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Introduction

Colorectal cancer (CRC) is the third most common cancer and 
the third leading cause of cancer death in the world.1 CRC arises 
as a consequence of accumulation of genetic mutations and epi-
genetic alterations in colonic cells. Common genetic alterations 
in CRC include mutations in the APC gene and in DNA mis-
match repair genes. At the epigenetic level, promoter DNA meth-
ylation causing the silencing of tumor suppressor genes, such as 
CDKN2A (the p16/INK4a gene), is a common alteration.2-4

Identification of differential DNA methylation patterns 
between normal and cancer cells may shed light on the processes 
underlying tumorigenesis. Another objective of studying DNA 
methylation is to identify biomarkers for diagnostic and prognos-
tic use. Specifically, aberrant methylation of a particular gene (or 
group of genes) can provide a useful clinical tool for early detec-
tion of CRC or for stratifying tumors into subtypes.

aberrant DNa methylation often occurs in colorectal cancer (cRc). In our study we applied a genome-wide DNa 
methylation analysis approach, Methylcap-seq, to map the differentially methylated regions (DMRs) in 24 tumors and 
matched normal colon samples. In total, 2,687 frequently hypermethylated and 468 frequently hypomethylated regions 
were identified, which include potential biomarkers for cRc diagnosis. hypermethylation in the tumor samples was 
enriched at cpG islands and gene promoters, while hypomethylation was distributed throughout the genome. Using 
epigenetic data from human embryonic stem cells, we show that frequently hypermethylated regions coincide with 
bivalent loci in human embryonic stem cells. DNa methylation is commonly thought to lead to gene silencing; however, 
integration of publically available gene expression data indicates that 75% of the frequently hypermethylated genes 
were most likely already lowly or not expressed in normal tissue. collectively, our study provides genome-wide DNa 
methylation maps of cRc, comprehensive lists of DMRs, and gives insights into the role of aberrant DNa methylation in 
cRc formation.
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Extensive efforts have been invested in identifying regions 
with aberrant DNA methylation in CRC and in finding correla-
tions with tumor development or phenotype. Until recently, most 
studies were performed on small sets of loci, but now large-scale 
methods are emerging.5-8

Here, we investigated DNA methylation in CRC genome-
wide using MethylCap-seq.9 Our study provides comprehensive 
DNA methylation maps of CRC and matched normal colon tis-
sue, and identifies differentially methylated regions (DMRs). 
We determined characteristics of these DMRs using publically 
available expression and epigenetic data sets, and select a list of 
candidate biomarkers for CRC detection.

Results

DNA methylation profiles of CRC cases and matched controls. 
To investigate DNA methylation in CRC in a genome-wide 
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available clinical data (Table S3), such as tumor grade or the 
presence of a mutation in the tumor suppressor gene KRAS (low-
est p value = 0.33). Tumor purity and copy number aberrations 
could in theory affect the MethylCap-seq profiles and hence the 
number of DMRs; however, such data are not available. In 14 out 
of the 24 sample pairs more hypermethylated than hypomethyl-
ated regions were observed in the tumor; in the remaining nine 
pairs this was reversed. Especially, sample pair 41 shows many 
regions with hypomethylation in the tumor compared with the 
matched normal. A large fraction of these hypo DMRs are sample 
pair specific. Our quality control analyses revealed only a slight 
increase in median normalized read density for 41N as compared 
with others samples. This could be due to both biological and 
experimental factors, which cannot be address easily.

When combining all DMRs identified in the individual 
sample pairs it becomes apparent that many DMRs are patient-
specific or occur in a small subset of the patients. Nevertheless, a 
handful of DMRs occur frequently in sample pairs: 184 DMRs 
are common to more than 19 samples. Furthermore, frequently 
occurring DMRs are predominantly hypermethylated in the 
tumors compared with normal tissue, whereas sporadic DMRs 
(e.g., as present in less than six sample pairs) can be either hyper- 
or hypo-methylated in the tumors (Fig. 2B).

High-confidence colon cancer DMRs. To assess whether dif-
ferential methylation at a given site is recurrent in CRC, we deter-
mined the “support” for all DMRs. We defined the “support” 
as the number of tumors in which a region was differentially 
methylated as compared with the matched normal tissues. As 24 
samples were analyzed, the support values of hypermethylation 
for a given region are integer numbers between 0 and 24. We 
modeled the differential methylation events by Bernoulli trials 
and thus calculated the probability of a given support value based 
on a binomial distribution. We set a threshold for “high-confi-
dence CRC DMRs” at probability ≤ 1 × 10-3, which corresponds 
to a minimum support of six. Consequently, a hypermethylated 
region was regarded with high-confidence if: (1) the support for 
hypermethylation of this region is at least six, and (2) the support 
for hypomethylation is at most one. The high-confidence hypo-
methylated regions in CRC were defined analogously. In total, 
2,687 hypermethylated and 468 hypomethylated regions were 
selected (Fig. 2C). Table 1 shows 10 regions with the highest 
support for hypermethylation and Table S4 shows the full list.

