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Abstract

We study the second quantized version of the twisted twining genera of general-

ized Mathieu moonshine, and verify that they give rise to Siegel modular forms

with infinite product representations. Most of these forms are expected to have an

interpretation as twisted partition functions counting 1/4 BPS dyons in type II su-

perstring theory on K3×T 2 or in heterotic CHL-models. We show that all these

Siegel modular forms, independently of their possible physical interpretation, satisfy

an “S-duality” transformation and a “wall-crossing formula”. The latter reproduces

all the eta-products of an older version of generalized Mathieu moonshine proposed

by Mason in the ’90s. Surprisingly, some of the Siegel modular forms we find coincide

with the multiplicative (Borcherds) lifts of Jacobi forms in umbral moonshine.
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1 Introduction and Summary

Mathieu moonshine [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and its generalized

version [17, 18] pertain to the association of a class of weak Jacobi forms φg,h(τ, z), called

twisted twining genera, to each commuting pair of elements (g, h) in M24. It has been

verified that these functions satisfy all the requirements of Norton’s generalized moonshine

conjectures [19]; in particular they decompose into (projective) graded characters of the

centralizer of g in M24. Many of these Jacobi forms arise as supersymmetric indices in

certain non-linear sigma models with target space K3; in particular, φe,e is the K3 elliptic

genus. This obvious idea that M24 might be the symmetry group of some of these non-

linear sigma models has been ruled out quite quickly [8, 10, 11] and the most recent works

on the subject [20, 21, 22] seek for an explanation of Mathieu moonshine in the framework
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of K3 compactifications of full-fledged superstring theory rather than within conformal

field theory.

In this paper we adopt a similar viewpoint, and construct the second-quantized∗ ver-

sion Ψg,h of the twisted twining genera. From a mathematical perspective, the functions

Ψg,h are obtained from the Jacobi forms φg,h via a certain twisted equivariant version

of Borcherds multiplicative lift. Physically, many of these functions can be interpreted

as twisted supersymmetric indices counting 1/4 BPS states in type II superstring theory

compactified on K3×T 2 and in CHL models [23, 24, 25, 26]. A similar construction for the

twining genera of the ordinary Mathieu moonshine was first proposed by Cheng [2].

We show that these multiplicative lifts are Siegel modular forms, generalizing results

for the case (g, h) = (e, h) [2, 27, 28]. In some cases we can identify Ψg,h with known

Siegel modular forms which have previously appeared in the context of umbral moonshine

[29]. Furthermore, they satisfy a “wall-crossing formula”, which reproduces all of Mason’s

generalized eta-products ηg,h for M24 [30, 31, 32, 33]. This therefore establishes the link

between the two existing versions of generalized moonshine for M24.

1.1 Background

The first hint of Mathieu moonshine was found by Eguchi, Ooguri and Tachikawa [1], who

noticed a connection between the the elliptic genus of K3 and the largest Mathieu group

M24. The elliptic genus of K3 φK3(τ, z) is the unique (up to normalization) weak Jacobi

form of weight 0 and index 1 and it can be defined as a supersymmetric index non-linear

sigma models with target space K3. It therefore is natural to consider a decomposition

of φK3(τ, z) into characters of the N = 4 superconformal algebra. The authors of [1]

noticed that the coefficients in this decomposition are sums of dimensions of irreducible

representations of M24. This observation led to the Mathieu moonshine conjecture: each

conjugacy class [g] of M24 there should exist a weak Jacobi form φg : H×C→ C such that

the Fourier coefficients of φg are the characters of these M24-representations evaluated at g.

In particular, for the identity element e of M24, φe(τ, z) coincides with the elliptic genus of

K3. In subsequent work [2, 3, 4, 5], all the functions φg, dubbed “twining elliptic genera”,

were found and substantial evidence was given for the validity of Mathieu moonshine,

namely the existence of a graded M24-module such that the φg’s are its graded characters.

This conjecture has now been proven rigorously by Gannon [12].

The story outlined above is of course in close analogy with Monstrous moonshine [34,

∗The terminology “second-quantized” originates in the work of Dijkgraaf, Moore, Verlinde, Verlinde

[49].
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35, 36] which assigns modular functions Tg : H → C (McKay-Thompson series) with

each conjugacy class [g] of the Fischer-Griess Monster group M, the largest of the finite

sporadic simple groups. After the initial conjecture [34], Norton proposed his generalized

Monstrous moonshine [19], which assigns modular functions f(g, h; τ) to each commuting

pair g, h ∈ M. For fixed g ∈ M, these generalized moonshine functions should then

have (possibly rational) Fourier coefficients that correspond to projective characters of the

centralizer CM(g) = {k ∈ M | gk = kg}. Dixon-Ginsparg-Harvey subsequently suggested

that Norton’s functions f(g, h; τ) naturally arise in string theory as the path integral on

a torus C/(Z + τZ) with boundary conditions twisted by (g, h) along the (a, b)-cycles.

Although the full generalized Monstrous moonshine conjecture is still open, considerable

progress has been made toward proving it [37, 38, 39, 40, 41, 42, 43].

In earlier work [17, 18], we gave substantial evidence that Norton’s generalization also

holds, with small modifications, for Mathieu moonshine. We found that for each com-

muting pair g, h ∈ M24 there exists a weak Jacobi form φg,h(τ, z), dubbed twisted twining

genus, whose Fourier coefficients are characters of a projective representation of CM24(g).

Inspired by orbifolds of holomorphic CFT’s [44, 45, 46, 47], we further showed that the

modular properties of the functions φg,h are controlled by a cohomology class [α] in the

third cohomology group H3(M24, U(1)), as was anticipated in [48] (see also [12]).

A different kind of generalized moonshine for M24 had in fact already been established

in old work by Mason [30, 32, 33]. Mason associated to each commuting pair g, h in M24

a so called multiplicative eta product ηg,h(τ), based on the action of M24 on 24 chiral free

bosons. This leads to the natural question: Is there a relation between the recently dis-

covered Mathieu moonshine, pertaining to weak Jacobi forms, and Mason’s M24-moonshine

involving eta-products?

For the special case of commuting pairs (g, h) = (e, h), where e is the identity element

of M24, this was given an affirmative answer by Cheng in [2]. Cheng’s idea was to generalize

the known fact that the elliptic genus of K3, φe(τ, z), exhibits an exponential Borcherds

lift to the unique weight 10 Siegel modular form for Sp(4;Z), referred to as the “Igusa cusp

form” and commonly denoted by Φ10. She proposed that to all twining genera φh(τ, z) one

should have a similar lift of the form

Φh(σ, τ, z) = pqy
∏

(n,m,`)>0

exp

[
−
∞∑
k=1

chk(4mn− `2)

k
(pmqny`)k

]
, (1.1)

where q = e2πiτ , y = e2πiz, p = e2πiσ, and cg denotes the Fourier coefficients of φg(τ, z):

φg(τ, z) =
∑

m≥0,`∈Z

cg(m, `)q
my`. (1.2)
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It was conjectured in [27] that Φh is automorphic with respect to a subgroup Γ
(2)
h of

Sp(4;Z). This was then proven by Raum [28] for most of the conjugacy classes [h] ⊂M24.

A central point for us is that Φh(σ, τ, z) has a double pole at z = 0 and in the limit one

finds

lim
z→0

Φh(σ, τ, z)

(2πiz)2
= ηh(τ) ηh(σ), (1.3)

where ηh = ηe,h are the eta-products of Mason’s M24-moonshine [30]. Hence, the process

of taking the multiplicative lift of φh followed by studying the limiting behavior as z → 0

provides a link between the two moonshines.

1.2 Summary of results

In this paper we answer the question above in the general case of commuting pairs (g, h)

in M24. In other words, we establish a link between the generalized Mathieu moonshine

proposed in [17, 18] and the generalized eta-products of Mason. To describe our results, we

recall the notion of “second quantized elliptic genus” as defined in [49]. Suppose φX(τ, z) is

the elliptic genus of some Calabi-Yau manifold X. Then one defines the second quantized

genus ΨX as the generating function of the elliptic genus φSnX for the n:th symmetric

product SnX: ΨX =
∑

n≥0 p
nφSnX . In [49], the following remarkable formula is proved

ΨX(σ, τ, z) = exp
[ ∞∑
n=1

pnTnφX(τ, z)
]
, (1.4)

where p = e2πiσ, and Tn is the standard Hecke operator acting on Jacobi forms. Sub-

sequently, Gritsenko showed [50] that by multiplying the inverse Ψ−1
X by a certain factor

AX(σ, τ, z) (the “Hodge anomaly”) one obtains a Siegel modular form

ΦX(σ, τ, z) =
AX(σ, τ, z)

ΨX(σ, τ, z)
, (1.5)

of weight cX(0, 0)/2 for a subgroup Γ
(2)
X ⊂ Sp(4;Z), where cX(m,n) are the Fourier coeffi-

cients of φX .

Inspired by these results, we define for each commuting pair (g, h) in M24 the associated

second quantized twisted twining genus Ψg,h via a generalization of the formula (1.4):

Ψg,h(σ, τ, z) = exp
[ ∞∑
n=1

pnT αn φg,h(τ, z)
]
, (1.6)

where T αn is now a certain twisted equivariant Hecke operator (for the precise definition see

section (3.2)) which reduces to the Tn in (1.4) in the special case (g, h) = (e, e). Notice that,
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when g = e, the presence of a non trivial 3-cocycle α governing the modular properties of

the twisted-twining genera can be safely ignored (see [17] and section 2.2). This leads to

the simpler definition of the multiplicative lift adopted in [27]. However, for the general

case considered in this paper, the technical subtleties associated with non-trivial 3-cocycles

cannot be avoided.

We show that upon multiplying the second quantized twisted twining genera by a

correction Ag,h(σ, τ, z) (see eq. (3.61) for the explicit form of Ag,h) we obtain a class of

Siegel modular forms

Φg,h(σ, τ, z) =
Ag,h(σ, τ, z)

Ψg,h(σ, τ, z)
, (1.7)

for certain discrete subgroups Γ
(2)
g,h ⊂ Sp(4;R), containing the invariance subgroups Γg,h ⊂

SL(2,Z) of the twisted twining genera φg,h. The most noticeable new automorphic property

is the ‘S-duality’ transformation

Φg,h(σ, τ, z) = Φg,h′(
τ

Nλ
,Nλσ, z) , (1.8)

where N is the order of g and λ is the length of the shortest cycle of g in the 24-dimensional

permutation representation. Notice that h, h′ ∈ CM24(g) are not necessarily in the same

conjugacy class. This is related with the ‘relabeling’ phenomenon described in [17]. In

particular, as described in section 5.1.1, when g is an element of an M23 subgroup, then

h′ is the symmetry induced by h in the g-orbifold theory. We proved (1.8) for at least

one generator g in each group 〈g, h〉, but we conjecture that similar relations hold for all

commuting pairs g, h.

In section 4 we prove the following “wall-crossing formula”

lim
z→0

Φg,h(σ, τ, z)

(2πiz)2
= ηg,h(τ)ηg,h′(Nλσ), (1.9)

which generalizes (1.3). This shows that the limit z → 0 of Φg,h(σ, τ, z) reproduces all of

Mason’s generalized eta-products ηg,h [32, 31], thus providing the desired link between the

two moonshines. See figure 1.2 for a pictorial overview of the relation between the various

modular objects.

When (g, h) lies in the conjugacy classes (2A, 2A), (3A, 3A) and (4B, 4B) we can identify

Φg,h with known Siegel modular forms:

(2A, 2A) : Φg,h = (∆2)2 = Φ(3),

(3A, 3A) : Φg,h = (∆1)2 = Φ(4),

(4B, 4B) : Φg,h = (∆1/2)2 = Φ(5), (1.10)
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where the first equality identifies them with the squares of the weight k Siegel modular

forms ∆k obtained by Gritsenko and Nikulin [51], and the second equality with the um-

bral Siegel modular forms Φ(`) of lambency ` = 3, 4, 5 [29]. Thus we obtain a surprising

connection between generalized Mathieu moonshine and umbral moonshine, which clearly

deserves further investigation.†

Figure 1: Pictorial description of the relation between generalized Mathieu moonshine, in-

volving the twisted twining genera φg,h, and Mason’s generalized eta-products ηg,h. Starting

from φg,h one constructs a second-quantized twisted twining genus Ψg,h, whose reciprocal

becomes a Siegel modular form Φg,h after multiplying by a factor Ag,h. This is the content

of the multiplicative (automorphic) lift indicated in the leftmost arrow. At the level of the

Siegel modular form Φg,h one then takes the limit z → 0 which produces the generalized

eta-products ηg,h(τ)ηg,h′(σ). Here, h′ is possibly in a different class from h, as a consequence

of the ‘relabeling phenomenon’ described in [17]. See section 4.2 for more details.

Finally, we would like to comment further on the possible physical interpretation of

the functions Φg,h. For Φe,e = Φ10, it is of course well-known that the reciprocal 1/Φ10

is the generating function of 1/4-BPS dyons in heterotic string theory on T 6 [52], and

†We thank Miranda Cheng for a discussion that pointed us in this direction.
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in this case the decomposition (1.3) becomes 1/Φ10 ∼ η(τ)−24η(ρ)−24, where each factor

on the right hand side is identified with the partition function of 1/2 BPS-states. More

generally, 1/Φh should correspond to the partition function of “twisted dyons”, and the

limit (1.3) reflects the wall-crossing phenomenon when a 1/4 BPS-state splits into two 1/2

BPS-states. Similarly we expect that in general 1/Φg,h should be the generating function of

certain “twisted dyons” in CHL orbifolds T 6/ZN of heterotic string theory [23, 24, 25, 26].

In particular, this should be true whenever g, h can be interpreted as a pair of commuting

symmetries of some K3 surface and the orbifold by g is consistent. Given the results

of [8], the first condition amounts to the group 〈g, h〉 having at least four orbits in the

standard 24-dimensional permutation representation of M24, while the second condition

simply requires g to belong to some M23 subgroup of M24. From the tables in appendix E,

it is easy to check that the first condition is satisfied by all 34 groups except the groups

numbered 22, 30, 31, 32. As for the remaining groups, the second condition is satisfied by

at least one generator g, except for groups 4, 5, 6, 13, 14.

1.3 Outline

Our paper is organized as follows. In section 2 we recall some relevant facts about holomor-

phic orbifolds, focussing on properties of the associated twisted twinining partition func-

tions. We explain the important role played by the third cohomology group H3(G,U(1)),

where G is a finite automorphism group of the holomorphic CFT. In particular, this coho-

mology group controls the modular properties of the twisted twining partition functions.

After discussing these properties in a general context we restrict to the relevant case of

G = M24 for which we recall the main results of [17, 18]. Section 3 introduces some aspects

of symmetric products of holomorphic CFT’s and the connection with Hecke operators. In

section 3.2 we then introduce the key notion of twisted equivariant Hecke operators that

will play a crucial role in what follows. In section 3.3 we use the twisted equivariant Hecke

operators to define second-quantized twisted twining genera Ψg,h and we compute their

infinite product expansions. The connection with Mason’s eta-products is then made in

section 4 by evaluating Ψg,h in the limit z → 0. The modular properties of the second-

quantized twisted twining genera are analyzed in section 5.2. Finally, in the concluding

section 6 we summarize our results and give some ideas for future research. Various back-

ground material, technical calculations and tables have been relegated to the appendices.
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2 Twisted-twining partition functions

In this section we introduce and analyze twisted twining partition functions associated

with the orbifold of a conformal field theory (CFT) C by a finite group G of symmetries.

When C is a bosonic CFT, these are modular functions Zg,h(τ) on the upper-half plane

H, associated with each commuting pair g, h ∈ G. For superconformal field theories the

analogous functions are the twisted twining genera φg,h(τ, z), which are Jacobi forms on

H×C. Our main interest is the case when C is a putative N = (4, 4) superconformal field

theory on a K3-surface with G = M24, but we shall keep the discussion general whenever

possible.

2.1 Definition and basic properties

Consider a two-dimensional conformal field theory C and let G be its symmetry group, i.e.

the group of linear automorphisms of its space of states H that preserves the OPE of the

corresponding fields and fixes (at least) the left- and right-moving Virasoro algebra. Given

such data, one can construct a new conformal field theory by considering the orbifold of C
by (a subgroup of) G. The first step in the orbifold construction consists in introducing,

for each g ∈ G, the g-twisted fields Φg, generating a g-twisted space of states Hg. The

defining property of the g-twisted fields is that every field of C has a non-trivial monodromy

g when it is moved along a (sufficiently small) closed path encircling the twisted field Φg.

The orbifold theory is defined by including all twisted sectors in the spectrum and then

restricting to the G-invariant part. The orbifold theory is a consistent CFT provided

certain conditions (in particular, the level-matching condition), assuring the locality of the

OPE of twisted fields, are satisfied.

Even if the consistency conditions for the orbifold theory are not satisfied, it makes

sense to consider the g-twisted sector Hg as a module over the Virasoro algebra (or more

generally, over the G-invariant part of the chiral algebra of C). Let us consider the case

where C is a holomorphic CFT, so that it coincides with its chiral algebra, which is a

self-dual vertex operator algebra. Then, under suitable assumptions, there exists a unique

irreducible g-twisted sector Hg for each g ∈ G [38]. The action of a generic element h ∈ G
on C induces a linear map

ρg(h) : Hg → Hh−1gh , (2.1)

from the g-twisted to the h−1gh-twisted sector. In particular, when h commutes with g, it

10



defines an endomorphism of Hg, so that Hg carries a representation ρg of the centralizer

CG(g) := {h ∈ G : gh = hg} , (2.2)

of g in G. It should be noticed that the representation ρg of CG(g) is in general only

projective. This fact will play a crucial role in what follows.

Let us define a g-twisted h-twining partition function on the upper half-plane H+ by

Zg,h(τ) = TrHg(ρg(h)qL0− c
24 ) , q := e2πiτ , g, h ∈ G, gh = hg . (2.3)

When g and h are the identity, this reduces to the usual torus partition function for C. On

general physical grounds, one expects the twisted-twining partition function Zg,h to be given

by a path-integral on an elliptic curve Eτ ∼= C/(Z+ τZ) with modular parameter τ , where

the fields have monodromies g and h around the generators −1, τ of the first homology

group H1(Eτ ,Z) ∼= Z+ τZ. Furthermore, each twisted-twining partition function Zg,h is a

holomorphic function of the modular parameter τ and is expected to be a modular function

under the subgroup Γg,h ⊂ SL(2,Z), that preserves the monodromies of the fields around

the non-trivial cycles of the torus.

Analogous properties are expected for the twisted-twining genera in superconformal

field theories with an extended (at least N = (2, 2)) superconformal algebra and a group

G of symmetries preserving such an algebra. The twisted-twining genera are defined as

traces

φg,h(τ, z) = TrHRRg (hqL0− c
24 q̄L̃0− c̃

24 (−1)F+F̃yJ0) , q := e2πiτ , y := e2πiz, (2.4)

over the Ramond-Ramond (RR) g-twisted sector HRR
g . Here J0 is the zero mode of a u(1)

current algebra contained in the left N = 2 superconformal algebra (normalized so that

the charges are integral) and (−1)F+F̃ is the total fermion number. This trace is computed

by a path-integral with the same g- and h-twisted periodicity conditions for both bosonic

and fermionic fields, with the insertion of an operator yJ0 . Although these conformal field

theories are not chiral, the twisted-twining partition functions are holomorphic with respect

to both τ and z and are expected to be Jacobi forms of weight 0 and index c
6

under the

same subgroup Γg,h ⊂ SL(2,Z) as above.

2.2 Modular properties and the α-twist

We mentioned above that for a holomorphic CFT C with automorphism group G, the

twisted sectors Hg, carry projective representations ρg of the centralizer CG(g). This

11



implies that ρg satisfies

ρ(h)gρg(h
′) = cg(h, h

′)ρg(hh
′), h, h′ ∈ CG(g) , (2.5)

where cg(h, h
′) is a phase, or, more precisely, a 2-cocycle representing a class [cg] in

H2(CG(g), U(1)). As a consequence, the twisted twining partition function Zg,h is not

an honest class function on G, but rather satisfies

Zg,h(τ) =
cg(h, k)

cg(k, k−1hk)
Zk−1gk,k−1hk(τ), (2.6)

which, as we shall see, puts strong cohomological constraints on Zg,h . The same formula

also applies to the twisted twining elliptic genera φg,h.

The role of the cohomology group H2(CG(g), U(1)) can in fact be derived from a more

fundamental property of C, namely that consistent orbifolds of a holomorphic CFT are

classified by the third cohomology H3(G,U(1)). Concretely, this implies there exists a

U(1)-valued 3-cocycle α(g, h, k), with (g, h, k) ∈ G × G × G, representing a class [α] in

H3(G,U(1)), which in turn determines the class [cg] ∈ H2(CG(g), U(1)) via the formula

[46, 47]

cg(x, y) :=
α(g, x, y)α(x, y, (xy)−1g(xy))

α(x, x−1gx, y)
, g, x, y ∈ G . (2.7)

Thus, α characterizes the projective representations ρg. The 3-cocycle α is normalized, i.e.

α(g, h, k) = 1 whenever at least one of its arguments g, h, k is the identity. The cohomology

group H3(G,U(1)) also controls the modular properties of the twisted twining partition

functions Zg,h, in the sense that under a modular transformation ( a bc d ) ∈ SL(2,Z) they

satisfy

εg,h( a bc d )Zgdh−c,g−bha

(
aτ + b

cτ + d

)
= Zgahc,gbhd(τ), (2.8)

where εg,h( a bc d ) is a U(1)-valued multiplier system‡ for SL(2,Z) that can be explicitly

constructed from the 3-cocycle α(g, h, k) (see appendix B). In [18, 17] these properties

were used to constrain and determine all of the twisted twining elliptic genera φg,h for g, h

a commuting pair in M24.

Given the rather complicated modular action in (2.8) it turns out to be very convenient

to introduce a certain slash operator which combines the action of SL(2,Z) on (τ ; g, h) with

the conjugation by G in (2.6). In addition this must incorporate the multiplier induced by

the cocycle twist. To define the slash operator we must first define the following twisted

modular action on commuting pairs of elements (g, h) in G:

(γ, k) : (g, h) 7→ (kgk−1, khk−1)γ−1 = (kgdh−ck−1, kg−bhak−1) . (2.9)

‡This was called χg,h in [18].
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Here, (γ, k) =
((

a b
c d

)
, k
)
∈ SL(2,Z)×G.

