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1 Introduction

The method of inverse scattering, pioneered in gravity by Belinski and Zakharov [1–3], has

been applied very successfully to pure gravity in D = 4 and D = 5 space-time dimensions

(see also the reviews [4–6]). The method rests on identifying a linear set of equations

with a spectral parameter whose compatibility yields the non-linear Einstein equation of

interest. This method applies whenever one is seeking a space-time with a sufficient number

of commuting and hypersurface orthogonal Killing vectors. For D = 4 one can use inverse

scattering to construct stationary and axisymmetric solutions (two Killing vectors), for

D = 5 one requires an additional space-like Killing vector to render the system integrable

in the inverse scattering sense. The power of the inverse scattering method is that the

construction is reduced to a purely algebraic problem for the data entering the solitonic

ansatz for a solution of the linear system [1, 2].

There are many other gravitational systems with matter to which one would like to

apply the inverse scattering method. A number of examples can be constructed from string

theory where one is led to supergravity theories and the solutions sought include charged
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black holes. The class of models considered typically involves a finite-dimensional sym-

metry group G that acts as a solution generating group on the three-dimensional reduced

system (one Killing vector less than for the inverse scattering method). For pure D = 4,

this group is Ehlers’s SL(2,R) [7] while for maximal supergravity it is E8(8) [8, 9]. A list of

all such three-dimensional gravity-matter models with symmetry G can be found in [10].

Unfortunately, the method of inverse scattering as developed in [1, 2] is not directly appli-

cable to all these cases since the soliton ansatz does not necessarily respect the structure

of the group G; see for example the discussion in [11] for the case G = G2(2) that arises for

minimal D = 5 supergravity.

Long ago, Breitenlohner and Maison (BM) have constructed a linear system that is

different from that of Belinski and Zakharov (BZ) and that takes the structure of G into

account [12]. The relation between the two linear systems was studied in [11–13]. The BM

linear system has not been used extensively for solution generation although in [14] it was

shown how to implement a BZ like inverse scattering for SL(n,R). It is the purpose of the

present article to describe how to use the BM linear system to generate solutions for more

general groups G. We will focus mainly on the case G = SO(4, 4) for concreteness. G =

SO(4, 4) is the symmetry that is relevant for the STU model that has multiple constructions

from string theory and whose solutions have attracted a lot of attention over the years [15–

19]. Our methods do, however, apply more generally and we make some remarks in that

direction at the end of the paper.

For the standard BZ inverse scattering method one constructs a generating function

that has simple poles in the spectral parameters and the residues at these poles are of

rank one. A major difference that arises for more general groups is that the rank of the

residue can be larger and therefore one needs to associate more data with any given pole.

We will show this explicitly for G = SO(4, 4) where the rank is two and present a general

formalism in section 5. As a model example of our formalism we show how to recover the

four-charge Cvetič-Youm solution [17, 20]. Rank two is sufficient in this case and we are

not aware of any relevant solution of the STU model associated with higher rank. It is,

however, not precluded that other interesting solutions with higher rank exist. The rank of

the four-dimensional Schwarzschild solution for example in a theory with symmetry group

G after reduction to three dimensions depends on the embedding of the standard Ehlers

SL(2,R) representation into G. For the STU model with G = SO(4, 4) this rank is two,

for the theory with G = E6 the rank is six and for maximal supergravity with G = E8 the

rank will be 57. For other cases of interest the rank can be obtained for instance from the

analysis of appendix A of [21].

The structure of this article is as follows. In section 2 we establish our conventions

and review the BM linear system. In section 3, we demonstrate how to solve the linear

system for G = SO(4, 4) case with rank two residues in general and work out the Cvetič–

Youm solution as a detailed example in section 4. Section 5 contains the general formalism

for other groups and general ranks and concluding remarks can be found in section 6.

Appendix A contains some more technical details on our choice of parametrization of

SO(4, 4) in terms of the physical fields and appendix B contains the explicit expression for

the scalar fields for the four-charge black hole.
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2 Preliminaries: Lagrangian and linear system

2.1 The three-dimensional system

We assume that there is a three-dimensional gravity-matter system that has a global sym-

metry group G and a local symmetry group K that is maximal subgroup of G. The

elements k ∈ K satisfy k#k = 1, where the ‘hash’ denotes some generalized anti-involution.

For G = SL(n,R) and K = SO(n) this operation is just the usual transposition k# = kT

but it can be different in general.

The three-dimensional system is given by1

L3 =
√
g3

(
R3 −

1

2
gµνTr(PµPν)

)
, (2.1)

where Pµ is determined by V ∈ G/K through

Pµ =
1

2

(
∂µV · V −1 + (∂µV · V −1)#

)
. (2.2)

This system has the required symmetries that act on V by

V (x)→ k(x)V (x)g, (2.3)

with a global g ∈ G and a local gauge transformation k(x) ∈ K. A convenient object is the

x-dependent

M(x) = V #(x)V (x) with M(x)→ g#M(x)g, (2.4)

and that is thus independent of the choice of gauge.

2.2 STU gravity

The D = 4 STU model fits into this picture when one considers stationary solutions. In

this case G = SO(4, 4) and K = SO(2, 2)× SO(2, 2) [10]. The operation # can be given a

more explicit expression if one chooses to represent the scalars V ∈ G/K as (8×8)-matrices

that leave invariant the metric

η =

(
04 114

114 04

)
, (2.5)

that is written in block form with unit and zero matrices. Matrices g satisfying gT ηg =

η belong to SO(4, 4). The subgroup K = SO(2, 2) × SO(2, 2) then satisfies the further

constraint that it leaves invariant [22]

η′ = diag(−1,−1, 1, 1,−1,−1, 1, 1), (2.6)

and we have V # = η′V T η′.

1We have changed the normalization of the scalar G/K sector by a factor of 1/2 compared to [13].
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2.3 Two-dimensional reduction and BM linear system

Following the discussion in [10, 12], we consider further reduction of the system (2.1) over

the spacelike Killing vector ∂ϕ, thereby obtaining an effectively two-dimensional system.

The three-dimensional metric can be written as

ds2
3 = f2ds2

2 + ρ2dϕ2 , (2.7)

where the function f multiplying the two-dimensional metric is called the conformal factor.

Choosing Weyl coordinates xm = (ρ, z), the flat two-dimensional base metric is ds2
2 =

dρ2 + dz2. The equations of motion of the two-dimensional system read

±if−1∂±f =
ρ

4
Tr (P±P±) , (2.8a)

Dm (ρPm) = 0, (2.8b)

where we used the “light-cone” coordinates x± = 1
2(z ∓ iρ) to simplify the form of the

equations. The K-covariant derivative is given by

Dm = ∂m −Qm, with Qm =
1

2

(
∂mV · V −1 − (∂mV · V −1)#

)
. (2.9)

Given a solution of (2.8b), the function f is obtained simply by integrating equa-

tion (2.8a). Therefore, developing a strategy to obtain solutions is mostly concentrated on

equation (2.8b). In fact, this equation is shown to be integrable and can be represented

by a Lax pair or linear system. This means that there exists a system of linear equations

whose compatibility condition is exactly the non-linear equation we wish to solve. The

functions we solve for in the linear system depend on an additional parameter t, called the

spectral parameter.