To confirm that the selected DMRs are also recurrent outside 
the analyzed 24 sample pairs, we performed MethylCap-seq on 
five independently obtained sample pairs. We find that 95% of 
the high-confidence hyper DMRs were a DMR in the additional 
samples. Specifically, all 184 DMRs that are common to at least 
80% of the samples of the main set (support > 19) are also a 
DMR in at least three of the additional samples (Fig. S5).

Sample subgroup analysis based on DNA methylation pro-
files. Hierarchical clustering was performed to categorize the 
tumors into different methylation subgroups. Using the read 
densities for the most variable regions or the high-confidence 
hypermethylated regions we could not identify stable clusters 
that were enriched for a particular tumor grade, DUKES stag-
ing, microsatellite instability, or KRAS mutation. In addition, 

unbiased fashion, we applied MethylCap-seq. This method 
involves capture of methylated DNA using the MBD domain of 
MeCP2, and subsequent next-generation Illumina sequencing of 
eluted DNA as schematically outlined in Figure S1.9 MethylCap-
seq was performed on 24 tumors and an equal number of matched 
normal samples (48 DNA methylation profiles in total).

A representative screen shot of the normalized DNA meth-
ylation data visualized in the UCSC genome browser is shown 
in Figure 1A. This example shows DNA methylation shared by 
normal and tumor samples, as well as sample-specific methyla-
tion and an occasional region that is differentially methylated 
between tumors and normal samples.

For each of the 48 samples, the genomic regions with elevated 
numbers of aligned sequence reads were identified and merged, 
yielding 329,613 regions of potential interest, with a median 
length of 2,192 bp. These regions are distributed across all 
chromosomes (Fig. S2). Per sample, the number of normalized 
sequence reads overlapping each region of interest was calculated, 
which is referred to as read density and used as a measure of DNA 
methylation.

No strong associations were found between the first two prin-
cipal components of the samples in the methylation space and 
any of the sample preparation and processing factors (Table S2; 
Fig. 1D), indicating that there are no strong batch effects present 
in the data.

Previously, we extensively reported that methylated regions 
identified by MethylCap-seq could be validated with classical 
bisulfite sequencing.9-12 To validate the current MethylCap-seq, 
four fragments were selected and assessed in two sample pairs. 
These fragments overlap with the promoters of SDC2, SIM2, 
ROBO1 and CYP1B1. In all cases, bisulfite sequencing corrobo-
rated the MethylCap-seq data: hypermethylation at SDC2, and 
SIM2 in the two tumors, ROBO1 promoter hypermethylation 
in one of the two tumors, and no differential methylation of 
CYP1B1 (Fig. S3). Thus, MethylCap-seq provides a good repre-
sentation of DNA methylation.

Differential DNA methylation in tumor vs. normal tissue. 
For each tumor and matched normal sample the read densities 
in the peaks of interest were compared. The Pearson correlation 
coefficients for the pairs range from 0.337 to 0.897 (median = 
0.723), whereby only four sample pairs have a correlation below 
0.5 (Fig. S4A). Furthermore, for most regions the median meth-
ylation level of tumor and normal and the standard deviation for 
tumor and normal are very similar (Fig. 1B and C). Nevertheless, 
principal component analysis (PCA) separated normal tissue 
from tumor (Fig. 1D). This suggests that, although the genome 
methylation generally remains preserved, there are distinct loci 
that differentiate tumor from normal.

We proceeded to identify these regions that are differentially 
methylated. The DMR calling algorithm used is essentially iden-
tical to the one described previously (see Material and Methods).10 
In total, 28% of the merged peaks were differentially methylated 
in one or more sample pairs (Fig. 2A).

The number of DMRs identified per sample pair varied 
greatly (between 515 and 33,576) (Fig. S4B) without display-
ing a clear correlation between the number of DMRs and the 
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Figure 1. comparison of DNa methylation in tumor and normal tissue. (A) a representative screen shot of the normalized DNa methylation data up-
loaded in the Ucsc genome browser. 14T indicates a tumor sample; 14N indicates the matched normal sample. In total, 5 sample pairs are shown. The 
read-out of Methylcap-seq is semi-quantitative; the number of sequence reads homologous to a genomic region gives a measure for DNa methyla-
tion at that region. In the screenshot several regions show DNa methylation. Most peaks of methylation are present in all samples (indicated with gray 
boxes at the top), except for the methylation at the promoter of LhX5 (red box), which is only present in the tumors and not in the normal tissue.  
(B) scatterplot of the median methylation level of normal tissue and tumor. (C) scatterplot of the standard deviation of normal tissue and tumor.  
(D) The first two principal components resulting from pca of all DNa methylation profiles separate the tumors and normal colon samples. The red 
dots are tumors; the blue dots normal samples.
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hypermethylated regions, three tumors (2T, 31T and 33T) 
appeared to be different (Fig. S6A). These tumors are grade 3, 
wild type for KRAS, and two are microsatellite instable (MSI) 
(Table S3). No regions were found to be significantly char-
acteristic for this group. This is partially due to the low ratio 

the elastic net method, which is a regularized regression method 
designed for genomic applications where the number of features 
greatly exceeds the number of analyzed samples,13 was unable 
to identify a stable predictive pattern for the clinical properties. 
However, in the hierarchical clustering with the high-confidence 

