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We study the Scherk-Schwarz reduction of D = 11 supergravity with background fluxes in the context
of a recently developed framework pertaining to D = 11 supergravity. We derive the embedding tensor of
the associated four-dimensional maximal gauged theories directly from eleven dimensions by exploiting
the generalized vielbein postulates, and by analyzing the couplings of the full set of 56 electric and
magnetic gauge fields to the generalized vielbeine. The treatment presented here will apply more generally
to other reductions of D = 11 supergravity to maximal gauged theories in four dimensions.
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I. INTRODUCTION

Recently, a reformulation [1] of D = 11 supergravity [2]
that emphasizes the exceptional E;(7) duality symmetry [3]
and is based on the SU(8) invariant reformulation of D = 11
supergravity [4] has been constructed. The central object in
this reformulation is an E7(7) 56-bein in eleven dimensions,
which can be thought of as the eleven-dimensional ancestor
of the 56-bein in four dimensions containing the 70 scalars of
the reduced maximal theory. The four generalized vielbeine
[1,4,5] that comprise the 56-bein in eleven dimensions are
derived by analyzing the supersymmetry transformations of
the 56 vector fields in the SU(8) invariant reformulation,
generalizing and completing the construction of [4] (similar
new structures also appear in the SO(16) invariant formu-
lation of D = 11 supergravity where the relevant vielbein
belongs to Egg) [6,7]). The emphasis on supersymmetry as
the origin of the generalized exceptional geometry obtained
in this way is the main distinctive feature in comparison with
other approaches to generalized geometry.! The 56-bein
satisfies certain differential identities called ‘“‘generalised
vielbein postulates” [1,4] due to their similarities with the
usual vielbein postulate in differential geometry, and these
relations will be at the center of our construction.

The very nature of the reformulation in that it emphasizes
structures in eleven dimensions that become apparent upon
reduction to four dimensions makes it a useful framework
in which to study questions regarding four-dimensional
maximal gauged theories from a higher dimensional
perspective. This feature extends the attributes of the
SU(8) invariant reformulation, which leads to a nonlinear
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metric ansatz [10] and a proof [11,12] of the consistency of
the S7 reduction [13] of D = 11 supergravity. In particular,
the new structures found in [1,5] give rise to nonlinear
Ansditze for the internal components of the three-form [5]
(see also [14]) and six-form [15] potentials. In fact, Ansditze
can be given for the full uplift to eleven dimensions for any
solution (and, in particular, the stationary points of the
potential) of the four-dimensional theory; the possibility to
perform such nontrivial tests of all formulas is another
distinctive feature of the present approach. Furthermore, the
generalized vielbein postulates reduce to the consistency
requirements of the four-dimensional maximal gauged
theory. In particular, there is a direct relation [1,15] between
the set of generalized vielbein postulates with derivatives
along four dimensions and the E;(7) Cartan equation of the
maximal gauged theory [16-18], in which the gauging is
defined via the embedding tensor [16,19,20].

The formalism developed in [1] has already been applied
to an extensive study of the S7 reduction [15]. In particular,
nonlinear Anscitze are given for the uplift of four-dimensional
solutions of SO(8) gauged maximal supergravity [21] to
eleven dimensions, including dual fields. In addition, the
embedding tensor of SO(8) gauged maximal supergravity is
recovered directly by reducing the generalized vielbein
postulates with derivatives along four dimensions. While
the S7 reduction is highly nontrivial from the perspective of
the nonlinearity of uplift Ansdtze and the field content in four
dimensions, the gauging, and therefore the embedding
tensor, is relatively simple in that the gauging only involves
electric vectors, and moreover is uniform.

In this paper, we study Scherk-Schwarz [22]° reductions
of D =11 supergravity with background flux [25-35]

’In fact, the essential idea of reducing on a group manifold
appears in [23]; for a useful historical account of Kaluza-Klein
theory, see [24].
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within the context of the formalism developed in [1]. The
Scherk-Schwarz flux compactification has principally been
studied from a four-dimensional gauge algebra perspective
by associating background fields to particular representa-
tions in the GL(7) decomposition of the 912 representation
of E;(7) in which the embedding tensor lives. Here, we
concentrate on obtaining the embedding tensor of such
theories directly from eleven dimensions by analyzing the
couplings of the 56 vector fields (28 electric and 28
magnetic vectors) via the generalized vielbein postulates.
Hence, our approach should be contrasted with recent work
[36-39] aiming to construct the embedding tensor for
nongeometric compactifications obtained by generalized
Scherk-Schwarz reductions of extended generalized
geometries.

While the Scherk-Schwarz reduction is much simpler
than the S7 reduction, the novelty of the Scherk-Schwarz
reduction as far as we are interested in is the potential for
gaugings involving a combination of electric and magnetic
vectors leading to a more complicated embedding tensor
[28,32]. We derive the embedding tensor of Scherk-
Schwarz flux compactifications directly and explicitly from
the D = 11 generalized vielbein postulates. This consti-
tutes a further nontrivial demonstration of the utility of the
formalism developed in Ref. [1] and gives further credence
to the interpretation of the generalized vielbein postulates
as the higher dimensional origin of the embedding tensor.
More generally, the results of Ref. [1] can be applied to any
compactification of D = 11 supergravity to maximal
gauged theories in four dimensions yielding nonlinear
uplift Ansdtze and the embedding tensor.

The outline of the paper is as follows. In Sec. II, we
present a self-contained review of Scherk-Schwarz reduc-
tions with background flux including a discussion of the
background field equations (Sec. II A), which to the best of
our knowledge does not appear in previous literature. The
Jacobi-like constraints on the background fluxes as well as
the background field equations form the complete set of
equations that must be satisfied for a bona fide Scherk-
Schwarz flux compactification. The nontriviality of these
constraints, particularly the background field equations,
illustrates the difficulty of providing a complete classifi-
cation of such compactifications.

In Sec. III, we briefly review the embedding tensor
formalism [16-20] and give a general solution of the linear
constraint satisfied by the embedding tensor. The reduction
Ansdtze defined in Sec. II are applied to the generalized
vielbein postulates in Sec. IV yielding the embedding
tensor of Scherk-Schwarz flux compactifications. This
embedding tensor can be cast in the form of the general
solution of the linear constraint given in Sec. IIL
Furthermore, in Appendix B, we verify that the quadratic
constraints are satisfied. Finally, in Sec. V, we demonstrate
explicitly in the simple example of a flat group reduction
that indeed less than or equal to 28 electric or magnetic
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vectors are gauged as is expected from general results of the
embedding tensor formalism [35]. We make concluding
remarks in Sec. VL.

Conventions.—In this paper, we reserve the use of e for
an alternating fensor with respect to some metric structure,
while we use 7 to denote the tensor density, alias the
alternating symbol. It is important to note that all objects
denoted with a caret above them depend only on the
external coordinates, that is, are only x dependent.

II. SCHERK-SCHWARZ REDUCTION

Consider a reduction of D = 11 supergravity such that
the elfbein takes the form

A1), B, (16 ()
A _ iz "
m = (0 ) @

where the eleven-dimensional coordinates have been split
as {zM} = {x*,y™}, and where

e=det(e,”),  A=det(¢,") )
(recall that all hatted quantities depend only on the four-
dimensional coordinates x*). The matrices U,,"(y) depend

only on the internal coordinates and satisfy the property
that

1
OmUn” = =5 7rsUn" Uy’ 3)

The y-independent structure constants f importantly satisfy
a unimodularity property, viz.

