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Oszillationsphänomene geeichter steriler Neutrinos:

Als mögliche Lösung für aktuell ungeklärte Anomalien in Experimenten auf der
Suche nach dunkler Materie schlug Pospelov in 2011 eine Erweiterung des Stan-
dard Modells vor, die sterile Neutrinos mit Massen der Größenordnung eV einführt,
welche über ein neues baryonisches Eichboson mit Materie wechselwirken. Kürzlich
haben Karagiorgi, Shaevitz und Konrad die Auswirkungen dieses Modells auf die
“short-baseline anomaly” untersucht. Ihre Ergebnisse weisen darauf hin, dass ster-
ile Neutrinos, die stärker als die schwache Kraft mit Baryonen wechselwirken, die
Möglichkeit haben, die Anomalie zu erklären. In dieser Arbeit untersuchen wir die
Oszillations-Phenomenologie dieses Modells. In diesem Rahmen leiten wir erneut
analytische Näherungsformeln für die Oszillationswahrscheinlichkeiten her, welche
die vormals berechneten korrigieren. Wir führen außerdem eine numerische χ2-
Analyse mit Datensätzen von MINOS, MiniBooNE und solaren Experimenten durch.
Die Resultate zeigen, dass sich die Unstimmigkeiten, die man in einfachen sterile-
Neutrino-Szenarien erhält, nicht mit baryonischen sterilen Neutrinos auflösen lassen.
Unter der Annahme, dass das MiniBooNE-Signal durch aktiv-sterile Mischung im
Rahmen eines Modells aus drei aktiven und einem sterilen Neutrino erklärt werden
kann, schließen wir, dass das baryonische Modell für den interessanten Bereich des
neuen Materiepotentials unwahrscheinlich ist.

Oscillation Phenomenology of gauged sterile neutrinos:

As a possible solution to currently unresolved anomalies in dark matter direct de-
tection experiments a Standard Model extension was proposed by Pospelov in 2011,
containing a sterile neutrino with mass of the order eV, which interacts with matter
via a new baryonic gauge boson. Recently, the impact of this model on the short-
baseline anomaly has been studied by Karagiorgi, Shaevitz and Konrad. Their
results indicate that sterile neutrinos interacting with baryons stronger than weak
force have the possibility to explain the tensions of the anomaly. In this thesis,
we investigate the oscillation phenomenology of this model. We re-derive analyti-
cal approximations for the oscillation probabilities in this framework and revise the
previous result. We perform a numerical χ2 analysis with data sets from MINOS,
MiniBooNE and solar experiments. The results show that baryonic sterile neutrinos
can not resolve the tensions obtained in simple sterile neutrino scenarios. Assuming
that the MiniBooNE signal is due to active-sterile mixing in a three active plus one
sterile neutrino framework we conclude that the interesting parameter range for the
baryonic matter potential is disfavoured.
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Chapter 1

Introduction

Today, the Standard Model (SM) of particle physics based on the principles of Gen-

eral Relativity and Quantum Field Theory is founded on numerous measurements

yielding accurate agreement between theory and experiment. In the last year, the

LHC (Large Hadron Collider) discovered a new particle [1, 2] of mass ∼ 125 GeV,

which is compatible with a SM Higgs boson. The analysis of this Higgs-like particle

is not finished yet, but so far the interaction properties are consistent with those

expected for a SM Higgs [3, 4]. A confirmation that this particle is indeed the SM

Higgs would complete the model and contribute to its great success.

The phenomenon of neutrino oscillations first proposed by Pontecorvo in 1968 [5]

and proven by various experiments in the last decades is by now accepted as an

experimental fact. It inevitably leads to the conclusion that the SM needs to be

extended to account for small, but non-zero neutrino masses. This can be done by

adding sterile right-handed neutrinos and introduce Dirac and/or Majorana mass

terms in the SM Lagrangian. Usually the right-handed neutrinos are assumed to be

very heavy so that they can be integrated out and do not contribute to flavour mixing.

In the following we will refer to this framework for the description of three flavour

neutrino oscillations as the standard picture. In total, six additional parameters are

introduced: three mixing angles, θ12, θ23, θ13, two mass squared differences ∆m2
21 =

m2
2 − m2

1, ∆m2
31 = m2

3 − m2
1 and one phase δ. They can explain the majority of

the results obtained in neutrino oscillation experiments. While (∆m2
21, θ12) has been

determined by the observation of flavour transitions from solar electron neutrinos into

muon neutrinos, (|∆m2
31|, θ23) could be used to explain oscillations of atmospheric

neutrinos. A measurement of θ13 was made this year by accelerator and reactor

neutrino experiments. The value of δ and the sign of ∆m2
31 are not determined yet1.

1The sign of ∆m2
21 is positive and was determined by solar flavour transitions, which require resonant



2 1 Introduction

Results of different type of experiments give evidence for neutrino oscillations,

which are not compatible with the standard picture. These anomalies motivate the

introduction of mixing between active and sterile neutrinos. It has been shown [6] that

in simple sterile neutrino scenarios it is not possible to resolve these tensions. A recent

publication [7] by Karagiorgi, Shaevitz and Conrad considered a model2, in which a

sterile neutrino with strong3 non-standard matter interactions is introduced. They

analysed the LSND/MiniBooNE anomaly and calculated analytical approximations

for the oscillation probabilities.

This work is organized in the following way. The basic formalism for the mathemat-

ical description of neutrino oscillation is summarized in chapter two. We than give

an overview of the current experimental status of neutrino oscillation experiments in

chapter three, where we also explain the tensions arising from the Gallium, the short-

baseline as well as the reactor neutrino anomaly. In chapter four, we describe the

motivation and basic ideas of the baryonic neutrino model and re-derive analytical

expressions for the oscillation probabilities in this scenario resulting in an important

correction of the previously derived formula. A quantitative phenomenological in-

vestigation of this model is presented in chapter five. We perform a numerical χ2

analysis in a three active plus one sterile neutrino oscillation framework allowing for

large values of the baryonic matter potential. The simulation is done for experimental

data sets from MiniBooNE, MINOS and solar experiments. It shows that the ten-

sions due to the short-baseline anomaly can not be resolved by the baryonic neutrino

model. Finally we summarize this work including a discussion of our results and draw

conclusions in chapter six.

enhancement through matter effects as described in section 2.3.2. Therefore the neutrino mass
hierarchy is given by the sign of ∆m2

31. ∆m2
31 > 0 is called normal hierarchy and ∆m2

31 < 0
inverted hierarchy.

2This model was originally proposed by Pospelov [8] in order to explain signals in dark matter direct
detection experiments. It was also studied in [9, 10].

3The interesting parameter range for this interaction is 101 to 104 times stronger than the weak
force.



Chapter 2

Model and formalism in the standard

picture

2.1 Neutrino mass and mixing matrix

2.1.1 Most general neutrino mass term

The most simple way to introduce neutrino masses is to add right-handed neutrinos

NR, which are “sterile”, i.e. they are total singlets under the SM gauge group. This

is done by introducing the Yukawa coupling

LY = −
∑
i,j

yijL̄iLN
j
R(iτ2h

∗) (2.1)

with the SM Higgs doublet h, the second Pauli matrix τ2 and the lepton doublet

LL. Here we assume the general case of n lepton generations, i.e. the lepton doublet

is composed of the neutrino fields νL and charged lepton fields lL, which are both n

dimensional vectors in flavour space: LiL = (νiL, liL)T . After the electroweak symmetry

breaking by the nonzero vacuum expectation value v of the Higgs field this yields

LDirac = −
∑
i,j

yij
v√
2
ν̄iLN

j
R + h.c. ≡

∑
i,j

−ν̄iLm
ji∗
D N j

R + h.c., (2.2)

where we have defined the Dirac mass matrix mD.
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Another possibility are left- or right-handed Majorana mass terms:

LMajorana = −1

2

∑
i,j

(
νiL
)C
mij
Lν

i
L −

1

2

∑
i,j

(
N i
R

)C
mij
RN

j
R + h.c.

= −1

2

∑
i,j

(
νiL
)T
Cmij

Lν
j
L −

1

2

∑
i,j

(
N i
R

)T
C
(
mij
R

)∗
N j
R + h.c. (2.3)

Here the matrix multiplication in flavour space is omitted for simplicity and C = iγ2γ0

is the charge conjugation operator. The introduction of such mass terms would break

lepton number conservation. However, this symmetry is not imposed a priori in the

SM. Therefore, if one introduces right-handed Majorana neutrinos, a right-handed

Majorana mass term would be a direct consequence. To introduce Majorana mass

terms for left-handed neutrinos in a gauge invariant way requires more effort (via an

isotriplet Higgs field).

The most general neutrino mass term (including a left-handed Majorana mass mL)

for n neutrino flavours is then [11]:

Lm = LDirac +LMajorana = −1

2
nTLCMnL + h.c. (2.4)

Here nL =

(
νL

(NR)C

)
is a 2n component vector andM is the mass matrix, composed

of the Dirac mass matrix mD and the left- and right-handed Majorana mass matrices

mL, mR:

M =

(
mL mD

mT
D mR

)
(2.5)

This matrix is in general not diagonal. In order to study the effect of non-zero neutrino

masses it is convenient to diagonalize M, which corresponds to changing the basis

from neutrino flavour eigenstates to mass eigenstates.

2.1.2 Diagonalizing the neutrino mass matrix

For n = 3 the part of the Lagrangian containing neutrino masses in flavour basis

reads

Lmass = −1

2

(
νL

(NR)C

)T
C

(
mL mD

mT
D mR

)(
νL

(NR)C

)
+ h.c., (2.6)
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where now νL =
(
νeL, ν

µ
L, ν

τ
L

)T
and NR =

(
N1
R, N

2
R, N

3
R

)T
are the left- and right-

handed neutrinos respectively. As we will see later, diagonalizing this term has an

impact on the leptonic charge current interactions, which in flavour basis have the

simple form:

LCC =
g√
2
W+
µ l̄Lγ

µνL + h.c. (2.7)

For the charged leptons the flavour basis lL is per definition identical to the mass

eigenstates, but in a general Lagrangian the basis of the charged leptons a priori does

not have to agree with the mass eigenstates. Therefore, if we start with a general

arbitrary basis l′L, the charged lepton mass term can also have non-zero off-diagonal

entries and thus needs to be diagonalized likewise the neutrino mass matrix M. In

order to do so one introduces unitary matrices UL (6×6 matrix) and VL (3×3 matrix)

relating the flavour eigenstates to the mass eigenstates. Only under this new basis

the neutrino mass matrix M and the charged lepton mass matrix become diagonal

(
νL

(NR)C

)
= UL



ν1
L

ν2
L

ν3
L

ν4
L

ν5
L

ν6
L


= ULν

′
L,

lL =

eLµL
τL

 = VL

e
′
L

µ′L
τ ′L

 = VLl
′
L. (2.8)

The charge current term then reads:

LCC =
g√
2
l̄Lγ

µ
(
V †LŨLν

′
L

)
W+
µ + h.c. (2.9)

The matrix ŨL is the upper 3 × 6 block of the 6 × 6 matrix UL. In the pure Dirac

case the matrix UL is only 3 × 3 dimensional and this reduces to ŨL ≡ UL. U =

V †LUL is then called the leptonic mixing matrix or PMNS-matrix (Pontecorvo-Maki-

Nakagawa-Sakata matrix). The situation is similar in the pure Majorana case. Only

in the most general Dirac+Majorana case there can be mixing into the right-handed

sterile neutrino states NR. Mixings from sterile into sterile states can be absorbed

in the redefinition of the flavour basis, because they do not appear in charge current
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interactions [11].

One can absorb the transformation for the charged leptons into the neutrino mixing

matrix. Thus, we write l′L ≡ lL in the following and the mixing matrix becomes

U =



V †LŨL

∗ ∗ ∗ 1 0 0

∗ ∗ ∗ 0 1 0

∗ ∗ ∗ 0 0 1

,


(2.10)

where the elements marked with ∗ are such that the matrix is unitary UU † = 1. The

masses of NR are usually assumed to be very heavy, so that they can be integrated

out, i.e. the matrix elements in the upper right and lower left 3 × 3 block of U are

negligible and thus the right-handed neutrinos are effectively decoupled. This finally

leads to the three dimensional mixing matrix in the standard picture of neutrino

oscillations V †LŨL. In the following this matrix is referred to as U . In the context

of this standard picture U is assumed to be unitary1 and it is therefore convenient

to assume pure Dirac neutrinos which are composed of the right- and left-handed

neutrino components να = ναL + ναR.

In this way the transformation between the neutrino matter fields ν ′i = ν1, ν2, ν3

and flavour fields να = νe, νµ, ντ can be written as

να =
∑
i

Uαiν
′
i. (2.11)

In order to assign this transformation to the quantum states, consider the decompo-

sition of a neutrino field ν ′i into its creation and annihilation operators2 [12]:

ν ′i(x) =
∑

spin s=±

∫
d3p

(2π)22E

[
b′is (p)us(p)e

−i(Et−px) + d′†is (p)vs(p)e
i(Et−px)

]
. (2.12)

Here u±(p) and v±(p) are four-component spinors, solving the Dirac equation, b′i±(p)

is the annihilation operator of the neutrino and d′†i± (p) is the creation operator of

1In the general Dirac and Majorana case U is approximately unitary, since the entries in the mixing
matrix in the upper right and lower left 3 × 3 block can be neglected. If Majorana masses are
absent, these entries are zero and unitarity become exact.

2This can be done only for free particles. For now, let us consider a neutrino freely propagating in
vacuum.
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the anti-neutrino. Omitting the spin and momentum dependencies for notational

simplicity and using equation 2.11 we find

να =
∑
i

∑
s

∫
d3p

(2π)22E

[
Uαib

′iue−i(Et−px) + Uαid
′†ivei(Et−px)

]
(2.13)

and finally can identify the creation operator of the neutrino flavour eigenstate:

b†α =

(∑
i

Uαib
′i

)†
=
∑
i

U∗αib
′†i. (2.14)

Note that in general there are some problems with defining creation and annihilation

operators for the eigenstates of the weak interaction. See references [13, 14] for more

details and a correct treatment.

This leads us to the transformation written in quantum mechanical notation:

|να〉 = b†α |0〉 =
∑
i

U∗αib
′†i |0〉 =

∑
i

U∗αi |ν ′i〉 . (2.15)

In the following we drop the primes and use Greek indicees to indicate flavour eigen-

states and Latin indicees to indicate mass eigenstates.

The Hamiltonian for neutrinos propagating in vacuum can now be written in flavour

basis in the simple form

Hflavour = Udiag (λ1, λ2, λ3)U †. (2.16)

2.2 Neutrino oscillations in vacuum

Consider a neutrino source producing relativistic neutrinos of flavour α via charge

current interactions traveling over a length L until the neutrino will be detected again

via a charge current interaction. Then the probability that the detected neutrino has

flavour β is given by the square of the quantum mechanical transition amplitude

Pνα→νβ =
∣∣ 〈νβ|να(t)〉

∣∣2
=

∣∣∣∑
i

〈νβ|U∗αi |νi(t)〉
∣∣∣2

=
∣∣∣∑
i,γ

〈νβ|U∗αie−itEiUγi |νγ〉
∣∣∣2
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=
∣∣∣∑

i

U∗αie
−iLEiUβi

∣∣∣2
≈

∣∣∣∑
i

U∗αie
−iL|p|e−iL

m2
1

2E e−iL
∆m2

i1
2E Uβi

∣∣∣2
=

∣∣∣∑
i

U∗αie
−iL∆m2

i1
2E Uβi

∣∣∣2. (2.17)

Here Ei are the energies of the mass eigenstates which (in vacuum) corresponds to

the energy eigenstates and ∆m2
ij = ∆m2

i −∆m2
j . This simplified calculation assumes

a relativistic neutrino t ≈ L and a definite three-momentum that is the same for all

the contributing mass eigenstates, so that one can approximate Ei ≈ |p| +
m2
i

2|p| ≈

|p| + m2
i

2E . Although this gives the right result, the correct treatment would require

more quantum mechanical effort. It has been shown that derivations including the

momentum spread of the neutrino and using the correct quantum field theoretical

formalism respectively lead to the same formula [15, 16].

The above calculation assumes that the neutrino stays in a coherent superposition

of mass eigenstates until it will be detected. The correctness of this assumption

depends on the so called coherence length. This is the characteristic length scale at

which the wave packets, corresponding to different mass eigenstates, become spatially

separated [16]:

Lcoh =
4
√

2E2

|∆m2|
∆L. (2.18)

Here ∆L is the total effective spacial uncertainty, which can be obtained from the

uncertainties in the detection and production processes [16]: ∆L2 = ∆L2
d + ∆L2

p.