We define the generalized coset element V(t, x), that has the form (suppressing the

x-dependence)

V(t) = V0 + tV1 +
1

2
t2V2 + . . . , (2.10)

such that

lim
t→0
V(t) = V0 := V, (2.11)

and is a regular function in t around t = 0. The linear equations, referred to as the

Breitenlohner-Maison (BM) linear system [12, 23]

∂±VV−1 =
1∓ it
1± it

P± +Q±, (2.12)

can be viewed as the generalisation of the relation ∂±V V
−1 = P±+Q± for the Lie algebra-

valued expression ∂±V V
−1, in light of the Lie algebra decomposition under the symmetric

space automorphism. The integrability condition

∂+

(
∂−VV−1

)
− ∂−

(
∂+VV−1

)
−
[
∂+VV−1, ∂−VV−1

]
= 0, (2.13)
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yields the equation (2.8b) with the additional requirement that t be a function which

satisfies the differential equation

t−1∂±t =
1∓ it
1± it

ρ−1∂±ρ . (2.14)

Integrating this equation, leads to a quadratic equation for t with solutions

t± =
1

ρ

[
(z − w)±

√
(z − w)2 + ρ2

]
. (2.15)

The integration constant w can be regarded as an alternative, x-independent spectral

parameter. Equation (2.15) defines a two-sheeted Riemann surface over the complex w-

plane. We choose the solution with the plus sign as the physical sheet and have t to mean

t+ hereafter.

The existence of the linear system (2.12) that equivalently poses the problem at hand,

exhibits not only that the two-dimensional gravity system is integrable, but reveals its

symmetry properties as well. The generalized coset element V(t, x), transforms under an

enlarged symmetry group as

V(t)→ k(t)V(t)g(w) , (2.16)

in a manner analogous to the gauge-preserving transfomations (2.3) of V ∈ G/K. The

general global transformation g has now a dependence on the constant spectral parameter

w and k(t) is the local compensating transformation that brings V back to the form (2.10).

The subset of maps g(w) from S1 ⊂ C into G constitute the loop group Ĝ. This al-

ready shows that the symmetry group of the two-dimensional system includes the infinite-

dimensional loop group associated to the finite group G. In fact, the group of transforma-

tions involves the full affine extension of G, which comprises the central extension acting

on the conformal factor f [12].

The symmetric space automorphism # admits a generalization for the enlarged sym-

metry group and its action on the functions V(t) is given by

(V(t))# = V#

(
−1

t

)
. (2.17)

With this definition, it can be shown that for any solution V of (2.12) the quantity ∂±VV−1

is anti-invariant under the # -involution induced on the associated Lie algebra. This means

that if V(t) is a solution of (2.12), then the function (V(t))# is also a (generally distinct)

solution.

In principle, given a seed solution V(t) one could obtain new solutions Vg(t) through

the transformation (2.16). However, in this approach one needs to determine k(t), a task

that is generally quite hard. Alternatively, we can construct a function, analogous to

M = V #V , called the monodromy matrix

M(w) = (V(t))# V(t) = V#

(
−1

t

)
V(t), (2.18)
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which transforms as

M(w)→Mg(w) := g#(w)M(w)g(w) , (2.19)

thus evading knowledge of the element k(t). The #-properties of (2.12) imply that M(w)

is constant: ∂±M(w) = 0. Solutions can be now obtained from the factorization ofMg(w)

into (Vg(t))# Vg(t). This is a Riemann-Hilbert problem, that is generally difficult to solve.

However, in special circumstances, it becomes a purely algebraic procedure, as described in

the following section. Generally, the physical fields can be obtained from Vg(t) by taking

the limit t→ 0. On top of the solution of the Riemann-Hilbert problem (2.18) we also need

to determine the conformal factor f by integrating (2.8a). In the algebraic case considered

in the next section this is also easy to accomplish.

As in our previous work [13], in this article we always work with flat space

V(t) = 11 and f = 1, (2.20)

as seed solution. Thus, from now on we simply drop the superscript g from Mg(w) and

Vg and think of being given a monodromy matrix M(w) that needs to be factorized to

find V(t).

3 Riemann-Hilbert factorization for SO(4, 4)

We construct the monodromy matrix M as

M = V#

(
−1

t
, x

)
V(t, x) = η′VT

(
−1

t
, x

)
η′V(t, x), (3.1)

where η′ is the quadratic form of (2.6) preserved by SO(2, 2)× SO(2, 2) and

g# = η′gT η′−1, ∀ g ∈ SO(4, 4). (3.2)

The matrix M is by construction an element in SO(4, 4) (as V ∈ SO(4, 4)). As mentioned

in the previous section, involution symmetry together with the Lax equations imply that

∂µM = 0, i.e., M is independent of the spacetime coordinates (ρ, z) and is a function of

w alone [12, 23]. Since w is invariant under t → −1/t, it follows that M is also invariant

under simultaneous action of the generalized transposition # and the exchange t→ −1/t:

M# = η′VT (t, x)η′V
(
−1

t
, x

)
=M. (3.3)

In order to find V(t) from M, we wish to factorize the matrix M in the form

M(w) = A#
−(t, x)M(x)A+(t, x) (3.4)

with A+(t) containing only positive powers of t [12, 14] and where the matrices A± satisfy

the relation [13, 14]

A−(t, x) = A+

(
−1

t
, x

)
, (3.5)

and M#(x) = M(x). We also require matrices A±(t, x) to be in SO(4, 4). Furthermore we

factorize M(x) = V #(x)V (x) so that

V(t, x) = V (x)A+(t, x). (3.6)

– 6 –
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3.1 Solution of the Riemann-Hilbert problem

We restrict ourselves to the class of matrices M(w) that have N simple poles at locations

w = wk that can be expressed in the form,

M(w) = 11 +
N∑
k=1

Ak
w − wk

, (3.7a)

M−1(w) = ηMT η = η

(
11 +

N∑
k=1

ATk
w − wk

)
η. (3.7b)

The matrix η is the quadratic form preserved by SO(4, 4).

