as described in Bogojeska et al. (2010) on
the input feature space defined in the previous section of this paper. Since train-
ing separate models for every different therapy in a cross-validation setting is very
time-consuming, we only consider this approach as a reference model in the time-
oriented validation scenario. Note also that in the papers where they are introduced
(Bickel et al., 2008, Bogojeska et al., 2010) the performance of the therapy-specific
approaches is evaluated in the time-oriented validation scenario. All approaches we
consider (the multi-task Bayes and the reference approaches) rely on the same input
information that can directly be derived from the EuResist database as described in
Subsection 3.1.

3.3 Experimental Results

In this subsection we first present the results of the computational experiments for
the therapy-stratified cross-validation scenario, followed by the results of the time-
oriented scenario.

Table 1 summarizes the cross-validation performance of the considered
methods: drug additivity Bayes; drug additivity + history Bayes; and one-for-all
as the reference method. The two Bayes approaches significantly outperform the
one-for-all method for the therapies that have few (0 — 7) available samples in the
training set. We verified the significance of the improvements with the paired t-test:
p-value = 0.05 for the drug additivity and p-value = 0.06 for the drug additivity
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+ hist model. Moreover, for the group of therapies with 8 — 30 training samples
the drug additivity approach also shows significantly better cross-validation perfor-
mance than the reference model (p-value = 0.05). All models deliver comparable
predictions for the group of therapy samples for which there is a reasonable number
(more than 30) of available samples in the training set. According to the results for
the separate test set, depicted in Figure 3 (a), the drug additivity model has better
performance than the reference method for all three therapy groups (with 0 — 7,
8 — 30 and more than 30 training samples). However, the improvements are only
significant for the test therapies with 0 — 7 and more than 30 training samples, with
p-values of 0.045 and 0.002, respectively. The p-value for the therapies with 8 — 30
training samples is 0.157. The drug additivity + hist model shows significantly
better AUC performance than the one-for-all method for the rare therapies with a
p-value = 0.034. Figure 3 (b) depicts the ROC curves for all considered methods
for the rare test therapies in the separate test set.

The experimental results for the time-oriented scenario are summarized in
Figure 4 (a). Note that in this case both the one-for-all and the therapy-specific
models are considered as reference methods. As can be observed, the drug additiv-
ity method outperforms the one-for-all method for the test therapies with 0 — 7 and
8 — 30 training samples. According to the paired difference test described in Hanley
and McNeil (1983), the improvement is significant only for the test therapies with
0—7 samples (p-value= 0.078). The p-value for the test therapies with 8 — 30 train-
ing samples is 0.132. Compared to the therapy-specific model the drug additivity
model has better AUC performance for the test therapies with 0 — 7 training sam-
ples, yet this improvement is not significant (p-value = 0.253). For the test therapies
with 8 — 30 training samples both the therapy-specific and the drug additivity mod-
els have comparable performance. The drug additivity + hist model outperforms
all considered approaches for the rare test therapies (with O — 7 training samples)
with estimated p-values of 0.007 for the one-for-all, 0.042 for the therapy-specific
and 0.033 for the drug additivity model; for the test therapies with 8 — 30 training
samples it delivers similar performance as the one-for-all method. The AUC re-
sults of the drug additivity + hist model for the test therapies with 8 — 30 training
samples are slightly worse compared to the therapy-specific and the drug additivity
models. However the respective differences in performance are not significant (all
p-values > 0.1). Considering the abundant test therapies (with more than 30 train-
ing samples) all approaches deliver comparable results. The relevant ROC curves
for the rare test therapies are shown in Figure 4 (b). We should also point out that
decreasing or increasing the size of the tuning set in the time-oriented scenario with
5 —15% less or more training data yields very similar results and leads to the same
conclusions.

Published by De Gruyter, 2012 13

Brought to you by | Max Planck eBooks
Authenticated
Download Date | 7/3/18 11:37 AM



Satistical Applicationsin Genetics and Molecular Biology, Vol. 11 [2012], Iss. 3, Art. 11

To summarize, in both validation scenarios the two multi-task Bayes ap-
proaches have their prime advantage for therapies with few (less than eight) avail-
able training samples. The drug additivity Bayes performs better than the one-for-
all and the therapy-specific methods for the therapies with 8 — 30 available sam-
ples, however the improvement is statistically significant (corresponding p-value
< 0.1) only for the cross-validation results. For the abundant test therapies (with
more than 30 training samples) all considered methods have comparable perfor-
mance in almost all validation scenarios — one exception is the significantly better
performance of the drug additivity Bayes method for the separate test set in the
cross-validation scenario.