Figure 2. Differentially methylated regions. (A) pie chart of the 32,9613 analyzed regions. For 9% of the regions hypermethylation and for 14% 
hypomethylation was observed in at least one patient; for 4% both hypo- and hyper-methylation was detected. (B) Bar graph of the frequency of 
detection of DMRs. We defined the “support” as the number of sample pairs in which a region was differentially methylated. (C) hierarchical clustering 
was performed using the 3,155 high-confidence DMRs and a heatmap of the DNa methylation was made. columns represent the individual samples; 
rows the DMRs. Red indicates high methylation; yellow low. above the columns tumors are marked in red and normal samples in blue. (D) stacked 
bar charts showing the distribution of the 329,613 analyzed regions over six genomic elements. The regions are binned by support. Note: the number 
of differentially methylated regions reduces with the level of support (Fig. 2B). Only two hypermethylated regions were recurrent in 23 tumors; one 
hypomethylated region was recurrent in 10 tumors, and another region in 13 tumors.
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characterize CIMP. Strikingly, 31T and 33T had particularly 
high read densities at these regions. In addition, 44 of the 50 
regions with the lowest p values for differential methylation are 
CIMP-specific regions as determined by Xu et al.6 (Fig. S6B). 
This indicates that these three samples could be CIMP.

Genomic distribution of DMRs. Analysis of the distribu-
tion of all DMRs over six genomic elements showed that DMRs 

of samples to regions, which restricts the power of the applied 
Mann-Whitney U test followed by false discovery rate correction.

Several labs showed that a subset of the CRCs has relatively 
high methylation in specific regions in the genome. These CRCs 
are said to have the CpG island methylator phenotype (CIMP). 
Weisenberger et al.14 developed a marker panel of five regions 
(CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1) to 

Table 1. Top 10 of high-confidence DMRs. DMRs were sorted on support for hypermethylation and fold difference in expression between hcT116 WT 
and DKO cells

DMR
Support 

hypo
Support 

hyper
log2 (DKO/

WT)
Promoter Symbol Gene name Details

Previously 
detected in 

CRC

chr10:102880421–
102891603

0 23 5.69 y TLXNB1 TLX1 neighbor TLX1 divergent gene -

chr8:97574251–
97577410

0 23 4.66 y sDc2 syndecan 2
transmembrane  

proteoglycan, interacts 
with EcM proteins

hinoue T et al. 
2012,5 Xu Y et 

al. 20116

chr10:102880421–
102891603

0 23 2.2 y TLX1
T-cell leukemia 

homeobox 1

transcription factor that 
belongs to the NK-linked 
or NK-like (NKL) subfam-
ily of homeobox genes, 

required for normal 
development

Irizarry Ra et al. 
200940

chr2:47649523–
47653570

0 22 7.65 y KcNK12
potassium channel, 
subfamily K, mem-

ber 12

potassium channel  
protein

hinoue T et al. 
2012,5 Kober p 
et al. 2011,7 Xu 
Y et al. 20116

chr10:23517671–
23525707

0 22 5.2 y pTF1a
pancreas specific 
transcription fac-

tor, 1a

component of the  
pancreas transcription 

factor 1 complex

Xu Y et al. 
2011,6 Irizarry 

Ra et al. 2009,40 
hinoue T et al. 

20115

chr2:119318398–
119334083

0 22 5.05 y EN1
engrailed homeo-

box 1

homeodomain-contain-
ing protein implicated in 

development

Karpinski p et 
al. 2008,41 Xu 
Y et al. 2011,6 

Irizarry Ra et al. 
200940

chr6:73385386–
73390568

0 22 4.85 y KcNQ5
KQT-like subfamily, 

member 5
potassium voltage-gated 

channel

Xu Y et al. 
2011,6 Oster et 

al. 20118

chr2:115634329–
115638648

0 22 4.48 y Dpp10
dipeptidyl-pepti-

dase 10

single-pass type II mem-
brane protein, non  

functional protease, can 
bind specific  

voltage-gated potassium 
channels and alters their 

biophysical properties

Xu Y et al. 
2011,6 Irizarry 

Ra et al. 200940

chr6:84618686–
84622054

0 22 4.46 y RIppLY2 ripply2 homolog

a putative transcriptional 
co-repressor that is  

regulated by the Notch 
and Wnt pathway

Xu Y et al. 20116

chr11:7228386–
7233077

0 22 3.93 y sYT9 synaptotagmin IX ca2+ sensor Xu Y et al. 20116
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high-confidence hypermethylated or hypomethylated DMRs 
overlapped specifically with CGI shores (defined as the 2,000 kb 
region up- or down-stream of a CGI, Fig. S7A and B).