If L � Lcoh, the superposition loses the coherence on the way between source and

detection. In this case the oscillation probability is calculated as follows:

P incoh
να→νβ =

∑
i

Pνα→νi · Pνi→νβ

=
∑
i

∣∣ 〈νi|να(t)〉
∣∣2 · ∣∣ 〈νβ|νi〉 ∣∣2

=
∑
i

∣∣∣U∗αie−iL∆m2
i1

2E

∣∣∣2 · |Uβi|2
=

∑
i

|Uαi|2 · |Uβi|2. (2.19)



2.2 Neutrino oscillations in vacuum 9

The essential difference to equation 2.17 is that one has to sum over the product of

transition probabilities instead of squaring the whole amplitude 〈νβ|να(t)〉.

2.2.1 Two flavour oscillations

In the simplified case of only two Dirac neutrinos, e.g. electron and muon, the mixing

matrix can be parametrized by one mixing angle θ 3:

U =

(
cos θ sin θ

− sin θ cos θ

)
. (2.20)

Together with the formula 2.17 the probability for an electron neutrino of energy E

being detected as a muon neutrino after it traveled a distance L can be calculated by

Pνe→νµ =
∣∣∣∑

i

U∗eie
−iL∆m2

i1
2E Uµi

∣∣∣2
=

∣∣∣U∗e1Uµ1 + U∗e2e
−iL∆m2

21
2E Uµ2

∣∣∣2
= sin2 θ cos2 θ

∣∣∣− 1 + e−iL
∆m2

21
2E

∣∣∣2
= 4 sin2 θ cos2 θ sin2

(
∆m2

21

4E
L

)
= sin2 2θ sin2

(
∆m2

21

4E
L

)
. (2.21)

Correspondingly, the probability that the electron neutrino is detected in its original

flavour state is

Pνe→νe = 1− sin2 2θ sin2

(
∆m2

21

4E
L

)
. (2.22)

In figure 2.1 the two flavour survival and transition probability is shown. These

probabilities are oscillating with the amplitude given by the mixing angle sin2 2θ and

the oscillation length Losc given by the neutrino energy and its mass Losc = 4πE
∆m2

21
. The

maximal “disappearance” of electrons can be found at distances L = (n + 1/2)Losc

, n ∈ N away from the neutrino source as long as the neutrino stays in a coherent

superposition of mass eigenstates. If ∆m2L
2E � 1, the oscillation is effectively averaged

out due to the finite detector energy and space resolution. Therefore, an experiment

3For Majorana neutrinos, there would be an additional phase, which however does not contribute
to neutrino oscillations, see e.g. [16].
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PHΝe®ΝeL

PHΝe®ΝΜL
Losc

sin²H2ΘL

0 1 2 3
0

1

0.5

L @LoscD

P
HΝ e

®
Ν

e,
Ν

Μ
L

two flavour oscillation

Figure 2.1: The two flavour oscillation probabilities.

would only be sensitive to the amplitude. An experiment with ∆m2L
2E � 1 on the

other hand could not measure flavour transitions at all.

2.2.2 Three flavour oscillations

For the general case of n neutrino flavours the unitary mixing matrix U depends on

n(n−1)/2 rotation angles and n(n+1)/2 complex phases. Since U appears only in the

leptonic charge current interaction term and the rest of the Lagrangian is invariant

under a global phase shift of the left-handed charged lepton fields, one can eliminate

n phases by an appropriate phase shift and a redefinition of the lepton fields. In

addition, one can eliminate n − 1 phases by a redefinition of the neutrino fields4

leading to a final amount of n(n− 3)/2 + 1 complex phases [16].

For n = 3 flavour neutrino oscillations U is therefore usually parametrized by 3

4Note that in the case of Majorana neutrinos one does not have the freedom to eliminate these n−1
phases. However neutrino oscillation experiments are not sensitive to such Majorana phases,
because they would cancel in the calculation of equation 2.17 [11]. See also [16], [17] for more
details.
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Losc
1

Losc
2

0 1 2
0

1

0.5

L @L1
oscD

P
HΝ e

®
Ν

e,
Ν

Μ
,Ν

Τ
L

three flavour oscillation

PH Νe®ΝeL

PH Νe®Ν ΜL

PH Νe®ΝΤL

Figure 2.2: The three flavour oscillation probabilities.

rotation matrices and 1 complex phase:

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 . (2.23)

Here the abbreviation sij = sin θij and cij = cos θij is used.

Figure 2.2 illustrates the oscillation probabilities in the three flavour regime with

realistic values for the mixing parameters as known today. One can clearly identify

the oscillation lengths L1
osc = 4πE

∆m2
21

and L2
osc = 4πE

∆m2
31
≈ 4πE

∆m2
32

, given by the mass

differences similar to the two flavour case.
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2.3 Neutrino oscillations in matter

2.3.1 Derivation of the matter potential

The first strong evidence that neutrino oscillations are affected by matter were the

results of solar neutrino measurements. There one observed a deficit in electron

neutrinos compared to the predictions of all current solar models. This discrepancy

between prediction and observation could be explained by the so called Mikheyev-

Smirnov-Wolfenstein (MSW) effect, which is the resonant enhancement of neutrino

oscillations due to interactions with matter. Those interactions are proportional to

the square of the Fermi constant GF and therefore very small. However, they can

experience a matter potential through coherent elastic forward scattering, where their

momentum stays unchanged. This potential is also proportional to GF , but in the

case it is approximately as large as the kinetic energy difference ∆m2

2E it can become

quite important for neutrino oscillations.

At energies far below the Z0 and W± masses the neutrino charge current interac-

tions with matter is approximately given by

− LCC =
GF√

2
[ēγµ (1− γ5) νe] [ν̄eγµ (1− γ5) e]

=
GF√

2
[ēγµ (1− γ5) e] [ν̄eγµ (1− γ5) νe] , (2.24)

where in the second step the Fierz transformation was used. In order to obtain the

averaged matter-induced potential for the neutrino propagation in matter the electron

degrees of freedom have to be integrated out. For unpolarized matter of zero mean

velocity this results in the potential [11]

VCC = −〈LCC〉electron =
√

2GFNe. (2.25)

Here Ne is the number density of electrons in the matter, where the neutrino propa-

gates. On the earth it is approximately Ne = Ye · ρ/mN ≈ 0.5 · ρ/mN with Ye being

the number of electrons per nucleon, ρ the matter density and mN the mass of the

nucleon.

In ordinary matter, there are only electrons, protons and neutrons the neutrinos

can scatter of. Therefore, charge current elastic forward scattering is only relevant

for electron neutrinos. Neutral current elastic forward scattering on the contrary

occurs to all neutrino flavours. The corresponding potential in electrically neutral

matter is given by the elastic forward neutrino-neutron scattering only, because the
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contributions from electrons and protons cancel each other. The derivation is similar

to the CC matter potential and yields [11]:

VNC = −GF√
2
Nn. (2.26)

Here Nn is the number density of neutrons. For anti-neutrinos the matter potentials

VCC and VNC get an additional minus sign. The connection to the density is Nn =

(1− Ye) · ρ/mN .

However, for standard neutrino oscillations the NC potential drops out of the cal-

culation of the oscillation probabilities: VNC is the same for muon, electron and tauon

neutrinos. Therefore, the corresponding contribution to the effective Hamiltonian in

flavour space is proportional to the unit matrix and thus let the oscillation probabil-

ities unchanged.

2.3.2 The MSW effect

In the two flavour approximation the effective Hamiltonian in flavour space is given

by

Hflavour
eff =

1

2E
U

(
0 0

0 ∆m2

)
U † +

(
VCC(t) 0

0 0

)
(2.27)

with U =

(
cos θ0 sin θ0

− sin θ0 cos θ0

)
and θ0 being the mixing angle in vacuum. The neutrino

mixing in matter can now be calculated from the neutrino evolution equation [11]

i
d

dt

(
νe

νµ

)
= Hflavour

eff

(
νe

νµ

)

=

(
−∆m2

4E cos 2θ0 + VCC(t) ∆m2

4E sin 2θ0

∆m2

4E sin 2θ0
∆m2

4E cos 2θ0

)(
νe

νµ

)
. (2.28)

The potential VCC is proportional to the number density of electrons Ne and there-

fore in general time dependent. To simplify the discussion let us assume that Ne is

constant. In this case one can introduce the effective mixing angle in matter θ, given

as

tan 2θ =
sin 2θ0

cos 2θ0 − 2EVCC
∆m2

(2.29)
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and diagonalize Hflavour
eff corresponding to a basis change from flavour to matter eigen-

states, which for VCC 6= 0 do not coincide with mass eigenstates. The oscillation

probability is then calculated as in equation 2.21 with the only difference that the

mixing angle is now the mixing angle in matter and the difference of the eigenvalues

of the Hamiltonian (which in vacuum was
∆m2

21
2E ) is now replaced by those in matter:

λ1 − λ2 =

√(
∆m2

2E
cos 2θ0 − VCC

)2

+

(
∆m2

2E

)2

sin2 2θ0. (2.30)

Finally this leads to the two flavour transition probability in matter

Pνe→νµ = sin2 2θ sin2

(
L

2(λ1 − λ2)

)
, (2.31)

where the oscillation amplitude is given by

sin2 2θ =
sin2 2θ0(

cos 2θ0 − 2EVCC
∆m2

)2
+ sin2 2θ0

(2.32)

being maximal when the, so called, MSW resonance condition VCC = Vres is fulfilled.

In the simple two flavour case the resonance position is given by

Vres :=
∆m2

2E
cos 2θ0. (2.33)



Chapter 3

Phenomenology of neutrino oscillations

– current status

Today neutrino physics is a quite established research field with numerous experi-

ments, which have been accomplished in the past, being carried out at the moment

and are planned for the future. In this chapter, the intension is to describe the

present phenomenological status in view of the neutrino oscillation parameters, es-

pecially within the standard picture of three neutrino flavour oscillations. We do

not give a complete review of all relevant experiments or the implications of their

results. In addition some tensions, which at present could not be resolved within

this picture, are presented. For more details about the historical development of the

phenomenology of neutrino oscillations, see e.g. references [11, 16, 17, 18, 19].

3.1 Solar neutrino oscillations

Thermonuclear fusion reactions in the interior of the sun are responsible for a high

solar neutrino flux of 6 · 1010cm−2s−1 at the earth. The processes involved in this

reactions can be summarized into two production chains, the pp chain and the carbon-

nitrogen-oxygen (CNO) cycle. However, neutrinos emitted in the CNO cycle are not

expected to be important for neutrino oscillation experiments, since it is responsible

for less than 2% of the solar energy. Both chains result in the net reaction [11, 19]:

4p+ 2e− → 4He + 2νe + 26.73 MeV. (3.1)

During these fusion processes neutrinos are produced via beta decays and electron

capture reactions. Therefore, only electron neutrinos are produced in the sun. The
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Figure 3.1: The solar neutrino energy spectrum for processes in the pp chain. The per-
centages correspond to uncertainties for each neutrino flux contribution.
The energy ranges from solar neutrino oscillation experiments using Gal-
lium and Chlorine as well as scintillator experiments Super-Kamiokande
and SNO are shown at the top. Figure taken from [21].

energies of the emitted neutrinos depend on the specific underlying production process

and have been calculated in various solar models. Figure 3.1 shows the neutrino

energy spectrum for the different contributions of solar neutrino production according

to the solar model BS’05 (OP) [20]. The energy range of solar neutrinos starts at

below 0.1 MeV and reaches maximal values at approximately 11 MeV.

3.1.1 The solar neutrino problem and its solution

The first measurement of solar neutrinos was made by the Homestake experiment

[22] over the period 1970 to 1994. It is located in the Homestake Gold Mine in

South Dakota, USA, 1.5 km underground in order to reduce the background mainly

caused by muons produced in cosmic rays. The Homestake detector consists of a

tank containing 615 tons of tetrachlorethylene (C2Cl4). As detection reaction the

experiment uses the inverse beta decay of the 37Cl Chlorine isotope induced by an
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incoming electron neutrino:

νe + 37Cl→ 37Ar+ + e− (3.2)

with the neutrino energy treshold of 0.814 MeV. The produced 37Ar atoms can be

extracted and counted by chemical methods to deduce the electron neutrino flux and

in this way test the predictions of solar models. Their final result for the measured

neutrino flux is one third of the predicted one deviating by more than 3σ [16, 22].

This discrepancy is called the Solar neutrino problem.

Also the Gallium experiments, GALLEX/GNO (GALLium EXperiment/Gallium

Neutrino Observatory) [23, 24] and SAGE (Soviet-American Gallium Experiment)

[25], which came up in the 1990s detected less neutrinos than expected. These exper-

iments used Gallium to measure solar electron neutrinos using the inverse beta decay

reaction

νe + 71Ga→ 71Ge + e−, (3.3)

extracted and counted the produced 71Ge atoms. The neutrino energy treshold of

0.233 MeV is lower than for the Chlorine experiment and thus allows to measure also

the low energetic neutrino flux coming from the pp reaction, which has the largest

neutrino flux contribution of all pp chain processes (see figure 3.1). Their results

indicate an even more distinct tension with respect to the solar model with about 5σ

deviation, measuring only half of the predicted neutrino flux [16, 23, 24, 25].

An other experiment, the Kamioka Nucleon Decay Experiment (Kamiokande) [26],

was built 1983 in the Kamioka mine in Japan for the original purpose of measuring

nucleon decays. They used a water Cherenkov detector, consisting of a 1 kton water

tank surrounded by 1000 photomultipliers (PMTs). In this setting one is able to mea-

sure solar neutrinos via elastic scattering with electrons by detecting the Cherenkov

light emitted by the recoiling relativistic electrons propagating in water. The ad-

vantage over radiochemical experiments is the ability to reconstruct the interaction

vertex, the direction and energy of the recoil electron. In this sense Kamiokande was

the first experiment measuring solar neutrinos in real-time. With the no-oscillation

assumption their results also lead to the conclusion, that the solar model predictions

are higher than the actual observed neutrino fluxes. These results agree with the out-

come of the first phase of Super-Kamiokande [27], an follow-up precision experiment

to Kamiokande and also located in the Kamioka mine, Japan, with larger detector

dimensions (50 kton water and a factor 10 more PMTs). Both experiments mea-

sured half as much events than expected, deviating from standard solar models by 2σ
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[16, 26, 27].

In the year 2001 all current solar neutrino experiments indicate that there has to be

a problem either in the detection processes, the solar or the particle physics model.

However, as discussed in detail in [11] it is very unlikely that the solar neutrino

problem is due to wrong solar model predictions, because if one assumes the solar

neutrino spectra to be undistorted, the experimental results are in conflict with each

other, independent of the underlying solar model.

The break through was achieved the SNO (Sudbury Neutrino Observatory) exper-

iment [28], located in the Creighton mine, near Sudbury in Canada. The detector

consists of 1 kton heavy water and is able to measure not only the electron flux, but

also the total flux of all three flavours by three different reactions, electron capture

(ES), charge current (CC) and neutral current (NC) reactions

ES: νe,µ,τ + e− → νe,µ,τ + e− (3.4)

CC: νe + d→ e− + p+ p (3.5)

NC: νe,µ,τ + d→ νe,µ,τ + n+ p. (3.6)

The resulting electrons and subsequent-electrons (in the NC reaction, the neutron is

absorbed by deuterium or by MgCl2 under emission of a photon, which in turn Comp-

ton scatters with electrons) respectively are detected by their emission of Cherenkov

light with the help of almost 9500 PMTs. The SNO experiment was accomplished in

three phases, where in the second phase NaCl have been added to improve the neu-

tron absorption cross-section and in the third phase this has been further improved

by additional 3He counter tubes. Already the results of the first and second phase

favoured the flavour oscillation hypothesis [16, 29, 30, 31]. This evidence became

stronger after the third phase [32]. The sensitivity to neutrino flavour transitions

is given by the relation of the three measurement channels and the results clearly

indicates neutrino flavour transitions as the solution to the solar neutrino problem.