Unlike the case of SL(n,R) considered in [13, 14] where the residue matrices Ak are

taken to be of rank one, in the present analysis we take the residue matrices Ak to be

of rank two. In the following, in particular in the next section, it will become clear that

the rank-two case corresponds to the simple solutions of physical interest. An intuitive

way to appreciate this is via the restriction of the general SO(4, 4) matrix M(x) to four-

dimensional vacuum gravity. The structure of the restricted matrix is such that the Ehlers

SL(2) representative of four-dimensional vacuum gravity enters two times, suggesting that

the residue matrices in M(w) should be taken to be of rank two in order to connect

to solutions of vacuum gravity. A related observation was also made in [11], where in

the context of the BZ method it was pointed out that for minimal supergravity, soliton

transformations must be applied in pairs in order to preserve the coset structure.

Using the expression

1

w − wk
= νk

(
tk

t− tk
+

1

1 + ttk

)
, (3.8)

where tk is the value of (2.15) at w = wk, and

νk = − 2

ρ
(
tk + 1

tk

) , (3.9)

we can write

M(t, x) = 11 +
N∑
k=1

νktkAk
t− tk

+
N∑
k=1

νkAk
1 + ttk

. (3.10)

The residue matrices Ak can be factorized and parameterized as follows,

Ak = αkaka
T
k η
′ − βk(ηbk)(ηbk)T η′, (3.11)

where ak and bk are 8-dimensional constant vectors. At first sight this choice may not

look transparent or obvious, but its advantages will become clear very soon. Note that by

construction, the matrices Ak (3.11) satisfy

A#
k = Ak, (3.12)
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as they should, since M(w) satisfies this property. In order to deduce properties of the

vectors ak and bk, we study the pole structure of the productM(t, x)M−1(t, x) or equiva-

lently the pole structure ofM(t, x)ηMT (t, x). The absence of double poles in this product

at t = −1/tk implies the conditions

AkηA
T
k = 0 for all k . (3.13)

These conditions are fulfilled when the vectors satisfy the following relations,

aTk ηak = 0, (3.14a)

bTk ηbk = 0, (3.14b)

aTk bk = 0, (3.14c)

for all k. The absence of single poles in the productM(t, x)ηMT (t, x) at t = −1/tk results

in the conditions

AkηATk = −AkηATk , (3.15)

where matrices Ak are defined as

Ak =

(
M(t, x)− νkAk

1 + ttk

)∣∣∣∣
t→− 1

tk

. (3.16)

The condition (3.15) explicitly reads

Akηη′αkakaTk −Akηη′βk(ηbk)(ηbk)T = −αkakaTk η′ηATk + βk(ηbk)(ηbk)
T η′ηATk . (3.17)

A sufficient condition for these equations is the existence of (space-time dependent) num-

bers γk such that

Akηη′ak = νkβkγk(ηbk), (3.18a)

(ηbk)
T η′ηATk = νkαkγka

T
k . (3.18b)

Recall that, in order to solve the Riemann-Hilbert problem, we wish to factorize the

matrix M in the form

M(w) = A#
−(t, x)M(x)A+(t, x) (3.19)

with matrices A± satisfying the relation

A−(t, x) = A+

(
−1

t
, x

)
, (3.20)

and M#(x) = M(x). We also require matrices A±(t, x) to be matrices in SO(4, 4). Fur-

thermore we factorize M(x) = V #(x)V (x) so that

V(t, x) = V (x)A+(t, x). (3.21)

– 8 –
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The analyticity properties (2.10) of the resulting V(t, x) in the neighbourhood of t = 0

require that the poles at t = −1/tk come from the factor A+ [12, 14]. We therefore make

the ansätze generalizing the ones used in [13, 14]

A+(t) = 11−
N∑
k=1

tCk
1 + ttk

, (3.22)

with the parametrization of matrices Ck as follows

Ck = cka
T
k η
′ − (ηdk)(ηbk)

T η′ . (3.23)

As in the SL(n,R) case, the vectors ak, bk, ck, and dk are not all independent and deter-

mining their relation amounts to solving the Riemann-Hilbert problem.

In order to determine the vectors ck and dk we study the poles in the product

A+(t)ηMT (t, x) at t = −1/tk. The condition for no double poles is

CkηA
T
k = 0 , (3.24)

which is fulfilled when the conditions (3.14) hold. Furthermore, we need to ensure that the

product A+(t)ηMT (t, x) has no single poles at t = −1/tk. This requirement is equivalent to

t−1
k CkηATk +

(
A+ +

tCk
1 + ttk

)∣∣∣∣
t=− 1

tk

ηνkA
T
k = 0. (3.25)

Writing equation (3.25) in terms of the vectors ak, bk, ck, and dk and using relations (3.18a)

and (3.18b), we arrive at

t−1
k

(
ckνkβkγk(ηbk)

T − (ηdk)νkαkγka
T
k

)
+ νkαkηη

′aka
T
k − νkβkηη′(ηbk)(ηbk)T

+
N∑
l=1
l6=k

1

tk − tl
(
cla

T
l η
′ − (ηdl)(ηbl)

T η′
)
ηνk

(
η′αkaka

T
k − η′βk(ηbk)(ηbk)T

)
= 0. (3.26)

This condition is satisfied when the following two conditions are satisfied

− t−1
k (ηdk)νkαkγk + νkαkηη

′ak +
N∑
l=1
l 6=k

νkαk
tk − tl

(
cla

T
l ηak − (ηdl)(ηbl)

T ηak
)

= 0, (3.27)

and

t−1
k ckνkβkγk − νkβkηη′(ηbk)−

N∑
l=1
l 6=k

νkβk
tk − tl

(
cla

T
l η(ηbk)− (ηdl)(ηbl)

T η(ηbk)
)

= 0. (3.28)

Assuming furthermore that the vectors ak, bk satisfy

aTl ηak = 0, (3.29a)

bTl ηbk = 0, (3.29b)

– 9 –
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for l 6= k, then the relations (3.27) and (3.28) simplify to

η′ak =
γk
tk
dk +

N∑
l 6=k

1

tk − tl
dl
(
aTk bl

)
, (3.30)

η′bk =
γk
tk
ck +

N∑
l 6=k

1

tl − tk
cl
(
aTl bk

)
. (3.31)

These relations can be written as matrix equations

η′a = dΓT , (3.32a)

η′b = cΓ , (3.32b)

where a, b, c, and d are 8×N matrices whose columns are the vectors ak, bk, ck, dk respec-

tively and Γ is a N ×N matrix with elements

Γkl =

{
γk
tk

for k = l
aTk bl
tk−tl for k 6= l.