When acting on twisted twining partition functions Zg,h the α-twisted equivariant slash

operator is defined as follows

Zg,h(τ)|α(γ, k) := εg,h(γ, k)Z(γ,k)·(g,h)(γ · τ) , (γ, k) ∈ SL(2,Z)×G , (2.10)

where εg,h(γ, k) ∈ U(1) is a phase which depends on the choice of 3-cocycle α representing

a class [α] ∈ H3(G,U(1)) (see appendix B.2 for more details). When k = e this phase

reduces to the phase εg,h(γ, e) = εg,h(γ) in (2.8), while for γ = 1 we have that εg,h(1, k) is

identified with the phase in (2.6).§

The class [α] ∈ H3(G,U(1)) is part of the defining data of a holomorphic CFT C with

finite automorphism group G. In general the twisted-twining partition functions Zg,h(τ)

associated with C are invariant under the α-twisted slash operator

Zg,h(τ)|α(γ, k) = Zg,h(τ). (2.11)

Different choices of representative α in the class [α] are related to each other by rescalings

of Zg,h(τ) by overall (g, h)-dependent phases. More precisely, if two normalized 3-cocycles

α and α′ differ by a 3-coboundary ∂β, i.e.

α(g1, g2, g3) = α′(g1, g2, g3)
β(g1, g2g3)β(g2, g3)

β(g1g2, g3)β(g1, g2)
, (2.12)

for some β : G×G→ U(1), with β(e, g) = β(g, e) = 1 for all g ∈ G, then the corresponding

twisted-twining partition functions Zg,h and Z ′g,h are related by

Z ′g,h(τ, z) =
β(g, h)

β(h, g)
Zg,h(τ, z) . (2.13)

We also define the α-twisted slash operators on the twisted twining genera φg,h by the

natural generalization of (2.10) to Jacobi forms of weight 0 and index 1:

φg,h(τ, z)|α
(
γ, k
)

:= εg,h(γ, k)e−
2πimcz2

cτ+d φk gdh−c k−1, k g−bha k−1(γ · τ, z

cτ + d
). (2.14)

2.3 (Generalized) Mathieu moonshine

The elliptic genus of K3 is defined in physics as a refined partition function of certain

conformal field theories with N = (4, 4) superconformal algebra at central charge c = 6,

namely non-linear sigma models with target space K3. The only states contributing to this

§This phase was called ξg,h in [18].
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partition function are the Ramond-Ramond right-moving ground states, i.e. with L̄0− c̄
24

=

0. Similarly, the properties of the twining genera in the Mathieu moonshine conjecture are

the ones expected by ‘twining’ this refined partition function by some symmetry of the

model that preserves the N = (4, 4) algebra. The connection between non-linear sigma

models on K3 and Mathieu moonshine is however unclear [8, 11]

It is useful to formulate the Mathieu moonshine conjecture (now a theorem, thanks to

[12]) in terms of an abstract representation H of the (holomorphic) N = 4 superconformal

algebra at central charge c = 6, which is also a module for the Mathieu group M24.

Heuristically, H can be interpreted as the spectrum of R-R right-moving ground states in

a generic K3 model, although the meaning of the M24 action is not clear from this point of

view. The module H also admits a Z2-grading by a ‘right-moving fermion number’ (−1)F̄ ,

which is preserved both by the N = 4 superconformal algebra and by the action of M24.

The precise statement of the conjecture is as follows.

Theorem (Mathieu moonshine). There exists unitary Ramond representationH of the

N = 4 superconformal algebra at central charge c = 6, graded by the ‘right-moving fermion

number’ (−1)F̄ ∈ Z2, that carries a non-trivial action of the Mathieu M24 commuting with

both the N = 4 algebra and the Z2-grading. Furthermore, for each g ∈ M24, the twining

genus

φg(τ, z) := TrH(gqL0− c
24yJ

3
0 (−1)F+F̄ ) , g ∈M24 (2.15)

is a weak Jacobi form of weight 0 and index 1 (possibly with multiplier) under Γ0(N),

where N is the order of g. In particular, φe is the elliptic genus of K3.

A list of Jacobi forms φg, g ∈ M24, satisfying the expected modular properties was

proposed in [2]–[5] and the existence of the corresponding module H was proved in [12].

The module H is not uniquely determined by this description, since one can always adjoin

to H a pair of isomorphic representations of the N = 4 algebra and M24 with opposite

right-moving fermion number, so that they do not contribute to any twisted twining genera.

However, there is a ‘minimal’ module that contains no such pair of representations and this

is uniquely determined by the twining genera φg. Remarkably, in this minimal module,

the only N = 4 representations with negative (−1)F̄ are the BPS ones. It is believed that

the module H and the Jacobi forms φg of [2]–[5] are the unique solutions of the Mathieu

moonshine conjecture, although this has not been proved yet.

In the same spirit, generalized Mathieu moonshine can be expressed in terms of the

existence of twisted modules.

Conjecture (Generalized Mathieu moonshine). For each g ∈M24, there exists a Z2-

graded unitary Ramond representation Hg of the N = 4 algebra at central charge c = 6,
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that carries a projective representation ρg : CM24(g) → GL(Hg) of the centralizer of g in

M24, with group law

ρg(h)ρg(k) = cg(h, k)ρg(hk) , h, k ∈ CM24(g) , (2.16)

where cg(h, k) is defined by (2.7) in terms of a normalized 3-cocyle α representing a prim-

itive class in H3(M24, U(1)) ∼= Z12. The operators ρg(h) commute with the N = 4 algebra

and with the right-moving fermion number (−1)F̄ , and we have

ρg(g) = e2πi(L0− c
24

) . (2.17)

Furthermore, for each pair of commuting elements g, h ∈M24, the function

φg,h(τ, z) := TrHg(ρg(h)qL0− c
24yJ

3
0 (−1)F+F̄ ) , (2.18)

satisfies the following properties:

(A) For g = e, where e is the identity element of M24, the functions φe,h coincide with

the twining genera φh constructed in [2]–[5]. In particular, φe,e is the elliptic genus

of K3.

(B) Elliptic properties:

φg,h(τ, z + `τ + `′) = e−2πi(`2τ+2`z) φg,h(τ, z) `, `′ ∈ Z . (2.19)

(C) Invariance under the α-twisted slash operator (see eq.(2.14))

φg,h(τ, z)|α(γ, k) = φg,h(τ, z) , (γ, k) ∈ SL(2,Z)×M24 . (2.20)

In particular, each φg,h is an even weak Jacobi form of weight 0 and index 1 under a

group Γg,h ⊆ PSL(2,Z), with multiplier χg,h depending on α.

These conditions were presented in [17] where all the functions φg,h were explicitly

found, and strong numerical evidence was given that they decompose into projective char-

acters of CM24(g) with respect to the N = 4 algebra. It was also proven in [17] that there

exists a unique cohomology class [α] ∈ H3(M24, U(1)) for which (A)-(C) can be satisfied

and that, for each choice of a normalized representative α, the functions φg,h satisfying

(A)-(C) are uniquely determined. If two normalized 3-cocycles α and α′ differ by a 3-

coboundary ∂β, as in (2.12), then the corresponding twisted-twining genera φg,h and φ′g,h
are related as in (2.13)

φ′g,h(τ, z) =
β(g, h)

β(h, g)
φg,h(τ, z) . (2.21)
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The explicit expressions for φg,h derived in [17] are collected in a table in appendix E.

Although the existence of the modules Hg matching (2.18) is not proven yet for g different

from the identity, strong evidence in this direction has been given [17]. In the rest of

the paper we will assume that the conjecture holds. As in the ordinary moonshine case,

one can choose minimal modules Hg, such that the only states with negative (−1)F̄ are

contained in irreducible BPS representations of N = 4. In fact, the results of [17] suggest

that such states only appear in the untwisted sector Hg=e.

2.4 Geometric perspective

Before we close this section we shall offer a more geometric perspective on the twisted

twining genera which will be useful later on. In [53], Ganter showed that the natural home

for the Norton series f(g, h; τ) [19] is the equivariant elliptic cohomology developed in [54].

We shall here give a short review of Ganter’s perspective, adapted to the case of Jacobi

forms on H+ × C, as opposed to modular forms on H+.

Let P be the set of pairs of commuting elements of M24

P := {(g, h) ∈M24 | gh = hg} , (2.22)

and P̄ the set of conjugacy classes of such pairs, i.e. the quotient of P with respect to

(g, h) ∼ (k−1gk, k−1hk), for any k ∈ M24. The set P̄ can be identified with the set of

isomorphism classes of principal M24-bundles over the elliptic curve Eτ = C/(Z + τZ).

One can then consider the associated moduli space¶ of principal M24-bundles on Eτ

M = P × (H+ × C) /M24 × (SL(2,Z) n Z2) . (2.23)

For each pair (g, h) ∈ P there exists an (SL(2,Z)× Z2)-equivariant line bundle

Lαg,h
↓
M

(2.24)

which is twisted by the 3-cocycle α ∈ H3(M24, U(1)) [53]. Thus, for fixed (g, h) we can

think of the twisted twining genus φg,h as a section of Lαg,h. The twist by α in the bundle Lαg,h
accounts for the α-dependent multiplier phases occurring in the modular transformations of

the twisted twining genera. In the cases when α describes a trivial class in H3(M24, U(1)),

¶This should really be a moduli stack but we ignore this technical point; see [53] for a more precise

description.

16



the bundle Lαg,h is canonically trivialized and the associated φg,h exhibits no multiplier

phase. The interpretation of the twisted twining genera as sections of Lαg,h will in particular

play a role in section 3.3 when we discuss twisted equivariant Hecke operators.

3 Second quantization of Mathieu moonshine

In this section we construct the second quantized twisted twining genera Ψg,h as the ex-

ponentiated generating function of certain twisted equivariant Hecke operators acting on

φg,h. These Hecke operators have a natural interpretation in terms of symmetric orbifolds

and we therefore begin by reviewing some relevant facts about symmetric orbifold theory.

Having defined the functions Ψg,h we also show that they have infinite product expansions.

3.1 Symmetric Orbifolds and Hecke Operators

3.1.1 Symmetric Orbifolds

Given a holomorphic CFT, or self-dual Vertex Operator Algebra (VOA), C with a group

G ⊆ Aut(C) of automorphisms, let us consider the theory C⊗N obtained by taking the tensor

product of N copies of C, for some N ≥ 1. The group of automorphisms of C⊗N contains

the direct product of the symmetric group SN and the group G acting diagonally on all

copies of C.‖ The twisted twining partition function ZC
⊗N

g,h of the theory C⊗N , associated

to a pair of commuting elements (g, h) of the diagonal group G, is simply the N :th-power

of the twisted twining partition function Zg,h in the original theory C:

ZC
⊗N

g,h (τ) = Zg,h(τ)N . (3.1)

In other words, the path integral on the torus with boundary conditions g, h in the product

theory C⊗N is simply the product of N copies of the path integral in the original theory

with the same boundary conditions. In particular, if Zg,h is invariant under the α-twisted

slash operator for some 3-cocycle α, then ZC
⊗N

g,h is invariant under the αN -twisted slash

operator.

The N :th symmetric orbifold SNC of C is defined as the orbifold of C⊗N by SN , and its

group of automorphisms contains the diagonal G. Therefore, one can define the twisted

twining partition functions

Z
(N)
g,h (τ) ≡ ZSNC

g,h (τ) (3.2)

‖Actually, Aut(C⊗N ) contains the wreath product SN o G := SN o (G × . . . × G), i.e. the semidirect

product of SN and the direct product GN := G× . . .×G of N copies of G, with SN acting on GN by the

obvious permutation.
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in each symmetric product. These partition functions can be computed using the usual

formulae for orbifold CFTs.

The orbifold formula for Z
(N)
g,h can be nicely understood in the geometric setting of

section 2.4. Recall that the twisted twining partition function Zg,h(τ) of a VOA C with

Aut(C) = G is a section of a (α-twisted) line bundle Lαg,h over the moduli space MG of

G-bundles over the elliptic curve E = C/Λ with Λ = Z + τZ. In this picture g and h

correspond to the monodromies around the cycles −1 and τ of the elliptic curve.

As shown in [49], Z
(N)
g,h can be expressed as a sum of contributions from all isomorphism

classes of unramified N -fold coverings Υ : E ′ → E, namely

Z
(N)
g,h (τ) ∼

∑
isomorphism classes of

N -fold coverings
Υ:E′→E

Υ∗Zg,h(τ) , (3.3)

up to a suitable normalization. Here, Υ∗Zg,h is simply the partition function associated

with the pull-back Υ∗Lαg,h → E ′ of the line bundle Lαg,h.
Up to isomorphisms, we can consider coverings that preserve the base-point of the

elliptic curve. Any connected unramified base-point preserving N -fold cover of E = C/Λ
is given by E ′ ∼= C/Λ′ → E, z 7→ z, where Λ′ is a sublattice of index N in Λ. In turn, the

sublattices of index N are given by Λ′ = MΛ for any M in the set

MatN(Z) := {

(
a b

c d

)
| a, b, c, d ∈ Z, ad− bc = N} (3.4)

of integral 2 × 2 matrices M of determinant N . In particular, when N = 1, the covers

Υ : E ′ → E are actually isomorphisms and are classified by Mat1(Z) ≡ SL(2,Z). Let Υγ

denote the isomorphism associated with a specific choice of γ ∈ SL(2,Z). The pull-back

Υ∗γZg,h then coincides with the slash operator

Υ∗γZg,h(τ) = Zg,h(τ)|α(γ, e) , γ ∈ SL(2,Z) . (3.5)

For genericN > 0, the isomorphism classes of coverings are in one to one correspondence

with the cosets

SL(2,Z)\MatN(Z) , (3.6)

and a set of coset representatives is given by(
a b

0 d

)
, ad = N, a, d > 0, 0 ≤ b < d . (3.7)
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Therefore, the contribution to the partition function Z
(N)
g,h (τ) from the connected N -fold

coverings is given by

TNZg,h(τ) :=
1

N

∑
M∈SL2(Z)\MatN (Z)

Υ∗MZg,h(τ) ≡ 1

N

∑
M∈SL2(Z)\MatN (Z)

Zg,h(τ)|α(M, e) , (3.8)

where |α(M, e) is a suitable generalization of the slash operator to MatN(Z), that will be

discussed in the following sections. The linear operators TN defined by (3.8) are (α-twisted)

equivariant Hecke operators, that will be studied in more detail in the remainder of this

section.

3.1.2 Hecke operators

Hecke operators are linear operators acting on modular forms. Specifically, for each N ≥ 1

there is an operator TN that acts on a weight k modular form f(τ) and produces another

modular form TNf(τ) of the same weight. On modular functions, i.e. weight k = 0 modular

forms, the Hecke operator is defined by

TNf(τ) :=
1

N

∑
( a bc d )∈SL(2,Z)\MatN (Z)

f

(
aτ + b

cτ + d

)
. (3.9)

These operators have a natural generalization to Jacobi forms given by [55] (restricting to

the weight 0, index m case)

TNφ(τ, z) :=
1

N

∑
( a bc d )∈SL(2,Z)\MatN (Z)

e
−mNcz2
cτ+d φ

(
aτ + b

cτ + d
,
Nz

cτ + d

)
. (3.10)

In fact, on Jacobi forms there exists an additional Hecke operator UN with the simple

action

UNφ(τ, z) := φ(τ,Nz). (3.11)

These operators map Jacobi forms of weight 0 and index m to Jacobi forms of weight 0

and index Nm and N2m, respectively. They also form a Hecke algebra, with the relations

Tm · Tn = Tmn , for gcd(m,n) = 1 , (3.12)

Um · Un = Umn , (3.13)

Tm · Un = Un · Tm , (3.14)

Tp · Tpm = Tpm+1 +
1

p
Tpm−1 · Up , for p prime . (3.15)
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It is easy to see that a set of representatives for the quotient SL(2,Z)\MatN(Z) can

always be chosen of the form (3.7). This allows us to write the action of TN on φ(τ, z) as

follows

TNφ(τ, z) =
1

N

∑
a,d>0,ad=N

d−1∑
b=0

φ(
aτ + b

d
, az) . (3.16)

3.2 Twisted equivariant Hecke operators

In order to define the exponential lift of our twisted twining genera φg,h we must find

a set of Hecke operators that are compatible with the properties (A)-(C) in section 2.3.

This means that the Hecke action should be compatible, i.e. equivariant, with respect to

the M24-action on the pair (g, h), and it should incorporate the α-twist in the modular

transformation. Equivariant versions of Hecke operators acting on modular forms was

proposed by Ganter [53] in the context of generalized Monstrous moonshine, and we shall

see that this result also applies here after some minor modifications.

3.2.1 Main definition

The standard Hecke-operators TN map weak Jacobi forms of weight 0, index 1 to weak

Jacobi forms of weight 0, index N . In the generalized setting the analogous statement

implies that we should have equivariant Hecke operators TN that map sections of Lαg,h to

sections of the product bundle (Lαg,h)⊗N , where Lαg,h → M is the line bundle discussed

in section 2.4. In fact, because of the cocycle-dependent multiplier phases arising in the

modular transformations of the φg,h we need to introduce a certain α-twisted version T αN
of the equivariant Hecke operator. More explicitly, if the sections of Lαg,h correspond to

holomorphic functions φg,h on the covering space P × H+ × C of M, with an automor-

phy factor determined by a 3-cocycle α, then T αN φg,h should correspond to holomorphic

functions whose automorphy factor derives from the N :th power αN of the 3-cocycle.

Since the detailed analysis is rather technical, we will postpone it to appendix C and

just quote the explicit formula for the action of the Hecke operators on a twisted-twining

character φg,h

T αN φg,h(τ, z) :=
1

N

∑
a,d>0,
ad=N

d−1∑
b=0

εg,h ( a b0 d )φgd,g−bha
(aτ + b

d
, az
)
, (3.17)

UαNφg,h(τ, z) := εg,h (N 0
0 N )φgN ,hN (τ,Nz) , (3.18)
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where

εg,h
(
a b
0 d

)
:=

∏a−1
i=1 cg(h, h

i)d∏d−1
j=1 cg−bha(g, g

j)
∏b

k=1 cg(g, g
−kha)d

, (3.19)

and cg(x, y), g, x, y ∈ G, depends on the cocycle α that determines the automorphy factor

of φg,h via (2.7).

As discussed in appendix C, these Hecke operators satisfy the Hecke algebra (3.12)–

(3.15). The explicit expressions for T αN φg,h, for N = 1, 2, 3, 4, in the case of Mathieu

moonshine are collected in appendix E.

Notice that the phases εg,h ( a bc d ) are trivial whenever g is the identity or when the

restriction of the cocycle α to the group 〈g, h〉 is trivial. An example where non-trivial

phases appear is given by T α2 φg,g, where g is in class 2B of M24. These phases can be

understood by first considering

T α2 φe,g(τ, z) =
1

2

(
φe,e(2τ, 2z) + φe,g(

τ

2
, z) + φe,g(

τ + 1

2
, z)
)
, (3.20)

and then imposing the relations

T α2 φg,e(τ, z) = e
−4πiz2

τ T α2 φe,g(−
1

τ
,
z

τ
) , T α2 φg,g(τ, z) = T α2 φg,e(τ + 1, z) . (3.21)

Using the modular properties of φe,g, we obtain

T α2 φg,e(τ, z) =
1

2

(
φg,e(2τ, 2z) + φe,e(

τ

2
, z) + φe,g(

τ + 1

2
, z)
)
, (3.22)

T α2 φg,g(τ, z) =
1

2

(
−φg,e(2τ, 2z) + φe,g(

τ

2
, z) + φe,e(

τ + 1

2
, z)
)
, (3.23)

where the minus sign in front of φg,e(2τ, 2z) in the latter equation is due to the non-trivial

multiplier system of the twining genus φe,g.

3.2.2 Central extensions

Rather than considering the projective representation ρg of the centralizer CM24(g), it is

often useful to work with a linear representation of a central extension

1→ U(1)→ Cα
M24

(g)→ CM24(g)→ 1 . (3.24)

The group Cα
M24

(g) can be constructed explicitly in terms of generators and relations.

Let q(x) := e2πix, x ∈ R/Z, be the generator of the central U(1) factor and consider one

generator hα for each h ∈ CM24(g). Then, Cα
M24

(g) is generated by all such elements subject

to the relations

hαkα = q
(
µg(h, k)

)
(hk)α , q(x)hα = hαq(x) (3.25)
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for all h, k ∈ CM24(g). Here, µg(h, k) ∈ R/Z is defined by

e2πiµg(h,k) = cg(h, k) , (3.26)

where cg(h, k) is the 2-cocycle determining the projective representation ρg as in (2.5).

This definition provides also a canonical lift

h 7→ hα , (3.27)

from CM24(g) to its central extension Cα
M24

(g). By construction, the g-twisted sector carries

a genuine representation ρ̃g of Cα
M24

(g), with

ρ̃g(q(x)) = e2πix , ρ̃g(hα) = ρg(h) , (3.28)

for all h ∈ CM24(g), x ∈ R/Z. A less trivial observation is that also the gr-twisted sectors,

for all r ∈ Z≥0, carry a genuine representation ρ̃g,r of Cα
M24

(g), defined by∗∗

ρ̃g,r(q(x)) := e2πirx , ρ̃g,r(hα) ≡ ρ̃g,r(h) :=
ρgr(h)

fg,r(h)
, (3.29)

for all h ∈ CM24(g) ⊆ CM24(gr), x ∈ R/Z, r ∈ Z≥0, where

fg,r(h) =
r−1∏
i=1

ch(g, g
i) . (3.30)

The fact that ρ̃g,r are well defined representations of Cα
M24

(g) is an immediate consequence

of the identity

cgr(h, k) =
fg,r(h)fg,r(k)

fg,r(hk)
cg(h, k)r , h, k ∈ C(g) , (3.31)

which follows from the definition of cg in terms of α and repeated applications of the cocycle

condition for α. Notice that fg,1(h) = 1 for all h ∈ CM24(g), so that ρ̃g ≡ ρ̃g,1.

If α and α′ are different cocycle representatives of the same cohomology class [α], then

the central extensions are isomorphic Cα
M24

(g) ∼= Cα′
M24

(g), although the corresponding lifts

hα and hα′ are different. In particular, for special choices of the representative cocycle α, it

is sufficient to consider a central extension of CM24(g) by a finite subgroup of U(1). With

slight abuse of notation, we will denote also these finite central extensions by Cα
M24

(g). See

appendix D.2 for more details on these special choices for α.

∗∗We denote by the same symbol ρ̃g,r also the projective representation of CM24(g) on Hgr with

ρ̃g,r(h) := ρgr (h)/fg,r(h)
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3.2.3 Alternative definition

The α-twisted equivariant Hecke operators are more easily defined in terms of the central

extension Cα
M24

(g) described in section 3.2.2. Set

φgrα,hα(τ, z) := TrHgr
(
ρ̃g,r(hα)qL0− c

24yJ
3
0 (−1)F+F̄

)
. (3.32)

so that

φgdα,g−bα haα
(τ, z) = TrH

gd

(
ρ̃g,d(g)−bρ̃g,d(h)aqL0− c

24yJ
3
0 (−1)F+F̄

)
(3.33)

=

∏a−1
i=1 cg(h, h

i)d∏b
k=1 cg(g, g

−kha)d
TrH

gd

(
ρ̃g,d(g

−bha)qL0− c
24yJ

3
0 (−1)F+F̄

)
(3.34)

=

∏a−1
i=1 cg(h, h

i)d∏d−1
j=1 cg−bha(g, g

j)
∏b

k=1 cg(g, g
−kha)d

TrH
gd

(
ρgd(g

−bha)qL0− c
24yJ

3
0 (−1)F+F̄

)
(3.35)

= εg,h ( a b0 d )φgd,g−bha(τ, z) . (3.36)

Therefore, we can reinterpret the α-twisted Hecke operators T αN acting on the twisted-

twining genera φg,h as (untwisted) equivariant operators acting on the twisted-twining

genera φgα,hα

T αL φg,h(τ, z) =
1

L

∑
ad=L

d−1∑
b=0

φgdα,g−bα haα

(aτ + b

d
, az
)

=: TLφgα,hα(τ, z) . (3.37)

This form of the Hecke operators will turn out to be very useful for some of the calculations

in sections 3.3 and 4.