The charge current neutrino flux ΦCC corresponds to incoming electron neutrinos, the

measured neutral current flux ΦNC to the sum of electron, muon and tauon neutrinos

and the flux measured in the electron scattering channel ΦES corresponds to the flux

combination Φνe + 0.1553 · Φνe,νµ [16]. The measured fluxes are [32]:

ΦCC = 1.67+0.05
−0.04(stat)+0.07

−0.08(syst) · 106 cm−3s−1 (3.7)

ΦES = 1.77+0.24
−0.21(stat)+0.09

−0.10(syst) · 106 cm−3s−1 (3.8)

ΦNC = 5.54+0.33
−0.31(stat)+0.36

−0.34(syst) · 106 cm−3s−1 (3.9)
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yielding a ratio ΦCC/ΦNC = 0.301± 0.033 [32]. This implies that a fraction of about

69.1% of the originally electron neutrinos are converted to muon and tauon neutrinos

before reaching the earth. The no oscillation assumption would expect the same flux

for the charge current and neutral current reactions and is thus excluded at a large

confidence level, if one assumes the underlying model for the computation of the 8Be

spectrum to be correct. It turned out that the data is compatible with a mixing angle

of tan2 θ12 = 0.447 and a mass difference of ∆m2
21 = 4.57 · 10−5 eV2, which is a result

of the SNO best fit for the data of all three phases1. It is important to note that

for this mixing parameters the solar neutrino transition probability is affected by the

MSW effect as discussed in section 2.3.2, because in this case the resonance density

becomes

Vres =
∆m2

21

2E
cos 2θ12 =

8.73 · 10−12 eV

E/MeV
=

1.11 · VCC, sun

E/MeV
. (3.10)

Hence, for the SNO relevant energy range (see figure 3.1) Vres is slightly above the

charge current matter potential evaluated at the center of the sun VCC, sun and thus it

is possible for electron neutrinos produced by 8Be decays with energies E ≥ 1.11 MeV

to pass the resonant density inside the sun. This leads to resonantly enhanced flavour

transitions such that it becomes compatible with the 30.1% electron disappearance

measured by SNO.

3.1.2 The Gallium Anomaly

Although the results of the GALLEX and SAGE solar neutrino oscillation experi-

ments confirmed the solar oscillation parameters as already described above, both

experiments performed cross checks with intense radioactive sources (GALLEX: us-

ing a 51Cr source [33, 34, 35]; SAGE: using a 51Cr source [36, 37] and later also a
37Ar source [38, 39]; both sources are νe emitter) measuring significant lower neutrino

fluxes than expected. The average ratio of the measured and predicted neutrino fluxes

for these radioactive source experiments deviates with about 3σ from unity. This is

called the Gallium Anomaly. It is still unclear if this anomaly is due to yet unknown

systematic errors in the experiments or can be interpreted as a hint towards new

physics, such as an additional sterile neutrino. Assuming that this effect is caused by

sterile-active neutrino mixing, Giunti and Laveder performed a χ2 analysis in [40] for

1In the corresponding SNO analysis also included: the measurement of the day-night asymmetry,
which is due to the matter effect of the neutrinos inside the earth. For a discussion of this so
called regeneration in the earth effect, see e.g. [11, 16].
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Figure 3.2: The figure shows contours of constant χ2 − χ2
min differences correspond-

ing to specific confidence levels for the two flavour neutrino oscillation
fit performed by Giunti and Laveder with the data sets of the Gallium
radioactive source experiments performed in GALLEX and SAGE. The
best fit point is indicated with a cross and corresponds to sin2 2θ = 0.5
and ∆m2 = 2.24 eV2. Figure taken from [40].

the GALLEX and SAGE data sets. They found best fit values preferring oscillation

parameter values of sin2 2θ & 0.07 and ∆m2 & 0.35 eV2 at 99% confidence level.

3.2 Atmospheric neutrino oscillations

Cosmic ray particles are mainly composed of protons and a small component of heav-

ier nuclei. When hitting the atmosphere they interact with atoms and induce hadronic

showers. Among other particles also pions and kaons are produced, which both can

decay into muons, electrons and muon and electron neutrinos according to the reac-
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tions [11, 16]:

π±(K±) → µ± + νµ(νµ), (3.11)

µ± → e± + νe(νe) + νµ(νµ). (3.12)

These atmospheric neutrinos are produced in a large energy range. Typical atmo-

spheric neutrino experiments are sensitive to neutrino energies from about 100 MeV

to about 100 GeV. They can be detected via the interaction with nuclei A of large

mass according to the reactions [11, 16]:

νe(νe) +A → e−(e+) +X, (3.13)

νµ(νµ) +A → µ−(µ+) +X. (3.14)

Note that the amount of produced muon neutrinos is larger than the number of

produced electron neurinos. This ratio of the muon and electron neutrino rate is

energy dependent and can be calculated using Monte Carlo simulations. These cal-

culations suffer from large uncertainties. Thus, it is convenient to use the ratio

R = (νµ + νµ)/(νe + νe) (where large uncertainties are canceled out) in order to

compare the Monte Carlo predictions with measurements [11, 16].

The first experiments, which measured atmospheric neutrino fluxes with their re-

sults hinting at a possible neutrino oscillation, were IMB (Irvine-Michigan-Brookhaven)

and Kamiokande. The latter measured a deficit in the atmospheric neutrino flux for

sub-GeV events (fully contained events of visible energy < 1.33 GeV) as well as for

multi-GeV events (fully contained events of visible energy > 1.33 GeV) of [16, 41, 42]:

RMC

Rexp

∣∣∣∣
sub-GeV

= 0.60+0.07
−0.06 ± 0.05 (3.15)

RMC

Rexp

∣∣∣∣
multi-GeV

= 0.57+0.08
−0.07 ± 0.07, (3.16)

where RMC refers to the Monte Carlo prediction and Rexp to the measured muon-

electron event ratio. Also the zenith-angle distribution of the upward-going muons

provided hints for neutrino oscillations [16, 43].

The IMB experiment used (like Kamiokande) a water Cherenkov detector with

8 kton water. It was located in the Morton Thiokol salt mine in Ohio deep under

ground in order to shield against the cosmic muons. As for the Kamiokande ex-

periment the original intension was to measure nucleon decays. Their background
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analysis including atmospheric neutrino events resulted in a deficit of muon neutrinos

for contained vertex events2 of energies below 1.5 GeV [44, 45]. For only partially

contained events as well as the upward-going muon events, no deficit was measured

[46, 47]. Quantitatively the measured deficit was RMC/Rexp = 0.54 ± 0.05 ± 0.11

[16, 45]. This result is consistent with the Kamiokande results and served as an addi-

tional hint towards atmospheric neutrino oscillations, although the global picture of

neutrino oscillations at that time was not clear at all[48].

The results of the Kamiokande follow-up experiment Super-Kamiokande solved this

puzzle. The increased sensitivity in the directional measurement of atmospheric neu-

trino events led them to measure an significant asymmetry between upward-going

and downward-going high-energy νµ events. For those high-energy events the effect

of the gyromagnetic field of the earth is reduced. Therefore, assuming that no os-

cillation occurs one would expect an almost uniform distribution of the high-energy

atmospheric neutrino events. The asymmetry parameter is given by the ratio A =

(U −D)/(U +D), where U = upward-going events and D = downward-going events.

Super-Kamiokande measured muon and electron neutrino asymmetries of [49]

Aνµ = −0296± 0.048± 0.01 (3.17)

Aνe = −0.036± 0.067± 0.02. (3.18)

Since νe events show no deficit, but the νµ events deviate with 6σ from the no os-

cillation prediction, this result strongly favours a νµ → ντ neutrino oscillation so-

lution of the atmospheric neutrino anomaly indicating that muon neutrinos pass-

ing through the earth oscillate on their way towards the detector. In contrary,

the path length for neutrinos coming from the opposite direction is too small for

a neutrino transition of downward-going νµ. The deficit is observed for energies

L/E & 102 km GeV−1 indicating a corresponding atmospheric mass squared differ-

ence of the order ∆m2
23 ≈ 2.4 · 10−3 eV2 with a mixing angle of θ23 > 0.82 at 90%

confidence level. Also more detailed analysis of the L/E dependence and the νµ event

zenith angle distribution supports this interpretation [11, 16, 49] (see section 3.4 for

a discussion of the current experimental results in the context of a global analysis).

At this point, there are two more experiments to mention, which confirmed the

atmospheric neutrino oscillation picture independently: The Soudan 2 experiment,

located in the Soudan underground Mine State Park, Minnesota, and the MACRO

2Contained vertex events are events, where the neutrino interaction with matter happens inside the
detector and the trajectories of all involved particles are contained in the detector.
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experiment (Monopole Astrophysics and Cosmic Ray Observatory), located in the

Laboratoi Nazionali del Gran Sasso, Italy. Soudan 2 consisted of a time projection,

tracking calorimeter out of iron with a total mass of 963 tons. Their results for

the ratio RMC/Rexp as well as the zenith angle distribution of contained events and

upward-going muons reported in [50, 51] are fully consistent with those obtained by

Super-Kamiokande [16]. MACRO was a multiple-purpose experiment and consisted

of a 12 × 76 × 9.4 m3 large detector containing 600 tons of liquid scintillator. Their

analysis of the atmospheric neutrino data gave a further confirmation for the νµ → ντ

oscillation [16, 52, 53].

3.3 Terrestrial neutrino oscillations

Terrestrial neutrino oscillation experiments use two types of neutrino sources: elec-

tron anti-neutrinos emitted by nuclear reactors and accelerator experiments, where

neutrinos are produced in the decays of pions, kaons and muons originating from a

primary proton beam hitting a target. In the following we will give an overview over

some of these experiments, which are the most relevant for the current status of three

flavour neutrino oscillations. In addition the short-baseline (SBL) anomaly and the

reactor anomaly is presented.

3.3.1 Reactor experiments

Reactor experiments measure the electron anti-neutrino flux resulting from the chain

of β-decays of the fission products. The anti-neutrinos are produced at a very high

rate and with energies of a few MeV. Since the neutrino emission is isotropic the flux

decreases rapidly with increasing distance, most reactor experiments have detectors

with short baselines of L ∼ 10− 100 m. The results of these SBL reactor experiments

are used to test the complicated theoretical neutrino flux predictions and thus yields

a reduction in the uncertainty for reactor experiments with long baselines. The detec-

tors of such experiments are typically large liquid scintillators and use the detection

reaction [16]

νe + p→ n+ e+. (3.19)

The positron annihilates with a surrounding electron and deposits energy in the scin-

tillator. The signal-background discrimination is achieved by a coincident neutron

inducing a delayed nuclear capture reaction. The neutrino threshold energy in this



24 3 Phenomenology of neutrino oscillations – current status

reaction is calculated, e.g. in [16]: Eth = 1.8 MeV. In order to further improve the

signal to background ratio it is important to shield the detector from cosmic ray show-

ers. In contrast to atmospheric and solar neutrino detectors the νe flux is much larger

and thus it is sufficient to reduce the background below the νe flux, i.e. the detectors

does not necessarily have to be located as deep underground as solar and atmospheric

neutrino experiments. For a more detailed discussion of the reactor experiments see

reference [16].

There have been numerous SBL reactor experiments setting limits on neutrino

oscillations at low mass squared differences ∆m2 ∼ 0.1 eV2 like for example [11, 16]:

ILL [54], Gosgen [55], Rovno [56], Krasnoyarsk [57], Bugey [58] and Savannah River

[59], but here we want to focus on those experiments, which dominate the current

knowledge about the values of the three flavour oscillation parameters obtained from

global fits like in [60], see section 3.4.

The long baseline (LBL) reactor experiments CHOOZ and Palo Verde are located

at distances of the order 1 km away from the reactors and are thus sensitive to lower

∆m2 values. CHOOZ, located near to the two reactors of the CHOOZ power stations

in France, measured the background very accurately, because the data taking started

before the reactor was put into operation. Their results set limits on the νe oscillation

essentially excluding the possibility that the atmospheric mixing is due to νµ → νe

oscillation [16, 61]. Additionally, the limit on the at this time unknown mixing angle

θ13 could be further improved [62]. The experiment Palo Verde, located near to the

three reactors of the Palo Verde Nuclear Generation Station in Arizona, confirmed

the results of CHOOZ [16, 63].

At that time the neutrino oscillation picture of three flavour oscillations was estab-

lished and well founded on various experimental results, but there were (and still are)

some open questions. For example, the question about the size of θ13 was very impor-

tant for completing the knowledge about neutrino oscillations. If θ13 would be zero,

this would imply that the CP-phase δ in equation 2.23 is eliminated and would lead

to a drastically simplified oscillation picture. Also the possible measurement of the

mass hierarchy is affected from the size of θ13. In order to obtain a better sensitivity

to the mixing angle θ13 a new generation of νe disappearance experiments had been

developed. The basic idea of these new experiments is that each of them consists

out of two almost identical detectors of different distances to the reactor. This leads

to a significant reduction of the total flux uncertainty, since systematic uncertainties

cancel out. With this purpose the experiments Double-Chooz, Daya Bay and Reno

have been build. The first results from Double-CHOOZ (with only the far detector
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running) [64] already indicated a non-zero θ13 value. Double-CHOOZ is located at

the same place as the former CHOOZ experiment near to the two reactors of the

CHOOZ power stations in France. The distance from the power plant to the near

and far detector respectively is about 100 m and 1 km. In this setting the ratio L/E

is such that Double-CHOOZ is sensitive to anti-neutrino oscillations of the form [64]

Pνe→νe ≈ 1− sin2 2θ13 sin2

(
∆m2

31

4E
L

)
. (3.20)

With the same purpose, two other experiments were constructed: Daya Bay, lo-

cated near to three reactors of the Daya Bay nuclear power complex in the southern

coast of China [65], and RENO (Reactor Experiment for Neutrino Oscillation), lo-

cated near to six reactors of the Yonggwang nuclear power plant at the west coast

of South Korea [66]. The first results published in 2012 by these two experiments

were based on a rate-only analysis, i.e. without a more detailed examination of the

energy shape of the electron anti-neutrinos. Daya Bay reported in [67] a value for

sin2 2θ13 of 0.092 ± 0.016(stat) ± 0.005(syst) with a 5.2σ evidence for the mixing

angle to be non-zero. RENO published a compatible result for the mixing angle

of sin2 2θ13 = 0.113 ± 0.013(stat) ± 0.019(syst) (corresponding to a 4.9σ evidence)

[68]. A further confirmation came from the Double-CHOOZ collaboration. They

presented an analysis using the neutron capture on hydrogen for the detection of the

neutrino events [69] in addition to the usual signal induced by neutron capture on

Gadolinium. This could only be done, because of the low background (and a good

knowledge of the background3) in their detector. This measurement yielded the value

sin2 2θ13 = 0.097± 0.034(stat)± 0.034(syst) (corresponding to 2.0σ evidence), which

is in full agreement with their previous result (using the neutron capture on Gadolin-

ium) of sin2 2θ13 = 0.109± 0.030(stat)± 0.025(syst) (corresponding to 2.9σ evidence)

[70]. Note that in the Double-CHOOZ analysis also the energy shape information

had been included. It can be expected that the results of these three experiments will

improve during the next periods of data taking.

All reactor experiments discussed until this point have in common that they are

build to measure the electron anti-neutrino flux of one power plant. There is one

other reactor experiment being able to measure νe at very long baselines: KamLAND

(KAMioka Liquid scintillator Antineutrino Detector) [71], located at the site of the

earlier Kamiokande experiment, consists out of a very large detector with 1 kton

liquid scintillator. In this setting KamLAND detects νe from all power reactors in

3This is one essential advantage of Double-CHOOZ compared to RENO and Daya Bay.
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Japan and some contributions from even more distant reactors (about 3% of the

νe flux). The average distance is about 180 km. Therefore, KamLAND is sensitive

on the parameter range of solar neutrino oscillations. Their result confirmed the

solar neutrino oscillations4 and is still important for the precise determination of

the oscillation parameters. While the solar experiments have better sensitivity on

the mixing angle the contribution of KamLAND increases the precision on the mass

squared difference in global fits, what can be seen e.g. in the more recent publication

[72].

3.3.2 The reactor neutrino anomaly

A recent recalculation [73] of the electron anti-neutrino flux emitted from nuclear

rectors leads to a reduction of about 3% of the previously calculated flux prediction

at SBL neutrino reactor experiments. With this correction, the average of the in SBL

reactor experiments [54, 55, 56, 57, 58, 59] measured ratio of observed and predicted

νµ event rates is now shifted from previously 0.976 ± 0.024 to 0.943 ± 0.023. As

indicated in figure 3.3, one possible solution of this anomaly is neutrino oscillation

with a relatively large mass squared difference of the order ∆m2 ∼ eV2. This would

require the introduction of a new neutrino5, which mixes with the active neutrinos

via oscillation.

In September 2013, Hayes, Friar, Garvey and Jonkmans published in [75] a reanal-

ysis of the reactor anomaly, where they claimed that the 30% of the total reactor

electron anti-neutrino flux coming from forbidden decays would introduce a large un-

certainty into the predicted flux such that the effect of the reactor anomaly would be

smaller than the uncertainty of the flux prediction.

However, this anomaly motivates a further investigation of the possibility for in-

troducing a sterile neutrino. On the experimental side, the upcoming NUCIFER

(Reactor neutrino detection for thermal power measurement and non-proliferation

purpose) experiment has the potential to check if there are some yet undiscovered νe

oscillation at very short reactor-detector distances, see e.g. reference [76] for more

details.

4Especially the so called large mixing angle (LMA) solution could be confirmed. Other possible
solutions, where the solar mixing parameters have different values, have been excluded by the
KamLAND results. For a more detailed discussion about these parameter regions, see e.g. [11, 16].

