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We study the Scherk-Schwarz reduction of D ¼ 11 supergravity with background fluxes in the context
of a recently developed framework pertaining to D ¼ 11 supergravity. We derive the embedding tensor of
the associated four-dimensional maximal gauged theories directly from eleven dimensions by exploiting
the generalized vielbein postulates, and by analyzing the couplings of the full set of 56 electric and
magnetic gauge fields to the generalized vielbeine. The treatment presented here will apply more generally
to other reductions of D ¼ 11 supergravity to maximal gauged theories in four dimensions.
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I. INTRODUCTION

Recently, a reformulation [1] of D ¼ 11 supergravity [2]
that emphasizes the exceptional E7ð7Þ duality symmetry [3]
and is based on the SU(8) invariant reformulation of D ¼ 11
supergravity [4] has been constructed. The central object in
this reformulation is an E7ð7Þ 56-bein in eleven dimensions,
which can be thought of as the eleven-dimensional ancestor
of the 56-bein in four dimensions containing the 70 scalars of
the reduced maximal theory. The four generalized vielbeine
[1,4,5] that comprise the 56-bein in eleven dimensions are
derived by analyzing the supersymmetry transformations of
the 56 vector fields in the SU(8) invariant reformulation,
generalizing and completing the construction of [4] (similar
new structures also appear in the SO(16) invariant formu-
lation of D ¼ 11 supergravity where the relevant vielbein
belongs to E8ð8Þ [6,7]). The emphasis on supersymmetry as
the origin of the generalized exceptional geometry obtained
in this way is the main distinctive feature in comparison with
other approaches to generalized geometry.1 The 56-bein
satisfies certain differential identities called “generalised
vielbein postulates” [1,4] due to their similarities with the
usual vielbein postulate in differential geometry, and these
relations will be at the center of our construction.
The very nature of the reformulation in that it emphasizes

structures in eleven dimensions that become apparent upon
reduction to four dimensions makes it a useful framework
in which to study questions regarding four-dimensional
maximal gauged theories from a higher dimensional
perspective. This feature extends the attributes of the
SU(8) invariant reformulation, which leads to a nonlinear

metric ansatz [10] and a proof [11,12] of the consistency of
the S7 reduction [13] of D ¼ 11 supergravity. In particular,
the new structures found in [1,5] give rise to nonlinear
Ansätze for the internal components of the three-form [5]
(see also [14]) and six-form [15] potentials. In fact, Ansätze
can be given for the full uplift to eleven dimensions for any
solution (and, in particular, the stationary points of the
potential) of the four-dimensional theory; the possibility to
perform such nontrivial tests of all formulas is another
distinctive feature of the present approach. Furthermore, the
generalized vielbein postulates reduce to the consistency
requirements of the four-dimensional maximal gauged
theory. In particular, there is a direct relation [1,15] between
the set of generalized vielbein postulates with derivatives
along four dimensions and the E7ð7Þ Cartan equation of the
maximal gauged theory [16–18], in which the gauging is
defined via the embedding tensor [16,19,20].
The formalism developed in [1] has already been applied

to an extensive study of the S7 reduction [15]. In particular,
nonlinear Ansätze are given for the uplift of four-dimensional
solutions of SO(8) gauged maximal supergravity [21] to
eleven dimensions, including dual fields. In addition, the
embedding tensor of SO(8) gauged maximal supergravity is
recovered directly by reducing the generalized vielbein
postulates with derivatives along four dimensions. While
the S7 reduction is highly nontrivial from the perspective of
the nonlinearity of uplift Ansätze and the field content in four
dimensions, the gauging, and therefore the embedding
tensor, is relatively simple in that the gauging only involves
electric vectors, and moreover is uniform.
In this paper, we study Scherk-Schwarz [22]2 reductions

of D ¼ 11 supergravity with background flux [25–35]*H.M.Godazgar@damtp.cam.ac.uk
†M.M.Godazgar@damtp.cam.ac.uk
‡Hermann.Nicolai@aei.mpg.de
1For a summary of recent developments and a complete

bibliography see [8,9].

2In fact, the essential idea of reducing on a group manifold
appears in [23]; for a useful historical account of Kaluza-Klein
theory, see [24].
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within the context of the formalism developed in [1]. The
Scherk-Schwarz flux compactification has principally been
studied from a four-dimensional gauge algebra perspective
by associating background fields to particular representa-
tions in the GL(7) decomposition of the 912 representation
of E7ð7Þ in which the embedding tensor lives. Here, we
concentrate on obtaining the embedding tensor of such
theories directly from eleven dimensions by analyzing the
couplings of the 56 vector fields (28 electric and 28
magnetic vectors) via the generalized vielbein postulates.
Hence, our approach should be contrasted with recent work
[36–39] aiming to construct the embedding tensor for
nongeometric compactifications obtained by generalized
Scherk-Schwarz reductions of extended generalized
geometries.
While the Scherk-Schwarz reduction is much simpler

than the S7 reduction, the novelty of the Scherk-Schwarz
reduction as far as we are interested in is the potential for
gaugings involving a combination of electric and magnetic
vectors leading to a more complicated embedding tensor
[28,32]. We derive the embedding tensor of Scherk-
Schwarz flux compactifications directly and explicitly from
the D ¼ 11 generalized vielbein postulates. This consti-
tutes a further nontrivial demonstration of the utility of the
formalism developed in Ref. [1] and gives further credence
to the interpretation of the generalized vielbein postulates
as the higher dimensional origin of the embedding tensor.
More generally, the results of Ref. [1] can be applied to any
compactification of D ¼ 11 supergravity to maximal
gauged theories in four dimensions yielding nonlinear
uplift Ansätze and the embedding tensor.
The outline of the paper is as follows. In Sec. II, we

present a self-contained review of Scherk-Schwarz reduc-
tions with background flux including a discussion of the
background field equations (Sec. II A), which to the best of
our knowledge does not appear in previous literature. The
Jacobi-like constraints on the background fluxes as well as
the background field equations form the complete set of
equations that must be satisfied for a bona fide Scherk-
Schwarz flux compactification. The nontriviality of these
constraints, particularly the background field equations,
illustrates the difficulty of providing a complete classifi-
cation of such compactifications.
In Sec. III, we briefly review the embedding tensor

formalism [16–20] and give a general solution of the linear
constraint satisfied by the embedding tensor. The reduction
Ansätze defined in Sec. II are applied to the generalized
vielbein postulates in Sec. IV yielding the embedding
tensor of Scherk-Schwarz flux compactifications. This
embedding tensor can be cast in the form of the general
solution of the linear constraint given in Sec. III.
Furthermore, in Appendix B, we verify that the quadratic
constraints are satisfied. Finally, in Sec. V, we demonstrate
explicitly in the simple example of a flat group reduction
that indeed less than or equal to 28 electric or magnetic

vectors are gauged as is expected from general results of the
embedding tensor formalism [35]. We make concluding
remarks in Sec. VI.
Conventions.—In this paper, we reserve the use of ϵ for

an alternating tensor with respect to some metric structure,
while we use η to denote the tensor density, alias the
alternating symbol. It is important to note that all objects
denoted with a caret above them depend only on the
external coordinates, that is, are only x dependent.

II. SCHERK-SCHWARZ REDUCTION

Consider a reduction of D ¼ 11 supergravity such that
the elfbein takes the form

EM
AðzÞ ¼

�
Δ̂−1=2ðxÞêμαðxÞ B̂μ

mðxÞêmaðxÞ
0 Um

nðyÞênaðxÞ

�
; (1)

where the eleven-dimensional coordinates have been split
as fzMg≡ fxμ; ymg, and where

ê ¼ detðêμαÞ; Δ̂ ¼ detðêmaÞ (2)

(recall that all hatted quantities depend only on the four-
dimensional coordinates xμ). The matrices Um

nðyÞ depend
only on the internal coordinates and satisfy the property
that

∂ ½mUn�p ¼ − 1

2
fprsUm

rUn
s: (3)

The y-independent structure constants f importantly satisfy
a unimodularity property, viz.

fmmn ¼ 0; (4)

which is equivalent to

∂n½UðU−1Þmn� ¼ 0; (5)

where

U ≡ detðUm
nÞ: (6)

The condition of unimodularity, emphasized in [22],
ensures that the measure is invariant under seven-
dimensional diffeomorphisms.3

Furthermore, the following integrability condition is
satisfied:

fq½mnfrp�q ¼ 0: (7)