3.3 Second-Quantized Twisted Twining Genera

3.3.1 Definition

For any Calabi-Yau manifold X, one can define its second-quantized elliptic genus ΨX

as the exponentiated generating function of the orbifold elliptic genus φSNX(τ, z) of the

symmetric products SNX [49]. In fact, ref. [49] gave three equivalent expressions for ΨX :

ΨX(σ, τ, z) =
∞∑
N=0

pNφSNX(τ, z) = exp
[ ∞∑
L=1

pL(TLφX)(τ, z)
]

=
∏

n>0,m≥0,
`∈Z

(
1−pnqmy`

)c(mn−`2)
,

(3.38)

23



where we have set

q = e2πiτ , y = e2πiz, p = e2πiρ, (3.39)

and c(mn− `2) are the Fourier coefficients of the elliptic genus of X:

φX(τ, z) =
∑

m≥0,`∈Z

c(m, `)qmy`. (3.40)

Here, TN are standard Hecke operators defined in (3.16).

It was shown in [50] that Φ ≡ AX ΨX , where AX is a simple correction factor (“Hodge

anomaly”) that is determined by the Hodge numbers of X, transforms as a Siegel modular

form for some congruence subgroup of Sp(4;Z).

Taking the formula (3.38) as a starting point, we now wish to define the second quantized

twisted twining genera as follows

Ψg,h(σ, τ, z) := exp
[ ∞∑
L=1

pL(T αL φg,h)(τ, z)
]
, (3.41)

where T αL is the twisted equivariant Hecke operator defined in (3.17). We will later show

that after including a correction factor Ag,h the functions Ψg,h transform as Siegel modular

forms for some subgroup Γ
(2)
g,h ⊂ Sp(4;Z) that contains the invariance group Γg,h ⊂ SL(2,Z)

of the twisted twining genera φg,h.

Notice that the definition (3.41) depends on the choice of a normalized 3-cocycle α. If

α and α′ differ by a 3-coboundary ∂β as in(A.5), the corresponding twisted-twining genera

are related as

T α′L φ′g,h(τ, z) = e2πiνg,hLT αL φg,h(τ, z) , (3.42)

where ν ∈ R/Z is defined as

e2πiνg,h =
β(g, h)

β(h, g)
, (3.43)

so that

Ψ′g,h(σ, τ, z) = exp
( ∞∑
L=1

pLT α′L φ′g,h(τ, z)
)

(3.44)

= exp
( ∞∑
L=1

(e2πiνg,hp)L T αL φg,h(τ, z)
)

= Ψg,h(σ + νg,h, τ, z) . (3.45)

Therefore, a different choice for the cocycle representative α simply amounts to a redefini-

tion σ → σ + νg,h of the variable σ.
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3.3.2 Infinite product representation

We shall now derive infinite product representations for the second quantized twisted-

twining genera Ψg,h in terms of the Fourier coefficients of φg,h.

Let us consider a generic commuting pair of elements g, h ∈ M24, with the cocycle α

inducing a possibly non-trivial multiplier for φg,h. Let N = o(g) be the order of g and λ the

length of the shortest cycle of g in the 24-dimensional permutation representation. Then,

the lift gα of g to the central extension Cα
M24

(g), as defined in section 3.2.2, has order Nλ

(see appendix D.2). For any h ∈ CM24(g) the associated twisted-twining genus φg,h has a

Fourier expansion of the form

φg,h(τ, z) =
∞∑
n=0

∑
`∈Z

cg,h
( n

Nλ
, `
)
q

n
Nλy` , (3.46)

where, in particular, cg,h
(
n
Nλ
, `
)

= 0 unless n ≡ −1 mod λ. Let M = o(hα) be the order of

the lift hα of h to the central extension Cα
M24

(g).†† The logarithm of the second quantized

twisted-twining genus of φg,h is

log Ψg,h(σ, τ, z) =
∞∑
L=1

pLT αL φg,h(τ, z) (3.47)

=
∞∑

a,d=1

1

ad

d−1∑
b=0

∑
`∈Z

∞∑
n=0

εg,h ( a b0 d ) cgd,g−bha(
n

Nλ
, `)e

2πibn
Nλd q

an
Nλdya`pad (3.48)

=
∞∑

a,d=1

1

ad

∑
`∈Z

∞∑
n=0

d−1∑
b=0

cgdα,g−bα haα
(
n

Nλ
, `)e

2πibn
Nλd q

an
Nλdya`pad (3.49)

=
∞∑

a,d=1

1

a

M−1∑
t,k=0

e
2πit(a−k)

M

M

∑
`∈Z

∞∑
n=0

1

d

d−1∑
b=0

cgdα,g−bα hkα
(
n

Nλ
, `)e

2πibn
Nλd q

an
Nλdya`pad (3.50)

=
∞∑

a,d=1

1

a

M−1∑
t,k=0

e
2πit(a−k)

M

M

∑
`∈Z

Fg,h(a, d, k, `)y
a`pad , (3.51)

where

Fg,h(a, d, k, `) :=
∞∑
n=0

1

d

d−1∑
b=0

e
2πibn
Nλd εg,h ( k b0 d ) cgd,g−bhk(

n

Nλ
, `)q

an
dNλ . (3.52)

In appendix D.1 we show that this sum can be rewritten as follows

Fg,h(a, d, k, `) =
∞∑
m=0

1

Nλ

λN−1∑
b=0

e
2πibm
Nλ εg,h ( k b0 d ) cgd,g−bhk(

md

Nλ
, `)q

am
Nλ . (3.53)

††We assume that α is chosen in such a way that the order is finite.
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By plugging this expression into (3.51) we obtain

log Ψg,h(σ, τ, z) =
∞∑
d=1

∞∑
m=0

∑
`∈Z

M−1∑
t=0

ĉg,h(d,m, `, t)
∞∑
a=1

1

a

(
e

2πit
M q

m
Nλy`pd

)a
(3.54)

= −
∞∑
d=1

∞∑
m=0

∑
`∈Z

M−1∑
t=0

ĉg,h(d,m, `, t) log
(
1− e

2πit
M q

m
Nλy`pd

)
, (3.55)

where

ĉg,h(d,m, `, t) :=
M−1∑
k=0

λN−1∑
b=0

e−
2πitk
M

M

e
2πibm
λN

λN
εg,h ( k b0 d ) cgd,g−bhk(

md

Nλ
, `) (3.56)

=
M−1∑
k=0

λN−1∑
b=0

e−
2πitk
M

M

e
2πibm
λN

λN
TrH

gd
(md
Nλ

,`)

(
ρ̃g,d(g)−bρ̃g,d(h)k(−1)F+F̄

)
. (3.57)

Thus, for the inverse of the second quantized twisted twining genus we obtain the infinite

product expression

1

Ψg,h(σ, τ, z)
= exp

(
−
∞∑
L=1

pLT αL φg,h(τ, z)

)
=
∞∏
d=1

∞∏
m=0

∏
`∈Z

M−1∏
t=0

(1− e
2πit
M q

m
Nλy`pd)ĉg,h(d,m,`,t) .

(3.58)

Note that (3.57) makes sense also for d = 0, so that the infinite product in d and m can

be symmetrized to obtain

Φg,h(σ, τ, z) := pq
1
Nλy

∏
(d,m,`)>0

M−1∏
t=0

(1− e
2πit
M q

m
Nλy`pd)ĉg,h(d,m,`,t), (3.59)

where the first product runs over

d,m ∈ Z≥0 and

` ∈ Z, ` < 0, if m = 0 = d ,

` ∈ Z, otherwise.
(3.60)

One can rewrite Φg,h in terms of the original Ψg,h as

Φg,h(σ, τ, z) =
pψg,h(τ, z)

Ψg,h(σ, τ, z)
, (3.61)

where ψg,h includes the d = 0 factors in (3.59) and takes the form

ψg,h(τ, z) = q
1
Nλy

M−1∏
t=0

(∏
`<0

(1−e
2πit
M y`)ĉg,h(0,0,`,t)

)(∏
`∈Z

∞∏
m=1

(1−e
2πit
M q

m
Nλy`)ĉg,h(0,m,`,t)

)
. (3.62)
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The numerator in (3.61) is the analogue of the “Hodge anomaly” in [50].

Infinite products of the form (3.59) were studied in [36], where it was shown that they

converge for ( σ z
z τ ) in a suitable domain of the Siegel upper half-space of 2 × 2 complex

symmetric matrices with positive definite imaginary part

H2 :=
{
Z ∈ Mat2(C) | Z = Zt, ImZ > 0

}
. (3.63)

Furthermore, these products can be analytically continued to meromorphic functions on

the whole H2, with zeroes and (possibly) poles along the rational quadratic divisor [56].

The prefactor pq
1
Nλy in (3.59) has been chosen in such a way that Φg,h are Siegel

modular forms under certain discrete subgroups of Sp(4,R). The automorphic properties

of Φg,h will be discussed in section 5.2.

3.3.3 Multiplicative versus additive lift

The construction of a Siegel modular form Φ(σ, τ, z) from a (weak) Jacobi form φ(τ, z) via

an infinite product representation, as exemplified by (3.59), is generally referred to as a

multiplicative (automorphic) lift. The Jacobi form φ is said to be the multiplicative seed of

the lift (see, for instance, [56, 50, 51, 57]), and we write

Φ = Mult[φ]. (3.64)

In some cases one can also obtain the Siegel modular form using a different procedure,

known as the additive lift ‡‡. In this case the Siegel modular form is constructed as a cer-

tain generating function (without exponentiation) of Hecke operators acting on a different

Jacobi form ψ, which is then called the additive seed. For ψ(τ, z) a Jacobi form of weight

k we write ψ̃(σ, τ, z) = pψ(τ, z) and define the additive lift as

Φ = Add[ψ] :=
∑
m≥1

m2−k(T−m ψ̃)(σ, τ, z), (3.65)

where T−m is a certain Hecke operator; see, e.g. [59] for the precise definition and properties

of the right hand side.

As an example, consider the case of the Igusa cusp form Φ10 (corresponding to Φe,e).

The multiplicative seed is the K3 elliptic genus φe,e = φ0,1 which is the unique weak Jacobi

form of weight 0 and index 1. The multiplicative lift yields an infinite product formula for

Φ10 [58]:

Φ10 = Mult[φ0,1] = pqy
∏

(d,m,`)>0

(
1− qmy`pd

)c(d,m,`)
(3.66)

‡‡This generalizes the Saito-Kurokawa-Maass lift defined in [55].
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where c(d,m, `) are the Fourier coefficients of φ0,1. This is indeed obtained from (3.59) by

restricting to (g, h) = (e, e). As explained in [51] one can also obtain this Siegel modular

form via an additive lift from the seed φ10,1 (the unique weak Jacobi form of weight 10 and

index 1):

Φ10 = Add[φ10,1]. (3.67)

We now observe that the additive seed φ10,1 can be expressed as ϑ(τ, z)2η(τ)18 which is

precisely the symmetrization factor ψg,h in (3.62) when restricting to (g, h) = (e, e). This

is in fact a general feature that holds whenever a Siegel modular form can be realized

both as an additive lift as well as a multiplicative lift. It is a consequence of the fact

that the additive seed ψ is the first Fourier-Jacobi coefficient in the expansion of Φ and

it is precisely this coefficient which appears as the prefactor in the symmetrization of the

infinite product. For purposes we thus expect that for all (g, h) for which an additive lift

exists we should have the following equalities

Φg,h = Mult[φg,h] = Add[ψg,h]. (3.68)

In section 5.3 we indeed verify this for a number of examples. For (g, h) = (e, h) modified

versions of these additive lifts have also been considered in [60].

4 Wall-crossing and Mason’s generalized moonshine

for M24

Already in 1990, Mason proposed an M24 version of Norton’s generalized moonshine conjec-

ture [31, 32]. In this section, we will establish the connection between Mason’s generalized

moonshine for M24 and the recent Mathieu moonshine involving the K3 elliptic genus.

This involves taking the multiplicative lift φg,h → Φg,h, defined in section 3, after which

the limit z → 0 reproduces the generalized eta-products ηg,h constructed by Mason [32].

Thus, the exponential lift Φg,h links Mason’s generalized M24-moonshine to the M24/K3-

moonshine considered here. This connection was first suggested in [2] for the special case of

the twining genera φ1,h = φh. A pictorial overview of this relation is given in figure 1.2. We

begin by reviewing Mason’s construction of the generalized eta-products ηg,h and explain

their interpretation in terms of partition functions of twisted chiral bosons. Physically, the

Siegel modular forms Φg,h have interpretations as generating functions of twisted dyons

in (CHL) orbifolds of N = 4 string theory, and the eta-products emerge as a result of a

wall-crossing formula, generalizing the one written down in [2] for Φe,h.
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4.1 Mason’s generalized M24-moonshine

For each commuting pair (g, h) ∈M24, Mason associates a modular function on the upper

half-plane satisfying the requirements posed by Norton in [19]. The starting point of

Mason was the 24-dimensional permutation representation of M24 in which each element

can be associated to a cycle shape, which describes the element as a product of cycles of

permutations. For instance, in this representation the identity element is represented by

the cycle shape 124, corresponding to the product of 24 identity permutations, while the

elements in class 2A are represented by 1828, corresponding to the product of 8 identity

permutations followed by 8 consecutive order 2 permutations.

Mason’s functions were all given in terms of so called eta-products, namely products of

Dedekind eta-functions. Suppose an order M element h ∈M24 has cycle shape∏
`|M

`i(`) , (4.1)

on the 24-dimensional representation of M24, for some integers i(`). Then one can associate

an eta-product to h by

ηh(τ) :=
∏
`|M

η(`τ)i(`). (4.2)

Mason found a generalization of such eta-products associated to “generalized cycle shapes”

labelled by commuting pairs (g, h) in M24. We shall denote these generalized moonshine

functions by ηg,h(τ).§§ Let g, h ∈ M24 be a pair of commuting elements of order o(g) = N

and o(h) = M and consider their action in the standard 24-dimensional representation V

of M24. Let v1, . . . , v24 be a basis of simultaneous eigenvectors for g and h, relative to the

eigenvalues (e
2πiri
N , e

2πiti
M ), i = 1, . . . , 24, with 1 ≤ ri ≤ N and 1 ≤ ti ≤ M . Then, the

eta-product ηg,h is defined as

ηg,h(τ) = q
1
Nλ

24∏
i=1

∞∏
n=0

(1− e
2πiti
M q

ri
N

+n) , (4.3)

where λ is the length of the shortest cycle of g. In particular, the eta-products ηh of

equation (4.2) correspond to (g, h) = (e, h). The products ηg,h (or rather their inverse) can

be interpreted as h-twining partition functions for 24 g-twisted chiral free bosons.

As proven in [31], the eta products ηg,h satisfy the modular transformations

υg,h ( a bc d ) (cτ + d)−wηgdh−c,g−bha
(aτ + b

cτ + d

)
= ηg,h(τ) , (4.4)

§§In [32] these functions were denoted by f(g, h; τ).
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for some υg,h ( a bc d ) ∈ U(1). The full list of Mason’s generalized eta-products and the

corresponding weights w can be found in Table 1. Furthermore, by definition, ηg,h are

invariant under conjugation in M24

ηkgk−1,khk−1(τ) = ηg,h(τ) . (4.5)

4.2 Connecting the two moonshines via wall-crossing

The connection between the K3/M24-moonshine for twining genera φh(τ, z) and the M24-

moonshine associated with the functions ηh(τ) was pointed out in [2]. We now want

to use our results above to establish this link also between the two different generalized

moonshines for M24.

As already mentioned, infinite products of the form (3.59) have been considered by

Borcherds [56], where it was shown that they converge in some region of the Siegel upper

half-space H2 and they can be analytically continued to meromorphic functions on the

whole H2. Furthermore, the zeroes and poles of Φg,h can only be at the located at rational

quadratic divisors [36, 56, 61], namely

Hd,m,`,v =
{

( τ z
z σ ) | m

Nλ
τ + `z + dσ +

v

M
= 0
}
, (4.6)

where m, d, v, ` ∈ Z are coprime integers (gcd(m, d, V, `) = 1) that satisfy a positive dis-

criminant condition

`2 − 4md

Nλ
> 0 . (4.7)

This generalizes the rational quadratic divisor found in [24] in the context of twisted dyon

counting in CHL-models.

The multiplicity of the zero or pole of Φg,h at the divisorHm,d,`,v is given by ĉg,h(d,m, `, v).

In particular, Φg,h is holomorphic if and only if ĉg,h(d,m, `, v) is non-negative at every ra-

tional quadratic divisor. As will be shown in section 5, Φg,h is an automorphic form for

a discrete subgroup Γ
(2)
g,h ⊂ Sp(4,R). Therefore, one only needs to consider the distinct

orbits of rational quadratic divisors under the action of Γ
(2)
g,h to determine the full divisor

of Φg,h.

A special role is played by (the modular orbit of) the divisor H0,0,−1,0, corresponding

to the locus z = 0 in H2. Since ce,g(0,−1) = 2 for all g ∈M24, we have

ĉg,h(0, 0,−1, 0) =
1

MNλ

M−1∑
k=0

λN−1∑
b=0

ce,g−bhk(0,−1) = 2 . (4.8)
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It follows that every Φg,h has a double zero at this divisor. Using the relation∑
`∈Z

cg,h(r, `) = 0 , for r > 0 , (4.9)

together with the relations

TrHe(0,±1)(g
−bhk(−1)F+F̄ ) = 2 , (4.10)

TrHe(0,±`)(g
−bhk(−1)F+F̄ ) = 0 for ` > 1 , (4.11)∑

`∈Z

TrHe(0,`)(g
−bhk(−1)F+F̄ ) = Tr24(g−bhk) , (4.12)

we obtain

lim
z→0

Φg,h(σ, τ, z)

(2πiz)2
= lim

z→0

y(1− y−1)2

(2πiz)2

(
q

1
Nλ

M∏
t=1

∞∏
m=1

(1− e
2πit
M q

m
Nλ )

∑
`∈Z ĉg,h(m,0,`,t)

)
×
(
p
M∏
t=1

∞∏
d=1

(1− e
2πit
M pd)

∑
`∈Z ĉg,h(0,d,`,t)

)
. (4.13)

Next we use the relations (4.10)-(4.12) to find an expression for ψg,h in (3.62) in terms

of ηg,h and known modular objects. Using the aforementioned equations we obtain

ψg,h(τ, z) = q
1
Nλy

M−1∏
t=0

(
(1− e

2πit
M y−1)ĉg,h(0,0,−1,t)

∞∏
m=1

∏
`∈Z

(1− e
2πit
M q

m
Nλy`)ĉg,h(0,m,`,t)

)
= q

1
Nλy(1− y−1)2

∞∏
n=1

(1− qny)2(1− qny−1)2

(1− qn)4

M−1∏
t=0

(1− e
2πit
M q

m
Nλ )

∑
`∈Z ĉg,h(0,m,`,t).

(4.14)

To proceed we note the identity

q
1
Nλ

M−1∏
t=0

∞∏
m=1

(1− e
2πit
M q

m
Nλ )

∑M−1
k=0

∑Nλ−1
b=0

e
− 2πitk

M
M

e
2πibm
Nλ
Nλ

Tr24(g−bhk)

= q
1
Nλ

M−1∏
t=0

∞∏
m=1

(1− e
2πit
M q

m
Nλ )

∑24
i=1

1
M

∑M−1
k=0

1
Nλ

∑Nλ−1
b=0 e−

2πi(t−ti)k
M e

2πib(m−λri)
Nλ

= q
1
Nλ

24∏
i=1

∞∏
n=0

(1− e
2πiti
M qn+

ri
N ) = ηg,h(τ) , (4.15)

where 1 ≤ ri ≤ N and 1 ≤ ti ≤ M are such that (e
2πiri
N , e

2πiti
M ), i = 1, . . . , 24, are the

(g, h)-eigenvalues of a basis of simultaneous eigenvectors for g and h in the 24-dimensional
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representation of M24. Using this relation in (4.14) we obtain

ψg,h(τ, z) = −ϑ1(τ, z)2

η(τ)6
ηg,h(τ) = φ−2,1(τ, z)ηg,h(τ) , (4.16)

where φ−2,1 is the standard weak Jacobi forms of weight −2 and index 1 for SL(2,Z).

To complete the analysis of the limit in (4.13) we note that

lim
z→0

y(1− y−1)2

(2πiz)2

(
q

1
Nλ

M∏
t=1

∞∏
m=1

(1− e
2πit
M q

m
Nλ )

∑
`∈Z ĉg,h(m,0,`,t)

)
= lim

z→0

ψg,h(τ, z)

(2πiz)2
= ηg,h(τ) .

(4.17)

For the pair (g, h) = (e, e), the function Φe,e(σ, τ, z) is invariant under the exchange σ ↔ τ .

From a physical viewpoint, this is a consequence of S-duality of type II superstring compact-

ified on K3×T 2. In section 5.2, we will prove that Φg,h satisfy analogous transformations

Φg,h(σ, τ, z) = Φg,h′(
τ

Nλ
,Nλσ, z) , (4.18)

where h′ ∈ CM24(g) is not necessarily in the same conjugacy class as h. Using this identity,

we conclude that

lim
z→0

Φg,h(σ, τ, z)

(2πiz)2
= ηg,h(τ)ηg,h′(Nλσ) . (4.19)

This equation has a physical interpretation as a wall-crossing formula. Indeed, Φ−1
g,h

corresponds to the generating function for the h-twisted degeneracies of 1/4 BPS states in

a CHL model. More precisely, these degeneracies are the Fourier coefficients of the auto-

morphic form Φ−1
g,h and the region where the Fourier expansion is performed depends on the

moduli. These multiplicities jump as one crosses the pole at z = 0; the physical interpreta-

tion is that some 1/4 BPS dyon corresponding to a bound state of 1/2 BPS configurations

becomes unstable in a certain region of the moduli space and thus disappears from the

spectrum. Indeed, the mismatch ηg,h(τ)−1ηg,h′(Nλσ)−1 between the Fourier coefficients at

the two sides of the pole represents the degeneracy of a bound state of two 1/2 BPS states.