Functional annotation. To gain insight into the biological 
functions that could be altered by hypermethylation, gene ontol-
ogy analysis was performed with the web based tool DAVID.15,16 
Analysis of the 1,667 genes with high-confidence hypermethyl-
ated DMRs over their promoter showed that the encoded pro-
teins are enriched for localization at cellular membranes, and 
DNA binding and/or transcription factor activity (Table S5). 
Furthermore, there is enrichment of proteins that play a role in 
neuroactive ligand-receptor interactions, calcium signaling, and 
pathways in cancer (Table S5). Genes in cancer pathways include 
components of the Wnt-, MAPK-signaling pathway, or proteins 
with a role in interactions between cells and the extracellular 
matrix (ECM).

Examples of previously described, frequently hypermethyl-
ated genes are CDKN2A, SEPT9, VIM and CSPG2/VCAN. 
They were detected as hypermethylated in 9, 9, 17 and 20 
tumors, respectively. Notably, CSPG2/VCAN was identified by 
Fernandez et al.17 to be hypermethylated in CRC, and not in 29 
other cancers analyzed in their study.

The most frequently hypermethylated regions (in 23 of the 24 
tumors) overlap with SDC2, TLX1 and TLX1NB (Fig. 3). SDC2 
is a transmembrane heparan sulfate proteoglycan that functions 
as a cell surface receptor interacting with ECM components and 
cell-to-cell signaling molecules such as growth factors.18 TLX1 
and TLX1NB are divergent genes, TLX1 (also known as HOX11) 
is a nuclear transcription factor important for development of the 
spleen during embryogenesis, specification of neuronal cell fates, 
and is associated with certain T-cell acute lymphoblastic leuke-
mias.19-21 There is little knowledge about TLX1NB.

Analysis of HCT116 colon cancer cell lines. Next, we com-
pared MethylCap-seq with RNA-seq and ChIP-seq profiles of 
H3K4me3 and H3K27me3 of the colon cancer tumor cell line 
HCT116 (HCT116 WT) and HCT116 with the DNA meth-
yltransferases DNMT1 and DNMT3b knocked-out (HCT116 
DKO).22 These two cell lines are frequently used to analyze DNA 
methylation and its role in regulating gene expression in colon 
cancer. The regions frequently hypermethylated in tumors gener-
ally also displayed high methylation in HCT116 WT and reduced 
methylation in HCT116 DKO (Fig. S8A and B). Correlations 
between the support for hypermethylation and occupancy of the 
epigenetic marks were calculated (Fig. S8C) and intensity plots 
were made to visualize the occupancy of DNA methylation and 
the other marks in the HCT116 cells at the high-confidence 
DMRs (Fig. 4A). The intensity plot of DNA methylation in 
HCT116 WT shows a clear positive correlation: the regions with 
the highest support have higher levels of DNA methylation com-
pared with the lower support regions. Furthermore, the inten-
sity plots show that H3K4me3 and H3K27me3 are somewhat 
depleted in the high-confidence hypermethylated regions in line 
with the antagonism between DNA methylation and H3K27me3 
described for mouse embryonic stem cells and HCT116.12

For differential expression analysis between HCT116 WT 
and DKO, sequence reads per kilo base of transcript per million 

occurring only in one or two tumors appear randomly distrib-
uted compared with those that occur more frequent (Fig. 2D). 
Strikingly, the percentage of DMRs with hypermethylation in 
the tumor at CpG islands (CGIs) overlapping transcription start 
sites (TSSs) increases with the support for these DMRs. The 
regions that are hypermethylated in 1 tumor (n = 30,280) coin-
cide for only 4% with TSSs with CGI, whereas for regions that 
are hypermethylated in 22 tumors (n = 31) this value rises to 71%. 
Furthermore, the two regions hypermethylated in 23 tumors also 
both coincide with a TSS with CGI.

The high-confidence hypermethylated regions coincide for 
52% with CGIs with promoter and for 40% with CGIs without 
promoter (i.e., orphan CGIs), whereas this is only 5% and 24% 
for high-confidence hypomethylated regions (Fig. S7A and B). 
The overlap of the DMRs with the CGIs was analyzed in more 
detail: 90% of the high-confidence hypermethylated DMRs cov-
ered more than 50% of the CGI (Fig. S7B), and only 1% of the 