5Such a new neutrino state should be sterile, i.e. non-weakly interacting, because of the constraints
coming from the precise measurement of the Z width in LEP (Large Electron-Positron Collider)
[74].
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Figure 3.3: The figure shows the ratio of the observed and predicted νµ event rates
measured by various SBL reactor experiments at different baselines. The
black dashed line corresponds to the oscillation prediction in the stan-
dard three flavour scenario (which predicts no oscillation at such short
baselines). The blue, red and green lines are computed for active-sterile
mixing for three parameter sets, which give a better explanation for the
∼ 6% flux deficit. Figure taken from [6].
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3.3.3 Accelerator experiments

Accelerator experiments use proton beams produced in particle accelerators that are

focused on a high-mass target. Out of these proton-target collisions (anti-)neutrinos

are emitted mostly as a product of hadronic decays. Many experiments have been

performed in the past searching for oscillations with baselines of the order L/E .

km/GeV (called SBL accelerator experiments) corresponding to the sensitivity for

mass squared differences of ∆m2 & 1 eV2. None of these experiments found evidence

for neutrino oscillation, what sets limits in the sin2 θ - ∆m2 plane for different oscilla-

tion channels. Only the LSND (Liquid Scintillator Neutrino Detector) as well as later

the MiniBooNE (Booster Neutrino Experiment) experiment observed an indication

of a positive oscillation signal. This is called the SBL anomaly (as discussed in the

next section) [16].

Accelerator experiments with long baselines (LBL) on the contrary, have observed

oscillation effects. The beam energy and source-detector distance is chosen such that

the sensitivity for the atmospheric mass squared difference is achieved, i.e. L/E ∼
103 km/GeV. K2K (KEK to Kamioka) [77] was the first of these type of experiments.

It used a 12 GeV proton beam from the proton synchrotron at KEK, which is located

in Tsukuba in Japan. The proton beam hits an aluminium target producing pions,

which are focused towards a decay tunnel of 200 m length. This tunnel ends with a

beam dump and is followed after a distance of 80 m by a near detector. The pions

decay into muon neutrinos which then are detected at the near and far detector.

The far detector uses the water Cherenkov detector of Super-Kamiokande at a total

distance to the target of 250 km. The near detector is a smaller version of the Super-

Kamiokande detector and is used to reduce systematic uncertainties, which cancel

out in the comparison of the near and far detector data. Their final result [77] of the

νµ disappearance measurement gave a 4.3σ evidence in favour of oscillation and is

compatible with the atmospheric mixing parameters. This result was a very important

confirmation for the atmospheric oscillation signals [16].

An other important experiment is MINOS (Main Injector Neutrino Oscillation

Search) [78] using the NuMI (Neutrinos at Main Injector) wide band muon neutrino

beam at Fermilab, located near Chicago. It consists of two detectors at baselines of

965 m and 735 km and is thus sensitive to the atmospheric mixing parameters and to

θ13 depending on the oscillation channel the analysis is referring to (either appearance

or disappearance). Similar to KEK, this is achieved with the decay in flight method,

where either π+ or π− are focused towards the decay pipe decaying in νµ or νµ

respectively. While the disappearance channel (νµ, νµ → νµ, νµ) is sensitive to the
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atmospheric mixing, the νe appearance measurement gives information about θ13 at

leading order according to equation [79]

Pνe→νµ ≈ sin2 θ23 sin2 2θ13 sin2

(
∆m2

32

4E

)
. (3.21)

If this appearance measurement can be further improved, it is in principle possi-

ble to determine the CP-phase δ and the mass hierarchy, see e.g. reference [80] for

the subleading terms omitted in the approximation of equation 3.21. Recent results

of MINOS give the precise measurement of [81] sin2 2θ23 = 0.957+0.035
−0.036, |∆m2

31| =

2.39+0.09
−0.10 · 10−3 eV2 and sets a limit 0.01(0.03) < 2 sin2 θ23 sin2 2θ13 < 0.12(0.19) at

90% confidence level assuming the CP-phase δ to be zero for normal (inverted) mass

hierarchy. The latter result was a confirmation of the previously reported first mea-

surement of θ13 in a νµ → νe appearance measurement by T2K [82].

The T2K (Tokai to Kamioka) experiment [82] uses like the earlier K2K experiment

the large Super-Kamiokande detector as their far detector. The neutrino production

method is similar to those of MINOS and K2K with the main difference that they use

an off-axis beam (the far detector is located at an angle of 2.5 degrees with respect to

the beam axis), which amplifies the signal to background ratio for the detection of νe

neutrinos in the νµ beam. T2K uses two near detectors, one of them located on-axis

and one off-axis in order to measure the neutrino spectrum accurately as well as to

have a reference measurement for the flux prediction at the far detector. Very recently

(November 2013) they published in [82] an updated result of sin2 2θ13 = 0.140+0.038
−0.032 for

normal and sin2 2θ13 = 0.170+0.045
−0.037 for the inverted hierarchy (under the assumption

of |∆m2
32| = 2.4 · 10−3 eV2, sin2 θ23 = 0.5 and δ = 0).

3.3.4 The short-baseline anomaly

The LSND (Liquid Scintillator Neutrino Detector) experiment [83] was a SBL accel-

erator experiment designed to search for νµ → νe oscillations at a baseline of only

30 m. It was located at the Los Alamos Neutron Science Center in New Mexico. In

contrast to the above described accelerator experiments it used a different neutrino

production mechanism optimized to measure νe appearance in a νµ beam. Protons

with 798 MeV hit a water target followed by a Cu beam dump. The proton beam

produces a large number of pions, most of them π+. π− and µ− produced in the

reaction chain are mainly absorbed. Thus, the resulting neutrino beam consists out
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of νµ, νµ and νe created in the reactions

π+ → µ+ + νµ, (3.22)

µ+ → e+ + νe + νµ. (3.23)

This leads to a very low contamination of νe events in the neutrino beam, which

increases the sensitivity on νe appearance.

LSND reported a positive signal in the νµ → νµ oscillation channel [84] and later

also in the neutrino channel νµ → νµ [85] giving evidence for neutrino oscillation,

which can not be explained within the three flavour mixing framework. If explained by

neutrino mixing, their combined results would only be compatible with mass squared

differences in the range 0.2− 10 eV2 [83].

In order to test these results, the MiniBooNE (Booster Neutrino Experiment) ex-

periment [86] was constructed. It is located at Fermilab and uses 8 GeV protons

hitting a beryllium target. The produced pions decay inside a 50 m long decay pipe

followed by a beam dump. The total distance from target to detector is 541 m and is

chosen such that MINOS is sensitive for the same ∆m2 region as the former LSND

experiment6. Since the energy range as well as the neutrino production mechanism is

different, MiniBooNE constitutes an independent test of the LSND signal. Their cur-

rent result is compatible with LSND and can be explained by two flavour oscillations

in the range 0.01 eV2 < ∆m2 < 1 eV2 [87].

Note that although LSND and MiniBooNE are compatible with each other and

both favour an active-sterile mixing solution, there are severe tesnions with νµ and

νµ disappearance searches, even if one includes a sterile neutrino in the analysis [6].

On the other hand, LSND and MiniBooNE are not yet completely excluded by other

νµ, νµ → νe, νe appearance searches as one can see in figure 3.4.

3.4 Global fit to three neutrino mixing

In [60] Gonzalez-Garcia, Maltoni, Salvado and Schwetz presented a global fit to data

from solar, atmospheric, reactor and accelerator neutrino oscillation experiments.

The parameters in their analysis are those of equation 2.23: θ12, θ13, θ23, δ, ∆m2
21

and ∆m2
31, i.e. assuming three flavor mixing only. Their results are shown in figure

3.5 and are representative for the current status of the standard three flavour pic-

6The MiniBooNE neutrinos have typical energies of 500 MeV compared to the LSND energies of
about 30 MeV and a baseline of 30 m. Therefore, the same L/E ratio is achieved.
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Figure 3.4: The figure shows the allowed regions and upper bounds at 99% confidence
level for νµ, νµ → νe, νe appearance experiments obtained in a three ac-
tive plus one sterile neutrino framework computed in [6]. As one can
see, the LSND and MiniBooNE results are the only ones in favour of an
active-sterile oscillations. However, they are not excluded by other accel-
erator appearance measurements (such as KARMEN [88], ICARUS [89],
NOMAD [90], E776 [91]) or LBL reactor experiments. Figure taken from
[6].
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ture. The first order oscillation terms are precisely measured. This results in the

high precision for the atmospheric (θ23 and ∆m2
31) and solar (θ12 and ∆m2

21) mix-

ing parameters as a result of the combination of the various atmospheric and solar

experiments respectively and from terrestrial experiments such as KamLAND, Super-

Kamiokande, MINOS and others (see discussions in previous sections). Even θ13 is

precisely determined by the most recent LBL reactor and accelerator experiments7,

but there remains an additional uncertainty in θ13 due to the normalization of the

reactor fluxes, which is still an unsolved problem [60].

For future experiments the remaining questions are the measurement of the mass

hierarchy, the CP-phase δ as well as the so called octant degeneracy of the mixing

angle θ23, which is due to the fact that in first order the sensitivity on θ23 is given by

the sine squared of two times the mixing angle sin2 2θ23. In addition, we have seen

that the Gallium anomaly, SBL reactor anomaly and the SBL anomaly give evidence

for additional active-sterile mixing. However, these anomalies are in tension with

other results, even by introducing one or two sterile neutrinos [6]. In the following

chapters, we want to address this problem by investigating a sterile neutrino model as

studied e.g. in [8, 9, 7, 10] with non-standard matter interactions with the possibility

to resolve the tension obtained in usual sterile neutrino scenarios.

7Note that this analysis is from 2012 and thus the precision in figure 3.5 is driven by RENO, Daya
Bay and Double-CHOOZ. Including the new results from T2K would further improve the precision
on θ13.
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Figure 3.5: Global three flavour oscillation analysis. Each panel shows the χ2 − χ2
min

value as function of two out of in total six parameters, where the other pa-
rameters are chosen such that χ2 − χ2

min becomes minimal. The contours
correspond to 1σ, 90%, 2σ, 99% and 3σ confidence level. The coloured
regions are calculated including the SBL reactor data with the flux nor-
malization as a fitting parameter. The black contour lines correspond to
an analysis without the SBL reactor experiments. The atmospheric mass
squared difference ∆m2

32 is used for inverted mass hierarchy and ∆m2
31

for normal hierarchy. Figure taken from [60].





Chapter 4

Oscillation probabilities in a sterile

baryonic neutrino model

After motivating a model introducing a new quasi-sterile1 neutrino based on the ideas

of references [8, 9, 7, 10], we give a short formal description with emphasis on the

phenomenology of neutrino oscillation and derive approximate analytical expressions

for the oscillation probabilities in order to compare it with the results of [7] and an

exact numerical computation.

4.1 Motivation

In the previous chapters we introduced the current established standard scenario of

neutrino oscillations and summarized some of the most important experiments in

that field. Even though one was able to find values for the oscillation parameters

in the slightly extended SM with three massive neutrinos that are consistent with

many experimental results, one can also see that there is some tension coming from

experimental anomalies, which can not be resolved in this framework. In the following

we describe an extension of the SM with the potential to give an explanation not only

for these anomalies, but possibly also for some signals observed in current dark matter

detection experiments. The basic idea of this model is to introduce an additional U(1)

gauge symmetry, under which only quarks and an additional (otherwise sterile, i.e.

not weakly interacting) neutrino have a non-zero charge. If the corresponding gauge

boson is relatively light (compared to the electro-weak scale), the coupling can be

1The neutrino is sterile in the sense that it does not interact via the weak interaction, but in the
presented model it couples to baryons. In the following we will refer to it as sterile.
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large2 and yield a large matter potential. This in turn can enhance the active-sterile

neutrino mixing and lead to new MSW resonances.

This idea was proposed in [8] by Maxim Pospelov with the motivation to find

a possible explanation for anomalies found in current dark matter experiments: the

annual modulation signal in DAMA [92] and the low-energy recoil signal measured by

CoGeNT [93]. He found that for large couplings mediated by the new gauge boson the

DAMA and CoGeNT signals could be explained by solar standard model neutrinos

which oscillate into the new neutrino state via the MSW effect for the new potential.

He also showed that a large baryonic coupling, up to three orders of magnitude larger

than the weak coupling, is still allowed by current experimental data.

Karagiorgi, Shaevitz and Conrad investigated in [7] the phenomenological conse-

quences of the same model, but now with respect to the MiniBooNE and LSND

short-baseline anomalies. They made an approximate analytical calculation and per-

formed a χ2 fit to the MiniBooNE neutrino [94], MiniBooNE anti-neutrino [95] and

LSND anti-neutrino data [83]. They found that the new model is preferred against

the standard scenario, indicating that the new matter effect can serve as a possible

solution of the anomalies. They claimed that MINOS is not sensitive to the baryonic

neutrino at their LSND/MiniBooNE best fit point, but as we will see in section 4.5,

the in their analysis underlying analytical expressions for the oscillation probability

are not valid for the whole parameter space of the model. Especially at the MINOS

energy range and detector distance the approximation in [7] misleadingly suggests

that their LSND/MiniBooNE best fit is compatible with the MINOS data. There-

fore, we will reanalyse the MiniBooNE and MINOS data in the model at hand using

a full numerical calculation and provide improved analytical approximations. It can

further be expected that the new MSW resonances affect the solar neutrino oscilla-

tion. To make more conclusive phenomenological statements, it is not avoidable to

investigate the constraints coming from solar neutrino oscillation experiments.

4.2 The baryonic neutrino model

The starting point is gauged baryon number, i.e. to introduce a new U(1)B gauge

symmetry under which quarks have the charge gb/3. In addition a new particle is

introduced: a new neutrino state νb, a singlet under the SM gauge group and with the

charge g′b under the new symmetry U(1)B. Hence, in this framework there exist three

SM left-handed neutrinos νeL, νµL, ντL, three corresponding right-handed neutrinos N1
R,

2The interesting parameter range for the coupling is 102 − 103 ·GF [8].
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N2
R, N3

R and an additional left-handed neutrino νbL. In principle one can also add a

right-handed partner for νbL, but this is not important for the following discussions

and analysis3. We will stick to the most important ingredients of this model and

not aim for absolute completeness, since there exist many different possible variants

in the details of the model building and we want to focus on the phenomenological

consequences.

Assuming a spontaneous symmetry breaking of U(1)B by a new Higgs field, the

relevant part of the Lagrangian can be written as [8]:

L = −1

4
(∂µXν − ∂µXν) (∂µXν − ∂µXν) +

1

2
m2
XXµX

µ

+ν̄bγµ
(
i∂µ + g′bXµ

)
νb +

∑
q

q̄

(
i /DSM +

1

3
gbγµX

µ

)
q + Lm , (4.1)

where Xµ is the corresponding vector boson of mass mX , q are the SM quark fields

and Lm is the part of the Lagrangian containing the masses. If we consider the La-

grangian at energies much smaller than mX , we can write down an effective coupling

for fermions in terms of a coupling constant GB. Since we are interested in the low-

energy phenomenology, we can also switch from the quark to the nucleon level. In

this way we obtain the neutral current baryonic (NCB) coupling term induced by the

vector boson exchange in the low-energy limit [8]:

LNCB =
GB√

2
ν̄bγµ (1− γ5) νb [p̄γµ (1− γ5) p+ n̄γµ (1− γ5)n] , (4.2)

where GB = gbg
′
b/m

2
X is the baryonic coupling constant.

The matter potentials for the charged current and neutral current weak interactions

are derived in section 2.3.1. For the new baryonic interaction this derivation is similar,

since the Lagrangian has the same structure as in equation 2.24. The comparison with

equation 2.26 yields for the baryonic potential Vb:

Vb = −GB√
2
Nn. (4.3)

If GB is some orders of magnitude higher than the Fermi constant GF , this could lead

to observable signals in dark matter detectors induced by solar neutrinos oscillating

into the sterile state νb. It would be a possible explanation for the dark matter

3In principal, there are also other mechanisms possible without the need of right-handed neutrinos,
which we do not discuss in this work.
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anomalies, such as the results of CoGeNT and DAMA [8]. It has also been argued in

[8] that the constraints coming from meson decays like K → πν̄bνb are not in conflict

with large values for the matter potential, because the underlying loop amplitude

processes are loop suppressed, compensating possible enhancements due to a large

coupling GB.

In the following we will parametrize this new potential as

Vb = ε ·
√

2GF
ρ

mN
= ε · VCC

Ye
. (4.4)

With this definition ε = GB/(Ye·GF ) gives the scale of how much larger Vb is compared

to the standard charged current potential. As pointed out in [9], ε can be of either

sign and thus affects whether the corresponding MSW resonance is in the neutrino or

in the anti-neutrino sector. Ye is the number of electrons per nucleon and in general

depends on the exact location on the neutrino path.