3The importance of unimodularity was discussed in the context
of Bianchi cosmology by Sneddon [40] slightly before Scherk
and Schwarz, and shown to be required for consistency of the
reduction to a homogeneous cosmology.
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This is equivalent to the Jacobi identity for the associated
Lie algebra.
Specifically, in terms of the following parametrization of

the elfbein

EM
A ¼

�
Δ−1=2e0μα Bμ

nena

0 ema

�
; (8)

whereΔ ¼ det ena ¼ UΔ̂, we assume the following reduc-
tion Ansätze for the elfbein components:

e0μαðx; yÞ ¼ U1=2êμαðxÞ; (9)

Bμ
mðx; yÞ ¼ ðU−1ÞnmB̂μ

nðxÞ; (10)

enaðx; yÞ ¼ Um
nênaðxÞ: (11)

In general, the reduction Ansätze for fields is such that all
seven-dimensional covariant tensor indices are contracted
with U, which contains all the y dependence, while seven-
dimensional contravariant tensor indices are contracted
with U−1, as should be clear from the Ansätze for Bμ

m

and ena given above.
The reduction Ansatz for the three-form potential is

similarly defined, except that some components have
background contributions as well:

Aμνρðx; yÞ ¼ ÂμνρðxÞ þ ζ̂μνρðxÞ; (12)

Aμνmðx; yÞ ¼ Um
nÂμνnðxÞ; (13)

Aμmnðx; yÞ ¼ Um
pUn

qÂμpqðxÞ; (14)

Amnpðx; yÞ ¼ A0
mnpðx; yÞ þ amnpðyÞ; (15)

where

A0
mnpðx; yÞ ¼ Um

qUn
rUp

sÂqrsðxÞ; (16)

and ζ̂μνρ and amnp are defined such that

4!∂ ½μζ̂νρσ� ¼ ifFRΔ̂−3ϵ̂μνρσ; (17)

4!∂ ½manpq� ¼ grstuUm
rUn

sUp
tUq

u; (18)

for some constant fFR and totally antisymmetric constant
gmnpq. The above equations give the background values of

the field strength Fμνρσ and Fmnpq, respectively. We will see
later that the special y dependence with constant gmnpq in
(18) is required for the consistency of both the equations of
motion and the generalized vielbein postulates.
The exterior derivative of Eq. (18), which corresponds to

the closure of the background field strength, implies the
following constraint [34]:

fs½mngpqr�s ¼ 0: (19)

We will find later that this constraint plays a crucial role in
defining a consistent gauge algebra. In fact, this constraint
was first found by considering the consistency of the gauge
algebra, in particular, the Jacobi identity [25].
In order to determine the form of the dual six-form under

this reduction, we consider its defining equation

i
4!
ϵM1…M11

FM8…M11 ¼ 7!∂ ½M1
AM2…M7�

þ 7!

ffiffiffi
2

p

2
A½M1…M3

∂M4
AM5…M7�;

(20)

where it is important to note that indices on FMNPQ have
been raised using the eleven-dimensional metric, and where
we have ignored fermion bilinear contributions. Consider
the m1…m7 components of the above equation. Using the
fact that

ϵm1…m7μνρσ ¼ UΔ̂−1ϵ̂μνρσηm1…m7
(21)

the left-hand side of Eq. (20) simplifies to

i
4!
ϵm1…m7μνρσF

μνρσ ¼ −UfFRηm1…m7

þ Uðx-dependent termsÞ; (22)

where ηm1…m7
is defined with respect to a flat seven-

dimensional metric and the x-dependent terms in the
remainder of the expression have contributions from
Âμνρ, Âμνm, Âμmn, Âmnp, and gmnpq as well as fpmn. This
is due to the fact that the inverse metric is not diagonal. We
stress once more that the indices on the four-form F in
Eq. (22) have been raised with the eleven-dimensional
metric.
The right-hand side of Eq. (20) reduces to

7!∂ ½m1

�
Am2…m7� þ

ffiffiffi
2

p

2
A0
m2m3m4

am5m6m7�

�

þ 7!
ffiffiffi
2

p

2

�
A0
½m1m2m3

∂m4
ðA0

m5m6m7� þ 2am5m6m7�Þ

þ a½m1m2m3
∂m4

am5m6m7�
�
: (23)
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Now, defining an Ansatz for Am1…m6
of the form

Am1…m6
¼ A0

m1…m6
ðx; yÞ þ

ffiffiffi
2

p

2
a½m1m2m3

A0
m4m5m6�

þ am1…m6
ðyÞ; (24)

where

A0
m1…m6

ðx; yÞ ¼ Um1

n1…Um6

n6 Ân1…n6ðxÞ (25)

and am1…m6
is such that

7!∂ ½m1
am2…m7� ¼ −UfFRηm1…m7

− 7!
ffiffiffi
2

p

2
a½m1m2m3

∂m4
am5m6m7�: (26)

Equation (20) reduces to a purely x-dependent, rather
complicated, relation between Âm1…m6

and components
of the three-form potential Â. Note that duality relation (26)
is the duality relation satisfied by the background solution.

A. Background solution

In the context of formulating a well-defined reduction, an
important consideration is the background field equations
and the constraints these imply on the background fields.
The background of the Scherk-Schwarz reduction is

given by

EM
A ¼

�
êμαðxÞ 0

0 Um
nðyÞδan

�
; Amnp ¼ amnp;

Fμνρσ ¼ ifFRϵ̂μνρσ: (27)

Thus, the internal metric is

gmn ¼ Um
pUn

qδpq; gmn ¼ ðU−1ÞpmðU−1Þqnδpq:
(28)

The field equations of eleven-dimensional supergravity
are

RMN ¼ 1

72
gMNF2

PQRS − 1

6
FMPQRFN

PQR; (29)

E−1∂MðEFMNPQÞ ¼
ffiffiffi
2

p

1152
iϵNPQR1…R4S1…S4FR1…R4

FS1…S4 :

(30)

For the background solution, the component of these
equations along the internal directions are

1

6
gmpqrgnqpr ¼

1

4
ðδmpδnqδ

rsδtufprtfqsu

− 2δpqδ
rsfpmrfqns − 2fpmqfqnpÞ

− 1

3
δmnf2FR þ 1

72
δmngpqrsgpqrs; (31)

f½m1
pqgm2m3�pq ¼ −

ffiffiffi
2

p

72
fFRηm1…m7gm4…m7

; (32)

where the indices on gmnpq are raised with the Kronecker δ
symbol. We note that by putting the theory on shell, this
operation breaks the GL(7) symmetry to SO(7) or a
subgroup thereof, in the same way as the rigid SU(8)
symmetry of maximal supergravity is broken to (a sub-
group of) SO(8) in any given vacuum.4 The special
dependence on UðyÞ in (18) is now seen to be necessary
for the “Maxwell equation” (30) to become y independent,
and thus to reduce to an equation relating the constant
tensors fmnp and gmnpq, (32). We note that, while the
background constraints for the case with no flux appear
already in Ref. [22], the constraints implied on the back-
ground of a Scherk-Schwarz reduction with flux have never
been fully spelled out in the literature to the best of our
knowledge. In particular, Eq. (32) is a nontrivial restriction
on the class of viable Scherk-Schwarz reductions. These
constraints, which are imposed by the background field
equations, are independent of the constraints imposed by
the consistency of the gauge algebra [25] (see also [35]).
The components of the Einstein equation along the four-

dimensional spacetime directions fixes the radius of the
four-dimensional anti-de Sitter space

R̂μ
ν ¼

�
2

3
f2FR þ 1

72
gmnpqgmnpq

�
δνμ: (33)

All other equations of motion are trivially satisfied.

III. THE EMBEDDING TENSOR FORMALISM

The embedding tensor formalism,5 which was initially
developed in the context of three-dimensional maximal
gauged supergravities [19,20] and later developed in the
context of four-dimensional maximal gauged supergravities
[16–18], is the most efficient framework in which to
understand gaugings. The embedding tensor formalism
uses the fact that the ungauged supergravity, of which
the gauged theory is a deformation, is controlled by a global
symmetry group that is larger than what one would naively
expect—an observation first made in the context of the
four-dimensional maximal theory [3].

4We thank Henning Samtleben for a discussion on this point.
5See Ref. [35] for a lucid account of the embedding tensor

formalism.
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In four dimensions, the scalars, which parametrize the
E7ð7Þ vielbein V, satisfy the following equation:

∂μVMij þQμ
k
½iVMj�k − PμijklVM

kl − gAμ
PXPM

NVN ij

¼ 0: (34)

Objects that are of particular interest in the above
equation are ðXMÞN P . These generate the gauge algebra
and are related to the embedding tensor6 ΘM

α via the E7ð7Þ
generators tα, viz.