S mn =0, “
which is equivalent to
0u[U(UT),"] =0, ®)
where
U =det(U,"). ©6)

The condition of unimodularity, emphasized in [22],
ensures that the measure is invariant under seven-
dimensional diffeomorphisms.3

Furthermore, the following integrability condition is
satisfied:

fq[mnfrp]q =0. (7)

3The importance of unimodularity was discussed in the context
of Bianchi cosmology by Sneddon [40] slightly before Scherk
and Schwarz, and shown to be required for consistency of the
reduction to a homogeneous cosmology.
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This is equivalent to the Jacobi identity for the associated
Lie algebra.

Specifically, in terms of the following parametrization of
the elfbein

Afl/ze/a Btnena
EMA—< R ) ®)
0 enm

where A = det ¢,% = UA, we assume the following reduc-
tion Anscitze for the elfbein components:

e,*(x,y) = U'?2,%(x), )
B, (x,y) = (U™"),"B,"(x). (10)
e, (x,y) =U,"e,"(x). (11)

In general, the reduction Ansdtze for fields is such that all
seven-dimensional covariant tensor indices are contracted
with U, which contains all the y dependence, while seven-
dimensional contravariant tensor indices are contracted
with U~!, as should be clear from the Ansdtze for B,
and e,* given above.

The reduction Ansatz for the three-form potential is
similarly defined, except that some components have
background contributions as well:

Am//)(x7 y) = A;wp('x) + élﬂv/) (X), (12)
A;wm(x’ Y) = UmnA;wn(x)’ (13)
Aumn(%,¥) = UpP U944 (%), (14)
Amnp(x’ y) = A/mnp(x7 y) + amnp(y)’ (15)
where
A;nnp(xv )’) = UquanpSAqrx(x)’ (16)

and gA“ wp and a,,,, are defined such that

4!8[/4231//70'] = ifFRA_3€/4bpo" (17)

4!8[manpq] = grstuUmrUnSUthquv (18)

for some constant fzr and totally antisymmetric constant
9mnpq- The above equations give the background values of
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the field strength F,,,,, and F,, ,,, respectively. We will see
later that the special y dependence with constant g,,,,, in
(18) is required for the consistency of both the equations of
motion and the generalized vielbein postulates.

The exterior derivative of Eq. (18), which corresponds to
the closure of the background field strength, implies the
following constraint [34]:

fs[mngpqr]s =0. (19)

We will find later that this constraint plays a crucial role in
defining a consistent gauge algebra. In fact, this constraint
was first found by considering the consistency of the gauge
algebra, in particular, the Jacobi identity [25].
In order to determine the form of the dual six-form under
this reduction, we consider its defining equation
4%!€M1--~MHFM8.“M“ = 7!6[M1AM2~-M7]

V2

+ 7! 71“[1141...11/13 O, Amty.. My
(20)

where it is important to note that indices on FM "2 have
been raised using the eleven-dimensional metric, and where
we have ignored fermion bilinear contributions. Consider
the m;...m; components of the above equation. Using the
fact that

€ = UA_léﬂypa”m]...m7 (21)

my...myuvpc
the left-hand side of Eq. (20) simplifies to

i
vpe
Egm]...m7ﬂy/m’Fﬂ re = _UfFR”ml...m7

+ U(x-dependent terms),  (22)

where 7, ., is defined with respect to a flat seven-
dimensional metric and the x-dependent terms in the
remainder of the expression have contributions from
Aups Aywms Aymns Apnp> and gy, as well as 7. This
is due to the fact that the inverse metric is not diagonal. We
stress once more that the indices on the four-form F in
Eq. (22) have been raised with the eleven-dimensional
metric.
The right-hand side of Eq. (20) reduces to

V2

7!8[’”1 (Am2-~m7] + TA;n2m3m4am5m6m7]>

W2/,
o

/
(mymyms ’”4( msmegmy| + 2am5m6m7])

_I_

+ Almymymy 8m4am5m6m7])' (23)
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Now, defining an Ansartz for A, _,, of the form

V2 :

Ay g = Ay g (X, ) + 5 Almmams Ay ]
+ y g (), (24)
where
Apyomg(50Y) = Uy Uy "A, g (6)(25)
and a,, ,, is such that
7!a[m|am2...m7] = _UfFR”ml..4m7
- %za[mlmzmﬁmamwémﬂ. (26)

Equation (20) reduces to a purely x-dependent, rather
complicated, relation between Am, .mg and components
of the three-form potential A. Note that duality relation (26)
is the duality relation satisfied by the background solution.

A. Background solution

In the context of formulating a well-defined reduction, an
important consideration is the background field equations
and the constraints these imply on the background fields.

The background of the Scherk-Schwarz reduction is
given by

e, (x 0
EMA — < H ( ) >’ Amnp = a’nnp’
0 U, (v)s;
F

uvpe — ifFRé;wpo" 27
Thus, the internal metric is

Gmn = UmpUnqéptp gmn = (Uil) m(Uil)qnépq'

(28)

p

The field equations of eleven-dimensional supergravity
are

1 1
Ryy = 7_29MNF%>QRS ~5 FuporFn"2%.  (29)

-1 (EFMNPQ) VT jeNPOR,..RyS).. S“FR, R4FS, S

(30)

1152

For the background solution, the component of these
equations along the internal directions are
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1 1
ggmpqrgnq (6m176 (srsémfprtquu
- 25pq5rsfpmrfqns - 2fpmqfqnp)
1 1
g 5mnf%“R + 7_25mngpqrsgpqrsv (31)
V2
f[ml pqgmzms]l’q — f fFanl mm7gm4...m7 , (32)

where the indices on g,,,,,,, are raised with the Kronecker &
symbol. We note that by putting the theory on shell, this
operation breaks the GL(7) symmetry to SO(7) or a
subgroup thereof, in the same way as the rigid SU(8)
symmetry of maximal supergravity is broken to (a sub-
group of) SO(8) in any given vacuum.® The special
dependence on U(y) in (18) is now seen to be necessary
for the “Maxwell equation” (30) to become y independent,
and thus to reduce to an equation relating the constant
tensors f™,, and g,,,q, (32). We note that, while the
background constraints for the case with no flux appear
already in Ref. [22], the constraints implied on the back-
ground of a Scherk-Schwarz reduction with flux have never
been fully spelled out in the literature to the best of our
knowledge. In particular, Eq. (32) is a nontrivial restriction
on the class of viable Scherk-Schwarz reductions. These
constraints, which are imposed by the background field
equations, are independent of the constraints imposed by
the consistency of the gauge algebra [25] (see also [35]).

The components of the Einstein equation along the four-
dimensional spacetime directions fixes the radius of the
four-dimensional anti-de Sitter space

DU 2 2 1 mnpq
RS = ngR"‘ﬁg

All other equations of motion are trivially satisfied.

gmnpq) O (33)

III. THE EMBEDDING TENSOR FORMALISM

The embedding tensor formalism,” which was initially
developed in the context of three-dimensional maximal
gauged supergravities [19,20] and later developed in the
context of four-dimensional maximal gauged supergravities
[16-18], is the most efficient framework in which to
understand gaugings. The embedding tensor formalism
uses the fact that the ungauged supergravity, of which
the gauged theory is a deformation, is controlled by a global
symmetry group that is larger than what one would naively
expect—an observation first made in the context of the
four-dimensional maximal theory [3].