Let us now consider the mass terms containing a new Higgs - baryonic neutrino

coupling as introduced in [8]:

Lm = LY −
∑
j

bj ν̄bLN
j
R(iτ2h

∗
b)−

1

2

∑
i,j

(
N i
R

)C
mij
RN

j
R + h.c. (4.5)

Here LY is the standard Yukawa term, see equation 2.1 and hb is the baryonic Higgs

doublet. Diagonalizing the mass terms for the neutrinos in a similar way to the

standard scenario, see section 2.1, leads to active-sterile mixing. At this point we

do not analyse possible mechanisms to explain the magnitude of the neutrino masses

and mixing angles. We will focus on the phenomenological analysis and scan over the

parameter space, i.e. the mixing angles and mass squared differences.

4.3 Analytical approximation

In order to study the phenomenological implications of such a baryonic neutrino

model, in particular on short-baseline neutrino oscillation, Karagiorgi, Shaevitz and

Conrad (KSC) investigated this three active plus one sterile neutrino framework,

assuming the baryonic matter potential for the sterile neutrino state to be some orders

of magnitude larger than the standard matter interactions, i.e. |ε| � 1, [7]. They

derived approximate analytical expressions for the oscillation probabilities that we are

not able to reproduce. In the following, we will therefore give a short derivation of

the oscillation probabilities obtained in this scenario deviating from the KSC results.
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The effective Hamiltonian in the flavour basis, describing neutrino propagation in

matter, reads

Hflavour
eff =

1

2E
U


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ∆m2
41

U † +


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Vb

 , (4.6)

where we have assumed |∆m2
41| � |∆m2

31|,∆m2
21; |VB| � VNC, VCC and neglected

the subdominant terms for simplicity. In addition we assume Uτ4 = 0 in order to

further simplify the analytical discussion, following [7]. The probability for a neutrino

produced in a certain flavour α travelling over a distance L ≈ t to be measured in a

flavour β can then be calculated as

Pνα→νβ =
∣∣ 〈νβ|να(t)〉

∣∣2 =

4∑
j=1

∣∣Ũ∗αjŨβje−iLλj ∣∣2, (4.7)

where Ũ is the unitary matrix diagonalizing the effective Hamiltonian and λi are the

corresponding eigenvalues: Hflavour
eff = Ũdiag(λ1, λ2, λ3, λ4)Ũ †. The diagonalization

gives λ1 = λ2 = 0 as well as Ũµ1 = 0 and Ũe1 = 0. Note that the approximation

λ3 = 0 is used in [7], which we will not follow here. For the νµ → νµ disappearance

channel (α = β = µ in equation 4.7) this yields

Pνµ→νµ =
∣∣∣e−iλ3L + |Ũµ2|2(1− e−iλ3L) + |Ũµ4|2(e−iλ4L − e−iλ3L)

∣∣∣2, (4.8)

where we have used the unitarity condition |Ũµ3|2 = 1− |Ũµ2|2 − |Ũµ4|2. We expand

this expression by using the relation for the squared absolute value of the sum of

three complex numbers |a+ b+ c|2 = |a|2 + |b|2 + |c|2 + 2 Re [a∗b+ a∗c+ b∗c]:

Pνµ→νµ = 1 + |Ũµ2|4|1− e−iλ3L|2 + |Ũµ4|4|e−iλ4L − e−iλ3L|2

+2 Re
[
|Ũµ2|2eiλ3L(1− e−iλ3L) + |Ũµ4|2eiλ3L(e−iλ4L − e−iλ3L)

+ |Ũµ2|2|Ũµ4|2(1− eiλ3L)(e−iλ4L − e−iλ3L)
]

. (4.9)

With the expressions for the exponential function, |eix − e−ix|2 = 4 sin2 x, as well as
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Re
[
e−ix

]
= cosx, we obtain:

Pνµ→νµ = 1 + 4|Ũµ2|4 sin2

(
λ3

2
L

)
+ 4|Ũµ4|4 sin2

(
λ4 − λ3

2
L

)
+2|Ũµ2|2 [cos(λ3L)− 1] + 2|Ũµ4|2 [cos ((λ4 − λ3)L)− 1]

+2|Ũµ2|2|Ũµ4|2 [cos(λ4L)− cos(λ3L)− cos ((λ4 − λ3)L) + 1] .(4.10)

Using the trigonometric identity cosx = 1− 2 sin2(x/2) leads to

Pνµ→νµ = 1 +
(

4|Ũµ4|4 + 4|Ũµ2|2|Ũµ4|2 − 4|Ũµ4|2
)

sin2

(
λ4 − λ3

2
L

)
+
(

4|Ũµ2|4 + 4|Ũµ2|2|Ũµ4|2 − 4|Ũµ2|2
)

sin2

(
λ3

2
L

)
−4|Ũµ2|2|Ũµ4|2 sin2

(
λ4

2
L

)
. (4.11)

Now one has to insert the expressions for the eigenvalues and the entries of Ũ obtained

from the diagonalization:

λ3 =
1

2

(
Vb +

∆m2
41

2E
−A

)
, (4.12)

λ4 =
1

2

(
Vb +

∆m2
41

2E
+A

)
, (4.13)

|Ũµ2|2 =
|Ue4|2

1− |Us4|2
, (4.14)

|Ũµ4|2 = |Uµ4|2
∆m2

41
2E

(
A+

∆m2
41

2E − Vb
)

A
(
A+

∆m2
41

2E + Vb

) , (4.15)
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where for notational simplicity the following abbreviations have been introduced:

A =

√(
Vb −

∆m2
41

2E

)2

+ 4|Us4|2
∆m2

41

2E
Vb,

=

√
(Vb − Vres)

2 +

(
∆m2

41

2E

)2

− V 2
res, (4.16)

φ1 =
λ4 − λ3

2
L =

L

2
A, (4.17)

φ2 =
λ3

2
L =

L

4
(Vb +

∆m2
41

2E
−A), (4.18)

φ3 =
λ4

2
L =

L

4
(Vb +

∆m2
41

2E
+A). (4.19)

At this point it is interesting to note that A becomes maximal, when the MSW reso-

nance condition Vb = Vres is fulfilled. In the simplest two flavour case it corresponds

to equation 2.33. Here it is given by

Vres := −∆m2
41

2E
(2|Us4|2 − 1). (4.20)

Inserting the above expressions into equation 4.11 finally gives the result:

Pνµ→νµ = 1− 4
|Uµ4|4|Us4|2

1− |Us4|2
(

∆m2
41

2E )2

A2
sin2 φ1

−2
|Ue4|2|Uµ4|2

(1− |Us4|2)2

(
1 +

Vb − Vres

A

)
sin2 φ2

−2
|Ue4|2|Uµ4|2

(1− |Us4|2)2

(
1− Vb − Vres

A

)
sin2 φ3. (4.21)

Similarly one obtains the probabilities for the other oscillation channels: For the

νe → νe survival probability one just has to replace Ũµi with Ũei and obtains from

equation 4.11:

Pνe→νe = 1 +
(

4|Ũe4|4 + 4|Ũe2|2|Ũe4|2 − 4|Ũe4|2
)

sin2 φ1

+
(

4|Ũe2|4 + 4|Ũe2|2|Ũe4|2 − 4|Ũe2|2
)

sin2 φ2

−4|Ũe2|2|Ũe4|2 sin2 φ3. (4.22)
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Inserting the eigenvalues and entries of Ũ

|Ũe2|2 =
|Uµ4|2

1− |Us4|2
, (4.23)

|Ũe4|2 = |Ue4|2
(A+

∆m2
41

2E − Vb)2

4|Us4|2(A+
∆m2

41
2E )Vb + (A+

∆m2
41

2E − Vb)2
, (4.24)

finally leads to:

Pνe→νe = 1− 4
|Ue4|4|Us4|2

1− |Us4|2
(

∆m2
41

2E )2

A2
sin2 φ1

−2
|Ue4|2|Uµ4|2

(1− |Us4|2)2

(
1 +

Vb − Vres

A

)
sin2 φ2

−2
|Ue4|2|Uµ4|2

(1− |Us4|2)2

(
1− Vb − Vres

A

)
sin2 φ3. (4.25)

Similarly one can compute the transition probability for νµ → νe:

Pνµ→νe = −4Ũµ2Ũ
∗
e2Ũ

∗
µ4Ũe4 sin2 φ1

+4
(
Ũµ2Ũ

∗
e2Ũ

∗
µ4Ũe4 + |Ũµ2|2|Ũe2|2

)
sin2 φ2

+4
(
Ũµ2Ũ

∗
e2Ũ

∗
µ4Ũe4 + |Ũµ4|2|Ũe4|2

)
sin2 φ3 (4.26)

= −4
|Ue4|2|Uµ4|2|Us4|2

1− |Us4|2
(

∆m2
41

2E )2

A2
sin2 φ1

+2
|Ue4|2|Uµ4|2

(1− |Us4|2)2

(
1 +

Vb − Vres

A

)
sin2 φ2

+2
|Ue4|2|Uµ4|2

(1− |Us4|2)2

(
1− Vb − Vres

A

)
sin2 φ3. (4.27)

In the first step we used the fact that the product Ũµ2Ũ
∗
e2Ũ

∗
µ4Ũe4 is real-valued. This
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can be seen by writing

Ũµ2Ũ
∗
e2Ũ

∗
µ4Ũe4 =

 1√
1 +

|Uµ4|2
|Ue4|2

 ·
− 1√

1 +
|Uµ4|2
|Ue4|2

U∗µ4

U∗e4

∗

·

Uµ4
2

∆m2
41

2E VbU
∗
s4√

AVb

(
A− ∆m2

41
2E + Vb

)(
A+

∆m2
41

2E + Vb

)

∗

·

Ue4 2
∆m2

41
2E VbU

∗
s4√

AVb

(
A− ∆m2

41
2E + Vb

)(
A+

∆m2
41

2E + Vb

)
 (4.28)

=
−|Ue4|2|Uµ4|2

|Ue4|2 + |Uµ4|2
4
(

∆m2
41

2E

)2
Vb|Us4|2

A
(
A− ∆m2

41
2E + Vb

)(
A+

∆m2
41

2E + Vb

) .(4.29)

4.4 Numerical calculation

To verify the validity of the analytical calculations of the previous section, the exact

calculation is performed numerically. The following procedure is also used for the

phenomenological analysis in chapter 5 the to compute the oscillation probabilities.

We start with the complete effective Hamiltonian

Hflavour
eff =

1

2E
U


0 0 0 0

0 ∆m2
21 0 0

0 0 ∆m2
31 0

0 0 0 ∆m2
41

U † +


VCC 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Vb

 (4.30)

and diagonalize it numerically. The resulting unitary matrix Ũ and the eigenvalues

λi, satisfying the relation

Hflavour
eff = Ũdiag (λ1, λ2, λ3) Ũ † (4.31)

can now be used to compute the oscillation probability according to equation 4.7.

Note that the matter potential VNC can be absorbed in the definition of Vb. Since

VNC is proportional to the neutron number and Vb is proportional to the nucleon

number, this is not quite correct in the case of varying matter composition. However,

one can replace Vb in the final result with Vb − VNC if the potentials are of the same
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order of magnitude and the change of the number of neutrons per nucleon becomes

non-negligible. For our purposes we assume a much larger baryonic potential so that

we can stick to the above form of the effective Hamiltonian.

In order to average out very fast oscillations that anyway would not be resolvable

by experiments, one can apply a low pass filter in the numerical calculation. It is

implemented by weighting each term in the oscillation probability with a Gaussian

factor. Starting with the general expression for the oscillation probability in vacuum

(equation 2.17) it is easy to show that

Pνα→νβ =
∑
i,j

U∗αiUβiUαjU
∗
βje
−iL

∆m2
ij

2E . (4.32)

Applying the filter leads to

Pνα→νβ =
∑
i,j

U∗αiUβiUαjU
∗
βje
−iL

∆m2
ij

2E · e−
(
L

∆m2
ij

2E

)2
·
σf (E)2

2E2 , (4.33)

where the width σf (E) can in general be energy dependent4. This method is natural

in the sense that the correct wave packet description would yield a term with the

same structure as a result of the momentum uncertainty in the neutrino detection

and production processes, see references [96, 97, 98] for more details.

It is also possible to apply a filter to the analytical calculations. Essentially one has

to perform the following replacement for each oscillation term, e.g. sin2 φi in equation

4.21:

sin2 φ 7→ 1

2

(
1− cos(2φ) · e−(2φ)2 σf (E)2

2E2

)
, (4.34)

see e.g. [98] for the derivation in the two flavour framework.

4.5 Discussion of the analytical approximation

In contrast to the analytical approximation by Karagiorgi, Shaevitz and Conrad in

[7], our approximation takes into account the third Hamiltonian eigenvalue obtained

from the diagonalization, see equation 4.12. In the KSC derivation, they have made

the approximation in the expressions for the eigenvalues A ≈ Vb +
∆m2

41
2E leading

4Typical values for σf (E) are a few percent of the energy corresponding to the energy uncertainty
in the detection process.
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to λ3 = 0 and λ4 = Vb +
∆m2

41
2E . The oscillation phases then become φ1 = φ3 =

L
2

(
Vb +

∆m2
41

2E

)
and φ2 = 0. With this approximation the complete term proportional

to sin2 φ2 (see equation 4.21) is neglected. As an example for of the implication of

this approximation, let us consider the νµ survival probability, equation 4.21. In the

limit of very large matter potential Vb �
∆m2

41
2E , |Vres|, which leads to A ≈ Vb, the

oscillation probability becomes approximately

Pνµ→νµ ≈ 1− 4
|Uµ4|4|Us4|2

1− |Us4|2

(
∆m2

41
2E

)2

V 2
b

sin2

(
L

2
Vb

)
−4
|Ue4|2|Uµ4|2

(1− |Us4|2)2 sin2

(
L

4
Vb

)
. (4.35)

The second term is suppressed by
(∆m2

41
2E /Vb

)2
and the amplitude of the third term

can in general be of order 1. Setting for example
∣∣Uµ4

∣∣2 =
∣∣Ue4∣∣2 = 0.05 gives

Pνµ→νµ ∼ 1− sin2

(
L

4
Vb

)
. (4.36)

Note that, as mentioned above, in the KSC approximations this term is neglected,

which is the leading order term in this parameter regime. For the KSC LSND/MiniBooNE

best fit values it even dominates over the atmospheric oscillation (see figure 4.1).

Their best fit parameters are Vb = 2 · 10−10 eV (ε ∼ 103), ∆m2
41 = 0.74 eV2 and∣∣Uµ4

∣∣2 =
∣∣Ue4∣∣2 = 0.05.

Figure 4.1 shows Pνµ→νµ for the numerical calculation, the KSC analytical approx-

imation as well as our approximation derived in the previous section. Here we have

applied a low pass filter (as introduced in section 4.4) with σf = 0.1 GeV in order to

average out very fast oscillations. The computation was done for the neutrino path

length of the MINOS near and far detector at the energy range MINOS is sensitive

to. The results clearly show that at the far detector for the KSC best fit value of

the matter potential the oscillation pattern is dominated by the term proportional

to sin2 φ2 (see equation 4.21) as discussed above. The KSC approximation therefore

holds only at the near detector. In the limit Vb = 0 (gray curves) the two analyt-

ical approximations coincide. Since the numerical calculation also accounts for the

standard mixing parameters, one can see the effect of the atmospheric oscillation,

which however is suppressed for large matter potentials Vb. At this point, we have to

mention that the KSC plot (figure 11 in [7]) can not fully be reproduced, although we

used the same analytical expressions and parameter values: The structure for Vb = 0,
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L = 735 km at higher energies slightly5 deviates from our plot.

On the other hand, at the MiniBooNE sensitive energy range, the KSC result

(figure 7 in [7]) can be reproduced as shown in figure 4.2. Here we have used again

the KSC best fit values, but this time applied no low pass filter in the calculation,

since there are no fast oscillations at that energy range. We have checked that the

numerical calculation yields the same result as our analytical approximation (since

in the standard scenario no νµ appearance is expected at MiniBooNE). Therefore

only the two analytical expressions are compared with each other. The figure shows

a large discrepancy at high energies in the anti-neutrino mode. The difference in

the neutrino mode is much smaller. The KSC fit is nevertheless useful, because the

rise at low energies is the relevant feature for explaining the MiniBooNE and LSND

anomalies. Note that Karagiorgi et al. used the MiniBooNE anti-neutrino data set

with 5.66 · 1020 protons on target (POT) from [95]. The data collection in the anti-

neutrino mode has continued in the meantime and the MiniBooNE collaboration has

presented a anti-neutrino data set containing events from 11.27 · 1020 POT [87]. In

our analysis presented in the next chapter we use the newer data set.