XM ¼ ΘM
αtα: (35)

The embedding tensor satisfies two algebraic constraints.
The first, linear constraint, comes from a consideration of

the supersymmetric consistency of the gauged theory. In
the case of maximal four-dimensional theories, this trans-
lates to the statement that the embedding tensor lives in the
912 representation of E7ð7Þ

ΘM
α þ 2ðtβÞMN ðtαÞN PΘP

β ¼ 0; (36)

where the E7ð7Þ index α is raised with the inverse Killing-
Cartan form κ−1, which is given in Appendix A. More
specifically, the above relation follows by requiring that the
projectors P56 and P6480 annihilate ΘM

α [16]. In terms of
the gauge group generators, the linear constraint is

XMN
P þ 2XRM

Qðκ−1ÞαβðtαÞQRðtβÞN P ¼ 0: (37)

The general solution of the linear constraint is given by

XMN
PQ

RS ¼ δ½P½RT
Q�

S�MN; XMNPQ
RS ¼ −δ½R½PTS�

Q�MN;

XMN
PQRS ¼ −2δ½M½PTN�

QRS; XMNPQRS ¼ − 2

4!
ηPQRS½MjT1T2T3jTN�

T1T2T3
;

XMN
PQ

RS ¼ δ½R½PTQ�S�MN; XMNPQ
RS ¼ −δ½P½RTS�Q�MN;

XMN
PQRS ¼ −2δ½P½MTN�QRS�; XMNPQRS ¼ − 2

4!
ηPQRS½MjT1T2T3jTN�T1T2T3 ; (38)

where

TM
NPQ ¼ − 3

4
A2

M
NPQ − 3

2
δM½PA1Q�N;

TM
NPQ ¼ − 3

4
A2M

NPQ − 3

2
δ½PMA1

Q�N: (39)

Note that the solution above applies more generally to other
compactifications. Structures A1

MN, A1
MN A2

M
NPQ, and

A2 M
NPQ satisfy the following properties:

A1 ½MN� ¼ 0; A1
½MN� ¼ 0;

A2
M½NPQ� ¼ A2

M
NPQ; A2

M
MPQ ¼ 0;

A2M
½NPQ� ¼ A2M

NPQ; A2M
MPQ ¼ 0: (40)

Equivalently,

ðΘMNÞP1

P2 ¼ 1

2
TP2

P1MN;

ðΘMNÞP1…P4 ¼ − 2

4!
ηP1…P4½MjQ1Q2Q3jTN�

Q1Q2Q3
;

ðΘMNÞP1

P2 ¼ − 1

2
TP1

P2MN;

ðΘMNÞP1…P4 ¼ −2δ½P1

½M TN�P2P3P4�: (41)

The corresponding objects ðΘMNÞP1…P4
and ðΘMNÞP1…P4

are obtained by contracting ðΘMNÞP1…P4 and ðΘMNÞP1…P4

with the permutation symbol in accordance with the
equations in Appendix A.
It is important to note at this point that TM

NPQ and
TM

NPQ are real and completely independent. This is
because they are written in terms of SL(8) indices and
there is no relation between an upper SL(8) index and a
lower one. This is in contrast to objects with SU(8) indices
where upper and lower indices are related to one another
via conjugation. The T tensor, which has SU(8) indices, can
be derived by dressing the T-tensors above with the E7ð7Þ
vielbein VMij

Ti1i2
j1j2

k1k2
¼ −ΩMQΩNRVQi1i2VR

j1j2VPk1k2XMN
P;

(42)

where

Ti1i2
j1j2

k1k2
¼ δ½j1½i1T

j2�
i2�k1k2 ; (43)

and

6Indices α; β;… ¼ 1;…; 133 label the E7ð7Þ generators and are
not to be confused with the four-dimensional tangent space
indices, which are also labeled by lower Greek letters from the
beginning of the alphabet.
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Ti
jkl ¼ − 3

4
A2

i
jkl − 3

2
δi½kA1 l�j: (44)

Since the T-tensor has SU(8) indices, Ti
jkl is simply the

complex conjugate of Ti
jkl. Note that this is in contrast to

the properties satisfied by the T-tensors which satisfy no
such relation, as pointed out above.
Furthermore, the embedding tensor satisfies a quadratic

constraint, which is necessary for the gauge algebra
generated by XM to close

XMQ
RXNR

P − XNQ
RXMR

P þ XMN
RXRQ

P ¼ 0: (45)

However, notice that the above constraint is stronger than
the closure of the algebra since XðMN ÞP does not trivially
vanish. In fact, the quadratic condition comes from the
requirement that the embedding tensor be invariant under
the action of the gauge group

δMΘN
α ¼ ΘM

βδβΘN
α ¼ 0: (46)

Equivalently, given that the embedding tensor satisfies
the linear constraint and lives in the 912 representation of
E7ð7Þ, the quadratic constraint is [35]

ΩMNΘM
αΘN

β ¼ 0: (47)

In this form, it is clear to see that viewed as a matrix,
the row rank of the embedding tensor is at most
half-maximal. Therefore, we are guaranteed that only
at most 28 out of the possible 56 vectors will be
gauged [35].

IV. GENERALIZED VIELBEIN POSTULATES AND
THE EMBEDDING TENSOR

The generalized vielbein postulates provide an under-
standing of various aspects of the reduction. In particular,
for the case of the S7 compactification, they are a necessary
ingredient in the proof of the consistency of the reduction.
Specifically, the d ¼ 4 generalized vielbein postulates
reduce to the E7ð7Þ Cartan equation of gauged maximal
supergravity in that case [11,15].
The generalized vielbeine combine the would-be scalar

degrees of freedom originating from the siebenbein, the
three-form and the six-form into a single object, and are
explicitly given by [1]

emAB ¼ iΔ−1=2Γm
AB; (48)

emnAB ¼ −
ffiffiffi
2

p

12
iΔ−1=2ðΓmnAB þ 6

ffiffiffi
2

p
AmnpΓ

p
ABÞ; (49)

em1…m5 AB ¼ 1

6!
ffiffiffi
2

p iΔ−1=2
�
Γm1…m5 AB þ 60

ffiffiffi
2

p
A½m1m2m3

Γm4m5�AB

− 6!
ffiffiffi
2

p �
Apm1…m5

−
ffiffiffi
2

p

4
Ap½m1m2

Am3m4m5�

�
Γp
AB

�
; (50)

em1…m7;n AB ¼ − 2

9!
iΔ−1=2

�
ðΓm1…m7

ΓnÞAB þ 126
ffiffiffi
2

p
An½m1m2

Γm3…m7�AB

þ 3
ffiffiffi
2

p
× 7!

�
An½m1…m5

þ
ffiffiffi
2

p

4
An½m1m2

Am3m4m5

�
Γm6m7�AB

þ 9!

2

�
An½m1…m5

þ
ffiffiffi
2

p

12
An½m1m2

Am3m4m5

�
Am6m7�pΓ

p
AB

�
: (51)

We emphasize again that these objects depend on all eleven coordinates. By virtue of their definition, they satisfy certain
differential constraints, the so-called generalized vielbein postulates. Along the external d ¼ 4 directions these are of the
form

DμemAB þ 1

2
∂nBμ

nemAB þ ∂nBμ
menAB þQC

μ ½Ae
m
B�C þ PμABCDemCD ¼ 0; (52)
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DμemnAB þ 1

2
∂pBμ

pemnAB þ 2∂ ½mBjμjpen�pAB þ 3∂ ½mBjμjnp�e
p
AB

þQC
μ ½AemnB�C þ PμABCDemn

CD ¼ 0; (53)

Dμem1…m5AB þ 1

2
∂pBμ

pem1…m5AB − 5∂ ½m1
Bjμjpem2…m5�pAB þ 3ffiffiffi

2
p ∂ ½m1

Bjμjm2m3
em4m5�AB

− 6∂ ½m1
Bjμjm2…m5p�e

p
AB þQC

μ ½Aem1…m5B�C þ PμABCDem1…m5

CD ¼ 0; (54)

Dμem1…m7;nAB − 1

2
∂pBμ

pem1…m7;nAB − ∂nBμ
pem1…m7;pAB þ 5∂ ½m1

Bjμjm2m3
em4…m7�nAB

− 2∂ ½m1
Bjμjm2…m6

em7�nAB þQC
μ ½Aem1…m7;nB�C þ PμABCDem1…m7;n

CD ¼ 0; (55)

where

Dμ ≡ ∂μ − Bμ
m∂m (56)

and the connection coefficients are of the form

QA
μB ¼ − 1

2
½ema∂mBμ

nenb − ðepaDμepbÞ�Γab
AB −

ffiffiffi
2

p

12
eμαðFαabcΓabc

AB − ηαβγδFβγδaΓaABÞ; (57)