Figure 3. DMRs with the highest support. Two regions are hypermeth-
ylated in 23 of the 24 tumors. (A) screenshots show that the regions 
overlap with the promoters of the genes TLX1, TLX1NB, and sDc2.  
(B) strip charts with the Methylcap-seq read densities of all samples. 
The dotted line indicates the mean read density. (C) Bar charts for the 
RNa-seq results for hcT116 WT and DKO cells. For sDc2 the expression 
is 25× higher in the DKO compared with the WT; for TLX1 5×; for TLX1NB 
no sequence reads were obtained in WT and only few in the DKO.
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mapped reads (RPKM values) were calculated. For 17% of all 
annotated genes the expression was more than 2-fold higher in the 
DKO compared with WT HCT116. We focused on transcripts 
with a DMR at their promoter. Transcripts that overlap with 
DMRs with high support tend to show a larger increase in expres-
sion in the DKO compared with WT HCT116 than in those with 
lower support (Fig. S8D). For 44% of the promoters frequently 
hypermethylated in CRC, expression of the associated gene was 
more than 2-fold higher in the DKO than in WT HCT116  
(Fig. 4B). ITGA4, for example, is frequently hypermethylated at 
its promoter in tumors (support 21) and is highly differentially 
expressed in DKO vs. WT (9-fold increase in DKO). The tran-
scripts associated with the two DMRs with support 23 showed 
increased expression in the DKO of at least 4-fold (Fig. 3C).

Hyper DMRs are bivalent in hESC. To further characterize 
the set of high-confidence hypermethylated DMRs, publically 
available data sets on epigenetic marks in the human embryonic 
stem cells H1 from the ENCODE project were mined.23 The 
correlations between support for hypermethylation and occu-
pancy of H3K4me3, H3K27me3, H3K36me3, Pol2, CTCF 
and DNaseI hypersensitive sites were assessed (Fig. S9A). We 
find a strong positive correlation between the support for hyper-
methylation and the repressive mark H3K27me3 in H1 ESC  
(Fig. S9A and B). H3K4me3 and DNaseI hypersensitivity, which 
are indicators for transcription/promoters and chromatin acces-
sibility, respectively, also show positive correlations (Fig. S9A, C 
and D). In other words, regions frequently hypermethylated in 
CRC often show higher levels of these marks than regions spo-
radically hypermethylated.

To visualize the epigenetic patterns at the high-confidence 
DMRs intensity plots showing the occupancy of these six marks 
in H1 were generated (Fig. 5A). We separated the regions into 
CGI with TSSs, orphan CGIs, and regions not overlapping with 
annotated CGI. A notable observation is that 70% of the high-
confidence hypermethylated “orphan” CGIs display elevated 
H3K4me3, are DNaseI hypersensitive and lack H3K27me3 in H1 
cells (Fig. 5A; Fig. S10), suggesting that these regions are likely 
alternative or un-annotated TSSs, reinforcing the notion that 
hypermethylation in CRC is strongly biased toward promoters.

Furthermore, these plots show that the hypermethylated 
CRC DMRs overlap with regions with elevated H3K27me3 and 
H3K4me3 and are DNaseI hypersensitive in H1 cells, so-called 
bivalent regions (Fig. 5A).24,25 This is confirmed with a compar-
ison of peak tracks of H3K4me3 and H3K27me3 in H1 cells 

Figure 4. correlation between hcT116 epigenetic marks and tran-
scripts. (A) color profiles of Methylcap-seq, h3K4me3, h3K27me3 and 
cTcF chIp-seq and DNaseI hypersensitivity sequencing read densities 
from hcT116. Each profile shows the 10 kb regions surrounding the 
high-confidence hypermethylated DMRs. The DMRs were sorted based 
on their support. The bar on the left shows the support (high support 
is red; low support is yellow). average profiles are shown on top of 
the color profiles. (B) Density plot of the ratio of the RNa-seq data of 
hcT116 WT and DKO. The ratios of the RpKM values for DKO over WT are 
plotted for high-confidence (support hypermethylation ≥ 6; support 
hypomethylation ≤ 1), low-confidence (support hypermethylation < 6; 
support hypomethylation ≤ 1), and no DMRs (support hyper- and hypo-
methylation = 0).
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data sets (GSE25070 and GSE21815) were mined.5,27 The first 
data set consists of transcript levels of 26 CRC and 26 matched 
normal colon tissues obtained with Illumina beadchips.5 From 
the second data set, obtained with Agilent arrays, transcript levels 

(called by MACS26) and the high-confidence hypermethylated 
DMRs (Fig. 5B).

Expression of the DMR-associated genes. In the absence of 
matching expression analysis, two publically available expression 

Figure 5. Overlap with bivalent regions in hEsc. (A) color profiles of h3K4me3, h3K27me3, h3K36me3, polII, cTcF chIp-seq and DNaseI hypersensitiv-
ity sequencing read densities from hEsc h1 (ENcODE). The DMRs are divided into regions overlapping with cGIs with Tss, regions overlapping with 
cGIs without Tss/Orphan cGIs, and regions not overlapping with cGIs. The regions were sorted on h3K27me3 density. (B) pie chart showing the over-
lap of the high-confidence hypermethylated DMRs with h3K4me3 and h3K27me3 peaks from h1. For comparison a set of random regions obtained 
from the total set of peaks analyzed is included.
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The high-confidence hypermethylated DMRs overlap almost 
exclusively with CGIs and promoters (Fig. 5A; Figs. S6 and S9), 
whereas the high-confidence hypomethylated DMRs are mainly 
focused in intragenic regions and not CGI shores (Fig. S7).

