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Abstract

Inevitably present in many current experiments with ultracold Rydberg atoms, dissipative
effects such as dephasing and decay modify the dynamics of the examined system. In
this thesis, the dynamics of many-body Rydberg systems in the incoherent regime is
studied numerically. Specifically, a wave function Monte Carlo (MCWTF) technique is
integrated into a coherent two-level many-body Rydberg model, allowing a numerical
simulation of dissipative dynamics. This model is used to benchmark a steady-state rate
equation model and assess its range of validity. In addition, incoherent, off-resonant
excitation dynamics is studied in a one-dimensional disordered geometry. We find that
our simulation results can essentially be explained by the equilibration time scale as well
as — for positive laser detuning — resonant excitations arising when the laser detuning
compensates the Rydberg interaction. Eventually, we employ a rate equation model to
investigate excitation spectra for an experimental trap geometry, which we benchmark
using the MCWF technique. Based on numerical data, we deduce that in the considered
parameter regime the dominant excitation mechanism can be characterized as sequential
growth of aggregates of Rydberg excitations around an initial seed. Our simulation results
highlight the impact of incoherent effects on observables such as Rydberg population,
excitation number fluctuation and pair correlation function.

Zusammenfassung

Dissipative Effekte wie Dephasierung oder spontaner Zerfall sind unvermeidlich in vielen
aktuellen Experimenten mit ultrakalten Rydbergatomen priasent und beeinflussen die
Dynamik der untersuchten Systeme. In dieser Arbeit wird die Dynamik von Vielteilchen-
systemen, bestehend aus Rydbergatomen, im inkohédrenten Regime numerisch untersucht.
Insbesondere wird eine auf Ebene der Wellenfuktion durchgefiihrte Monte Carlo (MCWF)
Methode in ein kohérentes Zwei-Niveau-Modell von Rydbergatomen implementiert, was
eine numerische Simulation dissipativer Zeitentwicklung ermoglicht. Dieses Modell wird fiir
den Benchmark und die Abschétzung des Giiltigkeitsbereichs eines Ratengleichungsmodells
verwendet, welche Gleichgewichtszustinde berechnet. Dariiber hinaus wird inkohérente,
nichtresonante Anregungsdynamik in einer eindimensionalen, ungeordneten Geometrie
untersucht. Es zeigt sich, dass die Simulationsergebnisse hauptséchlich durch die Zeitskala
der Equilibrierung sowie — fiir positive Laserverstimmung — resonante Anregungen erklart
werden kénnen, welche auftreten, wenn die Laserverstimmung die Rydbergwechselwirkung
kompensiert. Schliefflich verwenden wir eine Ratengleichung, um die Anregungsspektren
einer experimentellen Fallengeometrie zu untersuchen, und benchmarken diese mithilfe
der MCWF Methode. Auf Grundlage unserer numerischen Daten folgern wir, dass in
dem betrachteten Parameterbereich der dominierende Anregungsmechanismus als von
einem urspriinglichen Anregungskeim ausgehendes sequenzielles Wachstum von Aggrega-
ten von Rydberganregungen charakterisiert werden kann. Unsere Simulationsergebnisse
unterstreichen den Einfluss inkohérenter Effekte auf Observablen wie Rydberganregung,
Fluktuation der Anregungszahl sowie Paarkorrelationsfuktion.
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1 Introduction

The field of Rydberg physics has attracted a lot of attention since its establishment in the
nineteen seventies [I] and is currently still further growing. Given the extreme properties of
Rydberg atoms with respect to their giant size, long lifetimes and huge polarizability leading
to strong and long-range interactions [I}, 2], the field promises intriguing prospects to study
spatially correlated many-body physics [3, [4] as well as nonlinear quantum optics phenomena
[5]. Proposed applications range from quantum gates [6H8] required for quantum computing to
quantum simulators [9] and atom-light interfaces such as single-atom or single-photon sources
[10] and single-photon absorbers [11]. Dressed Rydberg systems are also considered promising
candidates for the realization of a supersolid phase [12].

The dipole blockade, denoting the suppression of Rydberg excitations in the vicinity of an
already existing excitation, has been extensively studied in the meantime [I3HI7], it being
pivotal for the vast majority of proposed applications. Moreover, the collective enhancement
of Rabi oscillations due to the dipole blockade effect has been observed for multiple atoms
[18, [19] as well as for a single pair of atoms [20}, 21].