We thank Henning Samtleben for a discussion on this point.
3See Ref. [35] for a lucid account of the embedding tensor
formalism.
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In four dimensions, the scalars, which parametrize the

E(7) vielbein V), satisfy the following equation:

0V mij + Q,,k[,-VMj]k - Pyijklv/\/tkl - !JAyPXPMNVNU
—0. (34)
Objects that are of particular interest in the above

equation are (X ) NP. These generate the gauge algebra

and are related to the embedding tensor’ © m” via the Ey (7
generators t,, Viz.

XM = @Mata. (35)
The embedding tensor satisfies two algebraic constraints.

The first, linear constraint, comes from a consideration of
|
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the supersymmetric consistency of the gauged theory. In
the case of maximal four-dimensional theories, this trans-
lates to the statement that the embedding tensor lives in the
912 representation of E; (7

O™ + 2(t5) oV (1) PO = 0, (36)
where the E;(7) index a is raised with the inverse Killing-
Cartan form !, which is given in Appendix A. More
specifically, the above relation follows by requiring that the

projectors Psg and Pgyg9 annihilate ® ,* [16]. In terms of
the gauge group generators, the linear constraint is

Xun” + 2Xg S (k) (1) R (t5) " = 0. (37)

The general solution of the linear constraint is given by

P R
Xun"Rs = 5%RTQ]S]MN» Xunpa™® = _5%PTS}Q]MN1
M 2
XMNogRs = _25%PT loRss YMNPQRS _ _4_!nPQRS[M\T,T2T3|TN]T]T2T3’
R P
XMNL RS — 5%PTQ]S]MN’ XMNPQ_ o — _%RTS]O]MN’
P 2
Xun"aRS = —25} TS Xunpars = —q'Pa RSIMIT,T,T; TN T2, (38)
|
where with the permutation symbol in accordance with the
" 3w 3 equations in Appendix A.
T NP = —ZAz NPQ _EE[PAIQ]N’ It is important to note at this point that TMypq and
3 3 TuNPQ are real and completely independent. This is
TuNPQ = —ZAZMNPQ —EékﬂAlQ]N. (39)  because they are written in terms of SL(8) indices and

Note that the solution above applies more generally to other
compactifications. Structures AMN, A;MN A M o and
A, yNPQ satisfy the following properties:

Al [MN] — O’ A] [MN] = 0,

AZM[NPQ] = A2MNPQ’ AZMMPQ =0,
AQM[NPQ] _ AQMNPQs AzMMPQ =0. (40)
Equivalently,

P Loe

(Omn)p, > = QT *P,MN>

(@MN)P].-.P4 = _%npl“‘P4[M‘Q]Q2O3‘TN]Q]Q2Q3’
1
(®MN)P] P, — _ETP1 PzMN’

The corresponding objects (G)MN)P]WP and (Oun)p, . p,

4
are obtained by contracting (@MN)P1--Ps and (@MN)P1--P4

there is no relation between an upper SL(8) index and a
lower one. This is in contrast to objects with SU(8) indices
where upper and lower indices are related to one another
via conjugation. The T tensor, which has SU(8) indices, can
be derived by dressing the T-tensors above with the E; ;)
vielbein Vy;;

j1.J — MQOONR i j P
Tilizjljzklkz = QMO VQilizij]hVPklkZXM/\/ ,

(42)
where
Thi ek, = 00 T (43)
and
®Indices a,p,...=1,...,133 label the E(7) generators and are

not to be confused with the four-dimensional tangent space
indices, which are also labeled by lower Greek letters from the
beginning of the alphabet.
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3
jkl = _ZA

T 2k — 3 oAy (44)
Since the T-tensor has SU(8) indices, T,/* is simply the
complex conjugate of T° jki- Note that this is in contrast to
the properties satisfied by the T-tensors which satisfy no
such relation, as pointed out above.

Furthermore, the embedding tensor satisfies a quadratic
constraint, which is necessary for the gauge algebra

generated by X, to close
X o™ Xnr” = Xn o™X " + Xpn " Xro" = 0. (45)

However, notice that the above constraint is stronger than
the closure of the algebra since X, N)P does not trivially
vanish. In fact, the quadratic condition comes from the
requirement that the embedding tensor be invariant under
the action of the gauge group

PHYSICAL REVIEW D 89, 045009 (2014)

In this form, it is clear to see that viewed as a matrix,
the row rank of the embedding tensor is at most
half-maximal. Therefore, we are guaranteed that only
at most 28 out of the possible 56 vectors will be
gauged [35].

IV. GENERALIZED VIELBEIN POSTULATES AND
THE EMBEDDING TENSOR

The generalized vielbein postulates provide an under-
standing of various aspects of the reduction. In particular,
for the case of the S compactification, they are a necessary
ingredient in the proof of the consistency of the reduction.
Specifically, the d =4 generalized vielbein postulates
reduce to the E;»7) Cartan equation of gauged maximal
supergravity in that case [11,15].

The generalized vielbeine combine the would-be scalar
degrees of freedom originating from the siebenbein, the
three-form and the six-form into a single object, and are
explicitly given by [1]

SmON" = 05,0, = 0. (46) em, = iA=l2rm (48)
Equivalently, given that the embedding tensor satisfies
the linear constraint and lives in the 912 representation of V2
E7(7), the quadratic constraint is [35] €mnAB = —EZ'A’I/2 (Counar + 6\f2Amon£B), (49)
QMN@ 10, = 0. 47)
|
L
eml..‘WlﬁAB = 6'\/§lA 1/2 |:Fm|...m5AB + 60\/§A[W1MZM3FM4M5]AB
V2
- 6!\/§<Apm]...m5 - TAp[mlmzAm3m4m5]>r,l4)B:| ’ (50)
_ a2, T 126V 2A 0, m,T
€m,...m3nAB = _al ( my...mq n)AB + n[mymyt my...m;] AB
V2
+ 3\/5 x 7! (An[ml...mS + TAn[mlmzAm3m4m5>rm6m7]AB
9! V2
+ E <An[m|..4m5 + HAn[m]mzAm3m4m5>Am6m7]prAB:| . (51)

We emphasize again that these objects depend on all eleven coordinates. By virtue of their definition, they satisfy certain
differential constraints, the so-called generalized vielbein postulates. Along the external d = 4 directions these are of the

form

1
Dyels + E@,,B””ejfg +0,B,"elp + QS[Ae;’;]C + PMABCDe’”CD

0. (52)
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1
Dyemnan + EaﬂBﬂpem"AB + 20 ByP €npan + 301 Bluinpi€hp

C C
+ Qﬂ [AemnB]C + PﬂABCDemn

b =0, (53)

Duem,..msan +50,B, e, msan = 50um Bl em, _mjpan + \ﬁa[ml Bujmymy €mims)an

- 66[mlB\mm2...m5p]e§B + Q/f[Aem1.‘.m5B]C + ,PMABCDemlA..mSCD =Y, (54)

1
Dﬂeznl...m7.z1AB - EapBﬂpeml...m7,nAB - 8nBypeml...m7,pAB + Sa[m]B|/4|m2m3€m4..,m7]nAB

- Za[mlB|u\m2...m(,em7]nAB + Q/?[Aeml...m7.nB]C + 7DﬂABCDeml...m7,nCD =0, (55)
where
D, =0, - B,"d, (56)

and the connection coefficients are of the form

1
ﬁB = _5 [emaamBﬂnenh -

P

H

V2

— o €u aﬂaﬁ "F aﬂyérb [ABFQCZZ)] .