Classical DNA methylation analyses have shown overall 
hypomethylation in (colorectal) cancers, which occur at unique 
sequences, but especially at repetitive elements.29-31 To detect dif-
ferentially methylated regions we focused in this study at regions 
for which we detect DNA methylation above the peak-calling 
threshold in at least one sample. We did not analyze global hypo-
methylation because MethylCap-seq is not the best method to 
study this. Mainly because MethylCap-seq, as well as other cap-
ture assays by means of MBD proteins, is biased toward regions 
with high methylated CpGs content, and hence regions with low 
methylated CpG density are covered less well.9

The analysis of epigenetic marks in the human embryonic stem 
cells showed that hypermethylated CRC DMRs overlap for 53% 
with regions with elevated H3K27me3 (Fig. 5). Notably, hESC 
bivalent regions are enriched for developmental regulators,24,32 

and silencing of these regulators by aberrant DNA methylation 
could contribute to cancer formation. Possibly, methylation fac-
tors are preferentially targeted to bivalent regions in cancer, and 
in this way reversible gene silencing in stem cells is replaced by 
permanent gene silencing in cancer.33,34

We performed an integrated analysis of our data with pub-
lically available expression data. Generally, we did not observe 
strong changes in expression between tumor and normal for 
the genes associated with the high-confidence hypermethylated 
DMRs (Fig. 6A). Indeed, hypermethylation frequently occurred 
at genes not or lowly expressed in normal colon (Fig. 6B). Other 
studies also reported marginal effects of aberrant DNA meth-
ylation on overall gene expression in cancer.5,33,35 The question 
arises whether these hypermethylated regions are bystander/pas-
sengers or causative. It seems safe to assume that lowly expressed 
genes are “easier” to become methylated than actively transcribed 
genes, and this can result in sites of non-functional DNA meth-
ylation. However, it is also possible that methylation is an impor-
tant mechanism that ensures a permanent inactive state (a hard 
switch). In line with this hypothesis, a small fraction of the genes 
that become hypermethylated in tumors and do not show differ-
ences in expression between tumor and normal, do gain expres-
sion in the HCT116 DKO compared with the corresponding 
WT HCT116 cells (Fig. 4C). In the DKO cells maintenance of 
methylation is lost, and this suggests that DNA methylation is 
important to suppress the expression at these sites.

The majority of the identified high-confidence hypermethyl-
ated DMRs (~95%) co-localize with genes that are not known 
to be cancer-related. However, at least 9% of these regions are 
at the promoters of transcription factors. For example, seven dif-
ferent members of the Sox protein family (SOX1, SOX2, SOX5, 
SOX7, SOX11, SOX14 and SOX21) are targeted. It is well known 
that these and many other transcription factors are involved in 
development; they turn on/off genes that induce changes in 
cell morphology, proliferation, interaction, and movement. It is 
conceivable that deregulation of some of these transcription fac-
tors by hypermethylation could contribute to tumorigenesis. In 

of 32 CRC and five normal colon tissues were analyzed.27 The 
probes were linked to gene transcripts and subsequently to the 
MethylCap-seq peaks that overlap with promoters. Analysis was 
done on the mean expression level in tumor vs. normal.

For the data set by Hinoue et al.,5 17,683 probes were linked 
to 16,215 regions of interest, corresponding to 13,545 genes. 
Interestingly, 73% of the probes that overlap with the high-
confidence hypermethylated regions in tumors (corresponding to 
75% of the genes) show an expression level below the median in 
normal colon (Fig. 6A). This percentage is a relatively large frac-
tion when compared with the probes linked to low-confidence 
hypermethylated DMRs or the probes without a DMR (Fig. 6A). 
Thus, many genes that become hypermethylated in tumors were 
already silent or lowly expressed in normal colon.

For 96% of all analyzed probes the mean expression level 
between tumor and normal differed less than 2-fold (Fig. 6B) 
and only probes that were expressed above median level in nor-
mal tissue showed a more than 2-fold reduction in expression in 
tumor (Fig. 6B). Of the probes linked to high-confidence hyper-
methylated DMRs and with expression above median in normal, 
only 13.3% showed a more than 2-fold reduction in the mean 
expression level of tumor as compared with normal (Fig. 6C). 
Analysis of the data set by Kogo et al.27 produced similar results 
(Fig. S11).