In summary of this chapter, we have introduced an interesting SM extension with

the potential to give a possible explanation not only for anomalies in neutrino oscil-

lation experiments, but also for signals found in current dark matter direct detection

experiments [8, 9]. We have derived approximate analytical expressions for the oscil-

lation probabilities offering a simple description of the new features introduced by the

baryonic neutrino model. We have seen that although the analysis by Karagiorgi et al.

is based on an analytical approximation, which does not give the correct result in the

whole parameter space, their work motivates a more detailed phenomenological anal-

ysis of the baryonic neutrino model, especially with respect to the LSND/MiniBooNE

anomalies (now including the current anti-neutrino data set), the MINOS long base-

line experiment as well as solar experiments.

In the next chapter we study the quantitative implications of the baryonic neutrino

model using the numerical calculation in the full four flavour framework. In this

context we find that the KSC best fit is excluded by the MINOS data.

5The KSC plot for Vb = 0, L = 735 km shows some oscillating structure, but the amplitude is
similar.
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Figure 4.1: The figure shows the analytical expressions for the νµ disappear-
ance probability derived in section 4.3 (lower left panel) for the KSC
LSND/MiniBooNE best fit values. It is compared to the approximation of
Karagiorgi, Shaevitz and Conrad (using equations 20 and 28 in [7]) that
they have used to test the compatibility of their LSND/MiniBooNE fit
with the MINOS neutrino disappearance experiment (lower right panel).
As one can see, their approximation is valid for the MINOS near de-
tector Lnear = 750 m and in the limit Vb = 0, but at the far detector
Lfar = 735 km with Vb = 2 × 10−10 eV there is a large discrepancy be-
tween these two approximations. In the upper panel the result of the
exact numerical calculation is shown using the full four flavour oscillation
framework with the standard oscillation parameter values taken from the
global analysis by Gonzales-Garcia et al. [60]. Here the essential differ-
ence compared to the approximation from section 4.3 is the effect of the
atmospheric oscillation parameters, which is suppressed if the new matter
potential is switched on.
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Figure 4.2: The figure shows the electron (anti-)neutrino appearance probability in a
beam of muon (anti-)neutrinos as function of energy. Solid curves corre-
spond to the neutrino mode, dashed curves to the anti-neutrino mode, i.e.
to a negative sign of the matter potential Vb. The neutrino path length
is chosen such that MiniBooNE would be sensitive to a possible neutrino
appearance in this energy range. The blue curves show the KSC approxi-
mation (equation 21 and 22 in [7]). It reproduces figure 7 in [7]. In green:
the result of our approximation, using equation 4.27. In the given param-
eter space, the exact numerical calculation (including the three flavour
standard scenario parameters) yields the same result. In gray: the oscil-
lation probability for Vb = 0, in this limit all three methods coincide.



Chapter 5

Phenomenological analysis of gauged

sterile neutrinos

In this section we study the phenomenological consequences of the previously intro-

duced baryonic neutrino model. For this purpose the impact of neutrino oscillation

measurements on the parameter space of this model is analysed. First the analy-

sis procedure for each experiment is introduced in detail and second we present the

results.

5.1 Analysis method

In order to extract limits from experimental data we start by assigning values to

the oscillation parameters of the theory and calculate what experiments would have

observed, if this particular parameter set was chosen by nature. We then compare this

prediction with the results of the measurements and get an answer to the question

wether or not this parameter choice is consistent with the data. In this way we scan

the parameter space using the χ2 function:

χ2 =
∑

energy bins {Ei}

(Ntheory(Ei)−Nexperiment(Ei))
2

σ2(Ei)
. (5.1)

The label “N” corresponds to the measured number of events or the oscillation prob-

ability Pνα→νβ (i.e. the ratio of the observed events and the no oscillation expectation
Nobserved
Nno osc

) respectively depending on the experimental data refered to. Ei is the energy

of the center of the i-th bin and σ(Ei) the experimental uncertainty at that energy.

In the following subsections it is explained how the predicted event spectra Ntheory

for the different experiments are computed.
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Figure 5.1: The event spectrum of the MINOS νµ and νµ disappearance measurement
is shown. In red: The MINOS prediction assuming no neutrino oscillation.
In blue: Our prediction assuming three flavour standard neutrino oscil-
lation. Dashed green curve: The oscillation probability Pνµ→νµ streched
by a factor of 540 (68) for the (anti-)neutrino mode. In black: The data
points measured by the MINOS experiment.

5.1.1 MINOS νµ and νµ disappearance

In our analysis we use the data of the MINOS muon neutrino mode with 10.71 · 1020

POT and the anti-neutrino mode with 3.36 · 1020 POT as presented in [81]. In figure

5.1 the experimental data as well as the MINOS no oscillation prediction are shown.

The blue line is computed with the method explained below and corresponds to the

prediction assuming standard three flavour oscillations with the values taken from

the global fit by Gonzalez-Garcia et al.1[60].

In order to compute the predicted events/GeV as function of L/E we include the

oscillation propability of the near and far detector Pnear, Pfar and account for the

energy smearing, matter effects and the background. For this purpose we have to

estimate the length of the neutrino path from the target to the near detector Lnear

and from the target to the far detector Lfar as well as the averaged matter densities

〈ρnear〉 and 〈ρfar〉.

1In the following we will refer to this parameter set as the standard scenario for neutrino oscillations.
However we set the CP violating phase to zero δ13 = 0, because this is still a valid assumption
and simplifies the analytical discussion.
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Neutrino path length and averaged matter density

For the far detector the length is given as Lfar = 735 km [78]. The density is esti-

mated with the help of the matter profile of the earth obtained from the Preliminary

Reference Earth Model (PREM) [99]. The first step is to average the density over

the neutrino path:

〈ρfar〉 =
1

Lfar

∫ Lfar

0
ρ (r(l)) dl =

2

Lfar

∫ Lfar/2

0
ρ (r(l)) dl. (5.2)

Using the cosine formula r2 = l2 +R2−2lR cosα and the relation cosα = Lfar/2
R yields

r(l) =
√
l2 +R2 − Lfarl (see figure 5.2) and one can perform a variable transformation

l→ r:

〈ρfar〉 =
2

Lfar

∫ R

√
R2−(Lfar/2)2

ρ(r)
d

dr

(√
r2 −R2 + (Lfar/2)2

)
dr. (5.3)

Discretising the integral leads to

〈ρfar〉 =
∑
i

ρ(ri)
√
r2 −R2 + (Lfar/2)2

∣∣∣r=ri
r=ri−1

, (5.4)

where we use the stepsize in the sum over r as given by the PREM profile. Finally

the result is 〈ρfar〉 = 2.36 g
cm3 .

Compared to the neutrino path length for the far detector, the estimate of the

path length for the near detector Lnear is more involved. Here the distance from

the target to the near detector is Ltarget = 965 m so that the decay length of the

pions become important. Only pions decaying inside the Lpipe = 675 m long decay

pipe [78] contribute to the neutrino production otherwise they are stopped by the

absorber. Therefore the neutrino path length Lnear has to be estimated by calculating

the average decay length of those pions decaying inside the decay pipe: Consider a

pion with the velocity v produced by an incoming proton hitting the target. The

probability density f that it decays after a distance s is proportional to f(s) ∼ e−
s
τγv ,

where τ is the mean lifetime of the pion and γ the Lorentz factor. The probability

that one of these pions decays in a certain region ∆s can then be calculated as∫
∆s
f(s)ds = α−1

∫
∆s
e
− s
τγv ds, (5.5)

where the normalization α = τγv(1−e−Lpipe/(τγv)) is chosen such that
∫ Lpipe

0 f(s)ds =
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Figure 5.2: This figure illustrates the geometrical arguments for the calculation of
the mean desity out of the PREM profile. L is the path length of the
neutrino beam between the target and the far detector, R is the radius of
the earth and r/l gives the current position of the neutrino with respect to
the distance of the center of the earth/with respect to the near detector.

1. Now it is straightforward to calculate Lnear, which is the average distance covered

by the muon neutrinos from the point of production until they reach the near detector:

Lnear = Ltarget −
∫ Lpipe

0
f(s)sds

= Ltarget − τγv −
Lpipe

1− e
Lpipe
τγv

. (5.6)

The momentum of the parent pions is on average pπ ∼ 4 − 5 GeV [100]. Using this

information, the relation vγ = c pπmπ as well as the values of the pions mass mπ and

mean lifetime τ we finally obtain the estimate Lnear = 763 m.

For the average matter density on the neutrino path from the target to the near

detector 〈ρ〉near we use a rather rough estimate. The decay pipe is 675 m long. After

the pions decay, the neutrinos pass through the rest of the evacuated decay pipe

and then travel Ldirt = 290 m through the earth with roughly the density of 3 g
cm3 .

Since the average neutrino path is approximately Lnear = 763 m as argued above, we

estimate the density to be around 〈ρ〉near = Ldirt/Lnear · 3 g
cm3 .

Computation of the predicted events

The analysis of the MINOS data with respect to the new model works as follows: We

start with the MINOS no oscillation prediction for the measured number of events
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as function of energy Nno osc and subtract the background Nbg. The result has to be

multiplied with the neutrino survival probability, which is given by the ratio Pfar
Pnear

.

The reason is that MINOS assumes Pnear = 1. But in the case of a non-negligible

neutrino disappearance at the near detector, the MINOS event prediction would be

wrong. Therefore we compensate this effect by dividing by Pnear. In this way we

obtain the theoretically predicted number of signal events for the i-th energy bin:

Nth(Ei) = (Nno osc(Ei)−Nbg(Ei))
Pfar(Ei)

Pnear(Ei)
. (5.7)

In the caclulation of the oscillation probabilities we apply a low pass filter in order

to average out very fast oscillations that would not be resolvable by the experiment

and would lead to aliasing effects when evaluating the theoretical prediction at de-

screte points. The filter is implemented by weighting each summand in the oscillation

probability with a Gaussian factor as it is described in section 4.4. The width is cho-

sen to be σf (E) = 0.06E. The calculations of the neutrino oscillation probabilities

for the χ2 analysis including a low pass filter was made with the help of GLoBES

[101, 102].

Before one can compare the result of equation 5.7 to the experimental data, the

energy smearing has to be taken into account. Due to the statistical error in the

energy reconstruction of detected events the measured event spectrum is distorted.

Especially peaks and minima are affected, because it is more likely that events of

true energy near a maximum are wrongly assigned to a different energy than those of

true energy near a minimum. This leads to a smeared reconstructed spectrum. For a

quantitative description we assume the uncertainties in the energy measurements to

be Gaussian distributed. In this case the probability density to detect a neutrino of

true energy E′ as an event of energy E is given by

f(E,E′) =
1

σ(E′)
√

2π
exp

(
−(E − E′)2

2σ2(E′)

)
, (5.8)

where the energy uncertainty σ(E′) = 0.2 GeV
√
E′/GeV is chosen such that the

MINOS standard oscillation prediction can be reproduced up to sufficient accuracy.

With this information we obtain the reconstructed event spectrum from the theoret-

ically predicted events by folding it with the probability density f(E,E′) and adding

the background again:

Nrec(E
′) =

∫ Emax

0
f(E,E′)Nth(E)dE +Nbg(E′) (5.9)
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The discretised version then reads:

Nrec(Ei) =
∑
j

(Nno osc(Ej)−Nbg(Ej))
Pfar(Ej)

Pnear(Ej)
f(Ei, Ej) +Nbg(Ei) (5.10)

with the smearing matrix

f(Ei, Ej) =

∫ Ei+∆Ei/2

Ei−∆Ei/2
f(E,Ej)dE. (5.11)

As bin size for the unsmeared binning, i.e. the binning of the energy Ej in the previous

equations, we use 0.25 GeV. We have checked that smaller bin sizes do not lead to

further improvements in the results.

In addition to the individual statistical errors for each data point we include an

overall systematic error of 10% in the calculation of χ2, i.e. we replace σ(Ei) in

equation 5.1 with σ(Ei) = σstat(Ei) + 0.1 · Nexperiment(Ei). This is a conservative

approach in order to avoid bounds which are too strict. The choice of the amount

of systematic error as well as the statistical error (see equation 5.8) included in our

analysis is done in view of a χ2 analysis in a simple two flavour approximation regime,

where the MINOS analysis presented in [103] is used as reference. We also checked

that our numerical calculation in the limit of no baryonic potential are in accordance

with the limits obtained from an analysis of the MINOS data with sterile neutrinos

as presented in [6].

5.1.2 MiniBooNE

Our computation of the predicted events for the MiniBooNE experiment is rather

simple compared to the calculation of the MINOS prediction. Here we use the νµ → νe

neutrino appearance results in terms of the event ratio Nobserved
Nexpected

with 6.46 · 1020 POT

in neutrino mode and 11.27 ·1020 POT in anti-neutrino mode [87]. Therefore we only

have to compute the oscillation probability P (νµ → νe)theory in order to obtain a

reasonable estimate for the event ratio. As in the MINOS case we apply a low pass

filter in the calculation of Ptheory and we need to estimate the neutrino path length

as well as the average matter density on that path. Figure 5.3 shows the MiniBooNE

neutrino oscillation probability data compared to the prediction for the three flavour

standard oscillation parameters and for the new model including a fourth neutrino.

Like in the MINOS calculation we also have to estimate the density and the neutrino

path length in order to compute the oscillation probability. The length is approx-
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Figure 5.3: The MiniBooNE appearance data (in black) is compared to the standard
scenario prediction (back line) and to the prediction including a baryonic
neutrino for a matter potential Vb with the same sign as the standard
potential VCC (in blue) and with a different sign (in red). The standard
scenario predicts a zero transition probability for the MiniBooNE relevant
range of L/E. The oscillation probability in the new scenario is shown
for the best fit values, see table 5.2.

imately equal to the distance from the target to the detector L = 541 m, because

the decay pipe is only 50 m long [86] and therefore the decay lengths of the neutrinos

parent particles (pions and kaons) have only a - for our purpose - negligible impact on

the neutrino path length. Likewise for the matter density we use the rough estimate

〈ρ〉 ∼ 3 g
cm3 .

5.1.3 Solar experiments

For the comparison with solar neutrino oscillation experiments we use the data set

taken from a recent Borexino publication [104], see figure 5.4. In these results data

from Super-Kamiokande, SNO and other solar measurements are included.

The numerical computation is carried out in two ways: A more exact calculation

with the help of GLoBES [101, 102] using an extension for the calculation of solar

neutrinos [9] as well as a calculation using the adiabatic approximation, which is

explained in the next section. As it turns out, the adiabatic calculation is sufficient

for our purposes, so that the exact calculation is only used as a cross check in order

to ensure the validity of the approximation. Due to the fact that the approximation

is less computational expensive, it is the method of our choice. Figure 5.5 shows the
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Figure 5.4: The Borexino summary of important solar neutrino oscillation results.
This figure shows the neutrino oscillation probability Pee ≡ Pνe→νe as
function of energy, measured for different solar neutrino production pro-
cesses. The gray band corresponds to a theoretical prediction made within
the standard framework of neutrino oscillation. The figure is taken from
[104].
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Figure 5.5: This figure shows the data points of solar neutrino oscillation experiments
and the predictions for the standard scenario (in black) as well as for the
new baryonic neutrino model. Here the best fit values for ε > 0 (in blue)
and ε < 0 (in red) are used, see table 5.2. For a discussion about the
features of the ε < 0 best fit see section 5.2.4.

prediction for the solar neutrino oscillation obtained by the adiabatic calculation and

compares it to the data points. In this plot the curves are shown for the best fit of

the baryonic neutrino model as well as using the standard scenario parameters.

adiabatic calculation

The adiabatic approximation for the calculation of the solar neutrino oscillation prob-

ability works as follows. We start with the Schroedinger equation in flavour space:

i
d

dt
|να(t)〉 =

∑
β

Hαβ(t) |νβ(t)〉 =
∑
β,i

(
Uαi

∆m2
i1

2E
U∗iβ + δαβVβ(t)

)
|νβ(t)〉 . (5.12)

The effective Hamiltonian Hαβ(t) is given by the contribution of the mixing matrix

U , the eigenvalues in vacuum
∆m2

i1
2E as well as the time dependent matter potential

Vα(t), which in general can be different for each flavour α. To solve the equation it

is necessary to diagonalize the matrix on the left hand side of the equation, corre-

sponding to a basis change into the so called matter basis or matter eigenstates. Note
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that this is now a third basis, which in matter is different from the flavour and mass

basis, as we have discussed in section 2.3.2. We denote this new basis with a tilde

and introduce the time dependent unitary matrix Ũ(t) with the properties:

|να(t)〉 =
∑
i

Ũ∗αi(t) |ν̃i(t)〉 and (5.13)

H̃ij(t) = δijẼi(t) =
∑
α,β

Ũiα(t)Hαβ(t)Ũ∗βj(t), (5.14)

where Ẽi are the eigenvalues of the effective Hamiltonian. By multiplying from the

right with Ũiα(t), summing over α and using equations 5.13 and 5.14, we obtain from

equation 5.12:

∑
α

Ũiα(t)i
d

dt

∑
j

Ũ∗αj(t) |ν̃j(t)〉

 =
∑
α

Ũiα(t)
∑
β

Hαβ(t)
∑
j

Ũ∗βj(t) |ν̃j(t)〉 (5.15)

⇔
∑
α,j

[
Ũiα(t)Ũ∗αj(t)

d

dt
+ Ũiα(t)

d

dt

(
Ũ∗αj(t)

)]
|ν̃j(t)〉 =

∑
j

δijẼi(t) |ν̃j(t)〉 . (5.16)

This is a set of coupled differential equations, which in general can not be solved

analytically [11]. But if the matter potential changes only slowly with time, such

that Ũiα
d
dt Ũ

∗
αj ≈ 0, the equation decouples and simplifies to

d

dt
|ν̃i(t)〉 =

∑
j

δijẼi(t) |ν̃j(t)〉 = Ẽi(t) |ν̃i(t)〉 . (5.17)

Here we have used the unitarity condition ŨiαŨ
∗
αj = δij . Now one can integrate this

differential equation and obtain for a neutrino of flavour α produced at time t = 0

and detected at time t:

|να(t)〉 =
∑
i

Ũ∗αi(t) |ν̃i(t)〉

=
∑
i

Ũ∗αi(t) exp

[
−i
∫ t

0
Ẽi(t)dt

]
|ν̃i〉 . (5.18)

The oscillation probability for solar neutrinos Pνe→νe can now be calculated by ac-

counting for the incoherence of the neutrino state when reaching the detector at the
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earth. This is done according to equation 2.19:

Pνe→νe =
∑
i

Pνe→ν̃i · Pν̃i→νe

=
∑
i

|〈ν̃i|νe(t)〉|2 · |〈νe|ν̃i〉|2

=
∑
i,j

|Ũ∗ei(t) exp

[
−i
∫ t

0
Ẽi(t)dt

]
|2 · |〈ν̃j |Ũej(0)|ν̃i〉|2

=
∑
i

|Ũei(t)|2 · |Ũei(0)|2. (5.19)

For the numerical computation this result means that we have to diagonalize the

effective Hamiltonian given by equation 5.12, in order to obtain the mixing matrix

Ũei(0). For simplicity we assume that the neutrinos are produced at time t = 0 in the

center of the sun. Therefore the corresponding value for the density is ρsun = 152.9 g
cm3

and the number of electrons per nucleon Ye = 0.5 · (1 + # hydrogen atoms
# atoms ) ≈ 0.677

according to the solar standard model BS’05 (OP) [20]. For Ũei(t) we use the vacuum

mixing matrix, omitting matter effects of the earth. In the numerical calculation of

the solar oscillation predictions we average over four equidistant points per energy

bin in order to compare the theoretical results with the measurements shown in figure

5.4. We have checked that increasing this number of evaluation points per bin does

not lead to substantial improvements in the results.

adiabaticity check

This adiabatic approximation we have used in the previous section is well tested in the

framework of standard three flavour neutrino oscillations. However this changes with

introducing a matter potential, which can be several orders of magnitude higher than

the Fermi potential introduced in section 2.3.1. The approximation is only valid,

if the potential changes slowly enough along the neutrino path. Quantitavely this

condition corresponds to Ũiα
d
dt Ũ

∗
αj � 1, which is a necessary condition that equation

5.17 is valid. In the two flavour regime it can be expressed in terms of the adiabaticity

parameter γ, which has to satisfy γ−1 � 1. For two neutrinos (νe , να)T with α = µ, τ

it is given by [11]

γ−1 =
sin 2θ∆m2

2E

|λ1 − λ2|3
·
∣∣∣∣dVCC

dt

∣∣∣∣ (5.20)
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with the difference of the energy eigenvalues λ1−λ2 given by equation 2.30. In order

to check if the adiabaticity condition is still fulfilled for a matter potential of higher

order of magnitude we have to calculate γ−1 for the two-neutrino system (νe , νs)
T .

Here the relevant effective Hamiltonian is

Hflavour = U

(
0 0

0 ∆m2

2E

)
U † +

(
VCC 0

0 Vb

)
. (5.21)

As we have seen in equation 2.17 adding terms proportional to the unit matrix does

not change the oscillation probability. Hence the effective Hamiltonian can also be

written as

Hflavour = U

(
0 0

0 ∆m2

2E

)
U † +

(
VCC − Vb 0

0 0

)
. (5.22)

This leads us to the desired formula for the adiabaticity parameter

γ−1 =
sin 2θ∆m2

2E

|λ1 − λ2|3
·
∣∣∣∣dVCC

dt
− dVs

dt

∣∣∣∣. (5.23)

Note that we omit the neutral current potential VNC, since it can be absorbed in the

definition of Vb. The time dependence of the matter potentials can be calculated with

the help of the solar standard model BS’05 (OP) [20], which provides information

about ρ and Ye as function of the radial distance to the center of the earth r. In this

way we compute the time derivatives

dVCC

dt
=
dVCC (ρ(r))

dr
≈
√

2GF
mN

· ∆Ye(r)ρ(r) + Ye(r)∆ρ(r)

∆r
(5.24)

and

dVb
dt

=
dVb (ρ(r))

dr
≈
√

2GF
mN

· ε∆ρ(r)

∆r
. (5.25)

Note that in contrast to the Fermi potential VCC the baryonic potential Vb is not

given by the interaction with electrons, but with every nucleon. Therefore its time

derivative is given only by the change of the matter density.

For our purposes the interesting values for Vb are at least one order of magnitude

higher than VCC, i.e |ε| & 10 and the electron number per nucleon Ye is always smaller
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than 1. This is why we have

Ye(r)

∣∣∣∣∆ρ(r)

∆r

∣∣∣∣� ∣∣∣∣ε∆ρ(r)

∆r

∣∣∣∣. (5.26)

We have checked explicitly for all radial positions in the sun that this is also true for

the second term of the right hand side of equation 5.24:

ρ(r) ·
∣∣∣∣∆Ye(r)∆r

∣∣∣∣� ∣∣∣∣ε∆ρ(r)

∆r

∣∣∣∣. (5.27)

Putting all this together we obtain

γ−1 =
sin 2θ∆m2

2E

√
2GF
mN

∣∣ε∆ρ(r)
∆r

∣∣[(
∆m2

2E cos 2θ +
√

2GF
mN

ρ(r)ε
)2

+
(

∆m2

2E

)2
sin2 2θ

] 3
2

. (5.28)

The results are shown in figure 5.6, where the inverse adiabaticity parameter is

plotted as function of the density in the sun. The computation is done using different

values for the vacuum mixing angle θ, the ratio of the mass square difference and the

energy ∆m2

2E as well as the baryonic matter potential Vb, meaning different values for

ε. The functional dependence can be understood in the following way: If cos 2θ and

ε have the same sign, there is a resonant increase in γ−1(ρ). It peaks at the density

minimizing the denominator |λ1 − λ2|3. This resonance density is

ρresonance =
∆m2 cos 2θ

2E
√

2GF
mN

ε
(5.29)

and corresponds to the MSW resonance introduced in section 2.3.2. Assuming positive

ε the resonance condition can only be fulfilled if sin2 θ > 0.5 and for negative ε only if

sin2 θ < 0.5. With increasing ε as well as for decreasing ∆m2

2E the resonance position is

shifted towards lower densities. However the absolute value of γ−1 increases with ε and

decreases with ∆m2

2E , because ε appears also in the numerator and ∆m2

2E appears with

higher power in the denominator than in the numerator. In the case of ε and cos 2θ

having the same sign, γ−1 is not affected by resonant behaviour. It increases with

increasing ρ due to the rise in the density change |∆ρ∆r | (see figure 5.7) until ∆m2

2E cos 2θ

becomes about as large as
√

2GFρε/mN . Then
√

2GFρε/mN in the denominator

starts dominating and the inverse adiabaticity parameter drops down.

In figure 5.7 the density change |∆ρ∆r | is shown, again using the solar standard model.
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Figure 5.6: The figure shows the inverse adiabaticity parameter as function of the
density of the sun. It is shown for several values of θ, ε and ∆m2

2E . Since
γ−1 always stays below 1 the adiabatic assumption is justified.
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Figure 5.7: The figure shows the change of density inside the sun according to the
solar standard model BS’05 (OP) [20]. The change in density increases
with decreasing radius. At about 0.2 g/cm3 there is a little kink and the
density change falls down abruptly at the inner layers of the sun.

It explains the flatter increase at the beginning, the little kink at ρ ∼ 0.2 g/cm3 and

the sharp decrease towards the inner region of the sun.

These results clearly justify the adiabatic approximation, since the inverse adi-

abaticity parameter stays orders of magnitude below 1 even for parameter values

satisfiyng the resonance condition, equation 5.29. Only for very large mixing angles

θ near to π/2, γ−1 can become close to 1. In this case sin2 θ is very small. If now

the resonance condition is fulfilled, i.e. if the neutrino passes the resonance density

inside the sun, the denominator of equation 5.28 would become proportional to sin3 θ

and thus γ−1 could increase to values of order 1. However such a large mixing angle

is not in the interesting regime of the baryonic neutrino model.

Note that this situation is similar in the ε < 0 case for very small mixing angles

near to 0, what also would lead to small sin2 θ values. The resonance condition can

then be satisfied, since cos 2θ and ε woulds have the same sign. In order to check

wether the adiabatic assumption is still justified we show in figure 5.8 the results

for the regime, where the baryonic potential has a different sign than the charged

current potential (ε < 0). Here the results are shown only for small mixing angles up

to sin2 θ = 0.001, which is the lower limit in our analysis.
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Figure 5.8: The figure shows the inverse adiabaticity parameter as function of the
density of the sun, here in the ε < 0 regime. It is shown for several values
of θ, ε and ∆m2

2E , especially for small mixing angles. Since γ−1 always stays
below 1 the adiabatic assumption is still justified.
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5.2 Results

The parameter space of the baryonic neutrino model was analysed with the methods

explained in the previous section. The results are summarized in figures 5.9 and 5.10

and are presented as contour plots showing lines of constant χ2 − χ2
min. Here χ2

min is

the minimal χ2 value, i.e. that of the best fit point. Assuming Gaussian distributed

errors each χ2 value can be assigned to a specific confidence level, which corresponds

to a certain probability at which parameters of higher χ2 value are exluded. Each

figure shows the dependence of two parameters, where the remaining ones are either

fixed at some values or it has been minimized over them. The minimization procedure

works in the following way: First we calculate χ2 in a given region of the parameter

space. Then we choose two parameters, which we want to examine and extract those

χ2 values that are minimal under the remaining parameters. In this way the χ2

contour plots answer the question: “Assuming that the underlying model is true and

that errors are Gaussian distributed, which regions of the parameter space of that

model can be excluded and at what confidence level?”

At this point let us mention that the best fit point of the analysis by Karagiorgi,

Shaevitz and Conrad [7] is already excluded by MINOS and solar measurements at

99% confidence level. In figure 5.9 this point is indicated with a black triangle. Their

best fit values are [7]

∆m2
41 = 0.47 eV2, sin2 2θµe = 0.01, sin2 2θµµ = 0.188, Vb = 2× 10−10 eV. (5.30)

In our parametrization it corresponds to2

∆m2
41 = 0.47 eV2, sin2 θ24 = 0.052, sin2 θ14 = 0.05, ε =

2645.5

ρ/ g
cm3

eV. (5.31)

In the following we explain the parameter choice for the analysis in detail and

discuss the results of the χ2 scan for each experiment. Afterwards we comment on

the impact of θ34 6= 0 on the solar analysis.

2Note that in our analysis we have fixed sin2 2θ14 = 0.12, i.e. sin2 θ14 = 0.031, in order to explain
the reactor anomaly. This slightly differs from the actual best fit value, but has a negligible
impact on the oscillation probability with respect to the MiniBooNE results. For the purpose of
comparison with our analysis, we neglect this difference.
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Figure 5.9: The figure shows the χ2 − χ2
min 90% and 99% confidence level contours

for the MINOS, MiniBooNE and solar analysis. Here the parameter space
with ε > 0 has been analysed with respect to ε, ∆m2

41 and sin θ24
2. In each

panel the contours are shown as function of two parameters, where we have
minimized over the third one. In gray: Limits from the the MINOS νµ and
ν̄µ disappearance data. In blue: Limits from solar experiments. Coloured
regions: Allowed region by the MiniBooNE νµ and ν̄µ disappearance data.
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Figure 5.10: The figure shows the χ2 − χ2
min 90% and 99% confidence level contours

for the MINOS, MiniBooNE and solar analysis. Here the parameter
space with ε < 0 has been analysed with respect to ε, ∆m2

41 and sin θ24
2.

In each panel the contours are shown as function of two parameters,
where we have minimized over the third one. In gray: Limits from the
the MINOS νµ and ν̄µ disappearance data. In blue: Limits from solar
experiments. Coloured regions: Allowed region by the MiniBooNE νµ
and ν̄µ disappearance data..



68 5 Phenomenological analysis of gauged sterile neutrinos

sin2 θ12 sin2 θ23 sin2 θ13 ∆m2
21 [eV2] ∆m2

31 [eV2] δCP13 , δCP14 sin2 2θ14 sin2 θ34

0.302 0.413 0.0227 7.5 · 10−5 2.473 · 10−3 0 0.12 0

Table 5.1: The table shows the values of all parameters that are fixed for the χ2

analysis.

5.2.1 Parameter choice

For the following discussion we use this parametrization for the mixing matrix U :

U = R34 ·R24 ·R14 ·R23 ·R13 ·R12, (5.32)

where Rij are 4 × 4 rotation matrices given by angles θij acting in the ij plane.

None of this matrices contain complex phases, because we set them to zero in our

calculations.

For the χ2 analysis we fix the three flavour standard oscillation parameters θ12, θ23,

θ13, ∆m2
21 and ∆m2

31 at the values given by a recent global fit by Gonzalez-Garcia et

al. [60], where we use the best fit “Free Fluxes and RSBL”. Since there exist no clear

experimental evidence yet that the CP violating phase is non-zero, we set δCP13 = 0.

For simplicity we also assume δCP14 = 0 as well as normal hierarchy. The mixing angle

θ14 is chosen such that the flux deficit of the rector experiments can be explained, i.e.

we choose sin2 2θ14 = 0.12 according to the discussion about the reactor anomaly in

section 3.3.2, see also figure 3.3. MINOS and MiniBooNE are not sensitive to θ34 [6],

thus we set it for our analysis to zero. The dependence of the solar experiments on θ34

is discussed in section 5.2.4. In table 5.1 the values of all parameters that we have fixed

for the parameter scan are summarized. The remaining three parameters θ24, ε and

∆m2
41 are scanned over. Here we write the matter potential for the baryonic neutrino

in the form Vb = ε
√

2GFρ/mN with ε being a measure for the magnitude of the new

matter potential compared to the standard charged current potential. Since Vb can in

principal be of either sign, we perform the analysis for ε > 0 as well as for ε < 0. The

parameters are varied in the ranges |ε| = 1 − 32000, ∆m2
41 = 0.01 eV2 − 10 eV2 and

sin2 θ24 = 0.001− 1. The resulting best fit values of the χ2 minimization are listed in

table 5.2.

5.2.2 MINOS limits

The limits obtained from the MINOS neutrino and anti-neutrino data sets [81] are

shown in figures 5.9 and 5.10. The gray, dashed line corresponds to the 90% and the
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ε ∆m2
41 [eV2] sin2 θ24 χ2

min/d.o.f.

MINOS ε > 0 16.9 0.014 0.0024 37.7/49
ε < 0 −19.2 0.037 0.00083 36.1/49

MiniBooNE ε > 0 30634 0.316 0.01 16.1/20
ε < 0 −32000 0.116 0.748 16.4/20

Solar ε > 0 37313 0.00033 0.204 0.57/3
ε < 0 −38.0 0.013 0.046 0.44/3

Table 5.2: The best fit points for the different data sets. For the MiniBooNE ε < 0 and
the solar ε > 0 analysis the values for ε are located outside the boundary
of the analysis region. In both cases χ2 hardly changes with increasing |ε|.

gray, solid line to the 99% confidence level contour. In the following we give a short

description of each of the three panels:

• The sin2 θ24 - ∆m2
41 plot:

Let us first consider the lower left panel of figure 5.9, i.e. for ε > 0. The figure

shows that large values sin2 θ24 > 10−1 are exluded.

At ∆m2
41 values for which the muon neutrino disappearance is enhanced at the

MINOS most sensitive energies (around 3 GeV), the exclusion bound is shifted to-

wards lower sin2 θ24 values. This results in an oscillation pattern as one can see in

the lower left panel of figure 5.9, where χ2 have been minimized with respect to ε.