48

Below we will consider and analyze these equations in
the context of Scherk-Schwarz reduction.

Note the general triangular feature of the equations,
whereby certain generalized vielbeine and vectors appear
more frequently than others. More specifically, as one
moves through Eq. (52) to (55), as well as the generalized
vielbeine and vectors that appeared before, a new gener-
alized vielbein and vector contribute in turn. This pattern is
broken in Eq. (55), where B, ., ,» Which is associated
with dual gravity degrees of freedom and the supersym-
metry transformation of which gives generalized vielbein
€m,..mnap does not contribute. This is a completely
general feature of the eleven-dimensional theory and,
therefore, applies to any compactification. An important
consequence of this seems to be that any four-dimensional
gauged theory obtained as a consistent reduction of D = 11
supergravity cannot have gauge vectors associated with the
gauging of these particular seven vectors. This implies an
additional constraint on the embedding tensor of any theory
that is obtained from a reduction of D = 11 supergravity.
However, we know that one can take a full set of 28
magnetic vectors in four dimensions and gauge these to
obtain an SO(8) gauged maximal supergravity [41]. While

3
ABCD — Z [emaamBynenb - (epaDuepb)]Fa | A ?

V2

(epaDﬂeﬂb)]Fz% - E eﬂa(F(mchz%C - n(z/iy(sFﬂyﬁaFaAB)v (57)

2
\/— eyaFahcaFa l—*bc

[AB" CD] [AB" CD]

(58)

|
it is true [41] (see also [5]) that this theory is equivalent to
the original SO(8) gauged maximal supergravity of [21],
the very fact that a full set of magnetic vectors can be
gauged in four dimensions and that this has no correspond-
ing higher-dimensional original is significant in under-
standing the extent to which the deformed SO(8) gauged
maximal supergravities of [41] can be realized as a
reduction from D = 11 supergravity.7

Let us first consider the connection coefficients Qﬂ and
P,. The y dependence in both connection coefficients come
from the same three terms, viz.

"An interesting question is whether a deformation of the D =
11 56-bein V [1] of the form

cos @  sin @ YMN
2 . )
—sinw cos w Vun
in analogy with the rotation introduced in Ref. [5], allows the
possibility of further gauging of magnetic vectors. This would
clearly point to the existence of a genuine deformation of D = 11
supergravity. Such a consistent deformation could then provide a

higher-dimensional origin of the deformed maximal SO(8)
gauged supergravities of Ref. [41].
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[emaamBﬂnenb_(epa’Dyepb)}’ eﬂaFaabc’

(59)

Using the Ansaiz for B," and e™,, Egs. (10) and (11) and
property (3) satisfied by U, it is simple to show that

emaamBﬂnenb - (epaDMepb) = _épa(aﬂépb - fnquZénb)'

(60)
Hence, the y dependence drops out. Now, consider

e;taFaabc = (F;mpq - BﬂrFrnpq)e”aepbeqc- (61)

Notice that curved 7d indices enter only as dummy indices.
Furthermore, from Eq. (18) we note that the y dependence
of the field strength in the second term is cancelled by the y
dependence of B," and the inverse siebenbein. Therefore,
the only potential obstacle to the dropping out of the y
dependence in the expression above is when a 7d derivative
acts on the potential. However, the 7d derivative always
acts as an exterior derivative. Hence, using Egs. (3) and
(18), we will always obtain a y-independent piece along
with the appropriate U contractions. However, these U
factors will be cancelled for the same reason as stated
above: that there is no free curved 7d index. The same
argument can be used to show the y independence of the
third term. Therefore, we conclude that the connection
coefficients are y independent.

The eleven-dimensional fields enter the generalized
vielbein postulates via the four generalized vielbeine and
three of the vectors. The reduction Ansdtze for the gener-
alized vielbeine can be found using the Ansdtze for the
fields that define them, Eqs. (48)—(51). They are as follows:

ety = U™12(U™1),men o (x), (62)
€mnAB = U_1/2UmpUnqéquB(x) - amnpeﬁBv (63)

—77-1/2 n ns s
..msAB — U / Uml l"'Um5 Senl...nSAB(x)

V2

D) Almymymy €myms|AB

V2
- - P
(apml...m5 + 4 A plmymy Ymymyms) | €AB>

(64)

eﬂa’]aﬂyéFﬂyéa .

PHYSICAL REVIEW D 89, 045009 (2014)

—771/2 P
€m,...m7.nAB = U / Unpeml...1n7,pAB(x)_an[m1n12€n13...m7]AB

V2

+ (an[mlu.ms - 4 an[mlmgam3m4m5> €mems)AB

V2

= p
=+ (an[ml s T Anmym, am3m4m5> Amgms|p€AB>

(65)

where &}y, €,0ap> €4, nsap, and &y, . ,ap are the
generalized vielbeine that appear in the torus reduction
and are therefore directly related to the four-dimensional
scalars.

The reduction Ansditze for the vectors are found by using
the fact that the supersymmetry transformation of the
vectors [1],

2
5B," = %e;’gB V2848 + Ecy "] + Hee.,  (66)

2
6Bﬂmn = \/?_emnAB [2\/5@"4('05 + EC?L){ABC] + H'C" (67)

V2 _ _
5B;,tm|.4.m5 = ?emlmmsAB[z\/igA(pE + SCy:l){ABC] + H‘C"
(68)
V2 i} _
5B;4m1...m7,n = ?eml...m%nABp\/EeAg”g + gCyllt)(ABC]
+H.c., (69)

should reproduce the respective generalized vielbeine.®
The reduction ansatz for B, is give in Eq. (10), while
the reduction Ansdtze for B,,, and B,, . are listed
below:

Bﬂmn = UmpUanMpq(x) - (U_l)pqgﬂpaqmn’ (70)

8The factor of U~/ are absent in the Ansitze for the vectors
because they are cancelled by a redefinition of the vierbein that
contracts the fermions.
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B =U,"...U,."5B,, . (x)

pmy...ms

N

7 a[m1m2m3B|/4\m4m5] <x>

Foremn)

Apm,...ms — 4 Ap[mymy Amymyms)

x (U7 B9, an

Substituting the above Ansdtze into the generalized

PHYSICAL REVIEW D 89, 045009 (2014)

OnB," =0, (U"),"B," = (U"),"0,,logUB,", (72)
O Bujnp) = U[quanP]Sftquﬂst
— O (U™),9)B,", (73)

where in the first line we have used Eq. (5).
The generalized vielbein postulates reduce to the follow-
ing equations:

5 D psd c om mCD _
vielbein postulates (52)—(55), a straightforward yet tedious 0y — " pg By &4p + Qﬂ A€B + Puapcpe™™" =0,
calculation shows that the y dependence in all the equations (74)
factorizes out. Importantly, we find that the two terms that
vanished due to properties of Killing spinors on S’ in the . b s 5 g
case of the S7 compactification [15], i.e. Opemnan = 21" gfm e”]PABB