5 Automorphic Properties

In this final section we analyze the modular transformation properties of Φg,h(σ, τ, z) with

respect to discrete subgroups of Sp(4,R). We show that they are Siegel modular forms and

in some cases we are able to identify them with previously known objects. Our proof of

modularity is done in two steps. The crucial first step is to determine the transformation

properties of Φg,h(σ, τ, z) with respect to the interchange σ ↔ τ . We refer to this as “S-

duality” since in the cases when Φg,h has an interpretation as a partition function in an
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N = 4 string theory this corresponds precisely to the S-duality that exchanges electric

and magnetic charges (see, e.g., [52, 62, 63, 23, 24]). It turns out that this transformation

involves the subtle concept of “relabeling” of the group elements (g, h) introduced in [17].

By a careful analysis of this relabeling phenomenon we establish the S-duality symmetry in

section 5.1. To complete the analysis of the automorphic properties of Φg,h(σ, τ, z) we must

also verify the transformation properties with respect to the remaining generators of the

relevant modular subgroups of Sp(4,R). This is rather straightforward since it essentially

follows from the modularity of the seed functions φg,h(τ, z) and ψg,h(τ, z). We present this

analysis in section 5.2, and in section 5.3 we also investigate some examples in detail.

5.1 Relabeling and S-duality

In this section, we will show that the functions Φg,h(σ, τ, z) defined by the infinite product

(3.59) satisfy some ‘S-duality’ identities that exchange σ and τ . This property, together

with the modular properties of the twisted-twining genera φg,h proved in [17], will be

sufficient to prove that all Φg,h are automorphic functions under some subgroup of Sp(4,R)

(see section 5.2).

In the case where g belongs to some M23 subgroup of M24, the main step in the deriva-

tion of this S-duality for Φg,h is the relabeling phenomenon [17]. This can be understood

by considering the example of a holomorphic vertex operator algebra C with automorphism

group G. Given an element g ∈ G, the orbiold of C by 〈g〉 is constructed by introducing

the twisted representations of C and then restricting to the g-invariant sector. All twisted

sectors carry a representation of some central extension of the centralizer CG(g) of g in G.

This induces an action of CG(g) by automorphisms on the orbifold theory.

Now suppose that this orbifold defines a consistent VOA isomorphic to the original C.
Thus, the automorphism group G′ of the orbifold theory is isomorphic to G, so that the

central extension of CG(g) (or rather of its quotient group acting faithfully on the orbifold)

must be a subgroup of G′ ∼= G. It might happen that some automorphism h ∈ CG(g) of

the original theory and the corresponding automorphism induced on the orbifold theory

belong to different conjugacy classes of G and G′. In particular, the characters of h in the

original theory and of the induced automorphism in the orbifold theory might be different.

In this case, we say that the class of h has been relabeled.

Roughly speaking, a similar phenomenon occurs for the Mathieu moonshine. In partic-

ular, we will see that S-duality relates a function Φg,h to a function Φg,h′ , where h′ belongs

to the ‘relabeled’ class.
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5.1.1 Orbifolds and relabeling

Given a conformal field theory with a symmetry g, one can construct an orbifold CFT by

introducing the gr-twisted sectors and then restricting to the g-invariant states. The space

obtained in this way is the spectrum of a consistent CFT, provided that the level-matching

condition is satisfied.

An analogous construction can be considered for the abstract modules of the generalized

Mathieu moonshine with respect to some g ∈M24 of orderN , by considering the g-invariant

subspace of the direct sum of all twisted sectors

H′ = ⊕N−1
r=0

(
H〈ρ̃g,r(g)〉gr

)
. (5.1)

The level-matching condition is equivalent to the requirement that the restriction of the

cohomology class [α] is trivial in H3(〈g〉, U(1)), so we will consider only this case. If H can

be interpreted as the spectrum of R-R right-moving ground states in a non-linear sigma

model on K3 with a symmetry g, then H′ corresponds to the spectrum of right-moving

ground states in the g-orbifold theory. The orbifold is a consistent N = (4, 4) SCFT with

central charge 6, which turns out to be again a non-linear sigma model on K3, since its

elliptic genus is

TrH′
(
qL0− c

24 q̄L̄0− c̄
24yJ

3
0 (−1)F+F̄

)
=

N−1∑
r,s=0

1

N
TrHgr

(
ρ̃g,r(g)sqL0− c

24 q̄L̄0− c̄
24yJ

3
0 (−1)F+F̄

)
(5.2)

=
1

N

∑
r,s=1

φgr,gs(τ, z) = φe,e(τ, z) . (5.3)

Here, the twisted-twining genera φgr,gs are relative to a cocycle α satisfying the conditions

(D.18) and (D.23), in particular with trivial restriction to 〈g〉. The identity (5.3) can be

verified case by case for all g ∈M24 satisfying the level-matching condition.

By (5.3), the space H′ defined by (5.1) is isomorphic to H as a module over N = 4

superconformal algebra; as such, one can define a representation of M24 over H′ satisfying

the properties of Mathieu moonshine. Furthermore, H′ also carries a representation ρ′

of Cα
M24

(g)/〈gα〉 given by the restriction of ⊕N−1
r=0 ρ̃g,r to H′. It can be proved that, as an

abstract group, Cα
M24

(g)/〈gα〉 is isomorphic to a subgroup of M24 [17]. More precisely, Q is

identified with an element g′ in the same conjugacy class as g and the image of Cα
M24

(g)/〈g〉

34



is the centralizer CM24(g′) of g′. Furthermore, for each h ∈ CM24(g) the twining-genus

φe,g′nh′(τ, z) := TrH′
(
ρ′(g′)nρ′(h)qL0− c

24yJ
3
0 (−1)F+F̄

)
(5.4)

=
1

N

N−1∑
r,s=0

TrHgr
(
ρ̃g,r(Q)nρ̃g,r(g)−sρ̃g,r(h)qL0− c

24yJ
3
0 (−1)F+F̄

)
=

1

N

N−1∑
r,s=0

e
2πinr
N εg,h ( 1 s

0 r )φgr,g−sh(τ, z) ,

is the Mathieu moonshine twining genus associated with an element g′nh′ ∈ CM24(g′) ⊆
M24. The identities (5.4) can be verified directly, given the explicit knowledge of the

twisted-twining genera. Thus, the representation ρ′ can be thought of as the restriction

to CM24(g′) of the moonshine representation of M24 over H′. From this construction, it

is clear that one can simply identify g and g′ as elements of an abstract M24 group, as

well as their centralizers in M24. Although we will make this identification in the following

sections, for the moment being it is convenient to consider g and g′ as distinct elements.

Since H′ satisfies the properties of Mathieu moonshine, we can introduce the twisted

sectors H′g′n that carry projective representations ρ′g′n of CM24(g′), such that the twisted-

twining genera

φg′n,h′(τ, z) = TrH′
g′n

(ρ′g′n(h′)qL0− c
24yJ

3
0 (−1)F+F̄

)
, (5.5)

satisfy the generalized Mathieu moonshine conjecture with respect to some 3-cocycle α′.

As in the previous section, we can choose the cocycle α′ to satisfy the analogue of (D.18)

and (D.23) and define a corresponding central extension

1→ 〈Q′〉 → Cα′(g′)→ CM24(g′)→ 1 , (5.6)

and the representations ρ̃′g′,n. By (5.4), we have

TrH′
g′n

(qL0− c
24yJ

3
0 (−1)F+F̄

)
= φg′n,e(τ, z) = φe,g′−n(−1

τ
,
z

τ
) (5.7)

=
1

N

N−1∑
r,s=0

e−
2πinr
N φgr,g−s(−

1

τ
,
z

τ
) =

1

N

N−1∑
r,s=0

e−
2πinr
N φgs,gr(τ, z) , (5.8)

so that the g′n-twisted sector H′g′n can be identified as an N = 4 module with the g-

eigenspace of ⊕N−1
r=0 Hgr with eigenvalue e

2πin
N . If we exchange the roles of g and g′, we

obtain an isomorphism of N = 4 modules

H′g′n,r ∼= Hgr,n , (5.9)
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where Hgr,n is the g-eigenspace of Hgr relative to the eigenvalue n and H′g′n,r is the analo-

gous eigenspace for g′. It is then natural to conjecture that this isomorphism is equivariant

with respect to the action of Cα
M24

(g)

Conjecture. For all choices of cocycles α and α′ satisfying (D.18) and (D.23), there is

an isomorphism ϕ : Cα
M24

(g) → Cα′
M24

(g′) such that ϕ(g) = Q′, ϕ(Q) = g′, and for all

k ∈ Cα
M24

(g), m, r ∈ Z,

TrH′
g′m,r

(ρ̃′g′,m(ϕ(k))qL0− c
24yJ

3
0 (−1)F+F̄ ) = TrHgr,m(ρ̃g,r(k)qL0− c

24yJ
3
0 (−1)F+F̄ ) . (5.10)

Notice that if such an isomorphism exists for a certain choice of α and α′, then for any

other choices it can be obtained by composing ϕ with (D.14). It is useful to rephrase the

conjecture in terms of identities among twisted-twining genera. Recall that any element

of Cα
M24

(g) can be written as Qxhα, for some x ∈ Z/NZ, h ∈ CM24(g) and any element

of Cα′
M24

(g′) can be written as Q′yh′α′ for some y ∈ Z/NZ, h′ ∈ CM24(g′). The conjecture

implies that for any k = Qxhα ∈ Cα
M24

(g) there is an element ϕ(k) = Q′yh′α′ ∈ Cα′
M24

(g′)

such that for all r,m ∈ Z

N−1∑
b=0

e
2πir(b−x)

N

N
ε′g′,h′ (

1 b
0 m )φg′m,g′−bh′(τ, z) =

N−1∑
s=0

e
2πim(s−y)

N

N
εg,h ( 1 s

0 r )φgr,g−sh(τ, z). (5.11)

In particular, for m ≡ 0 mod N , we have εg′,h′ ( 1 b
0 m ) = 1, and by taking the sum of these

identities over 0 ≤ r < N , we reobtain (5.4).

Obviously, since g and g′ are elements in the same conjugacy classes of M24, there exist

also isomorphisms Cα
M24

(g) ∼= Cα′
M24

(g′) that map g to g′ and Q to Q′. In particular, since g′

is defined up to conjugation in M24, we can simply choose g′ = g so that there is a natural

identification of the centralizers CM24(g) = CM24(g′) and, upon choosing the same cocycles

α = α′, also of their central extensions Cα
M24

(g) = Cα′
M24

(g′). With these conventions,

the conjecture is equivalent to the existence of an outer automorphism of Cα
M24

(g) that

exchanges g and Q and the representations Hgm,r and Hgr,m.

The existence of automorphisms that exchange g and Q is easy to check for the elements

g of order higher than 4 (thus, excluding the classes 2A and 4B of M24). Indeed, in all

these cases the central extension of CM24(g) has the form Cα
M24

(g) ∼= 〈Q〉 × (〈Qg〉.G). This

group clearly admits an automorphism that fixes the factor 〈Qg〉.G and exchanges Q and

g. For the classes 2A and 4B, the existence of the automorphism ϕ has been verified in [17]

with the aid of the software GAP. In order for the conjecture to be proved, one needs to
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show that, for each h ∈ CM24(g), the image ϕ(hα) = Qyh′α of the lift hα ∈ Cα
M24

(g) satisfies

e
2πimy
N

N−1∑
b=0

e
2πirb
N

N
εg,h′ ( 1 b

0 m )φgm,g−bh′(τ, z) =
N−1∑
s=0

e
2πims
N

N
εg,h ( 1 s

0 r )φgr,g−sh(τ, z) , (5.12)

for all m, r ∈ Z. If g is not in one of the classes 2A or 4B, then these identities are satisfied

with

h′ = h , y = 0 , (5.13)

for all h ∈ CM24(g) \ 〈g〉, as well as ϕ(gi) = Qi. When g is in one of the classes 2A or 4B,

the identities is satisfied for suitable automorphisms ϕ of Cα
M24

(g). Tables 2 and 3 report

the conjugacy class of h′ in CM24(g) for each CM24(g)-conjugacy class of h. Notice that,

in general, h and h′ might belong to different conjugacy classes of M24; this phenomenon

has been dubbed ‘relabeling’ in [17]. When h and h′ are in different conjugacy classes

of CM24(g), we can choose the cocycle α in such a way that y = 0. When h and h′ are

conjugated in CM24(g), then y can be set to 0 if and only if ϕ(hα) is conjugated with hα in

the central extension Cα
M24

(g). This is always the case, except for g in M24-class 4B and

h in one of the classes 2B3 or 4B1 of CM24(g). In both these cases, the pair g, h generates

group 20 in the list of appendix E and ϕ(hα) is conjugated with Q2hα, i.e. y = 2.

5.1.2 S-duality invariance

In this section, we will prove that all functions Φg,h(σ, τ, z) defined in terms of the infinite

product (3.59), satisfy identities of the form

Φg,h(σ, τ, z) ∼ Φg,h′(
τ

Nλ
+ x,Nλσ, z) , (5.14)

for some suitable h′ ∈ CM24(g) and real x that depends on the cocycle α. Here, ∼ denotes

equality up to a phase, that depends on the cocycle α. More precisely, in this section we

will prove identities of the form (5.14) for all pairs (g, h) ∈ P , except when g is in one

of the classes 4A, 10A, 12A and 21AB. For the latter classes, the identities (5.14) can be

derived through a complete analysis of the automorphic properties of Φg,h, as discussed in

section 5.2.

When the function Φg,h admits a physical interpretation as the generating functions for

twisted multiplicities of 1/4 BPS states in a CHL model, the identity (5.14) corresponds

to S-duality exchanging electric and magnetic charges in the low energy effective action.

Case 1: g ∈M23

Let g be an element of M23 ⊂ M24 of order N . The restriction of [α] to H3(〈g〉, U(1)) is

trivial, so that λ = 1 and we can choose a representative α satisfying (D.18) and (D.23).
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Let us identify g = g′ and the centralizers CM24(g) = CM24(g′) and consider the same

cocycle α = α′. The conjecture (5.10) implies that for any h ∈ CM24(g), d,m ∈ Z, there

are h′ ∈ CM24(g′) and y ∈ Z/NZ such that

N−1∑
s=0

e
2πids
N

N
εg,h ( k s

0 m )φgm,g−sh′k(τ, z) =
N−1∑
b=0

e
2πim(b−ky)

N

N
εg,h ( k b0 d )φgd,g−bhk(τ, z) , (5.15)

that generalizes the identity of the previous section. Thus,

ĉg,h(d,m, `, t) =
M−1∑
k=0

e−
2πitk
M

M

N−1∑
b=0

e
2πibm
N

N
εg,h ( k b0 d ) cgd,g−bhk(

md

N
, `) (5.16)

=
M−1∑
k=0

e
2πikmy
N

e−
2πitk
M

M

N−1∑
s=0

e
2πids
N

N
εg,h′ ( k s

0 m ) cgm,g−sh′k(
md

N
, `) (5.17)

= ĉg,h′(m, d, `, t+my
M

N
) . (5.18)

If h and h′ are in different conjugacy classes of CM24(g), we can choose the cocycle α in

such a way that y = 0, so that

Φg,h(σ, τ, z) =pq
1
N y

∏
(d,m,`)

M−1∏
t=0

(1− e
2πit
M q

m
N y`pd)ĉg,h(d,m,`,t) (5.19)

=pq
1
N y

∏
(d,m,`)

M−1∏
t=0

(1− e
2πit
M q

m
N y`pd)ĉg,h′ (m,d,`,t) (5.20)

=Φg,h′(
τ

N
,Nσ, z) . (5.21)

When h and h′ are in the same conjugacy class of CM24(g), then y cannot be eliminated, in

general. This corresponds to the case when ϕ(hα) is conjugated with Qyhα in the central

extension CM24(g). In particular, since ϕ(hα)M = ϕ(hMα ) = e, this implies that Qy has

order M , i.e. there is an integer x such that

yM = xN . (5.22)
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Thus,

Φg,h(σ, τ, z) =pq
1
N y

∏
(d,m,`)

M−1∏
t=0

(1− e
2πit
M q

m
N y`pd)ĉg,h(d,m,`,t) (5.23)

=pq
1
N y

∏
(d,m,`)

M−1∏
t=0

(1− e
2πit
M q

m
N y`pd)ĉg,h(m,d,`,t+mx) (5.24)

=pq
1
N y

∏
(d,m,`)

M−1∏
t′=0

(1− e
2πit′
M e−

2πixm
M q

m
N y`pd)ĉg,h(m,d,`,t) (5.25)

=pq
1
N y

∏
(d,m,`)

M−1∏
t′=0

(1− e
2πit′
M e−

2πiym
N q

m
N y`pd)ĉg,h(m,d,`,t) (5.26)

=e
2πiy
N Φg,h(

τ − y
N

,Nσ, z) . (5.27)

In fact, y 6= 0 only when g is in class 4B and h in one of the classes 2B3 or 4B1 of CM24(g).

In both cases, the pair g, h generates group 20 in the list of appendix E and y = 2. For such

pairs (g, h), however, since TαLφg,h = 0 for L odd, the function Φg,h satisfies the identity

Φg,h(σ, τ, z) = −Φg,h(σ +
1

2
, τ, z) . (5.28)

Using this identity, we conclude

Φg,h(σ, τ, z) = Φg,h(
τ

N
,Nσ, z) . (5.29)

Case 2: g in one of the classes 2B, 3B, 4C, 6B, 12B

The calculations in this case are rather technical and have therefore been relegated to

appendix D.3. Below we summarize the results.

For a suitable choice of the cocycle α, we have

Φg,h(σ, τ, z) = Φg,h−1(
τ

N2
, N2σ, z) , (5.30)

if h and h−1 are not conjugated within CM24(g), and

Φg,h(σ, τ, z) = Φg,h(
τ

N2
, N2σ, z) , (5.31)

otherwise. In particular, by (D.68) and (3.42) the latter holds for a choice of the cocycle

α such that

φg,h(τ, z) = φ∗g,h(τ, z) , (5.32)

i.e. such that all Fourier coefficients of φg,h are real.
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5.2 Automorphic properties

Using the results of the previous sections, we can now prove that the functions Φg,h(σ, τ, z),

defined by the analytic continuation of the infinite product (3.59) to the Siegel upper half-

space H2 are automorphic forms under certain subgroups of Sp(4,R) acting by(
A B

C D

)
· Z = (AZ +B)(CZ +D)−1 ,

(
A B

C D

)
∈ Sp(4,R) (5.33)

where

Z =

(
τ z

z σ

)
. (5.34)

Recall that the function Φg,h can be written as

Φg,h(σ, τ, z) = pψg,h(τ, z) exp[−
∞∑
N=1

pL(T αL φg,h)(τ, z)] , (5.35)

where the right-hand side converges on a suitable domain in H2.

Let us consider the action of various generators of Sp(4,R) on Φg,h.

• The Heisenberg subgroup H(Z) of Sp(4,Z) is defined as

H(Z) = {[λ, µ, κ] :=


1 0 0 µ

λ 1 µ κ

0 0 1 −λ
0 0 0 1

 , λ, µ, κ ∈ Z} , (5.36)

and acts by

[λ, µ, κ] · (σ, τ, z) = (σ + κ+ 2λz + λ2τ, τ, z + µ+ λτ) . (5.37)

By (5.35), using the elliptic properties of the Jacobi forms ψg,h and T αL φg,h, we

conclude easily that every Φg,h is invariant under H(Z).

• For many commuting pairs g, h ∈M24, the genera T αL φg,h vanish unless L is an integer

multiple of some r ≡ rg,h ∈ Z. Therefore, Φg,h is invariant up to a multiplier under

σ 7→ σ + 1
r
, i.e.

Φg,h([0, 0,
κ

r
] · (σ, τ, z)) = e−

2πiκ′
r Φg,h(σ, τ, z) , (5.38)

where [0, 0, κ
r
] · (σ, τ, z) = (σ + κ′

r
, τ, z). In particular, rg,h = 1 when g, h generate a

cyclic group and for groups 13, 23, 24 and 27, r = 3 for groups 33 and 34, r = 4 for
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groups 25 and 26 and r = 2 in all the other cases. Notice that rg,h always divides

Nλ.

More generally, the transformation [0, 0, κ
Nλ

] relates the functions Φg,h relative to two

distinct choices of the cocycle α, that differ from one each other by a Nλ-root of

unity.

• The twisted-twining genera T αL φg,h are Jacobi forms of weight 0 and index L under

a group Γg,h ⊂ SL(2,Z) (see the tables in appendix E), up to a multiplier χLg,h. As

noticed above, for each group 〈g, h〉, there is an integer r ≡ rg,h such that T αL φg,h
vanishes unless L|r. Therefore, only the power χrg,h needs to be a well-defined char-

acter of Γg,h.

On the other hand, the properties (4.4) and (4.5) imply that the eta products ηg,h are

modular forms of weight w and multiplier υg,h under the same group Γg,h associated

with φg,h. Equivalently, each ψg,h is a weak Jacobi form of weight w− 2, index 1 and

multiplier υg,h under Γg,h.

For each (γ, k) ∈ SL(2,Z)×M24, let us choose µg,h(γ, k) ∈ R/Z such that

e2πirg,hµg,h(γ,k) =
(
εg,h(γ, k)

)rg,h
, γ ∈ SL(2,Z) . (5.39)

Then for any γ = ( a bc d ) ∈ SL(2,Z) and k ∈M24, we have

υg,h(γ)Φ(γ,k)·(g,h)

(
ξ(γ) · Z

)
= det(cτ + d)w−2 Φg,h(σ + µg,h(γ, k), τ, z) , (5.40)

where Z = ( τ z
z σ ) and

ξ

(
a b

c d

)
:=


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 , (5.41)

so that

ξ(γ) ·

(
τ z

z σ

)
=

(
aτ+b
cτ+d

z
cσ+d

z
cσ+d

σ − z2

cσ+d

)
. (5.42)

In particular, by taking (γ, k) ∈M24 stabilizing (g, h), we obtain

υ′g,h(γ, k)Φg,h

(
[0, 0,−µg,h(γ, k)] ·

(
ξ(γ) · Z

))
= det(cτ + d)w−2 Φg,h(σ, τ, z) , (5.43)

where γ ∈ Γg,h and

υ′g,h(γ, k) = υg,h(γ)e−2πiµg,h(γ,k) . (5.44)
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• Finally, for any pair (g, h) of commuting elements of M24 (with the exception of g in

the classes 4A, 10A, 12A, 21AB), we have proved that

Φg,h(Z) = Φg,h′(VNλ · Z) , (5.45)

for a suitable h′ ∈ CM24(g) and a suitable choice of the cocycle α, where

Vt =
1√
t


0 t 0 0

1 0 0 0

0 0 0 1

0 0 t 0

 , (5.46)

acts by

Vt ·

(
τ z

z σ

)
=

(
τ
t

z

z tσ

)
. (5.47)

Notice that in each of the 55 conjugacy classes of abelian subgroups 〈g, h〉 ⊂M24, an

identity of the form (5.45) has been proved for at least one pair of generators.