(3.33)

Solving equations (3.32a) and (3.32b) for c and d we find the matrix A+(t, x) as

A+(t) = 11− η′bΓ−1 t

11 + tT
aT η′ + ηη′a

(
ΓT
)−1 t

11 + tT
bT ηη′, (3.34)

where to avoid notational clutter we use T to denote the N × N diagonal matrix with

entries tk. Taking the limit of the inverse of (3.34) as t→∞ we get the matrix M(x),

M(x) = A−1
+ (∞) = ηAT+(∞)η, (3.35)

with

AT+(∞) = 11− η′aT−1
(
Γ−1

)T
bT η′ + η′ηbT−1Γ−1aT η′η. (3.36)

If we furthermore assume that aTl bk = −aTk bl for l 6= k, i.e., that the Γ matrix is

symmetric, then expression (3.36) becomes

AT+(∞) = 11− η′aT−1Γ−1bT η′ + η′ηbT−1Γ−1aT η′η. (3.37)

In the next section, we see that all assumptions made in the above analysis are satisfied

for the four-charge black holes — one of most studied set-up in four-dimensional STU

supergravity. We believe that various assumptions made above are also satisfied in more

general settings of physical interest.

3.2 Computation of the conformal factor

The conformal factor is determined by integration of equation (2.8a). This proceeds exactly

along the same lines as in appendix A of [13], keeping in mind the change of normalization

of the scalars, cf. footnote 1. We do not repeat all the steps here but only indicate a few

intermediate results where the rank-two property of the residues enters.
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For evaluating (2.8a) we need to detemine Tr(P±P±). This is most conveniently done

in terms of evaluating first A−1
+ (t) ∂∂tA+(t) [13, 14]. For the value of A+(t) determined

in (3.34) one finds

A−1
+ (t)

∂

∂t
A+(t) = −η′b 11

11 + tT
Γ−1 11

11 + tT
aT η′ + ηη′a

11

11 + tT
Γ−1 11

11 + tT
bT ηη′, (3.38)

which is now composed of two terms reflecting the rank-two nature of the residues. The

next important intermediate quantity is

Tr(A−1
+ (±i)Ȧ+(±i))2 = 2

∑
k,l,m,n

Γ−1
kl Γ−1

mn

(1± itk)(1± itl)(1± itm)(1± itn)
Tr(bka

T
l bma

T
n ), (3.39)

where the factor of 2 is due to the increased rank. Otherwise the result is exactly equal to

the one in [13]. The changed normalization of the scalars cancels this factor of 2 so that

we obtain the conformal factor as

f2 = kBM ·
N∏
k=1

(tkνk) · det Γ, (3.40)

where kBM is an integration constant.

4 Construction of the four-charge black hole

In this section we present a fairly non-trivial implementation of the inverse scattering

method of the previous section. We construct the four-charge black hole of STU super-

gravity from flat space. This construction illustrates all the steps of the algorithm presented

earlier.

As in the SL(n,R) case studied in [13, 14] the main difficulty in constructing the general

multisoliton solutions using the BM method lies in finding the appropriate meromorphic

matrices M(w) that satisfy the various requirements of the previous section and satisfy

the coset constraints. It turns out that in the two-soliton case, as in the SL(n,R) models,

finding appropriate solitonic matrices is not difficult. We start with monodromy matrices

of the form

M(w) = 11 +
A1

w − c
+

A2

w + c
, (4.1)

where

A1 = α1a1a
T
1 η
′ − β1(ηb1)(ηb1)T η′, (4.2a)

A2 = α2a2a
T
2 η
′ − β2(ηb2)(ηb2)T η′, (4.2b)

and where a1, a2 and b1, b2 are 8-dimensional vectors. In writing (4.1) the location of the

poles is chosen to be at w1 = +c and w2 = −c. This choice can always be made by ‘shifting’

the axis (see [13] for a more detailed discussion on this). For finding the vectors a1, a2 and

b1, b2 corresponding to the four-charge black hole, let us start by looking at corresponding

vectors for the Kerr-black hole in the SO(4, 4) context. Analyzing the structure of the
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SO(4, 4) matrix M(x) and embedding of the Ehlers’s SL(2,R) in it, we make the inspired

ansatz for the a-vectors

a1 = (0, 0,−ζ, 0, 0, 0, 0, 1)T , (4.3a)

a2 = (0, 0, 1, 0, 0, 0, 0,−ζ)T . (4.3b)

Next we follow an algorithm similar to the one used in [13, 14] to construct the b-vectors.

We first construct the matrix a = (a1, a2), next we find the 2 × 2 matrix ξ = aT η′a and

choose

b = (
√

det ξ)η′aξ−1ε with ε =

(
0 −1

1 0

)
. (4.4)

This results in b-vectors

b1 = (0, 0, 1, 0, 0, 0, 0, ζ)T (4.5a)

b2 = (0, 0,−ζ, 0, 0, 0, 0,−1)T . (4.5b)

Finally we must choose

α1 = +2c
1 + ζ2

(1− ζ2)2
, α2 = −2c

1 + ζ2

(1− ζ2)2
, (4.6)

β1 = −2c
1 + ζ2

(1− ζ2)2
, β2 = +2c

1 + ζ2

(1− ζ2)2
, (4.7)

in order to satisfy the coset constraints. It can be readily verified that all the conditions

required on the vectors from the previous section are satisfied in this construction. In

particular we note that

aT1 ηa1 = 0, aT2 ηa2 = 0, aT1 ηa2 = 0, (4.8a)

bT1 ηb1 = 0, bT2 ηb2 = 0, bT1 ηb2 = 0, (4.8b)

aT1 b1 = 0, aT2 b2 = 0, aT1 b2 = −aT2 b1 = −1 + ζ2. (4.8c)

The above data results in the following matrix,

M(w) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 + 2m(m−w)
w2−c2 0 0 0 0 2am

w2−c2

0 0 0 1 + 2m(m−w)
w2−c2 0 0 − 2am

w2−c2 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 − 2am
w2−c2 0 0 1 + 2m(m+w)

w2−c2 0

0 0 2am
w2−c2 0 0 0 0 1 + 2m(m+w)

w2−c2


, (4.9)

where (at some places) we have replaced ζ and c in favor of m and a. The relations between

these parameters are

ζ =
c−m
a

, c =
√
m2 − a2. (4.10)
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This matrix is precisely the SO(4, 4) monodromy matrix for the Kerr metric — factorization

of it gives the Kerr-field.