A similar structure can be observed in sin2 θ24 - ∆m2
41 contour plots of other ster-

ile neutrino analysis like in reference [6], where the two flavour oscillation minima

and maxima become visible. At ∆m2
41 ≈ 0.005 eV2 the disappearance is maximal at

neutrinos energies of 3 GeV. The reason is that at that energy the first minimum

of the νµ and ν̄µ survival probability is given by π
L

2E
∆m2

41
= 1, as discussed in section

2.2.1. For ∆m2
41 ≈ 0.005 eV2 this is fulfilled at the far detector. With rising ∆m2

41

the oscillation becomes faster until it can not longer be resolved (at ∆m2
41 ≈ 0.2 eV2).

At about 3 eV2 the mass squared difference ∆m2
41 becomes large enough to suppress

oscillations. Therefore the exclusion limit is shifted to higher sin2 θ24 values. Since

the far detector is ∼ 103 times further away from the source than the near detector, at

about 3 eV2 the MINOS near detector becomes sensitive to the disappearance. This

is why χ2 drops again for larger ∆m2
41.

For the ε < 0 analysis, this behaviour is similar with the exception of the parameter

region ∆m2
41 ∼ 0.02 eV2 and sin2 θ24 ∼ 2 ·10−2. At that region is a stronger exclusion

limit, as can be seen in figure 5.10, lower left panel. This difference to the ε > 0 case

is due to the much higher statistics in the neutrino than in the anti-neutrino mode of
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the MINOS data set. Therefore, MSW resonances due to the new matter potential

only becomes visible in the ε < 0 case, where the resonance condition can be met

for small mixing angles sin2 θ24 < 0.5. At those values for ∆m2
41 and sin2 θ24 the

resonance sits at small ε. As a consequence, χ2 is not only large for large ε, but also

for the low ε range due to the resonance position. This means that although in this

plot it is minimized over ε with respect to χ2, this resonance effect becomes visible.

• The ε - sin2 θ24 plot:

The MINOS limit on sin2 θ24 obtained from the upper left panel of figure 5.9 and

5.10 respectively, is essentially the same as for the sin2 θ24 - ∆m2
41 plane. Indepen-

dently of ∆m2
41 and ε, the muon neutrino disappearance for high sin2 θ24 would be

too large to be compatible with the MINOS results. The structure at sin2 θ24 ∼ 0.02,

ε ∼ 10 is due to the MSW resonance and can be understood in the following way. As

shown in the lower left panel of figure 5.11, for ε = 10 the resonance position is inside

the MINOS energy region. This is only avoided for ∆m2
41 & 0.1 eV2 or sin2 θ24 & 0.5,

what is also not compatible with MINOS leading to large χ2 values. Hence, there is

a stronger bound for ε ∼ 10. As one would expect, this effect is enhanced, when the

resonance appears in the neutrino sector, as one can see in comparing the ε > 0 and

ε < 0 cases.

• The ε - ∆m2
41 plot:

The limit in the ε - ∆m2
41 projection is dominated by χ2 values corresponding

to very low sin2 θ24, because larger values would yield observable disappearance (as

discussed for the sin2 θ24 - ∆m2
41 plot: for ∆m2

41 ≈ 0.005 eV2 the disappearance is

maximal at 3 GeV, for rising ∆m2
41 the oscillation averages out and yields almost

energy independent disappearance). This means that the MINOS limits in the lower

right panel of figures 5.9 and 5.10 are given by sin2 θ24 = 0.001, which is the lower

bound in our analysis. In this sense it is useful to consider the resonance condition

for this sin2 θ24 value: The region between the red lines in the lower right panel of

figure 5.11 corresponds to those ε and ∆m2
41 values, for which the resonance position

is inside the MINOS energy range. It shows that the structures in the ε - ∆m2
41 plane

can be understand in the following way.

For positive ε the resonance is only in the anti-neutrino mode and one could expect

that it has almost no impact on the oscillation, but this is not the case. At values for

the matter potential comparable large as ∆m2
41/(2E), one of the phases φ2 (equation

4.18) or φ2 (equation 4.19) can become of the order 1, because A contributes with a
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Figure 5.11: The figure shows the resonance position Vres shown as contours for dif-
ferent values of ε,∆m2

41, sin
2 θ24 and the energy E. The dashed lines are

computed for E = 20 GeV and the solid lines for E = 2 GeV. This means
that for the whole parameter range in between the dashed and solid lines
of the same colour, the resonance condition is fulfilled for energies inside
the MINOS sensitive range. The resonance position is computed in the
two flavour approximation, equation 4.20. For the computation of Vres,
we use the matrix element given in our analytical approximation. In our
parametrization it is given by |Us4|2 = cos2 θ24 cos2 θ14, where we have
set sin2 2θ14 = 0.12 and use the average density ρfar for the MINOS far
detector (as computed in section 5.1.1). The MINOS experiment is sen-
sitive to oscillation effects in the energy range from 2 GeV up to 20 GeV
(compare to figure 5.1). Thus, for parameter values in between the dot-
ted and the solid line of the same colour, the MSW resonance affects the
MINOS simulation.
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minus sign to φ2 and with a plus sign to φ1. Therefore the oscillation become again

visible, which explains the complicated oscillation structure in the upper right corner.

In the ε < 0 case, the resonance condition is fulfilled and thus leads to an enhance-

ment of these oscillation structures, because now not only the oscillation phases, but

also the amplitude are enhanced due to the resonance (compare to equation 4.21).

5.2.3 MiniBooNE limits

The MiniBooNE limit in the sin2 θ24 - ∆m2
41 plane is essentially given by the two

flavour vacuum oscillations, since the matter effect has only a small impact on such

short baselines. Therefore the allowed region is similar to those obtained in the

MiniBooNE two flavour analysis [87]. However for large matter potentials, one can

see that the allowed region in the ε - ∆m2
41 and ε - sin2 θ24 projections is expanded.

This feature arises from the contribution of both, the ∆m2
24/(2E) term as well as

the matter potential, to the oscillation phases φ2 and φ3. This is why even for very

small sin2 θ24 the baryonic neutrino model still provides a good fit to the data, if

the matter potential is large enough. It is also interesting to note that the difference

in the neutrino and anti-neutrino mode (as discussed in [87]) is compensated by the

enhancement due to the matter potential. Figure 5.3 illustrates how the ε > 0 best

fit has the potential to explain the larger excess in the anti-neutrino compared to the

neutrino mode. From the MiniBooNE analysis one can conclude that large (ε > 7·103)

matter potential3 are favoured and that the ε < 0 case is slightly preferred.

Note that the combined MiniBooNE and MINOS results disfavour matter potentials

101 < |ε| < 104 at the 90% confidence level. This can be seen in the ε - ∆m2
41 and ε

- sin2 θ24 panels of figures 5.9 and 5.10.

5.2.4 Solar limits

The results for the solar analysis show some interesting features, especially in the

ε < 0 case, where the resonance occours in the neutrino sector and thus affects the

solar νe → νe survival probability. First of all, note that already the spectrum for

our best fit point, shown in figure 5.5, indicates the reason for this feature. The data

point between 1 MeV and 2 MeV lies at a slightly higher value than the neighbors.

The best fit seems to fit this exactly and explains the lower νe event rate at the 8B

points. Note that this is no significant effect, since the error bars are relatively large.

3Note that ε ∼ 104 is outside the interesting region for the baryonic model.
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However this leads to structures, which eventually affects at least the 90% contour

(see figure 5.10, upper right panel).

For ε ∼ −25 there is a large dip in the χ2 plot. This is due to the behaviour of

the matrix elements |Ũei|2 evaluated at the center of the sun (compare to equation

5.19). To illustrate this effect, the solar spectrum for three points in the interesting

region for ε ∼ −25 is shown in figure 5.12. As one can see, there is a sharp transition

happening, when going from lower to higher sin2 θ24. For an analytical description,

consider the matrix element |Ũe4|2 in the two flavour approximation framework of

section 4.3, which is given by:

|Ũe4|2 = |Uµ4|4
(

∆m2
41

2E

A

)2(
A+

∆m2
41

2E − Vb
A+

∆m2
41

2E + Vb

)2

, (5.33)

where A is defined in equation 4.16. If the resonance condition is fulfilled, A becomes

minimal and thus |Ũe4|2 resonantly enhanced. This can only happen for negative ε

(correspondingly negative Vb) and is compatible with our results, since the structure

is absent in the ε > 0 case. However the question remains, why this has such a large

impact on the exclusion limit, since χ2 is minimized over ∆m2
41.

We can find an answer to this question, when looking at the resonance position

in the for the solar experiments relevant energy range. For the MINOS results we

have already discussed a similar effect in detail. The lower right panel of figure 5.11

shows the shape of the ε - ∆m2
41 parameter region, which is affected by the MSW

resonance. This is similar in the solar analysis as illustrated by the solar ε - ∆m2
41

contour plot (figure 5.10). The allowed region, beginning at ε ∼ 100 up to larger

ε has the same shape as expected for the ε - ∆m2
41 parameter region in which for

low sin2 θ24 values the resonance is inside the solar energy range. This means that

the solar data can be explained by the new baryonic MSW potential, which in the

(ε ∼ −27, sin2 θ24 < 4 · 10−2) region dominates the effect of the standard charged

current potential.

Finally, we consider the impact of θ34. As discussed in [6], MINOS and MiniBooNE

are not sensitive on this mixing angle. This can be different for the solar data.

Therefore, we perform an additional analysis, where we minimize χ2 over ∆m2
41 and

ε. The result is shown in figure 5.13. It indicates that a non-zero θ34 could lead to

weaker exclusion limits, if we would have included it as a free parameter. Therefore,

we examined the effect on the exclusion limit for sin2 θ34 = 0.01 and 0.1, see figure

5.14. The 1σ, 2σ and 3σ confidence levels are shown for the sin2 θ24 – ∆m2
41 projection,
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Figure 5.12: Left: the 90% and 99% confidence level contours for the ε < 0 solar
analysis. The three points indicates the values, for which the spectrum
in the right panel is shown. Here we use the mass squared difference
∆m2

41 = 0.0128 (corresponding to the best fit) as well as the values
ε = −27, sin2 θ24 = 0.02, 0.03, 0.05. The black line is calculated for the
standard scenario without a fourth neutrino flavour. The structure in
the χ2 plot is only in the ε < 0 sector and is due to a resonant transition
in the mixing matrix elements relevant for the adiabatic calculation, see
equation 5.19.
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Figure 5.13: The figure shows the 90% and 99% confidence level contours for the solar
analysis as function of the two mixing angles θ34 and θ24 with the purpose
to test the dependence of these parameters. The result shows that there
is no strong correlation between these angles, thus for sin2 θ24 < 0.4, the
angle θ34 could essentially have any value below sin2 θ34 < 0.6.



5.2 Results 75

10-3 10-2 10-1 100
10-2

10-1

100

101

sin2
Θ24

D
m

412

Χ²- Χ²min , sin2H Θ34 L=0.01

10-3 10-2 10-1 100
10-2

10-1

100

101

sin2
Θ24

D
m

412

Χ²- Χ²min , sin2H Θ34 L=0.1

Figure 5.14: The 1σ, 2σ and 3σ confidence levels for the solar χ2 analysis are shown
in the sin2 θ24 – ∆m2

41 projection. The difference compared to the lower
left panel of figure 5.9 is that the angle θ34 has a non-zero value. The
left panel shows the contours for sin2 θ34 = 0.01 and the right panel for
sin2 θ34 = 0.1. The comparison shows that the exclusion limit depends
on θ34 in a sensitive way. At 99% confidence level, the solar data does
not restrict ∆m2

41 and sin2 θ24 for sin2 θ34 = 0.1.
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where it is minimized over ε with respect to χ2. This analysis shows that the limits on

the baryonic neutrino model obtained from solar experiments can possibly be avoided

by a proper choice of sin2 θ34.



Chapter 6

Discussion and conclusions

In this thesis, the oscillation phenomenology of a recently proposed sterile neutrino

model has been investigated. We have re-derived approximate formula for the oscil-

lation probabilities in this model and performed a numerical χ2 analysis with data

sets from MINOS, MiniBooNE and solar experiments. The results show that sterile

neutrinos with non-standard interactions can not resolve the tensions, which are due

to the short-baseline anomaly. In the following we give a short summary of each

chapter, discuss the results and draw conclusions from our analysis.

With the Standard Model as starting point, we introduced in chapter two the

concept of neutrino masses and mixing in the context of the general Dirac+Majorana

case. We discussed the two and three flavour oscillation probabilities in vacuum

and explained the Mikheyev-Smirnov-Wolfenstein effect of resonant neutrino flavour

transitions in matter.

In chapter three the development of the by now established picture of neutrino os-

cillations has been reviewed. We described the discovery of the solar neutrino problem

and its solution as the first strong evidence for neutrino oscillation. This discovery

were followed by atmospheric, accelerator and reactor experiments, which completed

our knowledge of the three flavour mass and mixing parameters. Current and fu-

ture oscillation experiments will focus on the determination of the mass hierarchy,

the CP-phase, and on resolving the octant degeneracy. Although most experiments

are compatible with this standard picture of three flavour oscillation, there are hints

for active-sterile oscillations, which arise in the Gallium, short-baseline and reactor

neutrino anomaly. We have seen that in usual sterile neutrino scenarios, there are

severe tensions in the appearance and disappearance channels, mostly driven by the

LSND/MiniBooNE signals.

As a possible solution to these anomalies a sterile neutrino model has been presented
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in chapter four with the original motivation to explain controversial signals in current

dark matter direct detection experiments. In this model a neutrino-baryon coupling

is introduced with an interaction strength of a few orders of magnitude stronger than

the weak interaction. Karagiorgi, Shaevitz and Conrad had the idea that due to

this matter interaction the short-baseline anomaly can be explained without being

in conflict with constraints from other experiments. We re-derived approximate for-

mulas and found deviations in the MINOS relevant parameter region, whereas in the

MiniBooNE sector their approximation led to the same conclusions at the relevant

low-energy region.

Finally, in chapter five, we simulated the MINOS disappearance experiment at event

rate level, accounting for the background, systematic uncertainties, energy smearing

and calculated the average neutrino path length and matter density. We have checked

that the simulation can reproduce the MINOS limit obtained from a sterile neutrino

fit by Kopp et al. as well as the two flavour fit by MINOS. Data from MiniBooNE

and solar experiments are analysed at event ratio level. We checked that flavour tran-

sitions inside the sun are still in the adiabatic regime even for large matter potentials

and calculated the adiabatic survival probability. We accounted for the incoherent

neutrino superposition, but neglected matter effects coming from the neutrino prop-

agation in the earth. We have seen that such a large matter potential has a huge

impact on solar oscillation experiments as well as the MINOS experiment, which is

due to the new MSW resonance.

We fixed the standard three flavour parameters at values from a global fit, set

θ34 = 0, chose θ14 such that the reactor anomaly is explained and assumed normal

hierarchy. In this setting, we investigated the effect of the baryonic model for the

MINOS, MiniBooNE and solar data performing a χ2 analysis, where we scanned

over the parameters ∆m2
41, sin2 θ24 and the baryonic potential. We found that the

LSND/MiniBooNE best fit from Karagiorgi et al. is excluded by the MINOS and

solar limits at 99% confidence level. At this point, we want to point out that the

effect of a non-zero mixing angle θ34 on the solar analysis can lead to a weaker limit.

Including the matter effect of the earth could in principal also lead to a significant

change in our results, since one can expect additional effects of MSW resonances.

However, the main exclusion limit is due to the MINOS and MiniBooNE data sets,

which are not sensitive on θ34 as shown by Kopp et al. Thus, we conclude that the

results of our analysis give no evidence that the tensions due to the short-baseline

anomaly can be resolved by the baryonic neutrino model. Furthermore, assuming that

the controversial MiniBooNE signal is due to active-sterile mixing in a three active
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plus one sterile neutrino framework we conclude that the interesting parameter range

(i.e. baryonic interactions, which are 101 to 104 times stronger than the weak force)

for the baryonic matter potential is disfavoured at 90% confidence level.

In focusing on the oscillation phenomenology, we did not describe the impact of

cosmology on sterile neutrinos. The Big Bang Nucleosynthesis, Cosmic Microwave

background and large-scale structure formation constrain the introduction of new

neutrino flavours. However, these cosmological constraints can be avoided for sterile

neutrinos of masses ∼ eV, if they are charged under a new gauge group with a light

gauge boson as in the baryonic neutrino model. This is discussed in detail in reference

[105].

Finally, we want to point out that the Nucifer experiment [76] has the potential

to solve the question, whether or not the anomalies are due to active-sterile neutrino

oscillations. This is possible, because Nucifer is designed to test reactor fluxes at very

short baselines of only seven meters. The experiment already started data taking.

First results ere expected in the next two to three years [106].
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