As discussed in [51, 61], for any integers N, t > 0, the elements

Vt, ξ(γ) , γ ∈ Γ0(N) [λ, µ, κ/t] , λ, µ, κ ∈ Z , (5.48)

generate the group Γ+
t (N) = 〈Γt(N), Vt〉 ⊂ Sp(4,R) which is a normal double extension of

the paramodular group

Γt(N) = {


∗ t∗ ∗ ∗
∗ ∗ ∗ t−1∗
N∗ Nt∗ ∗ ∗
Nt∗ Nt∗ t∗ ∗

 ∈ Sp(4,Q), ∗ ∈ Z} . (5.49)

From the discussion above, it follows that every Φg,h is a modular function under some

finite index subgroup Γ
(2)
g,h of a paramodular group Γt ≡ Γt(1), for some suitable t. The

image of Φg,h under the action of a generic element of Γt is expected to be again a function

Φg′,h′ for some (possibly different) commuting pair g′, h′ ∈ M24, and defined with respect

to a suitable choice of the cocycle α.

In section 5.3, we will discuss the automorphic properties of some of these functions

Φg,h. We leave the detailed description of the groups Γ
(2)
g,h for all pairs g, h to a future work.
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5.3 Examples

Having established that the Φg,h are indeed Siegel modular forms we now wish to analyze

some specific examples in detail.

Φ2A,2A2,3,5 (Groups 1, 2, 3)

Groups 1, 2 and 3 are Z2×Z2 groups that contain three elements in class 2A of M24. The

corresponding Φg,h are identical

Φ2A,2A2(σ, τ, z) = Φ2A,2A3(σ, τ, z) = Φ2A,2A5(σ, τ, z) . (5.50)

The 3-cocycle α can be chosen to have trivial restriction to these groups. The Hecke

transforms of the twisted-twining genera TLφg,h vanish unless L is a multiple of r = 2; in

this case, they are Jacobi forms under Γg,h = SL(2,Z) with trivial multiplier χ2
g,h = 1. The

eta products for these elements are given by

ηg,h(τ) = η(τ)12 , (5.51)

and are modular forms of weight w = 6 under SL(2,Z) with multiplier (see eq. (5.40))

υg,h(T ) = −1 υg,h(S) = −1 . (5.52)

Furthermore, from the results of section 5.1.2 we deduce that, since g ∈M23 (with N = 2

and λ = 1), Φg,h satisfies

Φ2A,2A2(σ, τ, z) = Φ2A,2A3(
τ

2
, 2σ, z) , Φ2A,2A5(σ, τ, z) = Φ2A,2A5(

τ

2
, 2σ, z) . (5.53)

Thus, Φg,h is a modular form of weight w− 2 = 4 with a multiplier υg,h given above under

the subgroup of Sp(4,R) generated by the Heisenberg group H(Z), by SL(2,Z) and under

V2. These elements of Sp(4,R) generate the paramodular group Γ+
2 (1). Furthermore, Φg,h

has a double zero at the rational quadratic divisor z → 0 and at all modular images of this

divisor. This allows to identify Φg,h as

Φg,h(Z) = ∆2(Z)2 , (5.54)

where ∆2 is the modular form of weight 2 under Γ+
2 (1) defined by Gritsenko and Nikulin

in [51]. Notice that in this case the function ψg,h in (4.16) is given by

ψg,h(τ, z) = −ϑ1(τ, z)2η(τ)6, (5.55)

which is the additive seed for ∆2(Z) [51]. Hence we conclude that in this case

Φg,h = Add[ψg,h], (5.56)
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as claimed in section 3.3.3. The Siegel modular form (∆2)2 also appears in the context of

umbral moonshine, where it corresponds to the Siegel modular form Φ(3)(Z) (see section

2.6 of [29]). In this context Φ(3) arises as the multiplicative lift of the umbral Jacobi form

Z(3)(τ, z) of weight 0 and index 2. It is therefore interesting to ask how this relates to our

construction of Φg,h as the multiplicative lift (3.59). By comparing Fourier coefficients one

can verify that we have the identity (see the table in appendix E for the result of the Hecke

action)

T2φg,h(τ, z) = Z(3)(τ, z). (5.57)

However, this does not necessarily imply that the two lifts are the same, since a priori our

multiplicative lift in (3.59) differ from that in [29] since we are constructing it from the seed

function φg,h, which is a weak Jacobi form of weight 0 and index 1, using the equivariant

Hecke operator TN (the twist by the 3-cocycle α is trivial in this case). Even so, by virtue

of (5.56), in the case at hand it turns out that the lifts do coincide and we thus have

Mult[φg,h] = Φ(3). (5.58)

Φ2A,2A4 (Group 7)

The function Φ2A,2A4 of group 7 satisfies

Φ2A,2A4(V2 · Z) = Φ2A,4B1(Z) , (5.59)

where h′ in class 4B1 of CM24(g) is such that h′2 = g. Therefore, the right hand side is

a Sp(4,Z) transformation of Φe,4B, which is a Siegel modular form under Γ1(4) = Γ
(2)
0 (4)

[27, 28].

Φ2A,2B1,2 (Groups 8,9)

The functions Φg,h for groups 8 and 9 are identical

Φ2A,2B1(Z) = Φ2A,2B2(Z) . (5.60)

The twisted-twining genera T αL φg,h vanish unless L is a multiple of r = 2; in this case, they

are Jacobi forms under Γg,h = Γ0(2) with trivial multiplier. The eta products are given by

ηg,h(τ) = η(τ)4η(2τ)4 , (5.61)

and are modular forms of weight w = 4 under Γ0(2) with multiplier

υg,h( 1 1
0 1 ) = −1 υg,h( 1 0

2 1 ) = −1 . (5.62)
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Therefore, Φg,h transforms as a modular form of weight w − 2 = 2 under ξ(γ), γ ∈ Γ0(2),

with multiplier υg,h(γ). Furthermore, for a suitable choice of the cocycle α, we have

Φ2A,2B1,2(V2 · Z) = Φ2A,2B1,2(Z) . (5.63)

We conclude Φg,h is a modular form of weight 2 under the paramodular group Γ2(2).

Assuming that it is holomorphic, then it can be identified as

Φg,h(Z) = Q1(Z)2 , (5.64)

where Q1 is the modular form of weight 1 defined by Gritsenko and Clery in [61]. This

conjecture is also supported by the fact that in this case ψg,h is given by

ψg,h(τ, z) = −ϑ1(τ, z)2

η(τ)2
η(2τ)4, (5.65)

which is the square of the additive seed for Q1 (see eq. (16) in [61]).

Φ2A,4B4 (Group 12)

The function Φ2A,4B4 of group 12 satisfies

Φ2A,4B4(V2 · Z) = Φ2A,8A1(Z) , (5.66)

where h′ in class 8A1 of CM24(g) is such that h′4 = g. Therefore, the right hand side is

a Sp(4,Z) transformation of Φe,8A, which is a Siegel modular form under Γ1(8) = Γ
(2)
0 (8)

[28].

Φ2A,4B2,3,5 (Groups 17,18,19)

The functions Φg,h for groups 17, 18, 19 are identical

Φ2A,4B2(Z) = Φ2A,4B3(Z) = Φ2A,4B5(Z) . (5.67)

The Jacobi forms T αL φg,h for these groups have exactly the same modular properties as the

ones for groups 8 and 9; the eta products are also the same. Therefore, Φg,h is a modular

function of weight 2 under the paramodular group Γ2(2).

Φ4B,4B4,7 (Groups 25,26)

The functions Φg,h for groups 25 and 26 are identical

Φ4B,4B4(Z) = Φ4B,4B7(Z) . (5.68)
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The 3-cocycle α can be chosen to be trivial when restricted to 〈g, h〉. The Hecke-transformed

twisted-twining genera TLφg,h vanish unless L is a multiple of r = 4; in this case, they are

Jacobi forms under Γg,h = SL(2,Z) with trivial multiplier. The eta products are given by

ηg,h(τ) = η(τ)6 , (5.69)

and are modular forms of weight w = 3 under SL(2,Z) with multiplier

υg,h( 1 1
0 1 ) = −i υg,h( 1 0

2 1 ) = −i . (5.70)

Furthermore,

Φ4B,4B4(V4 · Z) = Φ4B,4B7(Z) . (5.71)

We conclude Φg,h is a modular function of weight w− 2 = 1 under the paramodular group

Γ+
4 (1) and the multiplicity at the rational quadratic divisor z → 0 is non-negative. It

follows that

Φg,h(Z) = ∆1/2(Z)2 , (5.72)

where ∆1/2 is the modular form of weight 1/2 defined in [51]. Also in this case the additive

lift matches since

ψg,h(τ, z) = −ϑ1(τ, z)2 (5.73)

is the square of the additive seed for ∆1/2(Z), and hence Add[ψg,h] = (∆1/2(Z))2.

The function (∆1/2(Z))2 also corresponds to the umbral Siegel modular form Φ(5)(Z),

which is the multiplicative lift of the umbral Jacobi form Z(5)(τ, z) of weight 0 and index

4 [29]. The relation between Z(5)(τ, z) and the twisted twining genus φg,h is now:

(T4φg,h)(τ, z) = Z(4)(τ, z). (5.74)

Again, it is not a priori clear that the equivariant multiplicative lift of φg,h, defined by

(3.59), will coincide with the ordinary multiplicative Borcherds lift of Z(5)(τ, z) considered

in [29]. However, in the case at hand they do:

Mult[φg,h] = Φ(5). (5.75)

Φ3A,3A3 (Group 33)

Consider the function Φ3A,3A3 of groups 33. The twisted-twining genera T αL φg,h vanish

unless L is a multiple of r = 3; in this case, they are Jacobi forms under Γg,h = SL(2,Z)

with trivial multiplier. The eta product is given by

ηg,h(τ) = η(τ)8 , (5.76)
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and is a modular form of weight w = 4 under SL(2,Z) with multiplier

υg,h( 1 1
0 1 ) = e−

2πi
3 υg,h(

0 −1
0 1 ) = 1 . (5.77)

Furthermore,

Φ3A,3A3(V3 · Z) = Φ3A,3A3(Z) . (5.78)

We conclude Φg,h is a modular function of weight w− 2 = 2 under the paramodular group

Γ+
3 (1) and the analysis of the multiplicities at its divisors shows that it is holomorphic with

a double zero at z = 0. It follows that

Φ3A,3A3(Z) = ∆1(Z)2 , (5.79)

where ∆1 is the modular form of weight 1 defined in [51]. Also here we find that

ψg,h(τ, z) = −ϑ1(τ, z)2η(τ)2 (5.80)

is the square of the additive seed for ∆1(Z). The function ∆1(Z)2 coincides with the

umbral Siegel modular form Φ(4)(Z), which is the multiplicative lift of the umbral Jacobi

form Z(4)(τ, z) of weight 0 and index 3. In this case we have that, for a suitable choice of

cocycle α,

(T α3 φg,h)(τ, z) = Z(3)(τ, z), (5.81)

and the equivariant and multiplicative lifts coincide:

Mult[φg,h] = Φ(4). (5.82)

Φ3A,3B1 (Group 34)

Consider the function Φ3A,3B1 of group 34. The twisted-twining genera T αL φg,h vanish

unless L is a multiple of r = 3; in this case, they are Jacobi forms under Γg,h = Γ0(3) with

trivial multiplier. The eta product is given by

ηg,h(τ) = η(τ)2η(3τ)2 , (5.83)

and is a modular form of weight w = 2 under SL(2,Z) with multiplier

υg,h( 1 1
0 1 ) = e−

2πi
3 υg,h( 1 0

3 1 ) = e
2πi
3 . (5.84)

Furthermore,

Φ3A,3B1(V3 · Z) = Φ3A,3B1(Z) . (5.85)

We conclude Φg,h is a modular function of weight w− 2 = 0 under the paramodular group

Γ+
3 (3). Since the weight vanishes, it must necessarily be meromorphic.
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6 Conclusions

In this paper we have proposed a second quantized version of (generalized) Mathieu moon-

shine, involving a class of Siegel modular forms Φg,h for discrete subgroups Γ
(2)
g,h ⊂ Sp(4,R),

constructed from a multiplicative lift of the twisted twining genera φg,h. For certain pairs

of conjugacy classes of M24 we were able to identify Φg,h with known Siegel modular forms.

It would be interesting to extend these results and perform a more detailed investigation of

all the modular groups Γ
(2)
g,h and determine whether the remaining Φg,h coincide with known

objects, or perhaps constitute new examples of Siegel modular forms. In [28], Raum proved

modularity for most of the cases Φe,h and found that not all of them are of a standard

Borcherds product type, but in fact correspond to certain rescaled products of Borcherds

modular forms. One would like to extend this analysis to determine whether the Φg,h for

g 6= e also contain such rescaled Borcherds products, or some generalization thereof.

As already mentioned in the introduction, an interesting by-product of our analysis is

the fact that some of the Siegel modular forms Φg,h coincide with multiplicative lifts of the

umbral Jacobi forms analyzed in [29]. This might be a simple consequence of the constraints

from modularity, but it might also indicate some deeper relation between umbral moonshine

and generalized Mathieu moonshine which would be interesting to uncover. Could it be

that some of the other products Φg,h also coincide with lifts of the more general Dn or En

Niemeier-umbral Jacobi forms in [64]?

It is natural to wonder whether our products Φg,h have interpretations in terms of

denominator formulas of some generalized Kac-Moody algebras (GKMs). It is well-known

that the Igusa cusp form Φ10 = Φe,e constitutes one side of the denominator formula for a

rank 3 GKM-algebra of hyperbolic type [58] (the other side corresponds to the additive lift

in (3.67)). In the terminology of Borcherds [36], the other functions Φe,h then corresponds

to twisted denominator formulas for the same algebra. On the other hand, by analogy with

generalized Monstrous moonshine [41, 43], we would expect that the functions Φg,e give

denominator formulas for a class of rank 3 GKM-algebras. For some of the elements g of

small order these algebras have indeed been constructed in [65, 66, 67, 68] in the context

of CHL-models (see also [58, 59, 51] for earlier mathematical results). In this context the

prefactor pq
1
Nλy in (3.59) should have an interpretation as the exponential of the Weyl

vector ρ of the algebra. If true one would expect that for fixed g, the associated twisted

denominator formulas Φg,h all have the same prefactor involving the Weyl vector of the

original GKM-algebra determined by the class [g]. In other words, the prefactor should

be independent of the twining element h, and this is indeed what we find. In fact, the

Weyl vectors extracted from pq
1
Nλy reduces to the ones in [65, 66] when the length of the
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shortest cycle λ equals one.

As stressed in the introduction, we think that our results could have immediate appli-

cations to the understanding of dyon counting in CHL-orbifolds. In particular, most of the

functions Φg,h are expected to have interpretations as partition functions of twisted dyons,

and we hope to investigate this relation in more detail in a future publication.
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A Some group cohomology

In this appendix, we summarize some general results about group cohomology. See [69] for

more details.

For a finite group G, a 2-cochain β : G × G → U(1) is closed (and hence defines a

cocycle) provided it satisfies

β(g1, g2g3)β(g2, g3) = β(g1g2, g3)β(g1, g2) (A.1)

for g1, g2, g3 ∈ G. The second cohomology H2(G,U(1)) then consists of the closed 2-

cochains, modulo the ambiguity

β(g1, g2)→ β(g1, g2)
γ(g1)γ(g2)

γ(g1g2)
, (A.2)
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where γ : G → U(1) is an arbitrary 1-cochain, i.e. an arbitrary function γ : G → U(1).

A 3-cochain α,

α : G×G×G → U(1) (A.3)

is closed provided it satisfies

α(g1, g2, g3)α(g1, g2g3, g4)α(g2, g3, g4) = α(g1g2, g3, g4)α(g1, g2, g3g4) . (A.4)

In the cohomology group H3(G,U(1)) closed 3-cochains are then identified modulo

α(g1, g2, g3)→ α(g1, g2, g3)
β(g1, g2g3)β(g2, g3)

β(g1g2, g3)β(g1, g2)
. (A.5)

Note that the multiplying factor is trivial if β is closed, i.e. if it satisfies the 2-cocycle

condition (A.1). In particular, for each cocycle α and element x ∈ G, the 3-cocycle αx,

defined by

αx(g, h, k) := α(x−1gx, x−1hx, x−1kx) , (A.6)

differs from α just by a 3-coboundary [46]

αx(g1, g2, g3) = α(g1, g2, g3)
ηx(g1, g2g3)ηx(g2, g3)

ηx(g1g2, g3)ηx(g1, g2)
, (A.7)

where

ηz(x, y) :=
α(x, y, z)α(z, z−1xz, z−1yz)

α(x, z, z−1yz)
. (A.8)

Given a 3-cocycle α, we can define, for any h ∈ G, a map ch : G×G→ U(1) via

cg(h1, h2) =
α(g, h1, h2)α(h1, h2, (h1h2)−1g(h1h2))

α(h1, h
−1
1 gh1, h2)

. (A.9)

It is shown in [44] that cg defines a 2-cocycle of the stabilizer subgroup CG(g) ⊆ G (i.e.

the subgroup of all elements h1, h2 which commute with g). When h1, h2 ∈ CG(g), we have

the simplified expression

cg(h1, h2) =
α(g, h1, h2)α(h1, h2, g)

α(h1, g, h2)
, h1, h2 ∈ CG(g) . (A.10)

It is straightforward to check this by inserting (A.9) into (A.1), and making repeated use

of the 3-cocycle condition (A.4) (twice on each side of the equality sign) together with the

fact that g commutes with h1, h2, h3.

Under the ‘gauge transformation’ (A.5), cg transforms as

cg(h1, h2)→ c̃g(h1, h2) := cg(h1, h2)
γg(h1)γg(h2)

γg(h1h2)
, h1, h2 ∈ CG(g) , (A.11)
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where we defined the 1-cochain γg by

γg(h) ≡ β(h, g)

β(g, h)
. (A.12)

This is indeed of the form (A.2), and hence, for all g ∈ G, cg defines a map

cg : H3(G,U(1)) → H2(CG(g), U(1)) . (A.13)

In fact, if cg is the 2-cocycle associated to a projective representation ρg of CG(g), i.e.

ρg(h1)ρg(h2) = cg(h1, h2)ρg(h1h2) , (A.14)

then c̃g is the 2-cocycle associated with the projectively equivalent representation

ρ̃g(h) := γg(h)ρg(h) . (A.15)

In the context of holomorphic CFTs, the transformation (A.5) corresponds to a redefinition

(A.15) of the projective representations ρg of the centralizer CG(g) over the twisted sector

Hg, which induces the analogous transformation of the twisted twining partition functions

Zg,h → Z̃g,h = γg(h)Zg,h . (A.16)

Indeed, the new partition functions Z̃g,h satisfy the expected modular properties with

respect to the new cocycle α̃.

In particular, it the case (A.7) of conjugation by x ∈ G, we have β ≡ ηx, so that

γg(h) =
ηx(h, g)

ηx(g, h)
=
cg(x, x

−1hx)

cg(h, x)
, h ∈ Cg(G) , (A.17)

where the latter equality follows from [45, 46]. From this identity, one recovers

Z(I,x−1)·(g,h)(τ) ≡ Zx−1gx,x−1hx(τ) =
cg(x, x

−1hx)

cg(h, x)
Zg,h(τ) , (A.18)

from which the formula (B.8) for εg,h(I, x) follows.

One further useful identity is [46]

cx1x2(z1, z2)

cx1(z1, z2)cx2(z1, z2)
=
cz1(x1, x2)cz2(x1, x2)

cz1z2(x1, x2)
, (A.19)

that holds for pairwise commuting x1, x2, z1, z2 ∈ G.
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For most applications, only the restriction of a 3-cocycle α to subgroups of the form

〈g, h〉 ∼= ZN1 × ZN2 is needed. For such groups, we have H3(ZN1 × ZN2 , U(1)) = ZN1 ×
ZN2 × Zlcm(N1,N2) and a set of normalized representatives for the generators are [70]

αvi(g
a1ha2 , gb1hb2 , gc1hc2) := e

2πiviai
N2
i

([bi]Ni+[ci]Ni−[bi+ci]Ni ) vi ∈ Z/NiZ, i = 1, 2 , (A.20)

αv12(ga1ha2 , gb1hb2 , gc1hc2) := e
2πiv12a1
N1N2

([b2]N2
+[c2]N2

−[b2+c2]N2
)
v12 ∈ Z/ lcm(N1, N2)Z ,

(A.21)

where [·]x : Z → {0, . . . , x − 1} denotes the reduction modulo x. Notice that, with this

choice for the generators, we have the simplified formula

cx(y, z) = α(x, y, z) , x, y, z ∈ ZN1 × ZN2 . (A.22)

B Modular properties of twisted twining partition func-

tions

In this appendix we include some details on the modular properties of twisted twining

partition functions. In particular, we analyze the combined action of SL(2,Z) and G on

the set of commuting pairs (g, h) in G. Here we must also take into account the presence of a

non-trivial 3-cocycle α which leads to a certain twisted action. We introduce a convenient

“twisted equivariant slash-operator” that simplifies many expressions since it combines

(twisted) SL(2,Z)-equivariance with G-equivariance. Finally, we discuss a reformulated

version of the cohomological obstructions found in [17].

B.1 SL(2,Z)×G - action on PG
It is clear from (2.8) that modular transformations act on τ ∈ H as well as on the set of

commuting pairs (g, h) ∈ G×G. In addition G acts on itself by conjugation and thereby

on the set of pairs g, h. In order to determine the subgroups Γg,h ⊂ SL(2,Z) under which

Zg,h (and φg,h) are invariant for fixed g, h ∈ G, we must classify the orbits of the combined

SL(2,Z) × G-action on the commuting pair (g, h). We are mainly interested in the case

G = M24 but we only make this specification at the end of the subsection.

For any finite group G, let PG ⊂ G×G be the set of commuting pairs of elements:

PG = {(g, h) ∈ G×G | gh = hg} . (B.1)
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The group SL(2,Z)×G has a left action as a permutation over this set by

((a b

c d

)
, k
)
· (g, h) := (k g k−1, k h k−1)

(
a b

c d

)−1

= (kgdh−ck−1, kg−bhak−1) , (B.2)

where (g, h) ∈ PG, ( a bc d ) ∈ SL(2,Z) and k ∈ G. This action can be extended to an action

of GL(2,Z)×G in the obvious way.