PμABCD ¼ 3

4
½ema∂mBμ

nenb − ðepaDμepbÞ�Γa
½ABΓ

b
CD� −

ffiffiffi
2

p

8
eμαFabcαΓa

½ABΓ
bc
CD�

−
ffiffiffi
2

p

48
eμ αηαβγδFaβγδΓb½ABΓab

CD�: (58)

Below we will consider and analyze these equations in
the context of Scherk-Schwarz reduction.
Note the general triangular feature of the equations,

whereby certain generalized vielbeine and vectors appear
more frequently than others. More specifically, as one
moves through Eq. (52) to (55), as well as the generalized
vielbeine and vectors that appeared before, a new gener-
alized vielbein and vector contribute in turn. This pattern is
broken in Eq. (55), where Bμm1…m7;n, which is associated
with dual gravity degrees of freedom and the supersym-
metry transformation of which gives generalized vielbein
em1…m7;nAB does not contribute. This is a completely
general feature of the eleven-dimensional theory and,
therefore, applies to any compactification. An important
consequence of this seems to be that any four-dimensional
gauged theory obtained as a consistent reduction ofD ¼ 11
supergravity cannot have gauge vectors associated with the
gauging of these particular seven vectors. This implies an
additional constraint on the embedding tensor of any theory
that is obtained from a reduction of D ¼ 11 supergravity.
However, we know that one can take a full set of 28
magnetic vectors in four dimensions and gauge these to
obtain an SO(8) gauged maximal supergravity [41]. While

it is true [41] (see also [5]) that this theory is equivalent to
the original SO(8) gauged maximal supergravity of [21],
the very fact that a full set of magnetic vectors can be
gauged in four dimensions and that this has no correspond-
ing higher-dimensional original is significant in under-
standing the extent to which the deformed SO(8) gauged
maximal supergravities of [41] can be realized as a
reduction from D ¼ 11 supergravity.7

Let us first consider the connection coefficients Qμ and
Pμ. The y dependence in both connection coefficients come
from the same three terms, viz.

7An interesting question is whether a deformation of the D ¼
11 56-bein V [1] of the form

V →

�
cos ω sin ω
− sin ω cos ω

��
VMN

VMN

�
;

in analogy with the rotation introduced in Ref. [5], allows the
possibility of further gauging of magnetic vectors. This would
clearly point to the existence of a genuine deformation ofD ¼ 11
supergravity. Such a consistent deformation could then provide a
higher-dimensional origin of the deformed maximal SO(8)
gauged supergravities of Ref. [41].
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½ema∂mBμ
nenb−ðepaDμepbÞ�; eμαFαabc; eμαηαβγδFβγδa:

(59)

Using the Ansatz for Bμ
m and ema, Eqs. (10) and (11) and

property (3) satisfied by U, it is simple to show that

ema∂mBμ
nenb − ðepaDμepbÞ ¼ −êpað∂μêpb − fnpqB̂

q
μênbÞ:
(60)

Hence, the y dependence drops out. Now, consider

eμαFαabc ¼ ðFμnpq − Bμ
rFrnpqÞenaepbeqc: (61)

Notice that curved 7d indices enter only as dummy indices.
Furthermore, from Eq. (18) we note that the y dependence
of the field strength in the second term is cancelled by the y
dependence of Bμ

r and the inverse siebenbein. Therefore,
the only potential obstacle to the dropping out of the y
dependence in the expression above is when a 7d derivative
acts on the potential. However, the 7d derivative always
acts as an exterior derivative. Hence, using Eqs. (3) and
(18), we will always obtain a y-independent piece along
with the appropriate U contractions. However, these U
factors will be cancelled for the same reason as stated
above: that there is no free curved 7d index. The same
argument can be used to show the y independence of the
third term. Therefore, we conclude that the connection
coefficients are y independent.
The eleven-dimensional fields enter the generalized

vielbein postulates via the four generalized vielbeine and
three of the vectors. The reduction Ansätze for the gener-
alized vielbeine can be found using the Ansätze for the
fields that define them, Eqs. (48)–(51). They are as follows:

emAB ¼ U−1=2ðU−1ÞnmênABðxÞ; (62)

emnAB ¼ U−1=2Um
pUn

qêpqABðxÞ − amnpe
p
AB; (63)

em1…m5AB ¼ U−1=2Um1

n1…Um5

n5 ên1…n5ABðxÞ

−
ffiffiffi
2

p

2
a½m1m2m3

em4m5�AB

−
�
apm1…m5

þ
ffiffiffi
2

p

4
ap½m1m2

am3m4m5�

�
epAB;

(64)

em1…m7;nAB¼U1=2Un
pêm1…m7;pABðxÞ−an½m1m2

em3…m7�AB

þ
�
an½m1…m5

−
ffiffiffi
2

p

4
an½m1m2

am3m4m5

�
em6m7�AB

þ
�
an½m1…m5

−
ffiffiffi
2

p

12
an½m1m2

am3m4m5

�
am6m7�pe

p
AB;

(65)

where ênAB, êpqAB, ên1…n5AB, and êm1…m7;pAB are the
generalized vielbeine that appear in the torus reduction
and are therefore directly related to the four-dimensional
scalars.
The reduction Ansätze for the vectors are found by using

the fact that the supersymmetry transformation of the
vectors [1],

δBμ
m ¼

ffiffiffi
2

p

8
emAB½2

ffiffiffi
2

p
ε̄AφB

μ þ ε̄Cγ
0
μχ

ABC� þ H:c:; (66)

δBμmn ¼
ffiffiffi
2

p

8
emnAB½2

ffiffiffi
2

p
ε̄AφB

μ þ ε̄Cγ
0
μχ

ABC� þ H:c:; (67)

δBμm1…m5
¼

ffiffiffi
2

p

8
em1…m5AB½2

ffiffiffi
2

p
ε̄AφB

μ þ ε̄Cγ
0
μχ

ABC� þ H:c:;

(68)

δBμm1…m7;n ¼
ffiffiffi
2

p

8
em1…m7;nAB½2

ffiffiffi
2

p
ε̄AφB

μ þ ε̄Cγ
0
μχ

ABC�
þ H:c:; (69)

should reproduce the respective generalized vielbeine.8

The reduction ansatz for Bμ
m is give in Eq. (10), while

the reduction Ansätze for Bμmn and Bμm1:::::m5
are listed

below:

Bμmn ¼ Um
pUn

qB̂μpqðxÞ − ðU−1ÞpqB̂μ
paqmn; (70)

8The factor of U−1=2 are absent in the Ansätze for the vectors
because they are cancelled by a redefinition of the vierbein that
contracts the fermions.
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Bμm1…m5
¼ Um1

n1…Um5

n5B̂μn1…n5ðxÞ

−
ffiffiffi
2

p

2
a½m1m2m3

B̂jμjm4m5�ðxÞ

−
�
apm1…m5

−
ffiffiffi
2

p

4
ap½m1m2

am3m4m5�

�

× ðU−1ÞqpB̂μ
q: (71)

Substituting the above Ansätze into the generalized
vielbein postulates (52)–(55), a straightforward yet tedious
calculation shows that the y dependence in all the equations
factorizes out. Importantly, we find that the two terms that
vanished due to properties of Killing spinors on S7 in the
case of the S7 compactification [15], i.e.

∂mBμ
m and ∂ ½mBjμjnp�;

do not vanish in this case. In particular,

∂mBμ
m ¼ ∂mðU−1ÞnmB̂μ

n ¼ ðU−1Þnm∂m logUB̂μ
n; (72)

∂ ½mBjμjnp� ¼ U½mqUn
rUp�sftqrB̂μst

− ∂ ½mðanp�qðU−1ÞrqÞB̂μ
r; (73)

where in the first line we have used Eq. (5).
The generalized vielbein postulates reduce to the follow-

ing equations:

∂μêmAB − fmpqB̂μ
pêqAB þQC

μ ½Aê
m
B�C þ PμABCDêmCD ¼ 0;

(74)

∂μêmnAB − 2fpq½mên�pABB̂μ
q

þ 3fq½mnB̂jμjp�qê
p
AB þ 1

6
gmnpqB̂μ

pêqAB

þQC
μ ½AêmnB�C þ PμABCDêmn

CD ¼ 0; (75)

∂μêm1…m5AB þ 5fpq½m1
êm2…m5�pABB̂μ

q − 3
ffiffiffi
2

p

2
fp½m1m2

B̂jμpjm3
êm4m5�AB

þ 15fp½m1m2
B̂jμpjm3m4m5q�ê

q
AB þ

ffiffiffi
2

p

12
B̂μ

pgp½m1m2m3
êm4m5�AB þ

ffiffiffi
2

p

8
B̂μ½m1m2

gm3m4m5p�ê
p
AB

−
1

6!
fFRηpqm1…m5

B̂μ
pêqAB þQC

μ ½Aêm1…m5B�C þ PμABCDêm1…m5

CD ¼ 0; (76)