Taken together, 35 genes that were linked to high-confidence 
hypermethylated DMRs had a 2-fold or higher loss of the mean 
expression in tumors compared with normal samples in both data 
sets (Table S6). DAVID analysis of these 35 genes showed that at 
least seven genes are involved in tissue morphogenesis—BMP2, 
EYA2, KLF4, LAMA1, RGMA, SLIT2 and TCF21 (Bonferroni 
adjusted p value = 8.8 × 10-4). The carbonic anhydrase IV gene 
(CA4) that is hypermethylated in 8/24 tumors, showed the 
highest reduction of expression in both data sets (about 90- and 
20-fold, respectively). SFRP1, that encodes the secreted frizzled-
related protein 1 and functions as modulator of Wnt signaling, 
was hypermethylated in 17/24 tumors and showed an approxi-
mate four and 7-fold reduction in expression. This gene was pre-
viously also reported as differentially methylated and expressed 
in CRC.5,28

Discussion

DNA methylation is strongly associated with cancer, and studies 
on DNA methylation are likely to shed light on the process of 
tumorigenesis as well as identify biomarkers. In this study, we 
used MethylCap-seq, a genome-wide DNA methylation capture 
method, to analyze differential DNA methylation in 24 CRCs 
and matched normal colon tissues. We show that the tumor and 
normal profiles can be clearly distinguished from one another 
(Fig. 1), and that DMRs are detected for each tumor compared 
with its matched normal sample. Applying a stringent cut-off, we 
identified 2,678 and 468 high-confidence hyper- and hypometh-
ylated DMRs, respectively (Fig. 2). However, this approach and 
the limited cohort size did not allow us to identify statistically 
significant methylation signatures for subgroups of the analyzed 
tumor set.
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sites may occur relatively early in tumorigenesis. Examples of 
genes that coincide with these DMRs are SDC2 and KCNK12. 
SDC2 is a cell surface receptor and appears to play diverse and 
possibly conflicting roles in cancer: SDC2 downregulation was 
associated with poor prognosis in esophageal squamous cell 
carcinoma,36 whereas SDC2 overexpression was associated with 
poor prognosis in prostate cancer tissue.37 KCNK12 encodes a 
member of the potassium channel superfamily, and was shown to 
be hypermethylated in 32 out of 77 colorectal tumors.7 Analysis 
of the DMRs in a large independent cohort of CRC and prefer-
ably using an orthogonal analysis method should be performed 
to evaluate their frequency of hypermethylation in CRC, as well 
as their clinical value.

addition, we also find frequent DMRs positioned at genes asso-
ciated with the extracellular matrix, such as IGFBP3, MMP9, 
FBN2, NRCAM, NTNG1, GPNMB, GPC6, RELN, COL4 
and ITGA4. Since the ECM affects adhesion, motility, viability, 
and proliferation, deregulation of this pathway could contribute 
to malignant transformation of colon cells. Functional assays for 
these genes, such as siRNA-mediated knockdown or overexpres-
sion in model cell lines, will be required to clarify their signifi-
cance and could provide new insights in tumorigenesis.

The 184 DMRs occurring in over 80% of the tumors (sup-
port > 19) constitute potential biomarkers for CRC detection. 
The fact that hypermethylation of these regions was found in dif-
ferent subtypes of CRC suggests that hypermethylation at these 

Figure 6. correlation with gene expression. analysis of the publically available gene expression data from 26 cRc and matched normal colon samples 
(GsE25070). On the left data for the high-confidence hyper DMRs; in the middle low-confidence hyper DMRs; on the right regions without differential 
methylation. (A) Density plots of the mean expression level in normal samples. Dotted line indicates the median expression level calculated from all 
probes associated with a Methylcap-seq peak. These plots show that a large fraction of the high-confidence hypermethylated DMRs is lowly expressed 
in normal colon. (B) scatter plots of the ratio of the mean expression of tumors and normal. Only probes that were expressed above median level in 
normal showed a more than 2-fold reduction in expression in tumor compared with normal. (C) pie charts for probes with normal expression above me-
dian level. 13.3% of the selected probes that associated with the high-confidence hyper DMRs shows more than 2-fold lower mean expression in tumor 
compared with normal, whereas this is 4.7% and 4.2% for low-confidence hyper DMRs and peaks without differential methylation, respectively.
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FDR of ≤ 1 × 10-6 were selected. All peaks from the 48 samples 
were merged. Per sample the number of reads overlapping each 
region of interest was calculated and normalized by dividing by 
the total number of aligned reads of the sample, and the length 
of the peak.

Wiggle (WIG) files for viewing the data in the UCSC Genome 
Browser were generated. First, to compensate for differences in 
sequencing depth among samples, the total number of unique 
mapped reads of each sample was uniformly equalized relative to 
the sample with the lowest number of sequence reads. Next, for 
each base pair in the genome the number of overlapping sequence 
reads was determined and averaged over a 10 bp window.

Calling of differentially methylated regions. The DMR 
calling algorithm we applied is essentially identical to the one 
described previously.10 We analyzed per sample pair each region 
and applied two criteria. First, we tested for statistically signifi-
cant differences between the two samples using Fisher’s exact test. 
After executing Fisher’s exact test we performed multiple testing 
correction using the Benjamini-Hochberg algorithm and selected 
those regions for which the adjusted p value was lower than 0.01. 
Second, the difference in the normalized peak densities between 
tumor and normal should at least be 2-fold.

