English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  SPITFIRE within the MPI Earth system model: Model development and evaluation

Lasslop, G., Thonicke, K., & Kloster, S. (2014). SPITFIRE within the MPI Earth system model: Model development and evaluation. Journal of Advances in Modeling Earth Systems, 6, 740-755. doi:10.1002/2013MS000284.

Item is

Files

show Files
hide Files
:
Lasslop_et_al-2014-Journal_of_Advances_in_Modeling_Earth_Systems.pdf (Publisher version), 3MB
Name:
Lasslop_et_al-2014-Journal_of_Advances_in_Modeling_Earth_Systems.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Lasslop, Gitta1, Author           
Thonicke, Kirsten, Author
Kloster, Silvia1, Author           
Affiliations:
1Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913563              

Content

show
hide
Free keywords: -
 Abstract: Quantification of the role of fire within the Earth system requires an adequate representation of fire as a climate-controlled process within an Earth system model. To be able to address questions on the interaction between fire and the Earth system, we implemented the mechanistic fire model SPITFIRE, in JSBACH, the land surface model of the MPI Earth system model. Here, we document the model implementation as well as model modifications. We evaluate our model results by comparing the simulation to the GFED version 3 satellite-based data set. In addition, we assess the sensitivity of the model to the meteorological forcing and to the spatial variability of a number of fire relevant model parameters. A first comparison of model results with burned area observations showed a strong correlation of the residuals with wind speed. Further analysis revealed that the response of the fire spread to wind speed was too strong for the application on global scale. Therefore, we developed an improved parametrization to account for this effect. The evaluation of the improved model shows that the model is able to capture the global gradients and the seasonality of burned area. Some areas of model-data mismatch can be explained by differences in vegetation cover compared to observations. We achieve benchmarking scores comparable to other state-of-theart fire models. The global total burned area is sensitive to the meteorological forcing. Adjustment of parameters leads to similar model results for both forcing data sets with respect to spatial and seasonal patterns

Details

show
hide
Language(s): eng - English
 Dates: 2013-112014-07-082014-08-052014
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/2013MS000284
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Advances in Modeling Earth Systems
  Other : JAMES
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 6 Sequence Number: - Start / End Page: 740 - 755 Identifier: Other: 1942-2466
CoNE: https://pure.mpg.de/cone/journals/resource/19422466