B.2 Twisted action on PG: generalized permutation

As explained in section 2.2, in order to include the possibility of non-trivial multipliers in

the modular properties of the twisted twining genera one needs to consider the “twisting”

of the action (B.2) by a 3-cocycle α, representing a cohomology class in H3(G,U(1)). This

α-twisted action is a generalized permutation

CPG × SL(2,Z)×G→ CPG , (B.3)

on the complex vector space CPG freely generated by the elements of PG. We define this

action by the formula

(γ, k)α : (g, h) 7→ εg,h(γ, k)(kgk−1, khk−1)γ−1 . (B.4)

Here, (γ, k) ∈ SL(2,Z)×G and εg,h(γ, k) ∈ U(1) is a phase which depends on the choice of

3-cocycle α. More precisely, in terms of the 2-cocycle cg(h1, h2) in (2.7) the phases εg,h(γ, k)

are defined as

εg,h(γ1γ2, k1k2) := ε(γ2,k2)·(g,h)(γ1, k1) εg,h(γ2, k2) , (B.5)

εg,h(T, e) :=
1

cg(g, g−1h)
, (B.6)

εg,h(S, e) := cg(h
−1, h) , (B.7)

εg,h(I, k) :=
cg(h, k

−1)

cg(k−1, khk−1)
, k ∈ G , (B.8)

where

S :=

(
0 −1

1 0

)
T :=

(
1 1

0 1

)
, (B.9)

are the generators of SL(2,Z).
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B.3 Modular properties of twisted-twining partition functions

We now wish to analyze the modular properties of the twisted twining partition function

Zg,h in more detail. To this end we define the following equivariant slash operator

f(g, h; τ)|(γ, k) := f
(
(γ, k) · (g, h); γ · τ

)
, (γ, k) ∈ SL(2,Z)×G , (B.10)

acting on modular functions f : PG × H+ → C. We can think of the twisted-twining

partition functions Zg,h(τ) as functions on PG×H+ that are equivariant under SL(2,Z)×G,

up to a multiplier. In the simplest case when the multiplier system χg,h in (2.8) is trivial,

this property can be expressed as follows in terms of the slash operator:

Zg,h(τ)|(γ, k) = Zg,h(τ) . (B.11)

In particular, for each fixed (g, h) ∈ PG, the function Zg,h(τ) is a modular function under

some subgroup Γg,h ∈ PSL(2,Z), i.e.

Zg,h(γ · τ) = Zg,h(τ) , γ ∈ Γg,h ⊆ PSL(2,Z) . (B.12)

The group Γg,h is the image π(Γ̃g,h) of the stabilizer

Γ̃g,h := {(γ, k) ∈ SL(2,Z)×G | (g, h) · (γ, k) = (g, h)} , (B.13)

under the homomorphism

π : SL(2,Z)×G→ PSL(2,Z) . (B.14)

Similar properties hold for the twisted-twining genera φg,h(τ, z) of an N = (4, 4) super-

conformal algebra: these are expected to be Jacobi forms of weight zero and index 1 with

respect to the same groups Γg,h. For this reason, we need to extend the definition of the

slash operator to an action on the space of functions ψ : PG ×H+ × C→ C. Specifically,

for Jacobi forms of weight 0 and index m with respect to some Γ ⊂ SL(2,Z) we define

ψ(g, h; τ, z)|
(
γ, k
)

:= e−
2πimcz2

cτ+d ψ
(
k gdh−c k−1, k g−bha k−1; γ · τ, z

cτ + d

)
, (B.15)

where (γ, k) =
(
( a bc d ), k

)
∈ SL(2,Z)×G. Note that for theories with N = (4, 4) supercon-

formal symmetry, these genera are expected to be even functions of z, so that the central

element C = S2 ∈ SL(2,Z) acts trivially and it makes sense to consider the action on such

functions of the quotient PSL(2,Z) = SL(2,Z)/Z2.
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We are now ready to incorporate the α-twist in the modular properties of the twisted

twining genera. To this end we define the α-twisted generalization of the equivariant slash

operator:

f(g, h, τ)|α(γ, k) := εg,h(γ, k)f
(
(γ, k) · (g, h); γ · τ

)
, (γ, k) ∈ SL(2,Z)×G , (B.16)

for some 3-cocycle α representing a class [α] ∈ H3(G,U(1)). Similarly, we define the

α-twisted slash operators on Jacobi forms of weight 0 and index m by

ψ(g, h; τ, z)|α
(
γ, k
)

:= εg,h(γ, k)e−
2πimcz2

cτ+d ψ
(
k gdh−c k−1, k g−bha k−1; γ · τ, z

cτ + d

)
,

(B.17)

where (γ, k) =
(
( a bc d ), k

)
∈ SL(2,Z)×G.

B.4 Cohomological obstructions

When α represents a non-trivial class in H3(G,U(1)), the partition functions Zg,h(τ) are

modular functions under Γg,h ⊆ PSL(2,Z) only up to some multiplier χg,h, which depends

on α (see section 2.2). In fact, by (B.13) and (B.8), the restriction of εg,h to Γ̃g,h is a group

homomorphism Γ̃g,h → U(1). If

εg,h(γ, k) = 1 , (B.18)

for all (γ, k) in

Γ̃g,h ∩ kerπ ={(e, k) ∈ SL(2,Z)×G | (k−1gk, k−1hk) = (g, h)} (B.19)

∪ {(S2, k) ∈ SL(2,Z)×G | (k−1gk, k−1hk) = (g−1, h−1)} , (B.20)

then the restriction εg,h : Γ̃g,h → U(1) induces a well-defined homomorphism χg,h : Γg,h →
U(1) on the image Γg,h = π(Γ̃g,h). Explicitly, for each γ ∈ Γg,h ⊆ PSL(2,Z), one can

choose a lift (γ, k) ∈ Γ̃g,h ⊆ SL(2,Z)×G and set

χg,h(γ) := εg,h(γ, k) , for γ = π(γ, k) ∈ Γg,h . (B.21)

By (B.18), the definition is independent of the lift.

On the contrary, if (B.18) is not satisfied for some (γ, k) ∈ Γ̃g,h ∩ kerπ, then eq.(2.11)

implies that Zg,h(τ) must vanish identically. In this case, we say that the twisted-twining

partition function is obstructed. Following the discussion in [17, 18], we can distinguish

between two kinds of obstructions:

(1) We say that, for a certain (g, h) ∈ PG, there is an obstruction of the first kind if there

is some element of the form (e, k) ∈ Γ̃g,h ∩ kerπ for which (B.18) is not satisfied.
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(2) We say that there is an obstruction of the second kind if (B.18) is satisfied for all

elements of the form (e, k) ∈ Γ̃g,h∩kerπ, but is violated by some element of the form

(S2, k) ∈ Γ̃g,h ∩ kerπ. By (B.8), this implies that (B.18) is false for all elements of

the form (S2, k) ∈ Γ̃g,h ∩ kerπ.

Although not phrased this way in [17] these obstructions are equivalent to the ones given

there.

C Definition of twisted equivariant Hecke operators

In this appendix, we shall discuss the definition and properties of the α-twisted equivariant

Hecke operators.

C.1 Twisted equivariant Hecke operator

Let us denote by Mat(Z) the ring of 2 × 2 integral matrices with positive determinant,

graded by the determinant,

Mat(Z) =
⋃
N>0

MatN(Z) , (C.1)

where MatN(Z) was defined in (3.4). For any u ∈ MatN(Z) denote by u∨ ∈ MatN(Z) the

dual (
a b

c d

)∨
:= N

(
a b

c d

)−1

=

(
d −b
−c a

)
,

(
a b

c d

)
∈ MatN(Z) . (C.2)

Note that Mat1(2,Z) ≡ SL(2,Z) is the group of invertible elements of Mat(Z) and that

each MatN(Z) is a bimodule over SL(2,Z).

In order to define the α-twisted equivariant Hecke operators T αN , we need to extend the

action (B.3) of SL(2,Z)×G on CPG to an action

CPG ×Mat(Z)×G→ CPG , (C.3)

by

(u, k)α : (g, h) 7→ εg,h(u, k)(kgk−1, khk−1)u∨ , (C.4)

for a suitable εg,h(u, k) ∈ U(1), that reduces to the one discussed in section B.2 when

u ∈ Mat1(Z) = SL(2,Z). Furthermore, the interpretation of φg,h as a section of Lαg,h
suggests that the following composition law should be imposed

(u1u2, k1k2)α · (g, h) = (u1, k1)α ·
(
(u2, k2)αN · (g, h)

)
, (C.5)
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where (u1, k1) ∈ MatN(Z)×G and (u2, k2) ∈ Mat(Z)×G. In terms of the phases εg,h, this

condition reads

εg,h((u1, k1) · · · (un, kn)) =
n∏
i=1

ε(ui+1,ki+1)···(un,kn)·(g,h)(ui, ki)
|u1···ui−1| , (C.6)

where |ui| := detui.

Observe that Mat(Z), as a multiplicative semigroup, is generated by SL(2,Z) together

with the matrices of the form
(
p 0
0 1

)
for p prime. Therefore, it is sufficient to specify the

phases ε(( p 0
0 1 ), e) for all primes p and any other phase εg,h(u, k), (u, k) ∈ Mat(Z) × G, is

then determined by (C.6). The α-twisted slash operator (2.14) can be trivially extended

to an action with respect to γ ∈ MatN(Z), in which case it maps a Jacobi form φ of weight

0 and index m to another Jacobi form φ|α(γ, k) of weight 0 and index Nm. Notice that,

by (C.6), the twisted slash operators satisfy the composition relation

|α(u1u2, k1k2) =|α(u1, k1)|αN (u2, k2) (C.7)

We can now define the α-twisted equivariant Hecke operators acting on the space of

SL(2,Z)×G-equivariant Jacobi forms φg,h by

T αN φg,h(τ, z) :=
1

N

∑
u∈SL(2,Z)\MatN (Z)

φg,h(τ, z)|α(u, e) , (C.8)

UαNφg,h(τ, z) := φg,h(τ, z)|α(N 0
0 N , e) . (C.9)

One may check that these operators satisfy the Hecke algebra (3.12)–(3.15). Furthermore,

T αN (respectively, UαN) maps the system of α-twisted SL(2,Z) × G-equivariant (weak) Ja-

cobi forms of weight 0 and index m to a system of αN -twisted (respectively, αN
2
-twisted)

SL(2,Z) × G-equivariant (weak) Jacobi forms of weight 0 and index Nm (respectively,

index N2m). The proofs of these properties are completely analogous to the case where α

is trivial; in fact, these properties follow directly from the definition of the Hecke operators

in terms of slash operators satisfying a composition law of the form (C.7).

C.2 Definition of slash operator for Mat(Z)×G

In this subsection, we will describe the extension of the α-twisted slash operators to

Mat(Z)×G. As stressed in section 3.2, it is sufficient to define such operators for matrices

of the form (N 0
0 1 ), since, together with SL(2,Z) they generate the whole Mat(Z). We will

make an ansatz for the phase εg,h
(
(N 0

0 1 ), e
)

and verify that it extends consistently to the

whole Mat(Z).
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Our ansatz for the phase εg,h
(
(N 0

0 1 ), e
)

is based on the interpretation of the correspond-

ing slash operator within the theory of symmetric orbifolds of conformal field theories. We

recall that the twisted-twining partition function Zg,h(τ) in a holomorphic CFT is defined

as a trace TrHg(ρg(h)qL0− c
24 ), where Hg is the g-twisted sector and ρg is the (possibly

projective) representation of the centralizer CG(g) on Hg. This partition function can be

computed by a path integral on a torus C/(Z + τZ) where the fields are required to have

monodromies g and h along the cycles −1 and τ , respectively. The function

Zg,h(τ)|α
(
(N 0

0 1 ), e
)

= Υ∗
(N 0

0 1
)
Zg,h , (C.10)

is associated with the N -fold covering C/(Z +NτZ) and has a natural interpretation as a

trace

Zg,h(τ)|α
(
(N 0

0 1 ), e
)

= TrHg
(
(ρg(h)qL0− c

24 )N
)
. (C.11)

Using the product law (2.5) for the projective representation ρg, we obtain

Zg,h(τ)|α
(
(N 0

0 1 ), e
)

=
N−1∏
i=1

cg(h, h
i) TrHg(ρg(h

N)qNL0−Nc24 ) =
N−1∏
i=1

cg(h, h
i)Zg,hN (Nτ) .

(C.12)

This formula suggests the definition

εg,h
(
(N 0

0 1 ), e
)

=
N−1∏
i=1

cg(h, h
i) , (C.13)

so that

f(g, h; τ)|α
(
(N 0

0 1 ), e
)

=
N−1∏
i=1

cg(h, h
i)f
(

(g, h)( 1 0
0 N ); (N 0

0 1 ) · τ
)
, (C.14)

Any integer matrix of determinantN can be written as a product of elements in SL(2,Z)

and matrices of the form ( p 0
0 1 ) for prime p. For each (u, k) ∈ Mat(Z) × G, given a

representation of u as a word u = a1 · · · an in the generators a1, . . . , an of Mat(Z), one

can use the composition law

f(g, h; τ)|α(u1u2, k1k2) = f(g, h; τ)|α(u1, k1) |α|u1|(u2, k2) , (C.15)

where |u| := detu, to define the slash operator

f(g, h; τ)|α(a1 · · · an, k) := f(g, h; τ)|α(I, k) |α(a1, e) |α|a1|(a2, e) · · · |α|a1···an−1|(an, e) .

(C.16)
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One needs to check that this definition is consistent, i.e. that the operator |α(u, k) does

not depend on representation of (u, k) ∈ Mat(Z)×G as a word in the generators and that

the composition law is respected. The outline of the proof is given in the next subsection.

In particular, by (C.15), the identity(
1 0

0 N

)
=

(
0 −1

1 0

)(
N 0

0 1

)(
0 1

−1 0

)
(C.17)

yields

εg,h
(
( 1 0

0 N ), e
)

=
cg(h

−1, h)N
∏N−1

i=1 ch−1(g, gi)

cgN (h−1, h)
=

1∏N−1
i=1 ch(g, gi)

, (C.18)

where in the last step we use (A.19), while from the identity(
a b

0 d

)
=

(
1 0

0 d

)(
1 1

0 1

)b(
a 0

0 1

)
(C.19)

we obtain the general formula

εg,h
(
a b
0 d

)
:= εg,h

(
( a b0 d ), e

)
=

∏a−1
i=1 cg(h, h

i)d∏d−1
j=1 cg−bha(g, g

j)
∏b

k=1 cg(g, g
−kha)d

. (C.20)

Since for any coset of SL(2,Z)\Mat(Z) we can choose a representative of the form ( a b0 d ),

this formula is sufficient to determine the Hecke operators T αN and UαN for all N . In

particular, if the restriction of the 3-cocycle α to the group 〈g, h〉 ∼= ZN1 ×ZN2 is given by

α = αv1αv2αv12 , in terms of the generators (A.20)–(A.21), then (N1, N2 > 1)

εg,h
(
( a b0 d ), e

)
= e

2πi
N1

(
v1b

∑d−1
j=1 δ

(N1)(j+1)−v1d
∑b
j=1 δ

(N1)(1−j)+v12d
∑a−1
j=1 δ

(N2)(j+1)
)
. (C.21)

C.3 Proof of consistency

In the rest of this section, we will show that our proposal for the twisted equivariant Hecke

operators satisfies several consistency conditions. As a first consistency, let us consider

the effect of a ‘gauge transformation’ (A.5), under which the normalized 3-cocycle α is

multiplied by a 3-coboundary ∂β (with β(e, g) = β(g, e) = 1 to keep the normalization).

Formally, this transformation corresponds to a different choice of trivialization of the pull-

back π∗Lαg,h, where π : P × H+ × C → M is the covering map. As stressed in the

previous appendix A, for a holomorphic CFTs C, the transformation (A.5) corresponds to

a redefinition (A.15) of the projective representations ρg of the centralizer CG(g) over the
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twisted sector Hg and induces the transformation (A.16) of the partition functions. For the

tensor product C⊗N and the symmetric product SNC theories, the twisted twining partition

functions Zg,h are defined traces over the representation induced by the (symmetrized) N -

tensor product of ρg, so that the appropriate transformation is

Z
(N)
g,h 7→ Z̃

(N)
g,h := γg(h)NZ

(N)
g,h . (C.22)

Analogous properties hold for the twisted twining genera φ
(N)
g,h in superconformal field

theories. Using the identities γe(g) = γg(e) = 1 and γg(h) = γh(g)−1, it is easy to check

that, under (A.15) and (A.11),(
γg(h)f(g, h; τ)

)
|α̃
(
( a b0 d )γ, e

)
= γg(h)N

(
f(g, h; τ)|α

(
( a b0 d )γ, e

))
, (C.23)

where N = ad, and similar properties hold for Jacobi forms. As a consequence, we obtain

T αN Z̃g,h = γg(h)NT αNZg,h , (C.24)

and

T αN φ̃g,h = γg(h)NT αN φg,h , UαN φ̃g,h = γg(h)N
2UαNφg,h , (C.25)

which indeed reproduce (C.22) and the analogous formula for twisted twining genera. More

generally, given any representation of a matrix u ∈ MatN(Z) as a word in the generators

of Mat(Z), it is easy to check that (C.23) holds for the slash operator |α(u, k), i.e

γg(h)ε̃g,h(u, k) = γg(h)Nεg,h(u, k) . (C.26)

An easy corollary of this property is

f(g, h; τ)|α
(
u, k
)
|αN
(
I, x
)

= f(g, h; τ)|α
(
I, x
)
|α
(
u, k
)
, (u, k) ∈ MatN(Z)×G, x ∈ G ,

(C.27)

which follows by considering (C.26) for the transformation (A.7). As a consequence of

(C.27), one only needs to prove consistency of the slash operator for elements of the form

(u, e).

A set of generators of the multiplicative semigroup Mat(Z) is given by the generators

S, T of SL(2,Z) (see eq.(B.9)), together with all matrices ( p 0
0 1 ) for p prime. To check the

consistency of the definition of the slash operator, one needs to verify that, for each relation

a1 · · · an = b1 · · · bm among the generators of Mat(Z), the following identities hold for all

(g, h) ∈ PG

f(g, h; τ)|α(a1, e) · · ·|α|a1...an−1|(an, e) = f(g, h; τ)|α(b1, e) · · ·|α|b1...bm−1|(bm, e) . (C.28)
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This is equivalent to checking the following identities for the phases

n∏
i=1

ε(g,h)a∨i+1···a∨n (ai, e)
|a1···ai−1| =

m∏
i=1

ε(g,h)b∨i+1···b∨m(bi, e)
|b1···bi−1| . (C.29)

For the relations S4 = 1 and (ST )3 = S2 within SL(2,Z), these conditions are a

consequence of the identities considered in [45, 46]; therefore, we will only consider the

independent relations within MatN(Z) for N > 1.

For each prime power p, the relations within Matp(Z) can be obtained from the relations

for SL(2,Z), together with relations of the form

γ1

(
p 0

0 1

)
=

(
p 0

0 1

)
γ2 , (C.30)

for suitable γ1, γ2 ∈ SL(2,Z). It is easy to check that such a relation exists if and only if

γ2 is an element of Γ0(p), which is generated by T , S2 and ST pS = ( 1 0
−p 1 ). Therefore, the

only independent relations within Matp(Z) are

T p

(
p 0

0 1

)
=

(
p 0

0 1

)
T , (C.31)

S2

(
p 0

0 1

)
=

(
p 0

0 1

)
S2 , (C.32)

and

STS

(
p 0

0 1

)
=

(
p 0

0 1

)
ST pS . (C.33)

The only remaining relations in Mat(Z) are of the form(
p 0

0 1

)
γ1

(
p′ 0

0 1

)
= γ2

(
p′ 0

0 1

)
γ3

(
p 0

0 1

)
γ4 , (C.34)

for all pairs of distinct primes p, p′ and suitable γ1, γ2, γ3, γ4 ∈ SL(2,Z). In fact, it is easier

to consider formula (C.20) as a definition of εg,h(( a b0 d ), e) and verify the identities (C.29)

for the relations (
a b

0 d

)(
p 0

0 1

)
=

(
pa b

0 d

)
, (C.35)(

p 0

0 1

)(
a b

0 d

)
=

(
pa pb

0 d

)
, (C.36)
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since the consistency conditions for the relations (C.34) then follow. The consistency

conditions are therefore

εg,hp
(

1 p
0 1

)
εg,h
(
p 0
0 1

)
= εg,g−1h

(
p 0
0 1

)
εg,h
(

1 1
0 1

)p
(C.37)

εh−p,g
(

0 −1
1 0 )εg,hp

(
0 −1
1 0 )εg,h

(
p 0
0 1 ) = εg−1,h−1

(
p 0
0 1 )εh−1,p

(
0 −1
1 0 )pεg,h

(
0 −1
1 0 )p (C.38)

εgp,h
(

1 1
0 1

)
εg,h
(

1 0
0 p

)
= εg,g−ph

(
1 0
0 p

)
εg,h
(

1 p
0 1

)p
(C.39)

εg,hp
(
a b
0 d

)
εg,h
(
p 0
0 1

)ad
= εg,h

(
pa b
0 d

)
(C.40)

εgd,g−bha
(
p 0
0 1

)
εg,h
(
a b
0 d

)p
= εg,h

(
pa pb
0 d

)
. (C.41)

The proof is a tedious but straightforward computation, consisting of a repeated use of the

cocycle conditions. For example, the proof of (C.40):∏a−1
i=1 cg(h, h

ip)d∏d−1
j=1 cg−bhap(g, g

j)
∏b

k=1 cg(g, g
−khap)d

p−1∏
i=1

cg(h, h
i)ad
∏d−1

j=1 cg−bhap(g, g
j)
∏b

k=1 cg(g, g
−khap)d∏pa−1

i=1 cg(h, hi)d

(C.42)

=
(∏a−1

i=1 cg(h, h
ip)
∏p−1

i=1 cg(h, h
i)a∏pa−1

i=1 cg(h, hi)

)d
= 1 (C.43)

where the last equality follows from the 2-cocycle condition on cg (the easiest way to check

this is to consider a projective representation ρg associated with cg, and to rewrite this

expression as a ratio of two phases, both corresponding to the mismatch between ρg(h)pa

and ρg(h
pa)).

D Some technical proofs

D.1 Proof of (3.53).

Let us prove (3.53). The sum Fg,h(a, d, k, `) can be written as

Fg,h(a, d, k, `) :=
∞∑
n=0

1

d

d−1∑
b=0

e
2πibn
Nλd cgdα,g−bα hkα

(
n

Nλ
, `)q

na
Nλd , (D.1)

in terms of the Fourier coefficients of the twisted-twining genera φgdα,g−bα hkα
introduced in

section 3.2.2. Notice that the functions φgα,hα satisfy

φgrα,g−rα hα
(τ + 1, z) = φgrα,hα(τ, z) , (D.2)

so that

cgdα,gdαhα(r, `) = e
2πir
Nλ cgdα,hα(r, `) , (D.3)
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for all hα ∈ Cα
M24

(g). Set

e := gcd(d,Nλ) , f :=
d

e
, (D.4)

and note that

gcd(f,
Nλ

e
) = 1 , (D.5)

otherwise e gcd(f, Nλ
e

) would be a common divisor of d and Nλ greater than e. The order

of gdα is o(gefα ) = o(geα) = Nλ/e, so that cgdα,g−bα hkα
( n
Nλ
, `) = 0 unless e|n. Thus, we can set

r := n/e and obtain

Fg,h(a, d, k, `) =
∞∑
r=0

1

d

d−1∑
b=0

e
2πibre
Nλd cgdα,g−bα hkα

(
re

Nλ
, `)q

ar
Nλf . (D.6)

Notice that, by (D.3), the general term of the sum over b is periodic under b → b + d.