∂μêm1…m7;nAB þ fpqnB̂μ
qêm1…m7;pAB − 5fp½m1m2

B̂jμpjm3
êm4…m7�nAB

þ 5fp½m1m2
B̂jμpjm3…m6

êm7�nAB þ 5

18
B̂μ

pgp½m1m2m3
êm4…m7�nAB þ

ffiffiffi
2

p

24
B̂μ½m1m2

gm3…m6
êm7�nAB

þ 1

3 · 7!
fFRηm1…m7

B̂μ
pêpnAB þQC

μ ½Aêm1…m7;nB�C þ PμABCDêm1…m7;n
CD ¼ 0: (77)

As emphasized before, the y-independent, hatted
generalized vielbeine and vectors in the generalized
vielbein postulates above are directly related to the
respective four-dimensional quantities. In particular, since
the reduction of these eleven-dimensional quantities is
taken to be that of a simple toroidal nature, the conversion
of “curved” SU(8) indices A;B;C;… to flat SU(8) indices
i; j; k;… is trivial.
With this in mind, define an E7ð7Þ vielbein

9

VMij ¼ ðVMN ij;VMN
ijÞ (78)

that is related to the hatted generalized vielbeine via the
following relations:

Vm8
ij ¼

ffiffiffi
2

p

8
iêmij;

Vmnij ¼ − 3

2
iêmnij;

Vmn
ij ¼

3

2
iηmnp1…p5 êp1…p5ij;

Vm8ij ¼ − 9
ffiffiffi
2

p

2
iηn1…n7 ên1…n7;mij: (79)

As expected V satisfies the E7ð7Þ properties, as can be
checked explicitly using Eqs. (48)–(51) and (79),

9Strictly speaking, V is not an E7ð7Þ group element because it is
acted upon by SU(8) transformations on the right, whereas the
indices on the left are to be regarded as SL(8) indices. The true
E7ð7Þ group element is obtained by a complex rotation of this
matrix (see, for example, Ref. [42] for more details).

EMBEDDING TENSOR OF SCHERK-SCHWARZ FLUX … PHYSICAL REVIEW D 89, 045009 (2014)

045009-9



VMijVN
ij − VM

ijVN ij ¼ iΩMN ;

ΩMNVM
ijVN kl ¼ iδijkl;

ΩMNVM
ijVN

kl ¼ 0; (80)

where the symplectic form Ω is such that

ΩMN
PQ ¼ δMN

PQ ; ΩMN
PQ ¼ −δPQMN;

ΩMNPQ ¼ 0; ΩMNPQ ¼ 0: (81)

Similarly, we combine the vectors into a 56 of E7ð7Þ
defined by

AM
μ ¼ ðAMN

μ ;AμMNÞ (82)
where

Aμ
m8 ¼ − 1

2
B̂μ

m; Aμmn ¼ −3 ffiffiffi
2

p
B̂μmn;

Aμ
mn ¼ −3 ffiffiffi

2
p

ηmnp1…p5B̂μp1…p5
;

Aμm8 ¼ −18ηn1…n7B̂μn1…n7;m: (83)

In the notation introduced above, the supersymmetry
transformations of the generalized vielbeine and vectors
take a very compact form

δVMij ¼
ffiffiffi
2

p
ΣijklVM

kl; (84)

δAμ
M ¼ iΩMNVN ijð2

ffiffiffi
2

p
ε̄iφj

μ þ ε̄kγ̂μχ
ijkÞ þ H:c: (85)

In order to relate our results for the Scherk-Schwarz
reduction with the four-dimensional understanding of
gaugings as embodied in the embedding tensor formalism,
we need to rewrite the reduced generalized vielbein
postulates (74)–(77) in terms of the notation introduced
above, that is in terms of E7ð7Þ objects V and A. A
straightforward calculation shows that upon substitution
of V and A components, as defined by Eqs. (79) and (83),
Eqs. (74)–(77) become

∂μVm
ij þQk

μ½iVm
j�k − PμijklVmkl þ 2Aμ

pfmpqV
q
ij ¼ 0; (86)

∂μVmn ij þQk
μ½iV jmnjj�k − PμijklVmn

kl

þ 4Aμ
pδ½r½mf

s�
n�pVrsij þ 6Aμpqδ

½p
½r f

q�
mn�Vr

ij

þ 2
ffiffiffi
2

p
Aμ

pgmnpqV
q
ij ¼ 0; (87)

∂μVmn
ij þQk

μ½iVmn
j�k − PμijklVmnkl − 4Aμ

pδ½m½r f
n�
s�pVrs

ij þ
1

2
Aμpqη

mnturs½pfq�tuVrsij − 2Aμ
pqδ½mr fn�pqVr

ij

þ
ffiffiffi
2

p

6
Aμ

pηmnqrstugpqrsVtuij −
ffiffiffi
2

p

12
Aμpqδ

½m
s ηn�pqr1…r4gr1…r4V

s
ij þ 4

ffiffiffi
2

p
fFRAμ

pδmn
pqV

q
ij ¼ 0; (88)

∂μVmij þQk
μ½iVmj�k − PμijklVm

kl − 2Aμ
pfqpmVqij þ 3Aμpqδ

½p
½mf

q�
rs�Vrs

ij þAμ
pqδ½rmfs�pqVrsij

þ
ffiffiffi
2

p
Aμ

pgpqrmV
qr
ij −

ffiffiffi
2

p

24
Aμpqη

pqr1…r4½sδt�mgr1…r4Vstij − 2
ffiffiffi
2

p
fFRAμ

pδrspmVrsij ¼ 0: (89)

Now, the components of XM in terms of GL(7) indices can be simply read off by comparing Eq. (34) and Eqs. (86)–(89)
listed above10

Xm8
p8

r8 ¼−Xm8r8
p8 ¼−1

2
fpmr; Xm8

pq
r8 ¼−Xm8r8

pq ¼− ffiffiffi
2

p
δpqmrfFR; Xm8

pq
rs ¼−Xm8rs

pq ¼ 2δ½p½r f
q�
s�m;

Xmn
pq

r8 ¼−Xmnr8
pq ¼ δ½pr fq�mn; Xmn

p8rs ¼Xmn
rsp8 ¼−3δ½m½p fn�rs�; Xmnpqrs ¼−1

2
ηpqrstu½mfn�tu;

Xmn
p8

rs ¼−Xmnrs
p8 ¼−

ffiffiffi
2

p

24
δ½rpηs�mntuvwgtuvw; Xm8

pqrs ¼−
ffiffiffi
2

p

12
ηpqrstuvgmtuv; Xm8p8rs ¼Xm8rsp8 ¼−

ffiffiffi
2

p

2
gmprs:

(90)

10For brevity, we have left out a factor of the gauge coupling g in these expressions.
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The components of XM presented above agree in their
general form with the components given already in the
literature [32].11 Written in terms of SL(8) indices, they
take the form of the general solution given in Eq. (38) with

A1 88 ¼ − 8
ffiffiffi
2

p

3
fFR; A2

m
np8 ¼ − 8

3
fmnp;

A2 8
mnp ¼

ffiffiffi
2

p

9
ηmnpr1…r4gr1…r4 ; (91)

and all other components vanishing. The appearance of
these structures can be understood from a group-theoretic
point of view by considering the branching of the 912
representation of E7ð7Þ in which the embedding tensor lives
with respect to GL(7) [28,32,35]

912 → 1þ7 þ 35þ5 þ ð7þ 140Þþ3 þð21þ 28þ 224Þþ1

þ ð21þ 28þ 224Þ−1 þ ð7̄þ 140Þ−3
þ 35−5 þ 1−7; (92)

where the subscript represents the charge under
GLð1Þ ⊂ GLð7Þ. Hence [28,32]

fFR ↔ 1þ7;

gmnpq ↔ 35þ5;

fpmn ↔ 140þ3;

fppm ↔ 7þ3:

Of course, fppm ¼ 0, so 7þ3 does not contribute.
Note that we have used

ηm1…m78
¼ ηm1…m7

: (93)

The quadratic constraint (45) is satisfied for the XM
derived from the generalized vielbein postulates. The
constraints must be verified for each component and they
are shown to be satisfied using Schouten identities, the
unimodularity property (4), the Jacobi identity (7), and the
background Bianchi identity (19). We refer the reader to
Appendix B for details.
The calculations involved in the verification of the

quadratic constraint are highly nontrivial. However, the
fact that XM as derived from the eleven-dimensional
generalized vielbein postulates not only satisfy the linear
constraint but also the more nontrivial quadratic constraint

shows that there is indeed a bona fide gauge algebra for the
gauging in the reduction. More generally, it points yet again
to the deep relation between our eleven-dimensional
formalism, developed in Refs. [1,15], and the embedding
tensor formalism [16–20] that describes gauged
supergravity.
Note that the verification of the linear and quadratic

constraints did not require the use of the background
consistency Eqs. (31) and (32). These are extra constraints
that must be satisfied by the background solution if the
reduction is to be consistent.