Validation with bisulfite sequencing. Genomic DNA was 
treated with sodium bisulfite using the EpiTect Kit (QIAGEN). 
The bisulfite-treated DNA was used for PCR (primers are listed 
in Table S7). The PCR products were isolated from gel, cloned 
into the pGEM-T vector (Promega), sequenced with the BigDye 
Terminator kit v1.1 (Life Technologies), and analyzed on a 
3730(XL) DNA sequencer. Alignment and calculations were 
performed using the BiQ Analyzer tool.38

ENCODE data. ChIP-seq data (H3K4me3, H3K27me3, 
H3K36me3, Pol2, CTCF) and DNaseI hypersensitivity data for 
hESC H1 was downloaded from http://hgdownload.cse.ucsc.
edu/goldenPath/hg18/encodeDCC. See Table S8 for the com-
plete links. The reads were extended to 200 bp, and BED files 
and WIG files were generated. The BED files were used to cal-
culate the reads in and around regions of interest. In addition, 
peaks were called for H3K4me3 and H3K27me3 using MACS 
with mfold = 4 and p value = 1 × 10-14 and 1 × 10-6, respectively.

The annotation of the genomic features such as intergenic 
regions, exons, introns, CGIs were obtained from the UCSC 
Genome Browser.

Expression data. Two data sets GSE21815 and GSE25070 
were downloaded from the Gene Expression Omnibus (www.
ncbi.nlm.nih.gov/geo). GSE21815 contains data from Agilent 
arrays and GSE25070 data from Illumina Beadchips. These 
were normalized using the R package “limma” and “lumi,” 
respectively.

Analysis of HCT116 cells. The HCT116 DK0 cells were a 
gift from B. Vogelstein, John Hopkins Kimmel Cancer Center, 
Baltimore, MD. BJ. HCT116 WT and DKO cells were cultured 
in McCoy’s 5A medium supplemented with 10% fetal bovine 
serum and 1% penicillin/streptomycin (all Gibco/Invitrogen) 
at 37°C in 5% CO

2
 atmosphere. Genomic DNA was isolated 

with a standard protocol and MethylCap-seq was preformed as 
described above.

In summary, we have performed a comparative and compre-
hensive genome-wide DNA methylation analysis of 24 CRC and 
matched normal colon samples. We provide a resource containing 
genome-wide DNA methylation maps and comprehensive lists of 
DMRs. From our analyses, it is evident that hypermethylation 
in CRC does not only occur at tumor suppressor-like genes, but 
affects a wide spectrum of coding loci. This suggests that only a 
small fraction of the DMRs plays a direct role in tumorigenesis. 
Furthermore, this study corroborates and extends the intriguing 
link between promoter region hypermethylated in tumors and 
H3K27me3 in human embryonic stem cells.

Material and Methods

Patient samples. Twenty-four patients with primary sporadic 
CRC from the Fatebenefratelli Hospital in Benevento and 
five from the Catalan Institute of Oncology in Barcelona were 
included in this study. Each tumor sample was matched with 
adjacent apparently normal mucosa removed during the same sur-
gery. The tumor samples were excised from the central part of the 
tumor mass, reducing the percentage of contaminating normal 
cells. The liquid nitrogen frozen specimens were micro-dissected 
and genomic DNA was isolated. Only sample pairs from which 
sufficient and good high molecular weight DNA was available 
were included in this study. Patients had no familial history of 
intestinal dysfunction or CRC. The study was performed accord-
ing to the principles of the Declaration of Helsinki and approved 
by the Institutional Review Board of the Fatebenefratelli Hospital 
and the Catalan Institute of Oncology.

MethylCap-seq. Genomic DNA was sonicated to generate 
fragments of on average 400 bp. MethylCap was performed using 
the IP-STAR robot (Diagenode) as described before.9 In short,  
1 μg DNA was incubated with paramagnetic beads coated with 
the MBD domain of MeCP2 fused to GST. After washing with 
200 mM, 400 mM and 500 mM NaCl, the bound methylated 
DNA was eluted in two fractions using 600 mM and 800 mM 
NaCl, respectively. The eluates were each prepared for Illumina 
sequencing according to Illumina’s protocols. Sequence reads 
were generated on the Illumina Genome Analyzer IIx using a 
standard 36-base protocol. The total number of sequenced reads 
per sample is shown in Table S1.

Processing of MethylCap-seq data. Initial data processing, 
base calling, and alignment to the human genome (hg18) was 
done with Illumina software. Further data analysis was done 
using in-house generated scripts written in LINUX shell, Python, 
Perl and R. The uniquely mapped sequence reads were direction-
ally extended to 234 bp, which was the estimated median length 
of MethylCap-seq DNA fragments. Uniquely mapped reads 
within satellite repeats were discarded. Mapped reads from the 
medium and high library were combined and the data was con-
verted to Browser Extensible Data (BED) files for downstream 
analysis.

Enriched regions (peaks) were called on the basis of a 
Poisson distribution of overlapping sequence reads within 
a dynamic window. A false discovery rate (FDR) was calcu-
lated relative to the total covered sequence, and peaks with an 
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