We can set b := se + b′ and replace the sum over b ∈ Z/dZ by a sum over b′ ∈ Z/eZ and

s ∈ Z/fZ

Fg,h(a, d, k, `) =
∞∑
r=0

1

e

e−1∑
b′=0

1

f

f−1∑
s=0

e
2πi(b′+se)r

Nλf c
gdα,g

−b′
α g−seα hkα

(
re

Nλ
, `)q

ar
Nλf . (D.7)

Thus, the general term of the sum over b′ is periodic under b′ → b′ + e and we can sum

over Nλ/e periods and divide by Nλ/e

Fg,h(a, d, k, `) =
∞∑
r=0

1

Nλ

Nλ−1∑
b′=0

1

f

f−1∑
s=0

e
2πi(b′+se)r

Nλf c
gdα,g

−b′
α g−seα hkα

(
re

Nλ
, `)q

ar
Nλf . (D.8)

By (D.5), there are integers x, y such that

xf + y
Nλ

e
= 1 (D.9)

so that se = sxd+ syNλ and we obtain

Fg,h(a, d, k, `) =
∞∑
r=0

1

Nλ

Nλ−1∑
b′=0

1

f

f−1∑
s=0

e
2πib′r
Nλf e

2πis(xd+yNλ)r
Nλf c

gdα,g
−b′
α g−sdxα hkα

(
re

Nλ
, `)q

ar
Nλf (D.10)

=
∞∑
r=0

Nλ−1∑
b′=0

e
2πib′r
Nλf

Nλ

f−1∑
s=0

e
2πisyr
f

f
c
gdα,g

−b′
α hkα

(
re

Nλ
, `)q

ar
Nλf , (D.11)

where in the last step we used (D.3). Since by (D.9) gcd(y, f) = 1, the sum over s just a

projection
f−1∑
s=0

e
2πisyr
f

f
=

1 if f |r ,

0 otherwise ,
(D.12)
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so that, by setting r = mf , we obtain

Fg,h(a, d, k, `) =
∞∑
m=0

Nλ−1∑
b′=0

e
2πib′m
Nλ

Nλ
c
gdα,g

−b′
α hkα

(
md

Nλ
, `)q

am
Nλ , (D.13)

that is equivalent to (3.53).

D.2 Central extensions and special choices of the cocycle

In section 3.2.2 a central extension Cα
M24

(g) of the centralizer CM24(g) is defined, together

with the representations ρ̃g,r on the gr-twisted sector Hgr , for all r ∈ Z≥0. In this section,

we will describe some special choices of the cocycle α, for which these representations are

particularly simple.

If two 3-cocycles α, α′ differ by a coboundary ∂β, then there is an isomorphism

Cα′
M24

(g)
∼=−→ Cα

M24
(g) that relates the canonical lifts

hα′ 7→ hα q(νg(h)) , (D.14)

where νg(h) ∈ R/Z is defined by e2πiνg(h) = β(g,h)
β(h,g)

.

Under the shift α→ α′ by a coboundary ∂β, the cocycle cg transforms as

cg(h, k)→ β(g, h)

β(h, g)

β(g, k)

β(k, g)

β(hk, g)

β(g, hk)
cg(h, k) , h, k ∈ CM24(g) . (D.15)

Correspondingly, the phases fg,r(h) transform as

fg,r(h)→ fg,r(h)
β(h, g)r

β(g, h)r
β(gr, h)

β(h, gr)
, h ∈ CM24(g) , (D.16)

and, in particular,

fg,N(h)→ fg,N(h)
β(h, g)N

β(g, h)N
, h ∈ CM24(g) . (D.17)

Therefore, we can choose β(g, h)/β(h, g) for each h ∈ CM24(g), h 6∈ 〈g〉, in such a way that

fg,N(h) = 1 , ∀h ∈ CM24(g) \ 〈g〉 . (D.18)

This condition determines β(g, h)/β(h, g) for all h ∈ CM24(g) \ 〈g〉 up to N -th roots of

unity. Notice that, in general,

ρ̃g,r+N(h) =
ρgr(h)

fg,r(h)fg,N(h)
=

ρ̃gr(h)

fg,N(h)
, h ∈ CM24(g) , (D.19)
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so that, by imposing (D.18), we have

ρ̃g,r+N(h) = ρ̃gr(h) , h ∈ CM24(g) \ 〈g〉 . (D.20)

On the other hand, fg,N(g) depends only on the cohomology class [α]. Since the restriction

of [α]N to H3(〈g〉, U(1)) ∼= ZN is the trivial class, it follows that fg,N(g) must be a N -th

root of unity. In fact, for M24, we have

fg,N(g) = e−
2πi
λ , (D.21)

where λ|N is the length of the shortest cycle of g in the 24-dimensional permutation

representation. It is also related to the spectrum of L0 − c
24

in the g-twisted sector, which

takes values in − 1
λN

+ 1
N
Z and to the presence of a non-trivial multiplier system for the

twining genus φe,g. It is useful to distinguishes the cases when λ = 1 and λ 6= 1.

D.2.1 Case λ = 1 (trivial multiplier)

This case occurs whenever g is an element of some M23 subgroup of M24, i.e. when g

belongs to the classes

2A, 3A, 4B, 5A, 6A, 7A, 7B, 8A, 11A, 14A, 14B, 15A, 15B, 23A, 23B . (D.22)

In this case the restriction of [α] to H3(〈g〉, U(1)) is the trivial class and one can choose

β(gi, gj) in such a way that

cgi(g
j, gk) = 1 . (D.23)

In particular,

fg,r(g
i) = 1 , (D.24)

for all r, i. By specializing (3.31) to the case r = N , we obtain

cg(h, k)N = cgN (h, k)
fg,N(hk)

fg,N(h)fg,N(k)
= 1 , h, k ∈ C(g) , (D.25)

so that cg(h, k) is an N -th root of unity for all h, k ∈ CM24(g), i.e. there is µg(h, k) ∈ Z/NZ
such that

cg(h, k) = e
2πiµg(h,k)

N . (D.26)

With this choice of cocycle, the central extension Cα
M24

(g) of section 3.2.2 can be chosen to

be finite

1→ 〈Q〉 ∼= ZN → Cα
M24

(g)→ CM24(g)→ 1 . (D.27)

where the central element Q is related to the U(1)-generator q(x) in section 3.2.2 by

Q = q(1/N) . (D.28)

65



D.2.2 Case λ 6= 1 (non-trivial multiplier)

This case occurs when g is in one of the M24-classes

2B, 3B, 4A, 4C, 6B, 10A, 12A, 12B, 21A, 21B . (D.29)

Since H3(〈g〉, U(1)) ∼= ZN , we can choose the cocycle in such a way that

cgi(g
j, gk)N = 1 , (D.30)

for all i, j, k ∈ Z. This condition fixes β(gi, gj) up to N -th roots of unity. For h, k ∈
CM24(g), with h, k, hk 6∈ 〈g〉, we can apply again (3.31) with r = N and obtain

cg(h, k)N = 1 , h, k, hk ∈ CM24(g) \ 〈g〉 . (D.31)

If α satisfies (D.18) and (D.30), then by (3.31) we have

fg,N(gi)cg(g
i, h)N = 1 ,

fg,N(gi)fg,N(gj)

fg,N(gi+j)
= 1 , (D.32)

so that

fg,N(gn) = fg,N(g)n = e−
2πin
λ , (D.33)

and

cg(g
i, h)Nλ = 1 . (D.34)

Therefore, cg(h, k) is a Nλ roots of unity for all h, k ∈ CM24(g) and we can define µg(h, k) ∈
Z/NλZ such that

cg(h, k) = e
2πiµg(h,k)

Nλ . (D.35)

The discussion is similar to the case λ = 1. With this choice of cocycle, the central

extension Cα
M24

(g) of section 3.2.2 can be chosen to be finite

1→ 〈q( 1

Nλ
)〉 ∼= ZNλ → Cα

M24
(g)→ CM24(g)→ 1 . (D.36)

It is convenient to define also a central element Q of order N by

Q = q(1/N) , (D.37)

so that the gr-twisted sector is an eigenspace of Q with eigenvalue e
2πir
N .
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D.3 S-duality for g in classes 2B, 3B, 4C, 6B, 12B

Here we prove the S-duality transformation property of Φg,h for g in the classes 2B, 3B,

4C, 6B, 12B. Let g be an element of M24 in one of these classes and let N be its order. In

all these cases, the restriction of the class [α] to H3(〈g〉, U(1)) is non-trivial and has order

λ = N . Therefore,

ĉg,h(d,m, `, t) =
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πibm
N2

N2
TrH

gd
(md
N2 ,`)

(
ρ̃g,d(g)−bρ̃g,d(h)k(−1)F+F̄

)
. (D.38)

In the gr-twisted sector, for r and N coprime, the spectrum of L0 − c
24

takes values in

− 1
N2 + 1

N
Z. More generally, if gcd(r,N) = e, then in the gr-twisted sector the spectrum of

L0− c
24

takes values in − 1
(N/e)2 + 1

N/e
Z. Notice that ĉg,h(d,m, `, t) is a sum of traces in the

gd-twisted sector at level md
N2 , so that ĉg,h(d,m, `, t) = 0 unless md

N2 ∈ − 1
(N/e)2 + 1

N/e
Z, where

e = gcd(N, d). It is easy to verify that this condition is equivalent to

m ≡ −d mod N , (D.39)

where we used the property

gcd(x,N) = 1 ⇔ x2 ≡ 1 mod N , (D.40)

which holds for all N that divide 24.

We can choose the cocycle α in such a way that

fg,N(h) ≡
N−1∏
i=1

ch(g, g
i) = 1 , h ∈ CM24(g) \ 〈g〉 , (D.41)

while fg,N(gk) depends only on the cohomology class [α] and equals

fg,N(gk) = e−
2πik
N . (D.42)

With this choice of cocycle, we have

ρ̃g,x+N(h) =
ρgx(h)

fg,N(h)
= ρ̃g,x(h) , h ∈ CM24(g) \ 〈g〉 , (D.43)

while

ρ̃g,x+N(g) =
ρ̃g,x(g)

fg,N(g)
= e

2πi
N ρ̃g,x(g) . (D.44)
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For d ≡ −m ≡ 0 mod N , we have

ĉg,h(d = Nu,m = Nv, `, t) =
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πibv
N

N2
TrHe(uv,`)

(
ρ̃g,Nu(g)−bρ̃g,Nu(h)k(−1)F+F̄

)
(D.45)

=
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πib(v−u)

N

N2
TrHe(uv,`)

(
g−bhk(−1)F+F̄

)
. (D.46)

Since the (untwisted) twining genera are invariant under charge conjugation, i.e.

φe,g−bhk(τ, z) = φe,gbh−k(τ, z) , (D.47)

we obtain

ĉg,h(Nu,Nv, `, t) =
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πib(v−u)

N

N2
TrHe(uv,`)

(
gbh−k(−1)F+F̄

)
=

M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πib(u−v)

N

N2
TrHe(uv,`)

(
g−bh−k(−1)F+F̄

)
= ĉg,h−1(Nv,Nu, `, t) . (D.48)

Similarly, for d ≡ x ≡ −m mod N , with x = 1, . . . , N − 1, we obtain

ĉg,h(d = Nu+ x,m = Nv +N − x, `, t) =
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πib(Nv+N−x−Nu)

N2

N2

TrHgx (md
16
,`)

(
ρ̃g,x(g)−bρ̃g,x(h)k(−1)F+F̄

)
. (D.49)

Using the relation

φg,h(τ, z) =
1

ch(g, g−1)cg−1(h, h−1)
φg−1,h−1(τ, z) , (D.50)

and by
ρg−1(h−1)

cg−1(h, h−1)
= ρg−1(h)−1 , (D.51)

we obtain

TrHgx (n,`)(ρ̃g,x(h)) =
TrHgx (n,`)(ρgx(h))∏x−1

i=1 ch(g, g
i)

=
TrHg−x (n,`)(ρg−x(h)−1)

ch(gx, g−x)
∏x−1

i=1 ch(g, g
i)

(D.52)

=
TrH

gN−x (n,`)(ρ̃g,N−x(h)−1)

ch(gx, gN−x)
∏x−1

i=1 ch(g, g
i)
∏N−x−1

j=1 ch(g, gi)
=

TrH
gN−x (n,`)(ρ̃g,N−x(h)−1)

fg,N(h)
, (D.53)
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where the last equality follows from

ch(g
x, gN−x)

x−1∏
i=1

ch(g, g
i) =

N∏
i=N−x

ch(g, g
i) , (D.54)

that in turn is a consequence of the 2-cocycle condition for cg. It is easy to verify that this

identity is compatible with the product in the central extension, i.e.

TrHgx (n,`)(ρ̃g,x(h)ρ̃g,x(k)) =
TrH

gN−x (n,`)(ρ̃g,N−x(k)−1ρ̃g,N−x(h)−1)

fg,N(k)fg,N(h)
. (D.55)

Using this relation, we obtain

ĉg,h(d = Nu+ x,m = Nv +N − x, `, t) (D.56)

=
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πib(Nv−x−Nu)

N2

N2
TrH

gN−x (md
N2 ,`)

(
ρ̃g,N−x(g)bρ̃g,N−x(h)−k(−1)F+F̄

)
(D.57)

=
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πib(Nu+x−Nv)

N2

N2
TrH

gN−x (md
N2 ,`)

(
ρ̃g,N−x(g)−bρ̃g,N−x(h)−k(−1)F+F̄

)
(D.58)

=
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πib(Nu+x)

N2

N2
TrH

gN−x (md
N2 ,`)

(
ρ̃g,Nv+N−x(g)−bρ̃g,Nv+N−x(h)−k(−1)F+F̄

)
(D.59)

=
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πibd
N2

N2
TrHgm (md

N2 ,`)

(
ρ̃g,m(g)−bρ̃g,m(h)−k(−1)F+F̄

)
. (D.60)

Finally, we notice that

ρ̃g,r(h)−k = cg(h, h
−1)−rkρ̃g,r(h

−1)k , (D.61)

where cg(h, h
−1) is a N -th root of unity thanks to our choice of cocycle. We recall that

imposing the condition fg,N(h) = 1 still leaves the possibility of modifying the cocycle α

by a coboundary ∂β with βN = 1. Under such a modification, cg(h, h
−1) transforms as

cg(h, h
−1)→ β(g, h)

β(h, g)

β(g, h−1)

β(h−1, g)
cg(h, h

−1) , (D.62)

We distinguish two cases. If h−1 and h are not conjugated within CM24(g), then one can

choose the cocycle α in such a way that

cg(h, h
−1) = 1 . (D.63)
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With this choice, we obtain

ĉg,h(d,m, `, t) = ĉg,h−1(m, d, `, t) , (D.64)

so that

Φg,h(σ, τ, z) = pq
1
N2 y

M∏
t=1

∏
(d,m,`)

(1− e
2πit
M q

m
N2 y`pd)ĉg,h(d,m,`,t) (D.65)

= pq
1
N2 y

M∏
t=1

∏
(d,m,`)

(1− e
2πit
M q

m
N2 y`pd)ĉg,h−1 (m,d,`,t) (D.66)

= Φg,h−1(
τ

N2
, N2σ, z) . (D.67)

In most cases, however, there is some w ∈ CM24(g) such that h−1 = w−1hw. This property

implies a ‘reality condition’ on the Fourier coefficients of φg,h(τ, z), namely

φg,h(τ, z) =
cg(h,w)cg(h, h

−1)

cg(w, h−1)
φ∗g,h(τ, z) = e−

2πin
N φ∗g,h(τ, z) , (D.68)

where

φ∗g,h(τ, z) := φg,h(−τ̄ ,−z̄) =
∑
r∈Q

∑
`∈Z

cg,h(r, `)q
ry` , (D.69)

is the Jacobi form with complex conjugate Fourier coefficients. Here, n ∈ Z/NZ is such

that

e−
2πin
N =

cg(h,w)cg(h, h
−1)

cg(w, h−1)
, (D.70)

where we used the fact that, with our choice of cocycle, the right-hand side is a N -th root

of unity. Thus, (D.68) implies that all Fourier coefficients of φg,h have the same argument.

At the level of the central extension Cα
M24

(g), the relation hw = wh−1 leads to a relation

among the lifts

h−1
α =

cg(w, h
−1)

cg(h,w)cg(h, h−1)
w−1
α hαwα = w−1

α Qnhαwα . (D.71)

Since Qnhα is conjugated with h−1
α within Cα

M24
(g), it must have the same order M , so that

nM ≡ 0 mod N or, equivalently,

nM = sN , (D.72)
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for some s ∈ Z/MZ. Therefore,

ĉg,h(d,m, `, t) (D.73)

=
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πibd
N2

N2
TrHgm (md

N2 ,`)

(
ρ̃g,m(g)−bρ̃g,m(h)kρ̃g,m(Qn)k(−1)F+F̄

)
(D.74)

=
M−1∑
k=0

e−
2πitk
M

M

N2∑
b=1

e
2πibd
N2

N2
e

2πinmk
N TrHgm (md

N2 ,`)

(
ρ̃g,m(g)−bρ̃g,m(h)k(−1)F+F̄

)
(D.75)

=
M−1∑
k=0

e−
2πi(t−sm)k

M

M

N2∑
b=1

e
2πibd
N2

N2
e

2πinmk
N2 TrHgm (md

N2 ,`)

(
ρ̃g,m(g)−bρ̃g,m(h)k(−1)F+F̄

)
(D.76)

= ĉg,h(m, d, `, t− sm) . (D.77)

Using this identity, we obtain

Φg,h(σ, τ, z) = pq
1
N2 y

M∏
t=1

∏
(d,m,`)

(1− e
2πit
M q

m
N2 y`pd)ĉg,h(d,m,`,t) (D.78)

= pq
1
N2 y

M∏
t=1

∏
(d,m,`)

(1− e
2πit
M q

m
N2 y`pd)ĉg,h(m,d,`,t−sm) (D.79)

= pq
1
N2 y

M∏
t′=1

∏
(d,m,`)

(1− e
2πism
M e

2πit′
M q

m
N2 y`pd)ĉg,h(m,d,`,t′) (D.80)

= pq
1
N2 y

M∏
t′=1

∏
(d,m,`)

(1− e
2πinm
N e

2πit′
M q

m
N2 y`pd)ĉg,h(m,d,`,t′) (D.81)

= e−
2πin
N Φg,h(

τ

N2
+
n

N
,N2σ, z) (D.82)

= e
2πin
N Φg,h(

τ

N2
, N2σ −Nn, z) , (D.83)

where we used the property that the exponent ĉg,h(m, d, `, t
′) is non-zero only for d ≡ −m

mod N2, so that

e−
2πix
N2 Φg,h(σ +

x

N2
, τ, z) = e

2πix
N2 Φg,h(σ, τ − x, z) , x ∈ Z . (D.84)

Let us set ν = r
N2 , for some r ∈ Z, so that

Φ′g,h(σ, τ, z) = e−
2πir
N2 Φg,h(σ +

r

N2
, τ, z) = e

2πi(Nn−r)
N2 Φg,h(

τ

N2
, N2σ + r −Nn, z) (D.85)

= e
2πi(r−Nn)

N2 Φg,h(
τ

N2
+
Nn− r
N2

, N2σ, z) = e
2πi(2r−Nn)

N2 Φ′g,h(
τ

N2
+
Nn− 2r

N2
, N2σ, z) .

(D.86)
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By choosing r = n(N+N2)
2

, we finally obtain

Φ′g,h(σ, τ, z) = Φ′g,h(
τ

N2
− n,N2σ, z) = Φ′g,h(

τ

N2
, N2σ, z) . (D.87)

E Tables

In the following tables, we collect information about the 34 non-cyclic abelian subgroups

〈g, h〉 of M24 and the corresponding twisted-twining genera. There we have described their

structure as an abelian group, i.e. as Zm×Zn, the M24 classes of all its elements (excluding

the identity), the orders of the centralizer C(g, h) and its index |N(g, h)|/|C(g, h)| in the

normalizer of 〈g, h〉 in M24, and the lengths of the orbits of 〈g, h〉 ⊂M24 when acting as a

group of permutations of 24 objects.

Furthermore, we give a classification of all modular groups Γg,h ⊂ PSL(2,Z) and

twisted twining genera φg,h for commuting pairs g, h ∈M24.

Group 27 is the only case where the pairs (g, h) and (g−1, h−1) are not conjugated

within M24. Thus, in this case, charge conjugation gives the identities φ2B,8A1 = φ2B,8A2 ,

φ8A,2B1 = φ8A,2B2 , and so on, and the respective functions are denoted in the following

tables by φ2B,8A1,2 , φ8A,2B1,2 , etcetera.