V. SCHERK-SCHWARZ REDUCTION
WITH NO FLUX

An object ΘM
α, satisfying the embedding tensor con-

straints, is guaranteed to have at most half-maximal row
rank [35] as was explained in Sec. III. However, even
though we have shown that ΘM

α as derived from the
generalized vielbein postulates satisfies the embedding
tensor constraints, it is not immediately obvious that always
less than 28 vectors will be gauged, as is required by
consistency. In fact a naive counting suggests that 49
vectors contribute, since this is the number of vectors that
remain in the generalized vielbein postulates after the
reduction Ansätze are substituted in. This is in contrast
to the case of the S7 reduction considered in [15]. There it is
clear from the onset that Bμmn drop out of the generalized
vielbein postulates because of properties of Killing vectors.
This leaves Bμ

m and Bμ
mn, which are indeed the 28 vectors

that are gauged in the S7 reduction.
The fact that general results of the embedding tensor

formalism guarantee that less than or equal to 28 vectors are
gauged means that our naive counting of the contributing
vectors is over-simplified and that constraints such as those
placed on structure constants fpmn for consistency of the
reduction will conspire to reduce the number of gauged
vectors to less than 28.
In this section, we explicitly demonstrate this for the

simplifying case corresponding to the original reduction
considered in [22], where there is no flux, i.e.

fFR ¼ 0; gmnpq ¼ 0: (94)

The background Eq. (33) implies that the four-dimensional
spacetime is Minkowski and that the group under consid-
eration is “flat” [22], i.e.

2δpqδ
rsfpmrfqns þ 2fpmqfqnp − δmpδnqδ

rsδtufprtfqsu

¼ 0: (95)

In this case the generalized vielbein postulates (74)–(77)
take a simpler form

∂μêmAB− fmpqB̂μ
pêqABþQC

μ½Aê
m
B�CþPμABCDêmCD ¼ 0; (96)

11There are some discrepancies in numerical factors (see
Eq. (4.16) of Ref. [32]). In any case, here we verify that both
the linear and quadratic constraints are satisfied for the compo-
nents of XM given in Eq. (90).

10For brevity, we have left out a factor of the gauge coupling g
in these expressions.
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∂μêmnAB − 2fpq½mên�pABB̂μ
q þ 3fq½mnB̂jμjp�qê

p
AB þQC

μ½AêmnB�C þ PμABCDêmn
CD ¼ 0; (97)

∂μêm1…m5AB þ 5B̂μ
qfpq½m1

êm2…m5�pAB − 3
ffiffiffi
2

p

2
fp½m1m2

B̂jμpjm3
êm4m5�AB þ 15fp½m1m2

B̂jμpjm3m4m5q�ê
q
AB þQC

μ½Aêm1…m5B�C

þ PμABCDêm1…m5

CD ¼ 0; (98)

∂μêm1…m7;nAB þ fpqnB̂μ
qêm1…m7;pAB − 5fp½m1m2

B̂jμpjm3
êm4…m7�nAB þ 5fp½m1m2

B̂jμpjm3…m6
êm7�nAB þQC

μ½Aêm1…m7;nB�C

þ PμABCDêm1…m7;n
CD ¼ 0: (99)

A simple example of a flat group is given by [22]

Um
n ¼ ðexpMy1Þmn; (100)

where the seven-dimensional coordinates ym ¼ ðy1; y ~mÞ
with ~m ¼ 2;…; 7 and M is a constant traceless matrix
with zeros in the first row and column, i.e.

Mm
n ¼

�
0 0T

0 ~M ~m
~n

�
: (101)

Using the fact that

∂mUn
p ¼ δ1mUn

qMq
p; (102)

we find that

fpmn ¼ 2M½mpδ1n�: (103)

In particular, we find that the only nonzero components of
the structure constant are f ~p

1~n. Inspecting the generalized
vielbein postulates (96)–(99) we find that B̂μmn and
B̂μm1…m5

enter the equations in the form

fq½mnB̂μp�q and fp½m1m2
B̂μm3…m6�p:

Hence, only

B̂μ ~m ~n and B̂μ ~m1… ~m5

contribute. Along with B̂μ
1 and B̂μ

~m this gives a total of

28 ¼ 1þ 6þ 6þ 15 ¼ 13 electricþ 15magnetic

vectors appearing in the generalized vielbein postulates,
which is kinematically consistent. Of course, one should
here distinguish between the kinematics of the gauge
couplings and the dynamics of the theory, which

determines the vacuum and thus decides which vectors
will remain as massless gauge bosons, and which will
acquire a mass through spontaneous symmetry breaking.
Indeed, for generic Scherk-Schwarz compactifications, the
majority of the candidate 28 vectors fields will become
massive in the reduction and can therefore not be gauged.
In fact, B̂μ

1 is the only vector that becomes gauged in the
reduced theory. An analysis of all possible gaugings from a
Scherk-Schwarz reduction with no background flux is
given in Ref. [43]. It is shown that only electric vectors
become gauged in this case.
In general, the Scherk-Schwarz reduction with back-

ground fluxes will have less than or equal to 28 gauge
vectors contributing, kinematically, as is expected from
general arguments. However, the distribution between
electric and magnetic vectors can be varied—although as
pointed out before, no more than 21 magnetic vectors can
be gauged in this symplectic frame. In the context of
Scherk-Schwarz flux compactifications this has already
been observed in [28].

VI. CONCLUDING REMARKS

In this paper, we have investigated the Scherk-Schwarz
reduction of D ¼ 11 supergravity with background flux. In
this case, the reduction Ansatz immediately gives a relation
between the 56-bein in eleven dimensions and the
56-bein that parametrizes the scalars in four dimensions,
Eqs. (62)–(65). In this form, the reduction Ansatz is applied
to the generalized vielbein postulates yielding the embed-
ding tensor of the respective gauged maximal theories in
four dimensions. Furthermore, the reduction Ansatz written
in the form (62)–(65) is suggestive of the fact that Scherk-
Schwarz flux reductions can be thought of as an E7ð7Þ
generalized Scherk-Schwarz reduction of the form

VMABðx; yÞ ¼ UM
N ðyÞV̂N ABðxÞ; (104)
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BμMðx; yÞ ¼ U1=2UM
N ðyÞAμN ðxÞ; (105)

where

VMAB ¼

0
BBB@

Vm8AB

Vmn
AB

VmnAB

Vm8
AB

1
CCCA; BμM ¼

0
BBB@

Bμm8

Bμ
mn

Bμmn

Bμ
m8

1
CCCA;

and V̂MAB and AμN (similarly defined) are the 56-bein and the set of 56 vectors appropriate for the torus reduction,
respectively. Moreover, UðyÞ is an E7ð7Þ matrix of the form

0
BBBBB@

U1=2Um
p 3

ffiffiffi
2

p
U1=2amrsðU−1ÞprðU−1Þqs U−1=2SrsþmUr

pUs
q U−1=2SmsðU−1Þps

0 U1=2ðU−1Þ½pmðU−1Þq�n U−1=2SmnrsUr
pUs

q −2U−1=2Smn− sðU−1Þps

0 0 U−1=2U½mpUn�q 6
ffiffiffi
2

p
U−1=2amnrðU−1Þpr

0 0 0 U−1=2ðU−1Þpm

1
CCCCCA
; (107)

where

Smn
� s ¼ 3

ffiffiffi
2

p
ηmnr1…r5

�
asr1…r5 �

ffiffiffi
2

p

4
asr1r2ar3r4r5

�
; (108)

Smn¼−36ηr1…r7amr1r2

�
anr3…r7 −

ffiffiffi
2

p

12
anr3r4ar5r6r7

�
; (109)

Smnpq ¼
ffiffiffi
2

p

2
ηmnpqr1r2r3ar1r2r3 : (110)

Equation (104) is to be compared with Eq. (64) of Ref. [1]:

VMABðx; yÞ ¼ VM
Aðx; yÞΓAAB; (111)

where

ΓAAB ¼

0
BBB@

ΓaAB

Γab
AB

iΓabAB

iΓa
AB

1
CCCA: (112)

In this case, one finds that the form of matrix UðyÞ is
exactly the same as the form of VM

A with the following
identifications:

Um
n↔ema; amnp↔Amnp; am1…m6

↔Am1…m6
: (113)

In particular, in Ref. [1], VM
A is identified with the E7ð7Þ

coset element constructed in Ref. [44].
An interesting question is whether new reductions can be

found by considering an Ansatz of the form (104), (105). A
direction related to this is pursued in [37–39] in the context

of extended generalized geometry, where UM
N is assumed

to depend on all extended coordinates. One should, how-
ever, keep in mind that (107) is already the most general
E7ð7Þ matrix (albeit in a triangular gauge), which does not
leave much room for more exotic possibilities.
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APPENDIX A: E7ð7Þ ALGEBRA
AND IDENTITIES

In this appendix we review the SL(8) decomposition of
the E7ð7Þ algebra. In such a decomposition, the generators in
the adjoint representation can be written

ðtMNÞPQRS ¼ 2

�
δPQN½Sδ

M
R� −

1

8
δMNδ

PQ
RS

�
;

ðtMNÞPQRS ¼ −2
�
δPQN½Sδ

M
R� −

1

8
δMNδ

PQ
RS

�
;

ðtPQRSÞT1…T4 ¼ δT1…T4

PQRS ;

ðtPQRSÞT1…T4
¼ 1

4!
ηPQRST1…T4

: (A1)
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It can be explicitly checked that the generators satisfy the
following familiar commutation relations:

½tMN; tPQ� ¼ δMQt
P
N − δPNt

M
Q;

½tMN; tPQRS� ¼ −4
�
δM½PtQRS�N þ 1

8
δMN tPQRS

�
; (A2)

½tMNPQ; tRSTU� ¼
1

72
ðηVMNPQ½RSTtVU� − ηVRSTU½MNPtVQ�Þ:

(A3)

It is sometimes convenient to also define coset generators
with upper indices

tMNPQ ¼ 1

4!
ηMNPQRSTUtRSTU (A4)

keeping in mind that these are not independent generators.
Furthermore, the components of the Killing metric are

κMN;PQ ¼ 12

�
δMQδ

P
N − 1

8
δMNδ

P
Q

�
;

κMNPQ;RSTU ¼ 2

4!
ηMNPQRSTU;

ðκ−1ÞNM;QP ¼ 1

12

�
δMQδ

P
N − 1

8
δMNδ

P
Q

�
;

ðκ−1ÞMNPQ;RSTU ¼ 1

2 · 4!
ηMNPQRSTU: (A5)

APPENDIX B: THE QUADRATIC CONSTRAINT

The quadratic constraint on the embedding tensor is
required in order for the algebra of the gauge group to close

½XM; XN � ¼ −XMN
PXP; (B1)

or equivalently,

XMQ
RXNR

P − XNQ
RXMR

P ¼ −XMN
RXRQ

P : (B2)

Note that this constraint is highly nontrivial even to the
extent that the left-hand side of the above equations is
manifestly antisymmetric under the interchange of indices
M and N , whereas

XMN
P

is not in general antisymmetric under such an operation. We
can therefore split this object into two tensors, viz.

XMN
P ¼ X½MN �P þ ZMN

P ; (B3)

where the components of XMN
P in a GL(7) decomposition

is given in (90) and

ZMN
P ≡ XðMN ÞP :

In (90) we had already derived all the components of
XMN

P from the generalized vielbein postulates, so we can
now explicitly exhibit the nonzero components of the
symmetric tensor ZMN

P as

Zm8
p8

r8 ¼ Zp8
m8 r8 ¼ − 1

4
fpmr; Zm8

pq
r8 ¼ Zpq

m8 r8 ¼
ffiffiffi
2

p

2
δpqmrfFR; Zm8

pq
rs ¼ Zpq

m8 rs ¼ − 1

2
δ½pmfq�rs;

Zm8 rs
pq ¼ Zrsm8

pq ¼ − 3

2
δ½p½r f

q�
mn�; Zmn

pq
r8 ¼ Zpq

mn r8 ¼ −δ½p½m; fq�n�r; Zm8 rs p8 ¼ Zrsm8p8 ¼
ffiffiffi
2

p

4
gmprs;

Zmn
p8

rs ¼ Zp8
mn rs ¼ −

ffiffiffi
2

p

16
δ½r½pη

s�mntuvwgtu�vw; Zmn rs
p8 ¼ Zrsmn

p8 ¼
ffiffiffi
2

p

48
ðδ½mp ηn�rstuvw þ δ½rpηs�mntuvwÞgmtuv;

Zmnpq rs ¼ Zpqmn rs ¼ 1

4
ðηpqrstu½mfn�tu þ ηmnrstu½pfq�tuÞ: (B4)

The contraction given on the right-hand side of Eq. (B2)
is indeed symmetric under the interchange of M and N
[18].
The components of XMN

P as derived from the
generalized vielbein postulates, (90), satisfy the linear
constraint since they can be put into a form compatible
with the general solution of the linear constraint (38) (see
Sec. III). However, the quadratic constraint is not neces-
sarily satisfied by the general solution (38) and Eq. (B2)
must be considered for the particular solution given
by Eq. (90).

The components of X, given in (90), satisfy

XM
PQ

RS ¼ −XMRS
PQ; XM

PQRS ¼ XM
RSPQ;

XMPQRS ¼ XMRSPQ:
(B5)

We will verify Eq. (B2) for each component in turn:
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(1)

XMNPQ
RXTURVW − XTUPQ

RXMNRVW

¼ −XMNTU
RXRPQVW: (B6)

The only components for which both sides of the
above equation are nontrivial are

ðMN;PQ;TU;VWÞ¼ðm8;p8;t8;vwÞ or

ðm8;pq;t8;v8Þ:
The latter case above is equivalent to the former, since
from Eq. (B5) both sides of Eq. (B6) are symmetric
under the interchange of PQ and VW. Therefore, we
only need to consider

Xm8p8
RXt8R vw − Xt8p8

RXm8 R vwþ Xm8 t8
RXRp8 vw

¼ ½2Xm8p8
r8Xt8 r8 vwþ Xm8p8 rsXt8

rs
vw − ðm ↔ tÞ� þ Xm8 t8

r8Xr8p8 vw þ Xm8 t8 rsXrs
p8 vw;

¼ −
� ffiffiffi

2
p

2
frmpgtrvw þ

ffiffiffi
2

p
gmp½vjsfsjw�t − ðm ↔ tÞ

�
−

ffiffiffi
2

p

2
frtmgpvwr − 3

ffiffiffi
2

p

2
fr½vwgp�tmr;

¼ − 3
ffiffiffi
2

p

2
frm½pgvw�tr −

ffiffiffi
2

p

4
frtmgpvwr − 3

ffiffiffi
2

p

4
fr½vwgp�tmr − ðm ↔ tÞ;

¼ −5 ffiffiffi
2

p
fr½tmgpvw�r;

which vanishes by Eq. (19).
(2)

XMNPQ
RXTUR

VW − XTUPQ
RXMNR

VW

¼ −XMNTU
RXRPQ

VW: (B7)

The components of the above equation where both
sides of the equation are nontrivial are given by

ðMN;PQ;TU;VWÞ ¼

8>><
>>:

ðm8; p8; t8; v8Þ
ðm8; p8; tu; v8Þ
ðm8; p8; t8; vwÞ
ðmn; p8; t8; vwÞ

: (B8)

In the first case, we have

Xm8p8
RXt8R

v8 − Xt8p8
RXm8R

v8 þ Xm8p8
RXRp8

v8

¼ −fsp½tjfvsjm� þ
1

2
fstmfvps;

¼ 3

2
fs½tmfvp�s;

which vanishes by Eq. (7). Similarly, the second case
also vanishes by Eq. (7).
Consider the third case in (B12),

Xm8p8
RXt8R

vw − Xt8p8
RXm8R

vw þ Xm8 t8
RXRp8

vw

¼ −
1

6
ηvwr1…r5g½mjr1r2r3gjt�r4r5p þ

1

24
δ½vp ηw�r1…r6gmtr1r2gr3…r6 ;

¼ −
1

6
ηvwr1…r5g½mjr1r2r3gjt�r4r5p þ

1

6
δ½vp ηwr1…r6�gmtr1r2gr3…r6 −

1

8
ηvwr1…r5gmt½pr1gr2…r5�;

¼ 1

6
δ½vp ηwr1…r6�gmtr1r2gr3…r6 −

7

24
ηvwr1…r5g½mtpr1gr2…r5�:

Both of the terms above vanish because they
contain antisymmetrizations over eight indices. Moreover,
it is simple to show that Eq. (B11) is satisfied for the fourth
case, as in this case both sides of Eq. (B2) are equal to