0,B," and 9} By, + 3 Bpig®his + 6gmnquﬂ %z
L . . + e + P e =0, 75
do not vanish in this case. In particular, Q [A©mnB|C 7T T uABCD ' (75)
|
R R ~ . 3V2 .
a/4eml...m5AB + Squ[ml emz..‘ms]pABBﬂ - —fp[mlsz\ﬂp\m3 €m,ms)AB
V2 3 R V2 . R
+ 15f7 mlsz\ﬂp|m3rn4m5q]eAB +5 12 gp[mlm2m3em4m5]AB + ?Bﬂ[mlngm3m4msl’]ezl4)3
1 . .
- afFR’Ipqml mSBM el + Q5 1um,  mspic + Puancplm, .m P =0, (76)
8;4ém|.4.m7,nAB + f anuqe ..m7,pAB — Sfp[mlszhlp\m; ém44..m7]nAB
V2 3
+5f mlsz|pp\m3 mﬁem7 nAB T 7o 18 /4 gp[mlmzm;em4 .m7|nAB + 5 24 ﬂ[mlngm3 mﬁemﬂnAB
1 c 5 5 cD
+ ﬁfFerm] n17B;4 epnAB + Qﬂ [Aeml..‘m%nB]C + PﬂABCDeml‘..m%n =0. (77)

As emphasized before, the y-independent, hatted
generalized vielbeine and vectors in the generalized
vielbein postulates above are directly related to the
respective four-dimensional quantities. In particular, since
the reduction of these eleven-dimensional quantities is
taken to be that of a simple toroidal nature, the conversion
of “curved” SU(8) indices A, B, C, ... to flat SU(8) indices
i,j,k, ... 1s trivial.

With this in mind, define an E;7) vielbein’

Vumij = Vunijs VMNij) (78)

9Strictly speaking, V is not an E; (7 group element because it is
acted upon by SU(8) transformations on the right, whereas the
indices on the left are to be regarded as SL(8) indices. The true
E;7(7) group element is obtained by a complex rotation of this
matrix (see, for example, Ref. [42] for more details).

|
that is related to the hatted generalized vielbeine via the
following relations:

V’”8~~——\/—1é
17 8 1]’
3
anij = E lemnij’
mn | = i mnp...ps’
Vi =it se, | pijs
V2,
— ny...0
VmSij__ D) ”71 7en1 .n7,mij* (79)

As expected V satisfies the E;(;) properties, as can be
checked explicitly using Egs. (48)—(51) and (79),
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ViV’ =V Vnij = iQuy.
QYN TV = iy,
QMNY YK =0, (80)
where the symplectic form Q is such that
Qun™ = —dn.-

QMNPQ _— 81)

QWNpq = 5PO’
Qunpa = 0,

Similarly, we combine the vectors into a 56 of E;
defined by

At = (AN A (82)
where
1. m ~
Aﬂ b= _EBM , A/mm = _3\/§Bﬂmnv
A = _3\/_'7m”p]mp53ﬂp1mps’
AﬂmS = _1877n1mn7g/m1“.n7$m' (83)

In the notation introduced above, the supersymmetry
transformations of the generalized vielbeine and vectors
take a very compact form

PHYSICAL REVIEW D 89, 045009 (2014)

OV pmij = \/Ezijklv/\/lkla (84)

SAM = iQMNY 1 (2V2E @), + 87,4 7%) + Hee. (85)

In order to relate our results for the Scherk-Schwarz
reduction with the four-dimensional understanding of
gaugings as embodied in the embedding tensor formalism,
we need to rewrite the reduced generalized vielbein
postulates (74)—(77) in terms of the notation introduced
above, that is in terms of E;) objects V and A. A
straightforward calculation shows that upon substitution
of V and A components, as defined by Egs. (79) and (83),
Eqgs. (74)—(77) become

VI + QuiVit = PuiuV"™ + 24,2 ", Vi; = 0. (86)

8/4anij + Ql/j[ivhrm\j - Pﬂijklvmnkl
+4A pé[rf n]pvr\t/ +6A4 pqé}ff ]mn]vfj
+ 2V2A, Gy Vi = 0. (87)

m 1 m rp r
8ﬂVZ’~" + Qﬁ[f"?’]’? B Pﬂijklvmnkl - 4“4ﬂp5b f " S]pV?; + EAMPq”mnms[pf 4 mVrsij - 2Aﬂpq5[r f ]pqvij
V2 V2
+ ?Aﬂpnmnqrstugpqrsvmij Aﬂpqé pare- r4gr r4 z] + 4ffFRA p5mqnv§]] = 07 (88)
0 th/ =+ Qk mj Pyijklvmkl - ZAypfqpquU + 3Aﬂpq5 pfq] rs]V{js + Aﬂpqéglfs]pqusij
r \/i
+ \/iAﬂpgpqrqu 24 Aﬂpqnpqum [ illgrl ry S[lj 2\/_fFR“4 5rs rstj =0. (89)

Now, the components of X, in terms of GL(7) indices can be simply read off by comparing Eq. (34) and Egs. (86)—(89)

listed above'®

1
8 8 _ —
XmS‘D r8 — _XerSP - _Efpmrv XmSquS - _Xm8 rSPq -
_ lp _ _
anp - _anr8 5’ fq]mnv anper - anrspg -
V2
anpgrs — _xmn rspS — 4 5gns]mntm}w‘gmw’ Xmgpq rs _

_\/Eéf’ngRv XmSqus = _XmS rqu = 255]“]] slm>
_ [m 7] m rs __ _1 rstulm £n)
36[pf1 rx]’ Xmnpars = 2]7]761 ! f tus
V2
_E’,Ipqrstuvgmtm” Xm8p8 rs = Xmg rsp8 — _TQmprs-

(90)

For brevity, we have left out a factor of the gauge coupling ¢ in these expressions.
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The components of X ,, presented above agree in their
general form with the components given already in the
literature [32].11 Written in terms of SL(8) indices, they
take the form of the general solution given in Eq. (38) with

8v2 8
Args = _TTFR’ A" nps = _gfm'””
V2
Ay = T’Ym”pr""r“grl...m, o1

and all other components vanishing. The appearance of
these structures can be understood from a group-theoretic
point of view by considering the branching of the 912
representation of E; ;) in which the embedding tensor lives
with respect to GL(7) [28,32,35]

912 > 1,7 + 35,5 + (7 + 140) 5 +(21 + 28 +224) ,
+ (21428 +224)_; + (7 + 140)_,
+35 5+14, (92)

where the subscript represents
GL(1) c GL(7). Hence [28,32]

the charge under

frr < 147,

gmnpq < ngS’

fpmn < 140+37

fppm < 7+3'

Of course, f7,, =0, so 7,3 does not contribute.
Note that we have used

My ..oms8 = Mmy...mq - 93)

The quadratic constraint (45) is satisfied for the X,
derived from the generalized vielbein postulates. The
constraints must be verified for each component and they
are shown to be satisfied using Schouten identities, the
unimodularity property (4), the Jacobi identity (7), and the
background Bianchi identity (19). We refer the reader to
Appendix B for details.