Most of the modular groups Γg,h are of the form Γ(1) = SL(2,Z) or

Γ0(N) := {( a bc d ) ∈ SL(2,Z) | c ≡ 0 mod N} , (E.1)

or conjugates of Γ0(N) in SL(2,Z). The exceptions are the group in case 32, where

Γ2B,10A =
⋃

i∈Z/3Z,j∈Z/4Z

( 1 1
−5 −4 )

i
( −3 −1

10 3 )
j
Γ2,10 , (E.2)

is a subgroup of index 12 in SL(2,Z) and

Γ2,10 := {( a bc d ) ∈ SL(2,Z) | a ≡ 1, b ≡ 0 mod 2, c ≡ 0, d ≡ 1 mod 10} , (E.3)

is the group of elements γ ∈ SL(2,Z) such that (g, h) · γ = (g, h); the group in case 12,

with

Γ2A,4A = {( a bc d ) ∈ SL(2,Z) | b ≡ 0 mod 2, c ≡ 0 mod 4} , (E.4)

which is a conjugate of Γ0(8) in SL(2,R); and the group in case 22, with

Γ4A,4C = 〈
( −1 1
−2 1

)
, ( 1 2

0 1 ) , ( 1 0
4 1 ) ,

(
3 −2
−4 3

)
〉 . (E.5)

Finally, for each of the 34 groups we provide the explicit expressions of the twisted-twining

genera φg,h and T αN φg,h, N = 2, 3, 4, for a pair (g, h) of generators and for a choice of

cocycle α satisfying (D.18) and (D.23) (when g is in M23 ⊂M24) or (D.30) (otherwise).
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# Structure Elements |C(g, h)| |N(g,h)|
|C(g,h)| Orbits on 24 Max subgr. Functions Γg,h

1. Z2 × Z2 (2A)3 1536 6 18 · 44 φ2A,2A2 Γ(1)

2. Z2 × Z2 (2A)3 1536 6 212 φ2A,2A3 Γ(1)

3. Z2 × Z2 (2A)3 128 6 14 · 26 · 42 φ2A,2A5 Γ(1)

4. Z2 × Z2 (2B)3 3840 6 46 φ2B,2B2 Γ(1)

5. Z2 × Z2 (2B)3 96 6 46 φ2B,2B4 Γ(1)

6. Z2 × Z2 (2B)3 64 6 46 φ2B,2B6 Γ(1)

7. Z2 × Z2 (2A)2(2B) 256 2 28 · 42 φ2B,2A1 , φ2A,2B3 , φ2A,2A4 Γ0(2)

8. Z2 × Z2 (2A)(2B)2 512 2 24 · 44 φ2A,2B1 , φ2B,2A2 , φ2B,2B1 Γ0(2)

9. Z2 × Z2 (2A)(2B)2 128 2 24 · 44 φ2A,2B2 , φ2B,2A3 , φ2B,2B5 Γ0(2)

10. Z2 × Z4 (2A)3(4A)4 64 8 24 · 82 1 φ2A,4A2 , φ4A,2A2 , φ4A,4A3 Γ0(2)

11. Z2 × Z4 (2A)3(4A)4 64 8 46 2 φ2A,4A3 , φ4A,2A3 , φ4A,4A7 Γ0(2)

12. Z2 × Z4

(2A)2(2B)

(4A)2(4B)2
32 2 22 · 43 · 81 7

φ2A,4A4 , φ2A,4B4 , φ2B,4A1 ,
φ2B,4B1 , φ4A,2A1 , φ4A,2B1 ,
φ4B,2A4 , φ4B,2B2 , φ4B,4A1 ,
φ4B,4A2 , φ4A,4B3 , φ4A,4B4

Γ2A,4A

13. Z2 × Z4 (2A)(2B)2(4A)4 64 8 42 · 82 8 φ2B,4A2 , φ4A,2B3 , φ4A,4A5 Γ0(2)

14. Z2 × Z4 (2A)(2B)2(4A)4 32 8 42 · 82 8 φ2B,4A3 , φ4A,2B2 , φ4A,4A2 Γ0(2)

15. Z2 × Z4 (2A)(2B)2(4C)4 32 4 42 · 82 8
φ2A,4C1 , φ4C,2A2 , φ4C,2B3 ,
φ2B,4C2 , φ4C,4C4 , φ4C,4C6

Γ0(4)

16. Z2 × Z4 (2A)(2B)2(4C)4 16 4 42 · 82 9
φ2A,4C2 , φ4C,2A1 , φ4C,2B2 ,
φ2B,4C3 , φ4C,4C3 , φ4C,4C5

Γ0(4)

17. Z2 × Z4 (2A)3(4B)4 64 8 14 · 22 · 82 1 φ2A,4B2 , φ4B,2A2 , φ4B,4B8 Γ0(2)

18. Z2 × Z4 (2A)3(4B)4 64 8 24 · 44 2 φ2A,4B3 , φ4B,2A5 , φ4B,4B9 Γ0(2)

19. Z2 × Z4 (2A)3(4B)4 16 8 12 · 23 · 42 · 81 3 φ2A,4B5 , φ4B,2A3 , φ4B,4B3 Γ0(2)
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# (g, h) φg,h 2T α2 φg,h 3T α3 φg,h 4T α4 φg,h

1.

2.

3.

(2A, 2A2)

(2A, 2A3)

(2A, 2A5)

0 φ2A,e(2τ, 2z) + φe,2A
(
τ
2
, z
)

+ φe,2A
(
τ+1

2
, z
)

0
φ2A,e(4τ, 4z) + φe,2A

(
2τ+1

2
, 2z
)

+φe,e(τ, 2z) +
∑3

i=0 φe,2A
(
τ+i

4
, z
)

4.

5.

6.

(2B, 2B2)

(2B, 2B4)

(2B, 2B6)

0 −φ2B,e(2τ, 2z) + φe,2B
(
τ
2
, z
)
− φe,2B

(
τ+1

2
, z
)

0
φ2B,e(4τ, 4z)− φe,2B

(
2τ+1

2
, 2z
)

+φe,e(τ, 2z) +
∑3

i=0 φe,2B
(
τ+i

4
, z
)

7. (2A, 2A4) 0 −φ2A,e(2τ, 2z) + φe,2A
(
τ
2
, z
)

+ φe,2B
(
τ+1

2
, z
)

0
φ2A,e(4τ, 4z) + φe,2A

(
2τ+1

2
, 2z
)

+ φe,e(τ, 2z)

+
∑1

i=0

(
φe,2A

(
τ+2i

4
, z
)

+ φe,2B
(
τ+2i+1

4
, z
))

8.

9.

(2A, 2B1)

(2A, 2B2)
0 φ2A,e(2τ, 2z) + φe,2B

(
τ
2
, z
)

+ φe,2B
(
τ+1

2
, z
)

0
φ2A,e(4τ, 4z) + φe,2A

(
2τ+1

2
, 2z
)

+φe,e(τ, 2z) +
∑3

i=0 φe,2B
(
τ+i

4
, z
)

10.

11.

(2A, 4A2)

(2A, 4A3)
0 φe,4A

(
τ
2
, z
)

+ φe,4A
(
τ+1

2
, z
)

0
φ2A,e(4τ, 4z) + φe,2A

(
2τ+1

2
, 2z
)

+φe,2A(τ, 2z) +
∑3

i=0 φe,4A
(
τ+i

4
, z
)

12. (2A, 4B4) 0 φe,4A
(
τ+1

2
, z
)

+ φe,4B
(
τ
2
, z
)

0
−φ2A,e(4τ, 4z) + φe,2B

(
2τ+1

2
, 2z
)

+ φe,2A(τ, 2z)

+
∑1

i=0

(
φe,4B

(
τ+2i

4
, z
)

+ φe,4A
(
τ+2i+1

4
, z
))

13. (2B, 4A2) 4η(2τ)2

η(τ)4 ϑ1(τ, z)2 φe,4A
(
τ
2
, z
)
− φe,4A

(
τ+1

2
, z
) φ2B,4A2(3τ, 3z) + φ2B,4A2

(
τ
3
, z
)

+iφ2B,4A2

(
τ+1

3
, z
)
− φ2B,4A2

(
τ+2

3
, z
) φ2B,e(4τ, 4z)− φe,2B

(
2τ+1

2
, 2z
)

+φe,2A(τ, 2z) +
∑3

i=0 φe,4A
(
τ+i

4
, z
)

14. (2B, 4A3) 0 φe,4A
(
τ
2
, z
)
− φe,4A

(
τ+1

2
, z
)

0
φ2B,e(4τ, 4z)− φe,2B

(
2τ+1

2
, 2z
)

+φe,2A(τ, 2z) +
∑3

i=0 φe,4A
(
τ+i

4
, z
)

15.

16.

(2A, 4C1)

(2A, 4C2)
0 φe,4C

(
τ
2
, z
)

+ φe,4C
(
τ+1

2
, z
)

0
φ2A,e(4τ, 4z) + φe,2B

(
2τ+1

2
, 2z
)

+φe,2B(τ, 2z) +
∑3

i=0 φe,4C
(
τ+i

4
, z
)

17.

18.

19.

(2A, 4B2)

(2A, 4B3)

(2A, 4B5)

0 φe,4B
(
τ
2
, z
)

+ φe,4B
(
τ+1

2
, z
)

0
φ2A,e(4τ, 4z) + φe,2A

(
2τ+1

2
, 2z
)

+φe,2A(τ, 2z) +
∑3

i=0 φe,4B
(
τ+i

4
, z
)



# Structure Elements |C(g, h)| |N(g,h)|
|C(g,h)| Orbits on 24 Max subgr. Functions Γg,h

20. Z2 × Z4 (2A)(2B)2(4B)4 64 8 24 · 82 8 φ2B,4B2 , φ4B,2B3 , φ4B,4B1 Γ0(2)

21. Z2 × Z4 (2A)(2B)2(4B)4 16 8 24 · 82 9 φ2B,4B3 , φ4B,2B1 , φ4B,4B5 Γ0(2)

22. Z4 × Z4
(2A)(2B)2

(4A)4(4C)8 16 16 81 · 161 13, 15, 15
φ4A,4C1 , φ4A,4C2 , φ4C,4A1 ,
φ4C,4A2 , φ4C,4C7 , φ4C,4C8

Γ4A,4C

23. Z4 × Z4 (2A)3(4A)8(4B)4 16 32 22 · 41 · 161 10, 10, 17 φ4B,4A3 , φ4A,4B1 , φ4A,4A1 Γ0(2)

24. Z4 × Z4 (2A)3(4A)8(4B)4 16 32 42 · 82 11, 11, 18 φ4B,4A4 , φ4A,4B2 , φ4A,4A4 Γ0(2)

25. Z4 × Z4 (2A)3(4B)12 16 96 14 · 41 · 161 17, 17, 17 φ4B,4B4 Γ(1)

26. Z4 × Z4 (2A)3(4B)12 16 96 46 18, 18, 18 φ4B,4B7 Γ(1)

27. Z2 × Z8
(2A)(2B)2

(4B)4(8A)8 16 8 22 · 41 · 161 20
φ2B,8A1,2 , φ8A,2B1,2 , φ4B,8A2,3 ,
φ8A,4B1,3 , φ8A,8A2,8 , φ8A,8A6,7

Γ0(4)

28. Z2 × Z6 (2A)3(3A)2(6A)6 12 12 12 · 32 · 41 · 121 1
φ2A,6A2 , φ6A,2A1 ,
φ6A,6A1 , φ6A,6A2

Γ0(3)

29. Z2 × Z6 (2A)3(3A)2(6A)6 12 12 23 · 63 2
φ2A,6A3 , φ6A,2A2 ,
φ6A,6A3 , φ6A,6A4

Γ0(3)

30. Z2 × Z6 (2B)3(3B)2(6B)6 12 12 122 4
φ2B,6B2 , φ6B,2B1 ,
φ6B,6B2 , φ6B,6B5

Γ0(3)

31. Z2 × Z6 (2B)3(3B)2(6B)6 12 12 122 5
φ2B,6B3 , φ6B,2B2 ,
φ6B,6B1 , φ6B,6B3

Γ0(3)

32. Z2 × Z10 (2B)3(5A)4(10A)12 20 12 41 · 201 4

φ2B,10A1 , φ2B,10A3 , φ10A,10A1 ,
φ10A,10A2 , φ10A,10A3 , φ10A,10A5 ,
φ10A,10A7 , φ10A,10A9 , φ10A,10A10 ,
φ10A,10A11 , φ10A,2B2 , φ10A,2B3

Γ2B,10A

33. Z3 × Z3 (3A)8 9 48 13 · 34 · 91 φ3A,3A3 Γ(1)

34. Z3 × Z3 (3A)2(3B)6 9 12 32 · 92 φ3A,3B1 , φ3B,3A1 ,
φ3B,3B3 , φ3B,3B4

Γ0(3)
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# (g, h) φg,h 2T α2 φg,h 3T α3 φg,h 4T α4 φg,h

20.

21.

(2B, 4B2)

(2B, 4B3)
0 φe,4B

(
τ
2
, z
)
− φe,4B

(
τ+1

2
, z
)

0
φ2B,e(4τ, 4z)− φe,2B

(
2τ+1

2
, 2z
)

+φe,2A(τ, 2z) +
∑3

i=0 φe,4B
(
τ+i

4
, z
)

22. (4A, 4C1) 0 φ4A,2B3(2τ, 2z) 0
−φ4A,e(4τ, 4z) + φ2A,4A1

(
2τ+1

2
, 2z
)

+
∑3

i=0(−1)iφe,4C
(
τ+i

4
, z
)

23.

24.

(4B, 4A3)

(4B, 4A4)
2
√

2η(2τ)2

η(τ)4 ϑ1(τ, z)2 0
φ4B,4A3(3τ, 3z) + φ4B,4A3

(
τ
3
, z
)

+iφ4B,4A3

(
τ+1

3
, z
)
− φ4B,4A3

(
τ+2

3
, z
) φ4B,e(4τ, 4z) + φ2A,4B1

(
2τ+1

2
, 2z
)

+
∑3

i=0 φe,4A
(
τ+i

4
, z
)

25.

26.

(4B, 4B4)

(4B, 4B7)
0 0 0

φ4B,e(4τ, 4z) + φ2A,4B1

(
2τ+1

2
, 2z
)

+
∑3

i=0 φe,4B
(
τ+i

4
, z
)

27. (2B, 8A1) 2η(2τ)2

η(τ)4 ϑ1(τ, z)2 φe,8A
(
τ
2
, z
)
− φe,8A

(
τ+1

2
, z
) φ2B,8A1,2(3τ, 3z) + φ2B,8A1,2

(
τ
3
, z
)

+iφ2B,8A1,2

(
τ+1

3
, z
)
− φ2B,8A1,2

(
τ+2

3
, z
) −φe,4B

(
2τ+1

2
, 2z
)

+ φe,4B (τ, 2z)

+
∑3

i=0 φe,8A
(
τ+i

4
, z
)

28.

29.

(2A, 6A2)

(2A, 6A3)
0 φ2A,3A1(2τ, 2z) + φe,6A

(
τ
2
, z
)

+ φe,6A
(
τ+1

2
, z
)

0
φ2A,3A(4τ, 4z) + φe,6A

(
2τ+1

2
, 2z
)

+φe,3A(τ, 2z) +
∑3

i=0 φe,6A
(
τ+i

4
, z
)

30.

31.

(2B, 6B2)

(2B, 6B3)
0 φ2B,3B1(2τ, 2z) + φe,6B

(
τ
2
, z
)
− φe,6B

(
τ+1

2
, z
)

0
φ2B,3B(4τ, 4z)− φe,6B

(
2τ+1

2
, 2z
)

+φe,3B(τ, 2z) +
∑3

i=0 φe,6B
(
τ+i

4
, z
)

32. (2B, 10A1) 0 φ2B,5A1(2τ, 2z) + φe,10A

(
τ
2
, z
)
− φe,10A

(
τ+1

2
, z
)

0
φ2B,5A(4τ, 4z)− φe,10A

(
2τ+1

2
, 2z
)

+φe,5A(τ, 2z) +
∑3

i=0 φe,10A

(
τ+i

4
, z
)

33. (3A, 3A3) 0 0 φ3A,e(3τ, 3z) +
∑2

k=0 φe,3A
(
τ+k

3
, z
)

0

34. (3A, 3B1) 0 0 φ3A,e(3τ, 3z) +
∑2

k=0 φe,3B
(
τ+k

3
, z
)

0



Group (g, h) ηg,h w

1, 2, 3 (2A, 2A2,3,5) 212 6

4, 5, 6 (2B, 2B2,4,6) 46 3

7

(2A, 2A4)

(2A, 2B3)

(2B, 2A1)

14 · 22 · 44

214/14

414/84

5

8, 9
(2A, 2B1,2), (2B, 2A2,3)

(2B, 2B1,5)

2444

416/2484
4

10, 11
(2A, 4A2,3), (4A, 2A2,3)

(4A, 4A3,7)

46

818/46 · 166
3

12

(2A, 4B4)

(2A, 4A4)

(2B, 4B1)

(2B, 4A1)

(4B, 4A2)

12 · 2 · 4 · 82

27 · 82/12 · 4

22 · 87/4 · 162

45 · 85/22 · 162

irrational

3

13, 14
(2B, 4A2,3), (4A, 2B3,2)

(4A, 4A5,2)

42 · 82

88/42 · 162
2

15, 16

(2A, 4C1,2), (4C, 2A2,1)

(2B, 4C2,3), (4C, 2B3,2)

(4C, 4C4,6,3,5)

42 · 82

88/42 · 162

irrational

2

17, 18, 19
(2A, 4B2,3,5), (4B, 2A2,5,3)

(4B, 4B8,9,3)

24 · 44

416/24 · 84
4

Group (g, h) ηg,h w

20, 21 (2B, 4B2,3), (4B, 2B3,1), (4B, 4B1,5), 46 3

22
(4A, 4C1,2), (4C, 4A1,2)

(4C, 4C7,8)

8 · 16

164/8 · 32
1

23, 24
(4B, 4A3,4), (4A, 4B1,2)

(4A, 4A1,4)

42 · 82

88/42 · 162
2

25, 26 (4B, 4B4,7) 46 3

27

(2B, 8A1,2), (8A, 2B1,2)

(4B, 8A2,3), (8A, 4B1,3)

(8A, 8A2,6,7,8)

42 · 82

42 · 82

88/42 · 162

2

28, 29
(2A, 6A2,3), (6A, 2A1,2)

(6A, 6A1,2,3,4)

23 · 63

irrational
3

30, 31
(2B, 6B2,3), (6B, 2B1,2)

(6B, 6B2,5,1,3)

122

irrational
1

32
(2B, 10A1,3), (10A, 2B2,3)

(10A, 10A)

4 · 20

irrational
1

33 (3A, 3A3) 38 4

34
(3A, 3B1), (3B, 3A1)

(3B, 3B3,4)

32 · 92

irrational
2

Table 1: The eta products of [32]. For each pair g, h, a cycle shape of the form
∏
` `
i(`) is given: the corresponding eta-product is

ηg,h(τ) =
∏
` η(`τ/Nλ)i(`), where N is the order of g and λ is the length of the shortest cycle. In the last column, w is the modular

weight.
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〈g, h〉 h 〈g, h′〉 h′

Z2A 1A Z2A 1A

Z2A Qg Z2A Qg

Z2A g Z2A Q

Z2A Q Z2A g

Z4A 4A1 Z4A 4A1

Z4A 4A1 Z4A 4A1

Z4B 4B1 7 2A4

Z4B 4B1 7 2B3

Z6A 3A1 Z6A 3A1

Z6A 3A1 Z6A 6A1

Z6A 6A1 Z6A 3A1

Z6A 6A1 Z6A 6A1

Z8A 8A1 12 4B4

Z8A 8A1 12 4A4

Z12A 12A1 Z12A 12A1

Z12A 12A1 Z12A 12A1

Z14AB 7A1 Z14AB 7B1

Z14AB 7A1 Z14AB 14A1

Z14AB 7B1 Z14AB 7A1

Z14AB 7B1 Z14AB 14B1

Z14AB 14A1 Z14AB 7A1

Z14AB 14B1 Z14AB 7B1

〈g, h〉 h 〈g, h′〉 h′

Z14AB 14A1 Z14AB 14B1

Z14AB 14B1 Z14AB 14A1

1 2A2 2 2A3

2 2A3 1 2A2

3 2A5 3 2A5

7 2A4 Z4B 4B1

7 2B3 Z4B1 4B

8 2B1 8 2B1

9 2B2 9 2B2

10 4A2 11 4A3

11 4A3 10 4A2

12 4A4 Z8A 8A1

12 4B4 Z8A 8A1

15 4C1 15 4C1

16 4C2 16 4C2

17 4B2 18 4B3

18 4B3 17 4B2

19 4B5 19 4B5

28 6A2 29 6A3

28 6A2 29 6A3

29 6A3 28 6A2

29 6A3 28 6A2

Table 2: Relabeling for g in class 2A. Each line corresponds to a conjugacy class in the

central extension Cα
M24

(g). For each such class, we report the corresponding class in CM24(g)

with representative h, the group 〈g, h〉 generated by g and h, the ‘relabeled’ class in CM24(g)

with representative h′ and the group 〈g, h′〉 generated by g and h′.
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〈g, h〉 h 〈g, h′〉 h′

Z4B 1A Z4B 1A

Z4B Q2 Z4B g2

Z4B Q Z4B g

Z4B Q3 Z4B g3

Z4B g2 Z4B Q2

Z4B g2Q2 Z4B g2Q2

Z4B g2Q Z4B gQ2

Z4B g2Q3 Z4B g3Q2

Z4B gQ2 Z4B g2Q

Z4B g Z4B Q

Z4B gQ Z4B gQ

Z4B gQ3 Z4B g3Q

Z4B g3Q2 Z4B g2Q3

Z4B g3 Z4B Q3

Z4B g3Q Z4B gQ3

Z4B g3Q3 Z4B g3Q3

Z8A 8A1 12 2B2

Z8A 8A1 12 2A4

Z8A 8A1 12 4A1

Z8A 8A1 12 4A2

Z8A 8A4 12 2B2

Z8A 8A4 12 2A4

Z8A 8A4 12 4A1

Z8A 8A4 12 4A2

12 2B2 Z8A 8A1

12 2B2 Z8A 8A4

12 2A4 Z8A 8A1

〈g, h〉 h 〈g, h′〉 h′

12 2A4 Z8A 8A4

12 4A1 Z8A 8A1

12 4A1 Z8A 8A4

12 4A2 Z8A 8A1

12 4A2 Z8A 8A4

17 2A2 18 2A5

17 2A2 18 4B9

17 4B8 18 2A5

17 4B8 18 4B9

18 2A5 17 2A2

18 2A5 17 4B8

18 4B9 17 2A2

18 4B9 17 4B8

19 2A3 19 2A3

19 2A3 19 4B3

19 4B3 19 2A3

19 4B3 19 4B3

20 2B3 20 2B3

20 2B3 20 2B3

20 2B3 20 4B1

20 2B3 20 4B1

20 4B1 20 2B3

20 4B1 20 2B3

20 4B1 20 4B1

20 4B1 20 4B1

21 2B3 21 2B3

21 2B3 21 4B1

〈g, h〉 h 〈g, h′〉 h′

21 4B1 21 2B3

21 4B1 21 4B3

23 4A3 24 4A4

23 4A3 24 4A4

23 4A3 24 4A4

23 4A3 24 4A4

24 4A4 23 4A3

24 4A4 23 4A3

24 4A4 23 4A3

24 4A4 23 4A3

25 4B4 26 4B7

25 4B4 26 4B7

25 4B4 26 4B7

25 4B4 26 4B7

26 4B7 25 4B4

26 4B7 25 4B4

26 4B7 25 4B4

26 4B7 25 4B4

27 8A2 27 8A2

27 8A2 27 8A2

27 8A3 27 8A3

27 8A3 27 8A3

27 8A3 27 8A3

27 8A3 27 8A3

27 8A2 27 8A2

27 8A2 27 8A2

Table 3: Relabeling for g in class 4B.
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[49] R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, “Elliptic genera of sym-

metric products and second quantized strings,” Commun. Math. Phys. 185, 197 (1997)

[arXiv:hep-th/9608096].

[50] V. Gritsenko, “Elliptic genus of Calabi-Yau manifolds and Jacobi and Siegel modular

forms,” St. Petersburg Math. J. 11 (5), 781–804 (2000) arXiv:math/9906190.

[51] V. A. Gritsenko and V. V. Nikulin, “Automorphic Forms and Lorentzian Kac-Moody

Algebras. II”, Internat. J. Math. 9 (2), 201–275 (1998) [arXiv:alg-geom/9611028].

[52] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, “Counting dyons in N=4 string theory,”

Nucl. Phys. B 484, 543 (1997) [arXiv:hep-th/9607026].

[53] N. Ganter, “Hecke operators in equivariant elliptic cohomology and generalized moon-

shine”, CRM Proc. Lecture Notes 47, 173, Amer. Math. Soc., Providence, RI (2009)

[arXiv:0706.2898 [math.AT]].

[54] V. Ginzburg, M. Kapranov, E. Vasserot, “Elliptic algebras and equivariant elliptic

cohomology I.” [arXiv:q-alg/9505012]

83



[55] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhäuser (1985).
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