δ½vp fw�tsfsmn:

(3)
XMN

PQRXTURVW − XTU
PQRXMNRVW

¼ −XMNTU
RXR

PQ
VW. (B9)

Using the identities given in (B7), the above equation
reduces to

XMN
RPQXTUVWR − XTU

RPQXMNVWR

¼ XMNTU
RXRVW

PQ; (B10)

which is equivalent to Eq. (B11).
(4)

XMN
PQRXTUR

VW − XTU
PQRXMNR

VW

¼ −XMNTU
RXR

PQVW. (B11)
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There is only one component of Eq. (B11) for which both sides of the above equation are nonvanishing:

Xm8
pqRXt8R

vw−Xt8
pqRXm8R

vwþXm8t8
RXR

pqvw

¼−
ffiffiffi
2

p

3
ηpqr1…r4½vg½mjr1r2r3f

w�
r4jt�−

ffiffiffi
2

p

3
ηvwr1…r4½pg½mjr1r2r3f

q�
r4jt� þ

ffiffiffi
2

p

4
ηpqvwu1u2u3fsu1u2gmtu3sþ

ffiffiffi
2

p

12
ηpqvwu1u2u3fsmtgu1u2u3s;

¼−
2

ffiffiffi
2

p

3
ηr1…r4½pqvg½mjr1r2r3f

w�
r4jt� þ

5
ffiffiffi
2

p

6
ηpqvwu1u2u3fs½mtgu1u2u3�sþ

ffiffiffi
2

p

2
ηpqvwu1u2u3fsu1½tgm�u2u3s;

¼−
4

ffiffiffi
2

p

3
η½r1…r4pqvg½mjr1r2r3f

w�
r4jt� þ

ffiffiffi
2

p

6
ηpqvwr1…r3g½mjr1r2r3f

s
sjt� þ

5
ffiffiffi
2

p

6
ηpqvwu1u2u3fs½mtgu1u2u3�s;

which vanishes by unimodularity, (4), and Eq. (19).
(5)

XMNPQ
RXTU

RVW − XTU
PQ

RXMNRVW

¼ −XMN
TURXRPQVW. (B12)

The only nontrivial components to consider in this
case are

ðMN;PQ;TU;VWÞ ¼ ðm8; p8; tu; vwÞ or

ðm8; pq; tu; v8Þ:
(B13)

Both cases reduce to the same equation; hence, we
only consider the first case:

Xm8p8
RXtu

R vw − Xtu
p8

RXm8R vw þ Xm8
tuRXRp8 vw

¼ 6δr½vf
s
w�mδ

½t
½pf

u�
rs� þ 3frpmδ

½t
½rf

v�
vw� − 6δ½r½pf

s
vw�δ

½t
r fu�sm;

¼ 3δ½tjv fs½pmfju�w�s − 3δ½tjw fs½pmfju�v�s þ 3δ½tjp fs½vwfju�m�s;

which vanishes by Eq. (7).
(6)

XMNPQ
RXTU

R
VW − XTU

PQ
RXMNR

VW

¼ −XMN
TURXRPQ

VW: (B14)

It is straightforward to see that all terms in the above
equation vanish trivially unless

ðMN;PQ;TU;VWÞ ¼ ðm8; p8; tu; vwÞ: (B15)

In this case,

Xm8p8
RXtu

R
vw − Xtu

p8
RXm8R

vw þ Xm8
tuRXRp8

vw ¼ −
ffiffiffi
2

p

24
f½vmpη

w�tus1…s4gs1…s4 −
ffiffiffi
2

p

4
f½ts1s2η

u�vws1…s4gmps3s4

−
ffiffiffi
2

p

12
δ½v½pf

w�
s�mηstuq1…q4gq1…q4 −

ffiffiffi
2

p

4
δ½t½pf

u�
rs�ηrsvwq1…q3gmq1…q3

−
ffiffiffi
2

p

12
δ½tr fu�smδ

½v
p ηw�rsq1…q4gq1…q4 þ

ffiffiffi
2

p

12
δ½vp fw�rsηtursq1…q3gmq1…q3 :

Using Schouten identities, the first, third, and fifth terms
in the expression on the right-hand side reduce to

ffiffiffi
2

p

6
δ½vp ηw�tur1…r4fsmr1gr2…r4s (B16)

and similarly the second and fourth terms simplify to

−
ffiffiffi
2

p

6
f½tr1r2ηu�½vjr1…r5δjw�p gmr3…r5 : (B17)

Therefore,

Xm8p8
RXtu

R
vw − Xtu

p8
RXm8R

vw þ Xm8
tuRXRp8

vw ¼
ffiffiffi
2

p

6
δ½vp ηw�tur1…r4fsmr1gr2…r4s −

ffiffiffi
2

p

6
f½tr1r2η

u�½vjr1…r5δjw�p gmr3…r5

þ
ffiffiffi
2

p

12
δ½vp fw�rsηtursq1…q3gmq1…q3 ;

¼ 5
ffiffiffi
2

p

24
δ½vp ηw�tur1…r4fs½mr1gr2…r4�s þ

ffiffiffi
2

p

6
δ½vp ηw�tur1…r4fssr1gmr2…r4 ;
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where we have again used Schouten identities. It is now
clear that Eq. (B23) holds as a result of Eqs. (4) and (19).
(7)

XMN
PQRXTU

RVW − XTUPQRXMNRVW

¼ −XMN
TURXR

PQ
VW: (B18)

Using the relations in (B7), this equation is equivalent
to Eq. (B23), which we have already verified.

(8)

XMN
PQRXTU

R
VW − XTUPQRXMNR

VW

¼ −XMN
TURXR

PQVW : (B19)

The only nontrivial equation to consider in this case is

Xm8
pqRXtu

R
vw − XtupqRXm8R

vw þ Xm8
tuRXR

pq vw

¼ 3

2
ηpqvws1s2½tfu�r½mfrs1s2�;

where we have used Schouten identities. Therefore,
Eq. (B19) is satisfied.

(9)

XMN
Q
RXTUR

P − XTUQ
RXMN

R
P

¼ −XMN
TU

RXRQ
P: (B20)

Note that the left-hand side of this equation is of the
same form as the left-hand side of cases 5–8. There-
fore, it remains to show that

−XMN
TU

RXRQ
P ¼ XTU

MNRXRQ
P: (B21)

This can be simply verified using Schouten identities
and Eqs. (4), (7), and (19) for all components.

(10)

XMN
PQ

RXTU
RVW − XTU

PQ
RXMN

RVW

¼ −XMNTURXRPQVW: (B22)

This equation is trivially satisfied.
(11)

XMN
PQ

RXTU
R
VW − XTU

PQ
RXMN

R
VW

¼ −XMNTURXRPQ
VW: (B23)

The only nontrivial components to consider is

Xmn
p8

RXtu
R
vw − Xtu

p8
RXmn

R
vw þ Xmn tuRXRp8

vw ¼ 3

2
ηvwrsq1q2½mfn�q1q2δ

½t
½rf

u�
sp� − 3

2
ηvwrsq1q2½tfu�q1q2δ

½m
½r f

n�
sp�

− 1

2
ηtursq1q2½mfn�q1q2δ

½v
p fw�rs;

¼ 1

2
δ½vp ηw�m½tjr1…r4fnr1r2f

ju�
r3r4 −

1

2
δ½vp ηw�n½tjr1…r4fmr1r2f

ju�
r3r4

− 1

2
ηtursq1q2½mfn�q1q2δ

½v
p fw�rs;

where in the second equality we have used Schouten
identities to simplify the first two terms on the second line.
Further use of Schouten identities gives

Xmn
p8

RXtu
R
vw − Xtu

p8
RXmn

R
vw þ Xmn tuRXRp8

vw

¼ 1

2
δ½vp ηw�tur1…r4f½mr1r2f

n�
r3r4

þ 2δ½vp ηw�tur1r2r3½mfn�½r1r2f
r4
r3r4�:

The first term vanishes as a consequence of the fact
that

f½m½r1r2fn�r3r4�

is antisymmetric under the interchange ofm and n, but
symmetric under the interchange of pairs ½r1r2� and

½r3r4�. Furthermore, the second term vanishes either
by the unimodularity property (4) or the Jacobi
identity (7). Hence Eq. (B22) is satisfied.

(12)

XMNPQRXTU
RVW − XTUPQRXMN

RVW

¼ −XMNTURXR
PQ

VW: (B24)

Using Eq. (B7), this case is equivalent to case 11,
which we have already verified.

(13)

XMNPQRXTU
R
VW − XTUPQRXMN

R
VW

¼ −XMNTURXR
PQVW : (B25)

The above equation is trivially satisfied.
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