4 Discussion

This paper presents an approach to predicting virological response to HIV com-
bination therapies by considering each individual antiretroviral drug as a separate
task in a multi-task hierarchical Bayes framework. With our method the additive
effects of the individual drugs comprising each combination therapy on its response
are modeled from the data. It is worth noting that the most common approaches in
the field that use linear models and encode the therapy information in the input fea-
ture space, also implicitly use a drug additivity assumption. However, in this case,
the effects of the drugs comprising each therapy on its response are not explicitly
modeled. Instead, a generic statistical learning method that simultaneously models
the contributions of all available information (e.g. therapy, viral genotype) on the
therapy outcome is used. Above all, such methods do not take the uneven therapy
representation in the clinical data sets into account. By considering each drug as
a separate task, our Bayes approach uses the abundance of samples that pertain to
each drug to circumvent the lack of samples for the specific combination therapies.
In this way we provide more accurate predictions for rare therapies by maintaining
the prediction quality for the more frequent therapies. The samples corresponding
to rare therapies (represented with O — 7 samples in our clinical data) make up only
around 18% of the available data, but they contain 83% of the different therapies i.e.
they make up the therapy variety in our data set. Moreover, our approach allows for
interactions among the input features of the different drugs by using an extended
input feature space where each drug has a separate range and thereby making the
model more interpretable.

The use of an efficient optimization method (Lin et al., 2008) that takes ad-
vantage of the sparseness of our input data ensures very fast model fitting (one sec-
ond) and model selection. For example, the model selection procedure performed
with a 10-fold cross validation for the drugs additivity model screens 289 different
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value combinations for the two model selection parameters specified in the Methods
section and is completed in about ten hours.

According to the cross-validation results both our multi-task Bayes models
perform significantly better (at the 5% significance level for the drugs additivity
and the 6% level for the drugs additivity + hist model) than the one-for-all model
for rare test therapies (with 0 — 7 available training samples). The drugs additivity
model also significantly outperforms the one-for-all scenario for the group of ther-
apies with 8 — 30 training samples. For therapies with a sizeable number of samples
(above 30) all approaches show comparable cross-validation performance. The re-
sults on the left-out set in the cross-validation scenario confirms the advantage of
both multi-task Bayes models for the less frequent therapies (the significance level
is 5% for the drugs additivity and the 3% level for the drugs additivity + hist model).
Furthermore, the drugs additivity model achieves better performance for the other
two groups of test therapies (with 8 — 30 and more than 30 training samples). How-
ever, the improvement is only significant for the test therapies with more than 30
available training samples.

According to the time-oriented scenario both Bayes models significantly
outperform (at the 8% significance level for the drugs additivity and the 1% sig-
nificance level for the drugs additivity + hist model) the one-for-all model for the
test therapies with less than eight available training samples. Moreover, the drugs
additivity + hist model also outperforms the drugs additivity model (at the 3% sig-
nificance level) and the therapy-specific model (at the 4% significance level) for
the group of rare test therapies. All models show comparable performance for the
abundant test therapies.

In summary, the approach presented in this paper models the effects of the
individual drugs comprising an HIV combination therapy on its effectiveness by
using a multi-task hierarchical Bayes approach. The performance of this approach
is at least as good as an approach that encodes therapy information in the input fea-
ture space for the abundant therapies and significantly better for therapies with few
training samples. The same observation holds when comparing the performance
of the hierarchical Bayes approaches to the therapy-specific approach which trains
a separate model for every different combination therapy. In this case the Bayes
models have the additional advantage of being more time-efficient compared to the
therapy-specific approach. Note that the group of rare therapies is very important
as it makes up the therapy variety in the available clinical data.
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Figure 3: AUC results of the different models obtained on the separate test set in
the cross-validation therapy-stratified scenario. (a) Test samples are grouped based
on the number of training examples for their corresponding therapy combinations.
Error bars indicate the standard errors of each model; (b) ROC curves display the
performance of the different methods on the rare therapies (with 0 — 7 training sam-
ples) of the separate test set.
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Figure 4: AUC results of the different models obtained on the test set in the time-
oriented validation scenario. (a) Test samples are grouped based on the number of
training examples for their corresponding therapy combinations. Error bars indicate
the standard errors of each model; (b) ROC curves display the performance of the
different methods on the rare test therapies (with 0 — 7 training samples).
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