The calculations involved in the verification of the
quadratic constraint are highly nontrivial. However, the
fact that X,, as derived from the eleven-dimensional
generalized vielbein postulates not only satisfy the linear
constraint but also the more nontrivial quadratic constraint

"There are some discrepancies in numerical factors (see
Eq. (4.16) of Ref. [32]). In any case, here we verify that both
the linear and quadratic constraints are satisfied for the compo-
nents of X, given in Eq. (90).

For brevity, we have left out a factor of the gauge coupling g
in these expressions.

PHYSICAL REVIEW D 89, 045009 (2014)

shows that there is indeed a bona fide gauge algebra for the
gauging in the reduction. More generally, it points yet again
to the deep relation between our eleven-dimensional
formalism, developed in Refs. [1,15], and the embedding
tensor formalism [16-20] that describes gauged
supergravity.

Note that the verification of the linear and quadratic
constraints did not require the use of the background
consistency Eqs. (31) and (32). These are extra constraints
that must be satisfied by the background solution if the
reduction is to be consistent.

V. SCHERK-SCHWARZ REDUCTION
WITH NO FLUX

An object ©,,%, satisfying the embedding tensor con-
straints, is guaranteed to have at most half-maximal row
rank [35] as was explained in Sec. IIl. However, even
though we have shown that ©,,% as derived from the
generalized vielbein postulates satisfies the embedding
tensor constraints, it is not immediately obvious that always
less than 28 vectors will be gauged, as is required by
consistency. In fact a naive counting suggests that 49
vectors contribute, since this is the number of vectors that
remain in the generalized vielbein postulates after the
reduction Ansdtze are substituted in. This is in contrast
to the case of the S7 reduction considered in [15]. There it is
clear from the onset that B, ,,, drop out of the generalized
vielbein postulates because of properties of Killing vectors.
This leaves B, and B,™", which are indeed the 28 vectors
that are gauged in the S7 reduction.

The fact that general results of the embedding tensor
formalism guarantee that less than or equal to 28 vectors are
gauged means that our naive counting of the contributing
vectors is over-simplified and that constraints such as those
placed on structure constants f7,, for consistency of the
reduction will conspire to reduce the number of gauged
vectors to less than 28.

In this section, we explicitly demonstrate this for the
simplifying case corresponding to the original reduction
considered in [22], where there is no flux, i.e.

fFR = 07 gmnpq =0. (94)
The background Eq. (33) implies that the four-dimensional
spacetime is Minkowski and that the group under consid-
eration is “flat” [22], i.e.

25pq5rsfpmrfqns + zfpmqfqnp - 5mp5nq5m5mfprfquu
=0. 95)

In this case the generalized vielbein postulates (74)—(77)
take a simpler form

0ueyp _fmquMFéZB + Q,f[A ég]c + PﬂABCDémCD =0. (96)
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8/4 émnAB 2f17

8;4€m1...m5AB + SByquq[ml €m,...ms|pAB

5 CD _
+ /P/AABCDem].‘.mS - 0’

€ pABB T+ 3f4 [mnBlplp] eAB + Q”[A mnB|C +P ABCDemnC

PHYSICAL REVIEW D 89, 045009 (2014)

b =0, 97)

3v2 .
- _f m,sz\ﬂp\m3em4ms]AB +15f7 [mlszlﬂp\m3m4m5q]eAB + Q eml~--mSB]C
(98)
> & s & s c 4
ayeml .m7,nAB + f qn ﬂ m]4..m7,pAB - Sf] [mlsz|,up\m3 €my...m;nAB + 5f”[m,sz|,up\m34..mﬁem7]nAB + Qﬂ[Aem|...m7,nB]C
(99)

+ PyABCDe)n]“.m7,n =0.

A simple example of a flat group is given by [22]

Un" = (expMy'),", (100)
where the seven-dimensional coordinates y” = (y',y™)
with m = 2,...,7 and M is a constant traceless matrix
with zeros in the first row and column, i.e.

0 oF
M," = I (101)
0 My"
Using the fact that
0,0, = 5},,U,,‘1qu, (102)
we find that
SPmn = 2M[mp5,l,] (103)

In particular, we find that the only nonzero components of
the structure constant are f7,;. Inspecting the generalized
Yielbein postulates (96)-(99) we find that fS’” mn and
B, ,..ms enter the equations in the form

S mnBuplg A P, By g p-

Hence, only

B

and Blf

my...ms

contribute. Along with Bﬂl and l?,,’h this gives a total of

28 =1+ 6+ 6 + 15 = 13 electric 4 15 magnetic

vectors appearing in the generalized vielbein postulates,
which is kinematically consistent. Of course, one should
here distinguish between the kinematics of the gauge
couplings and the dynamics of the theory, which

|

determines the vacuum and thus decides which vectors
will remain as massless gauge bosons, and which will
acquire a mass through spontaneous symmetry breaking.
Indeed, for generic Scherk-Schwarz compactifications, the
majority of the candidate 28 vectors fields will become
massive in the reduction and can therefore not be gauged.
In fact, l?,,l is the only vector that becomes gauged in the
reduced theory. An analysis of all possible gaugings from a
Scherk-Schwarz reduction with no background flux is
given in Ref. [43]. It is shown that only electric vectors
become gauged in this case.

In general, the Scherk-Schwarz reduction with back-
ground fluxes will have less than or equal to 28 gauge
vectors contributing, kinematically, as is expected from
general arguments. However, the distribution between
electric and magnetic vectors can be varied—although as
pointed out before, no more than 21 magnetic vectors can
be gauged in this symplectic frame. In the context of
Scherk-Schwarz flux compactifications this has already
been observed in [28].

VI. CONCLUDING REMARKS

In this paper, we have investigated the Scherk-Schwarz
reduction of D = 11 supergravity with background flux. In
this case, the reduction Ansatz immediately gives a relation
between the 56-bein in eleven dimensions and the
56-bein that parametrizes the scalars in four dimensions,
Egs. (62)—(65). In this form, the reduction Ansatz is applied
to the generalized vielbein postulates yielding the embed-
ding tensor of the respective gauged maximal theories in
four dimensions. Furthermore, the reduction Ansatz written
in the form (62)—(65) is suggestive of the fact that Scherk-
Schwarz flux reductions can be thought of as an Ey(7
generalized Scherk-Schwarz reduction of the form

(104)

Vmag(x,y) = UMN(y)f)NAB(x)’
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Bﬂ M (x »y )
where
VmS AB
B anAB
VM AB — ’

anAB

8
V" aB

= UPUNN () A (),

PHYSICAL REVIEW D 89, 045009 (2014)

(105)

B

um8
mn

Boi— | 2

M — B s
wmn

BmS

u

and V mag and A, - (similarly defined) are the 56-bein and the set of 56 vectors appropriate for the torus reduction,

respectively. Moreover, U(y) is an E(7y matrix of the form

v'ru,” 3v20'2a,, (UTY), (U,

u-\2sts, upu

U2, (U,

0 U1/2( ) m(U ) U—l/2smnrsUersq —2U‘1/ZS’1‘”,(U_1)I,S (107)
0 0 U0, U 62U 4, (U, |
0 0 0 1/2( )Pm

where

nm - 3\/_77mnr1 5( SPy...T5 +

“J%

aa) (108)

V2

Smn = _36’7r1”'r7amr1 7 (anr3...r7 _Eanr3r4ar5r6r7> s (109)

v2

mn — mn r\rar:
S prq — 17 pqrir 3arlr2r3

(110)

Equation (104) is to be compared with Eq. (64) of Ref. [1]:

Vaap(x.y) = V(2. )T aas. (111)
where
l—‘aAB
Fah
Tas=| " (112)
il paB
iFjiB

In this case, one finds that the form of matrix U(y) is

exactly the same as the form of V), with the following

identifications:
U," e, au,<A —A

a (113)

mnp mnp> my...mg my...mg*

In particular, in Ref. [1], V,* is identified with the Eq@7)
coset element constructed in Ref. [44].