Having obtained the monodromy matrix for the Kerr metric, generalization to the

four-charge black hole is now straightforward. We simply conjugate the Kerr matrix with

the appropriate group element,

M4−charge(w) = g#M(w)g. (4.11)

Since in our duality frame, the four-charge black hole corresponds to three-magnetic charges

and one-electric charge, we act on M(w) with the following group element

g = exp[−δ0(Eq0 +Fq0)] · exp[δ1(Ep1 +Fp1)] · exp[δ2(Ep2 +Fp2)] · exp[δ3(Ep3 +Fp3)]. (4.12)

The transformed vectors are

a1 = (−c0s1,−ζc3s2,−ζc2c3,−s0s1,−c1s0,−ζc2s3, ζs2s3, c0c1)T , (4.13a)

a2 = (ζc0s1, c3s2, c2c3, ζs0s1, ζc1s0, c2s3,−s2s3,−ζc0c1)T , (4.13b)

b1 = (ζc0s1,−c3s2, c2c3,−ζs0s1, ζc1s0,−c2s3,−s2s3, ζc0c1)T , (4.13c)

b2 = (−c0s1, ζc3s2,−ζc2c3, s0s1,−c1s0, ζc2s3, ζs2s3,−c0c1)T , (4.13d)

where to avoid notational clutter we have introduced ci = cosh δi and si = sinh δi. Using

these vectors we construct the monodromy matrix of the four-charge black hole. By group

property it follows that relations (4.8a)–(4.8c) hold as it is. With these choices we find

γ1 =
2ζ(1− ζ2)t2(1 + t21)

(1 + ζ2)(t1 − t2)(1 + t1t2)
, (4.14a)

γ2 =
2ζ(1− ζ2)t1(1 + t22)

(1 + ζ2)(t1 − t2)(1 + t1t2)
. (4.14b)

From these expressions we readily construct the Γ matrix and using relations (3.32a)

and (3.32b) we find the c and d vectors, and hence solve the factorization problem. From

expressions (3.35) and (3.37) we find the final matrix M(x) for the four-charge black hole.

The conformal factor, which is given by (3.40), takes the form

f2 = −4kBMt
2
1t

2
2(1− ζ2)2 (1 + t1t2)2(1− ζ2)2 − 4(t1 − t2)2ζ2

(1 + t21)(1 + t22)(t1 − t2)2(1 + t1t2)2(1 + ζ2)2ρ2
. (4.15)

Using the conformal factor we construct the three-dimensional base metric. Using the base

metric and the matrix M(x), we can read off all physical fields. Expressions for these fields

are presented in appendix B along with some further details. In this way we recover the

full set of fields for the four-charge black hole.

5 Generalization of BM method: residues of rank r

We now consider the general monodromy matrix

M(w) = V#

(
−1

t
, x

)
V(t, x) , (5.1)
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with V(t, x) the generalization of V (x) ∈ G/K that also depends on the spectral parameter

t. The map # : G→ G is the anti-involution already introduced in section 2.1.

For the N -soliton solution, one takes M(w) to be a meromorphic function with N

simple poles at w = wk in the form:

M(w) = 11 +
N∑
k=1

Ak
w − wk

, (5.2)

and

M−1(w) = 11−
N∑
k=1

Bk
w − wk

, (5.3)

with Ak, Bk the x-independent residue matrices. The t-dependent expansions of M read

M(t, x) = 11 +

N∑
k=1

νktkAk
t− tk

+

N∑
k=1

νkAk
1 + ttk

, (5.4)

and

M−1(t, x) = 11−
N∑
k=1

νktkBk
t− tk

−
N∑
k=1

νkBk
1 + ttk

. (5.5)

Let Ak, Bk be diagonalizable matrices of size n and rank r, (r ≤ n), which moreover satisfy

Ak = A#
k and Bk = B#

k . There exists a matrix Uk satisfying U−1
k = U#

k and a diagonal

matrix Λk such that

Ak = UkΛkU
#
k . (5.6)

Thus we can write the matrix Ak (same treatment applies to Bk) in the form of a sum of

rank one matrices as follows:

Ak =
r∑

α=1

λαku
α
kv

αT
k , (5.7)

where λαk are the non-zero entries of the diagonal matrix Λk. The vectors uαk and vαTk
are the corresponding (n-dimensional) column vectors of matrix Uk and corresponding row

vectors of matrix U#
k respectively.

One can write the previous rank one decomposition in a manifestly “#-invariant” form

when the action of the map # on g ∈ G is explicitly known (in the matrix representation

of the group). As an example consider the coset space G/K = SO(4, 4)/SO(2, 2)×SO(2, 2)

with τ the involutive automorphism that fixes the subgroup SO(2, 2) × SO(2, 2). The

action of # on g ∈ G is given by g# = η′gT η′, with η′ the quadratic form preserved by

SO(2, 2) × SO(2, 2). The residue matrices Ak (similarly for Bk) can be expressed in the

form

Ak = UkΛkU
#
k = Ukη

′Λkη
′η′UT η′ = UkΛ

′
kU

T η′ =
r∑

α=1

λ
′α
k u

α
ku

α#
k , (5.8)
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where we use the “#-invariance” of the diagonal matrix Λk and Λ′k = η′Λk. Moreover, the

# operation on column vectors is defined as u#
k = uTk η

′ and on row vectors as uTk
#

= η′uk.

(Indeed, using this definition, we have that for any vector v and a matrix S = vv# ∈ G,

S# = S). Assuming we can adopt this notation in the general case and using the freedom

to redefine the vectors and tune λαk accordingly, one can write2

Ak = αk

r∑
α=1

pαkp
α#
k , Bk = βk

r∑
α=1

qαk q
α#
k , (5.9)

with pαk , q
α
k the redefined n-dimensional vectors and αk, βk are constant parameters, not to

be confused with the greek upper indices. The latter enumerate the vectors with respect

to the rank of the residue matrix, while the lower indices denoted by k, l, . . . are the soliton

indices and take values in {1, 2, . . . , N}.
Studying the pole structure of the productM(t, x)M−1(t, x) at t = − 1

tk
, one can infer

the required conditions on the vectors pαk , q
α
k . The condition for no double poles in the

product M(t, x)M−1(t, x) at t = − 1
tk

is fulfilled when

pα#
k qβk = 0, for all k and α = 1, 2, . . . , r , β = 1, 2, . . . , r . (5.10)

Furthermore, the absence of single poles in M(t, x)M−1(t, x) at t = − 1
tk

requires the

condition

AkBk = AkAk, (5.11)

to be satisfied, with

Ak =

(
M(t, x)− νkAk

1 + ttk

)∣∣∣∣
t→− 1

tk

, Ak =

(
M−1(t, x) +

νkBk
1 + ttk

)∣∣∣∣
t→− 1

tk

.

(5.12)

The demand is met if there exist γαk numbers such that

Akqαk = νkαkγ
α
k p

α
k , pα#

k A
k = νkβkγ

α
k q

α#
k , (5.13)

for all k = 1, 2, . . . , N and α = 1, 2, . . . , r.

The solution of the Riemann-Hilbert problem amounts to the factorization ofM, with

the expansion (5.4), in the form

M(w) = A#
−(t, x)M(x)A+(t, x), (5.14)

2The notation we have used earlier for the case of G/K = SO(4, 4)/SO(2, 2) × SO(2, 2) is somewhat

different. However, the previous notation can be readily translated in the general notation used in this

section by identifying p1
k = ak, p

2
k = −ηbk, q1

k = η′bk, q
2
k = ηη′ak, α

1
k = −β2

k = αk, α
2
k = −β1

k = −βk, r1
k =

ck, r
2
k = ηdk, s

1
k = η′dk, s

2
k = −ηη′ck (with αk, βk the constants in section 3) and using the # operation on

vectors as defined above.
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with A−(t, x) = A+(−1
t , x) and M#(x) = M(x). The poles at t = − 1

tk
come from the

factor A+ and so we assume this matrix to be of the form

A+ = 11−
N∑
k=1

tCk
1 + ttk

, (5.15)

and

A−1
+ = 11 +

N∑
k=1

tDk

1 + ttk
, (5.16)

with Ck =
r∑

α=1
rαk p

α#
k and Dk =

r∑
α=1

qαk s
α#
k . In order to determine the vectors rαk , we study

the pole structure of the product A+(t)M−1(t, x) at t = − 1
tk

. The absence of double poles

yields the condition

CkBk = 0, (5.17)

and is fulfilled when (5.10) holds. The condition for no single poles is

t−2
k CkAk =

(
A+ +

tCk
1 + ttk

)∣∣∣∣
t→− 1

tk

Bkνkt
−1
k , (5.18)

and is satisfied when

qαk = t−1
k rαk γ

α
k +

N∑
l 6=k

r∑
β=1

1

tl − tk
rβl p

β#
l qαk , (5.19)

that is, when these rN vector equations hold. We can express them in a more compact

way, in the form3

qB =

rN∑
A=1

rAΓAB , (5.20)

where the capital indices A,B take values in {1, 2, . . . , rN} and each value uniquely deter-

mines a pair of indices (k, α). This can be done for example through the relations

k =

{
AmodN if A mod N > 0

N if A mod N = 0,
α = 1 +

[
A− 1

N

]
, (5.21)

where [·] denotes the integer part (floor function). The matrix Γ is defined as the rN × rN
block matrix with entries

Γαβkl =

{ γαk
tk
δαβ for k = l

pα#
k qβl
tk−tl for k 6= l,

(5.22)

3These vector equations can be represented by the matrix equation q = r Γ, where q is the n×rN matrix

whose columns are the vectors q1
1 , q

1
2 , . . . , q

1
N , q

2
1 , q

2
2 , . . . , q

2
N , . . . , q

r
1 , q

r
2 , . . . , q

r
N and the matrix r is defined

similarly (with columns the rαk vectors).
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where the upper indices denote the block entry and the lower indices the entries of each

block. It is a symmetric matrix under the condition pα#
k qβl = −pβ#

l qαk for k 6= l and all

α, β in {1, 2, . . . , r}. Moreover, when the condition pα#
k qβl = 0 for k 6= l and α 6= β holds,

the off-diagonal blocks of Γ vanish (this is the case in all examples we have worked with so

far). Solving (5.20) for the vectors rB we find

rB =

rN∑
A=1

qA
(
Γ−1

)
AB

. (5.23)

There is one more set of vectors that we need to determine and these are the sαk in (5.16).

The requirement that
(
M(t, x)A−1

+

)#
have no poles at t = − 1

tk
is fulfilled when

pαk = t−1
k sαkγ

α
k +

N∑
l 6=k

r∑
β=1

1

tk − tl
sβl p

α#
k qβl ⇐⇒ pA =

rN∑
B=1

ΓABsB (5.24)

and the equation for the vectors sA is4

sA =
rN∑
B=1

=
(
Γ−1

)
AB

pB . (5.25)

Finally, the matrix M(x) is obtained by

M = A−1
+ (∞) = 11 +

rN∑
A,B=1

qAt
−1
A

(
Γ−1

)
AB

p#
B , (5.26)

where tA = tαk = tk for all values of α.

Conformal factor. The formula for the conformal factor in the multisoliton case with

residues of rank r is given by

f4 = kBM · det Γ ·
rN∏
A=1

(tAνA)

= kBM · det Γ ·
N∏
k=1

(tkνk)
r . (5.27)

This follows by a straightforward application of the computation of appendix A of [13] since

the expression for M is formally the same except for the enlarged range for the indices of

ΓAB. The power on f on the left-hand side of (5.27) is due the changed normalization

mentioned in footnote 1.

We note that (5.27) is consistent with (3.40) since in the discussion of section 3 the

vectors were assumed to satisfy (3.29). In that case the matrix ΓAB becomes block diagonal

with r repeated blocks of the matrix Γkl. Then det(ΓAB) = (det(Γkl))
r and this leads to

the agreement between (3.40) and (5.27) when one takes into account the different powers

on f .

4The matrix equation is now p = sΓT , where p, s are n × rN matrices whose columns are the vectors

pαk ,sαk respectively and are defined similarly to matrices q and r.
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6 Discussion

In this paper we studied the integrability of STU supergravity and proposed an inverse

scattering technique for this theory. Our main interest in performing this analysis is to

make available solution generating techniques based on integrability for set-ups where the

standard BZ construction is not applicable. Our approach makes use of the Geroch group

(affine symmetry) of the dimensionally reduced STU theory. We concentrated on Geroch

group matrices with simple poles only — the so-called soliton sector. The main difference

compared to the SL(n,R) analysis presented in [13, 14] is that in the present SO(4, 4)

case the rank of the residue matrices is two — as opposed to one — for simple solutions

of physical interest. In view of further generalization (and future applications) of this

technique we also presented a generalization to arbitrary group G incorporating residue

matrices of arbitrary rank r.

Comparing our solution generating technique to that based on the finite-dimensional

G-symmetry used by many authors, we find that it is nicely consistent. A (charging)

transformation by a global element k ∈ K ⊂ G rotates the matrixM(w) according to (2.19).

Since k is w-independent it does not affect the location of the poles wk but rotates the

residue matrices Ak in (5.2) also according to (2.19). This induces a rotation of the vectors

arising in the factorization (5.7) but only in such a way that the matrix ΓAB does not change

and consequently the conformal factor (5.27) is unchanged. The action of the symmetry is

then the same that one would have in the three-dimensional system (2.1).

There are many ways in which our study can be extended. The next natural step

would be to understand five-dimensional asymptotically flat boundary conditions from the

Geroch group point of view. This requires changing the asymptotic behavior of M(w) for

w → ∞. Together with the results of the present paper, this will allow us to construct

the 5d charged rotating Cvetič-Youm [24] metric which in turn will lead to an inverse

scattering construction of the JMaRT fuzzball [25]. Such a construction is highly desirable

as it will naturally lead to ways to generalize the JMaRT fuzzball. Various problems in

relation to five-dimensional black rings will also become accessible once we incorporate

five-dimensional asymptotically flat boundary conditions in our formalism. We hope to

report on these issues in the near future.

On the technical side there is another difficulty that needs to be overcome before our

construction can be applied in its full potential. Recall that, in order to apply our formalism

for the construction of the four-charge black hole we used the group property to find the

vectors (4.13) starting from that of the Kerr black hole. For this computation, group

rotation is sufficient, but we expect that in more complicated situations, in particular for

configurations involving three or more poles, one needs to develop some other algorithmic

techniques to find appropriate vectors. In this regard, ideas from the interval structure [26–

28] of gravitational solutions can be useful, but at the moment this remains an open

challenging problem.