An interesting question is whether new reductions can be
found by considering an Ansatz of the form (104), (105). A
direction related to this is pursued in [37-39] in the context

|
of extended generalized geometry, where U " is assumed
to depend on all extended coordinates. One should, how-
ever, keep in mind that (107) is already the most general
E(7) matrix (albeit in a triangular gauge), which does not
leave much room for more exotic possibilities.
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APPENDIX A: E,;, ALGEBRA
AND IDENTITIES

In this appendix we review the SL(8) decomposition of
the E7(7) algebra. In such a decomposition, the generators in
the adjoint representation can be written

1
(ZMN)PQRS = 2<5EQ M — 5%‘35(5))’

SRl g
1
P P
(MN)PRs = 2<5NE°,5M 85'\N/|5R(S}>’
T,..T
(tpars) ™™ = Spgis »
1

(tPars)T,. T, = = 71/IPQRST, .., (A1)
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It can be explicitly checked that the generators satisfy the
following familiar commutation relations:

M P M P P M
[l N> L Q]:5Ql N_5Nt Q>

1
[IMN’ tpars) = —4 (5'[\|/:I>IQRS]N + g(s'\N/ltPQRS> , (A2)

1
[tmnPQs TRSTU] = 7 ('IVMNPQ[RSTIVU] - WVRSTU[MNPtVQ])'
(A3)

It is sometimes convenient to also define coset generators
with upper indices

MNPQ _ 1

MNPQRSTU
" STV 1RsTy

(A4)

keeping in mind that these are not independent generators.
Furthermore, the components of the Killing metric are

1
My.Pq = 12(535,5 - g(sk,"ég),

PHYSICAL REVIEW D 89, 045009 (2014)
APPENDIX B: THE QUADRATIC CONSTRAINT

The quadratic constraint on the embedding tensor is

required in order for the algebra of the gauge group to close

(X Xy] = =X ain " Xp. (B1)

or equivalently,

X o™ Xnr” = Xno®X " = =X s X", (B2)
Note that this constraint is highly nontrivial even to the
extent that the left-hand side of the above equations is
manifestly antisymmetric under the interchange of indices

M and N, whereas

Xun”

is not in general antisymmetric under such an operation. We
can therefore split this object into two tensors, viz.

Xun” = Xpun” + Zun”s (B3)

where the components of X " in a GL(7) decomposition
is given in (90) and

2
KMNPQRSTU = EWMNPQRSTU, » »
| : Zyan" =X -
-1y M P M oP M P
K ,Q——éé——55>, )
(< 12( QN gNTa In (90) we had already derived all the components of
(k-1 MNPORSTU _ 1 MNPQRSTU (A5) X un” frqm the gen.er.alized vielbein postulates, so we can
2. 41 : now explicitly exhibit the nonzero components of the
symmetric tensor Z " as
|
1 V2 1
ZmSpSrS = Zpng B = _prmr’ Z,g",g = 2P 8,8 = 7553’ FR> ZgP g = 2P 8, = _E(SLrIlij]rw
3 V2
ZmS rqu = ermgpq = _Eégij]mn]v Zmnpqu = qumn s = _6{21 fq]n]rv ZmS rsp8 — ermSpS = Tgmprs,
Zmnpsrs — Zpsmn rs _ _\l/_géﬁns]mntu@wgm]vw’ Zmn rspg = 7' mnp8 —_ Z_Sz(ﬁgnnn]rsmvw + 5¥”5]mnmvw)gmmv’
mn pqrs pgmnrs 1 pqrstulm £n) mnrstu(p £q|
zZ =Z = Z(n f tu +1n f tu)' (B4)
I
The contraction given on the right-hand side of Eq. (B2) The components of X, given in (90), satisfy
is indeed symmetric under the interchange of M and N
[18].
The components of X" as derived from the
generalized vielbein postulates, (90), satisfy the linear X 1"%Rs = —X 1mstC, X PORS = x , RSPQ
constraint since they can be put into a form compatible (BS)

with the general solution of the linear constraint (38) (see
Sec. III). However, the quadratic constraint is not neces-
sarily satisfied by the general solution (38) and Eq. (B2)
must be considered for the particular solution given
by Eq. (90).

X mpars = X MRsPQ-

We will verify Eq. (B2) for each component in turn:
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ey

R R
Xmnea“ XTurvw — XTuPQ " XMNR VW

= —Xuntu* X rPQuw- (B6)
The only components for which both sides of the
above equation are nontrivial are

|

PHYSICAL REVIEW D 89, 045009 (2014)
(MN,PQ, TU,VW) = (m8, p8,18,vw) or
(m8,pq,18,v8).
The latter case above is equivalent to the former, since
from Eq. (BS) both sides of Eq. (B6) are symmetric

under the interchange of PQ and VW. Therefore, we
only need to consider

R R R
Xong ps" Xig Row — X3,8" X,ug Row + X8 8" X pg vW

— 8 8 g
- [2Xm8p8r XIS r8ow + Xm8p8rth8rsvw - (m < t)} + Xm8t8r Xr8p811w + XmStSrSX”pSUW’

V2 ‘
= Tfrmpgtrﬂw + \/Egmp[v\sf‘ww]t - (m < t)
3v2 V2, 3v2
= _Tf m[pGowltr — Tf tm9powr — T
= _Sﬁfr[tmgpbw]r’

which vanishes by Eq. (19).
2

R VW R VW
Xunea “X1ur " — XTuPQ " XMNR

= —Xuntu*Xzp"". (B7)
The components of the above equation where both
sides of the equation are nontrivial are given by

(m8, p8, tu, v8
(m8, p8, 18, vw)
(mn, p8, 18, vw)

(m8, p8, 18, v8)
)

(MN, PQ, TU, VW) = (B8)

V2 3v2

- Tfrlmgpvwr - Tfr[vwgp]tmr’

fr[vwgp]tmr - (m < t)’

In the first case, we have

X p8 XisR"™® — X ps " Xms ™ + Xins ps "X ps "
1
= _fsp[r\f§|m] + Efstmfvps’

3 s v
= Ef [tmf pls»

which vanishes by Eq. (7). Similarly, the second case
also vanishes by Eq. (7).
Consider the third case in (B12),

XmSpS XIS’RDW_XISpS XmSRLW_FXmSIS X'RpSHW

o 0wry.
n

1
6 “rsg[m|r1f2rzg|f]r4fsl7 +ﬂ5

(v wlr.
p

T
(’gmtrlrzgrgu.rﬁ ’

1 1 1
= - Envwrlmrsg[m|r1r2r3g|t]r4r5p =+ _5[vnwrlmré]gmtr,rzgr3...r6 - _nvwrl...r5gmt[pr] Gry...rs)>