More generally, since the five-dimensional version of the STU theory has Chern-Simons

terms in its Lagrangian, we expect a very large family of non-trivial bubbling — fuzzball-

like — solutions [29] to be within reach of our proposed formalism; see [30] for a recent

discussion on this point. Although we have taken a significant step forward in attacking
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this problem in this paper, some further technical developments are necessary before such

sought after geometries can be explicitly constructed.
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A Conventions

In this appendix we detail the conventions that we are using for the STU model.

A.1 The SO(4, 4) group and its subgroups

We adopt the conventions of [22, 31]. Thus we have the set of SO(4, 4) generators labelled by

HΛ, EΛ, FΛ, EqΛ , FqΛ , EpΛ , FpΛ (A.1)

for Λ = 0, 1, 2, 3. The subgroup relevant to time-like reductions is SO(2, 2) × SO(2, 2) ≈
SL(2)4; it is generated by

KΛ = EΛ − FΛ, KqΛ = EqΛ + FqΛ , KpΛ = EpΛ + FpΛ . (A.2)

The four commuting sets of SL(2) generators in standard basis are for example given by

h0 =
1

2

(
−Kq0 +Kp1 +Kp2 +Kp3

)
, (A.3a)

h1 =
1

2

(
+Kq0 −Kp1 +Kp2 +Kp3

)
, (A.3b)

h2 =
1

2

(
+Kq0 +Kp1 −Kp2 +Kp3

)
, (A.3c)

h3 =
1

2

(
+Kq0 +Kp1 +Kp2 −Kp3

)
, (A.3d)

e0 =
1

4

(
−K0 +K1 +K2 +K3 +Kq1 +Kq2 +Kq3 +Kp0

)
, (A.3e)

f0 =
1

4

(
+K0 −K1 −K2 −K3 +Kq1 +Kq2 +Kq3 +Kp0

)
, (A.3f)

e1 =
1

4

(
+K0 −K1 +K2 +K3 +Kq1 −Kq2 −Kq3 +Kp0

)
, (A.3g)

f1 =
1

4

(
−K0 −K1 −K2 −K3 +Kq1 −Kq2 −Kq3 +Kp0

)
, (A.3h)

e2 =
1

4

(
+K0 −+K1 −K2 +K3 −Kq1 +Kq2 −Kq3 +Kp0

)
, (A.3i)

f2 =
1

4

(
−K0 −K1 +K2 −K3 −Kq1 +Kq2 −Kq3 +Kp0

)
, (A.3j)

e3 =
1

4

(
+K0 +K1 +K2 −K3 −Kq1 −Kq2 −Kq3 +Kp0

)
, (A.3k)

f3 =
1

4

(
−K0 −K1 −K2 +K3 −Kq1 −Kq2 +Kq3 +Kp0

)
. (A.3l)
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We write the SO(4, 4) group element in Borel gauge as5

V = e−UH0 ·

 ∏
I=1,2,3

(
e−

1
2

log yIHIe−x
IEI
) · e−ζΛEqΛ−ζ̃ΛEpΛ · e−σE0 . (A.4)

Next, we will explain how the scalar fields appearing in this coset element are related to

the physical quantities of the STU model.

A.2 Four-dimensional metric and duality relations in D = 3

We parameterise the four-dimensional metric as

ds2
4 = −e2U (dt+ ω3)2 + e−2Uds2

3. (A.5)

The three-dimensional metric ds2
3 in turn is given by (2.7).

The D = 3 vector fields obtained by reduction from D = 4 are defined by

AΛ = ζΛ(dt+ ω3) +AΛ
3 , (A.6)

which also defines the scalars ζΛ. As for any reduction of an N = 2 supergravity theory,

the duality relations between vector and scalar fields in D = 3 are

dσ − 1

2

(
ζΛdζ̃Λ − ζ̃Λdζ

Λ
)

= −e4U ? dω3 (A.7)

and

−dζ̃Λ = e2U (ImN)ΛΣ ?
(
dAΣ

3 + ζΣdω3

)
+ (ReN)ΛΣdζ

Σ. (A.8)

The matrix NΛΣ is defined through the cubic prepotential F (X) = −X1X2X3

X0 via

NΛΣ = F̄ΛΣ + 2i
(ImF )ΛΞ(ImF )ΣΠX

ΞXΠ

(ImF )ΞΠXΞXΠ
, (A.9)

where subscripts FΛ denote derivatives of F with respect to XΛ. In the gauge X0 = 1 the

scalar fields are (for I = 1, 2, 3)

zI =
XI

X0
= XI = xI + iyI . (A.10)

In the present case these definitions imply (we lower the indices on xI for readability)

(ReN)ΛΣ =


−2x1x2x3 x2x3 x1x3 x1x2

x2x3 0 −x3 −x2

x1x3 −x3 0 −x1

x1x2 −x2 −x1 0

 , (A.11)

5Note that the normalisation of σ is changed compared to [31].
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and

(ImN)ΛΣ =


−x2

3y
2
1y

2
2−x2

1y
2
3y

2
2−x2

2y
2
1y

2
3−y2

1y
2
2y

2
3

y1y2y3

x1y2y3

y1

x2y1y3

y2

x3y1y2

y3
x1y2y3

y1
−y2y3

y1
0 0

x2y1y3

y2
0 −y1y3

y2
0

x3y1y2

y3
0 0 −y1y2

y3

 , (A.12)

with inverse

((ImN)−1)ΛΣ =
1

y1y2y3


−1 −x1 −x2 −x3

−x1 −x2
1 − y2

1 −x1x2 −x1x3

−x2 −x1x2 −x2
2 − y2

2 −x2x3

−x3 −x1x3 −x2x3 −x2
3 − y2

3

 . (A.13)

B Two-dimensional fields for the four-charge black hole

In this appendix we show how to obtain the four-charge solution of Cvetič–Youm from V(t)

and V that were constructed in section 4.

The first thing to do is to change coordinates on the two-dimensional base. This is

done by parameterizing the pole values of the spectral parameter through

t1 =
(u− c)(1 + v)√
(u2 − c2)(1− v2)

, (B.1a)

t2 =
(u+ c)(1 + v)√
(u2 − c2)(1− v2)

. (B.1b)

As a next step we change from the prolate spherical coordinates (u, v) to the Boyer-

Lindquist coordinates (r, x) defined by

u = r −m, v = x. (B.2)

The constants ζ and c that appear in the parameterisations of the pole and residue vectors

are conveniently given in terms of m and a as

ζ =
c−m
a

, c =
√
m2 − a2. (B.3)

Now we introduce the abbreviations

∆ =
r2 + a2x2 − 2mr

r2 + a2x2
, σKerr = − 2max

r2 + a2x2
. (B.4)

We again stress the factor of 2 for σ for Kerr compared to [31]. Using the conformal

factor (4.15), the three-dimensional base metric is here found to be

ds2
3 =

r2 − 2mr + a2x2

r2 − 2mr + a2
dr2 + (r2 − 2mr + a2x2)

dx2

1− x2
+ (1− x2)(r2 − 2mr + a2)dϕ2.

(B.5)
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We have fixed the normalization factor in (4.15) to be kBM = −4c2 (1+ζ2)2

(1−ζ2)4 = − m2a4

c2(m−c)2 by

the requirement of asymptotic flatness.

The presentation of the rest of the fields below is closely related to that of [17]. The

scalar fields xI of (A.10) are given by

x1 =
(c01s23 − s01c23)σKerr

h2h3 + s2
23σ

2
Kerr

, (B.6a)

x2 =
(c02s13 − s02c13)σKerr

h1h3 + s2
13σ

2
Kerr

, (B.6b)

x3 =
(c03s12 − s03c12)σKerr

h1h2 + s2
12σ

2
Kerr

. (B.6c)

Introducing in addition the shorthand

hi = (c2
i − s2

i∆) (B.7a)

ci1...in = cosh δi1 . . . cosh δin (B.7b)

si1...in = sinh δi1 . . . sinh δin (B.7c)

the scalar fields yI of (A.10) are found to be

y1 =
W

h2h3 + s2
23σ

2
Kerr

(B.8a)

y2 =
W

h1h3 + s2
13σ

2
Kerr

(B.8b)

y3 =
W

h1h2 + s2
12σ

2
Kerr

, (B.8c)

where

W 2 = h0h1h2h3 + σ2
Kerr

(
2c0123s0123 − (s2

012 + s2
013 + s2

023 + s2
123 + 4s2

0123)∆

+ 2s2
0123∆2

)
+ s2

0123σ
4
Kerr. (B.9)

In terms of (B.9) and (B.4) the dilaton of the D = 4 to D = 3 reduction is given by

e2U =
∆

W
. (B.10)

The dual of the Kaluza-Klein vector of the reduction reads

σ =
σKerr

2W 2

{
c0123

[
2 + (1−∆)

(
3∑
i=0

s2
i

)]
+ s0123

[(
2 +

3∑
i=0

s2
i

)
(∆2 −∆ + σ2

Kerr)− 2∆

]}
.

(B.11)

The scalars coming from the vector multiplets are

ζ̃0 =
σKerr

W 2

[
h0(s0c123 − c0s123∆) + s0c0s0123σ

2
Kerr

]
, (B.12a)

ζ1 =
σKerr

W 2

[
h1(s1c023 − c1s023∆) + s1c1s0123σ

2
Kerr

]
, (B.12b)
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ζ2 =
σKerr

W 2

[
h2(s2c013 − c2s013∆) + s2c2s0123σ

2
Kerr

]
, (B.12c)

ζ3 =
σKerr

W 2

[
h3(s3c012 − c3s012∆) + s3c3s0123σ

2
Kerr

]
, (B.12d)

and

ζ0 = +

{
c0

s0
− 1

s0W 2
(c0h1h2h3 + (s0c123 − c0s123∆)s123σ

2
Kerr)

}
, (B.13a)

ζ̃1 = −
{
c1

s1
− 1

s1W 2
(c1h0h2h3 + (s1c023 − c1s023∆)s023σ

2
Kerr)

}
, (B.13b)

ζ̃2 = −
{
c2

s2
− 1

s2W 2
(c2h0h1h3 + (s2c013 − c2s013∆)s013σ

2
Kerr)

}
, (B.13c)

ζ̃3 = −
{
c3

s3
− 1

s3W 2
(c3h0h1h2 + (s3c012 − c3s012∆)s012σ

2
Kerr)

}
. (B.13d)

Upon substituting the expressions for σKerr and ∆ and after performing the dualizations

using (A.7) and (A.8), the above expressions take the following form

x1 = 2max
s01c23 − c01s23

r2r3 + a2x2
, (B.14a)

x2 = 2max
s02c13 − c02s13

r1r3 + a2x2
, (B.14b)

x3 = 2max
s03c12 − c03s12

r1r2 + a2x2
, (B.14c)

where ri = r + 2ms2
i , and

y1 =
W̃

r2r3 + a2x2
, (B.15a)

y2 =
W̃

r1r3 + a2x2
, (B.15b)

y3 =
W̃

r1r2 + a2x2
. (B.15c)

with W̃ 2 := (r2 + a2x2)2W 2 given below in (B.23). The scalars appearing in (A.6) are

ζ0 =
2mc0s0(r1r2r3 + ra2x2) + 4a2m2x2e0

W̃ 2
, (B.16a)

ζ1 = −2max
(s1c023 − c1s023)(rr1 + a2x2) + 2mc1s023r1

W̃ 2
, (B.16b)

ζ2 = −2max
(s2c013 − c2s013)(rr2 + a2x2) + 2mc2s013r2

W̃ 2
, (B.16c)

ζ3 = −2max
(s3c012 − c3s012)(rr3 + a2x2) + 2mc3s012r3

W̃ 2
, (B.16d)

where

e0 = (c2
0 + s2

0)c123s123 − c0s0(s2
12 + s2

23 + s2
13 + 2s2

123). (B.17)
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The three dimensional one-forms read with (A.7) and (A.8)

ω3 = 2am(1− x2)
(c0123r − (r − 2m)s0123)

r2 − 2mr + a2x2
dϕ, (B.18)

and

A0
3 = −2am(1− x2)

(s0c123r − (r − 2m)c0s123)

r2 − 2mr + a2x2
dϕ, (B.19)

A1
3 = 2ms1c1x

r2 + a2 − 2mr

r2 − 2mr + a2x2
dϕ, (B.20)

A2
3 = 2ms2c2x

r2 + a2 − 2mr

r2 − 2mr + a2x2
dϕ, (B.21)

A3
3 = 2ms3c3x

r2 + a2 − 2mr

r2 − 2mr + a2x2
dϕ. (B.22)

Finally,

W̃ 2 = r0r1r2r3 + a4x4 + a2x2[2r2 + 2mr(s2
0 + s2

1 + s2
2 + s2

3)

+8m2c0123s0123 − 4m2(s2
012 + s2

123 + s2
023s

2
013 + 2s2

0123)]. (B.23)

Using these expressions the four-dimensional metric and the various matter fields can be

readily obtained by substitution into (A.5) and (A.6). In these expressions a is the bare

rotation parameter and m is the bare mass parameter.

Open Access. This article is distributed under the terms of the Creative Commons
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[17] Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in

four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246

[hep-th/0411045] [INSPIRE].
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