6P

= gég)nwrl.“rﬁ]gmtrlrzgm...ré - ’I“W"

24

Both of the terms above vanish because they
contain antisymmetrizations over eight indices. Moreover,
it is simple to show that Eq. (B11) is satisfied for the fourth
case, as in this case both sides of Eq. (B2) are equal to

S ) o -

3

PQR PQR
XunPR X urvw — XTuP R X unrvw

= —Xuntu X2 - (B9)

8

“rsg[mtprlgrz.‘.@]-

Using the identities given in (B7), the above equation
reduces to

RPQ RPQ
XN Xruvwr — XTu™ T Xvnvw

= Xuntu“ X v, (B10)
which is equivalent to Eq. (B11).
“
XMNPQRXTURVW _ XTU PQRXMNRVW
= —Xunru "X POVW. (B11)
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There is only one component of Eq. (B11) for which both sides of the above equation are nonvanishing:

R R R )
XmSPq XISRvW_XtSpq Xm8R1)W+XmSt8 X’qutw

V2 V2 V2 V2
= _Tnpqu mr4[v9[m|r1r2r3fw]r4\t] _Ti/lvwrl mr4[pg[m|r1r2r;f ]r4\t] +— npqkuluzuzfyullﬁgmlu;s 12 npqwuluzu?fymtguluzuﬂv
2V2 5V2 o , ﬁ , ,
= _?nrl mr4[ﬂq1}g[m\rlr2r3fw] r4lt] + 6 npqhwu,uzung [mt9u, uyus)s +7npq?jwuluzu3fbul[tg)n]u2u3s1
4v2 V2 S5V ,
= _T’/I r4pqvg[m\r1r2r3fw] r4lt] _~_?npqvwrl.“r3g[m‘rl r2r3fss|t] =+ 6 n17qku1u2u3fs [mt9u uyus)s
[
(S)Which vanishes by unimodularity, (4), and Eq. (19). X8 pSRXmva — XWPSRXmSRW + XmStMRXRpS -
= 667,/ im0 1) + 31 pm O S ) = 68, 1 g o

_ [" s u 1] £s u 1l £s
Ximnp XV rvw — X Ve Xunrvw =300 f [pmfl] =360 [pmf s + 305t s

— TU . :
—Xun " X rpauw- (B12) which vanishes by Eq. (7).
(6)
The only nontrivial components to consider in this
case are Xunpa "X VW — XTpo™ X"
= —Xun "R Xrpo V. (B14)
(MN,PQ. TU, VW) = (m8, p8, tu, vw) or It is straightforward to see that all terms in the above

(B13) ) S
(m8, pq, tu, v8). equation vanish trivially unless

(MN, PQ, TU,VW) = (m38, p8, tu,vw).  (B15)
Both cases reduce to the same equation; hence, we

only consider the first case: In this case,
|

V3 Y V2

Xm8 pg'eruva - XtupSRXmSRUW + XmStuRXRpSUW = ﬁf[vmpnw]msl 493'] LSy Tf[txlszrlu]vwsl .“S‘Lgmps_;s_/l

V2 5 V2

_ E5%I)fw]s]m’,]stuql mq4gq1“.q4 _ Té&f‘u] rs],,lrsqul ...q3gmql -
V2 V2 1

- E5£‘tfu]sm5£f’7w]rsql ---‘149% .y + E6£§’fw]ml,]tursql ...qggmql g3

[
Using Schouten identities, the first, third, and fifth terms V2
_?f[trerﬂu][ylrlmrsé‘pW]gmrg.“rS' (B17)

in the expression on the right-hand side reduce to

V2 5
?égnw]mrlmmfsmrlgrz...ms (B16)
Therefore,
and similarly the second and fourth terms simplify to
|
v V2 , V2
Xm8 pngtuva _ me8RXm8RvW + XmSMRXRIJSLW — ?6£; rlw}turl4..r4fAmrlgr2mr4s _ f[trlr2 ul[vr;.. riélW]g)nr3...r5

V2

+ _5vaw]rsntursql qugmql g3

5\/’ v \/E v
5[ wleury.. rAfsmrlgrz...m]s +?5EJ”w]mrlMmfssrlgmrz‘..rp
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where we have again used Schouten identities. It is now
clear that Eq. (B23) holds as a result of Egs. (4) and (19).
(7
Xy PORXTU Ly — XTUPQR Y

TURXR PQ

—XuN VW- (B18)

Using the relations in (B7), this equation is equivalent
to Eq. (B23), which we have already verified.

®)

PQRyTU VW _ yvTUPQR VW
XunPARXTU VW — X TUPQR

TUR XR PQVW

~Xuy (B19)

The only nontrivial equation to consider in this case is
Xmgquxtuva _ X quXmS va + XmgtuRXqu ow

— § ’,,pqvwslsz [tfu]

D) r[mfrslsz] ’

where we have used Schouten identities. Therefore,
Eq. (B19) is satisfied.
&)
XMNQRXTURP _ XTUQRXMNRP
= —XMN; RX 507, (B20)
|

PHYSICAL REVIEW D 89, 045009 (2014)

Note that the left-hand side of this equation is of the
same form as the left-hand side of cases 5—8. There-
fore, it remains to show that

— XNy RXro” = X1y R XRo". (B21)

This can be simply verified using Schouten identities
and Egs. (4), (7), and (19) for all components.
(10)

MN__ RyTU TU __RyMN
X" X M rvw — X pa X pyw

= —XMNTUR X ¢ pauw- (B22)
This equation is trivially satisfied.
(11)
XMNoQRXTUL VW _ xTU, (RXMN VW
— —XMNTURXRPQVW. (B23)

The only nontrivial components to consider is

anpgRXtuva _ xu pSRanva + xmn tuRXR png _ %rlvwrsqlfh [mfn] " q25gfu] s5] — %,,varsqlth [Ifu] hin 5%i"fn] sp]

1 ‘ v
_ 57/]t1,4i‘5111’12[mfn]qlqz(sE’f ]rs’

1

1
= zéynw]m[[‘rlMmfnr]rzflu]r;m - 55£7”;,]w]n[t|r1‘..r4fmrlr2f|u]r3r4

1
-3 s qz[mfn]qlq25£§’fW] s

where in the second equality we have used Schouten
identities to simplify the first two terms on the second line.
Further use of Schouten identities gives

anpsRquRrw _ XtupsRXmﬂR”W —+ X" ’”RXRPSW
| R
zgﬁwWwWﬂ%mﬂ%m
+ 251[;;77W]””1 r2r3[mf’l] [rlrzfr4r3r“]'

The first term vanishes as a consequence of the fact
that

f[m [rl ern] r3rd]

is antisymmetric under the interchange of m and n, but
symmetric under the interchange of pairs [r;r,] and

[r3r4]. Furthermore, the second term vanishes either
by the unimodularity property (4) or the Jacobi
identity (7). Hence Eq. (B22) is satisfied.

(12)

MNPQR yTU TUPQR yMN
XMNPQRYTU, \w — XTUPQRXMN .y

— _XMNTURY PQ (B24)

Using Eq. (B7), this case is equivalent to case 11,
which we have already verified.
(13)

XMNPQRXTURVW _ XTUPQRxMNRVW

_ _XMNTU'RXRPQVW. (B25)

The above equation is trivially satisfied.
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