Long-range Rydberg-Rydberg interactions can lead to crystalline structures of Rydberg
excitations [22], 23], which can also be prepared deterministically by applying chirped laser
pulses to the system [24]. Exploiting the dependence of the Rydberg interaction on the
principal quantum number, the imaging of Rydberg impurities is made possible [25], opening
up a new, auspicious avenue to spatially-resolved excitation measurements in disordered gases.

Another rapidly emerging field of research deals with the study of coupled excitations of light
and matter (Rydberg polaritons) [5], 26], which arise when a weak probe field is propagated
through a system in an electromagnetically induced transparency (EIT) configuration [27, 28].

Although the afore mentioned experiments usually take place in the ultracold regime at
temperatures of few pK, experiments with hot vapor cells (7' ~ 90°C) have been recently set
up, showing evidence of van der Waals-type Rydberg-Rydberg interaction [29]. In addition,
the huge spatial extent of the highly excited electronic wave function of a Rydberg state has
been utilized to couple a single Rydberg electron to a Bose-Einstein condensate [30)].

In theory, there are several possible approaches to modeling interacting many-body Rydberg
gases numerically. The first approach is to omit the many-body correlations and employ a
mean field approach (cf., for example, Ref. [I3]) in which the individual atoms are treated as
essentially identical and uncorrelated particles, which allows one in certain cases to incorporate
the interaction induced by neighboring atoms into an overall background field. Alternatively,
one can simulate the full Schrédinger equation, removing the states that cannot be populated
due to the blockade effect (cf. Section . This procedure is called state space truncation
(see e.g. Refs. [22, B1H33]). When inter-atomic coherences are suppressed by incoherent effects,
models based on a rate equation enable an efficient simulation of many-body systems with
classical correlations [34-38]. Other approaches comprise the cluster expansion model [39],
the hybrid model [36], and the Dicke model [40]. Finally, an approach capable of accounting
for incoherent processes without coming at the expense of neglected atomic correlations is
the wave function Monte Carlo (MCWF) method [41-H44]. This approach, which has so far
only been applied to lattice geometries, is applied to disordered gases in this work, yielding a
technique widely applicable in two-level Rydberg physics.

Introducing the concept of quantum trajectories along the lines of the wave function Monte
Carlo method, phase transitions [45] as well as nontrivial spatiotemporal dynamics [46] and
collective emission characteristics [47] have been found in lattice geometries by analyzing
the photon emission statistics, enabling theoretical analysis by alternative means to pure
excitation statistics.
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The aim of this thesis is to analyze the dynamics of Rydberg systems in the dissipative
regime. To this end, we implement the wave function Monte Carlo technique in an existing
code which allows the coherent many-body Schrédinger equation to be solved. With this at
hand we can, for the first time, benchmark other two-level many-body models for disordered
gases in the dissipative regime, specifically the rate equation, to assess their range of validity.
This is of particular interest since the rate equation allows for the fast simulation of large,
i.e., experimentally realized systems, but strong approximations enter into the derivation of
the rate equation. Hence, a systematic study of the range of validity of the rate equation is
highly desirable. Secondly, we use the developed model to study the dynamics of incoherent
systems in which collective effects are not negligible and thus effective models such as the
rate equation cannot be applied. This is discussed in the first part of the thesis.

In the second part we apply a rate equation to a particular experimental setup to derive
conclusions, via thorough analysis of the simulation results, on the dominant mechanism
responsible for the strong fluctuations in the excitation numbers observed in the simulation
data. To verify the applicability of the rate equation for the parameters used for the modeling,
we employ wave function Monte Carlo calculation and find good agreement between two-level
rate equation and MCWF simulation.

The thesis is organized as follows: In Sections [I.1] to [I.3] we introduce the most important
properties of Rydberg atoms as well as the basics of Rydberg physics, as far as relevant for the
understanding of our numerical modeling. We then review in Chapter [2] typical approximations
and derive the single-atom and many-body Hamiltonian (Sections as well as the
single-atom and many-body master equation (Sections . In Chapter , the two
main models already mentioned above are introduced in detail, namely the time-dependent
effective two-level rate equation model (Section and the wave function Monte Carlo model
(Section . Subsequently, we characterize and comment on the implementation of the wave
function Monte Carlo technique in Chapter [4 which allows us to discuss the main results of
our simulations in Chapter [5] Chapter [6] addresses simulation results of the rate equation
model introduced in Section with respect to the particular experimental setup of Ref. [4]
and discusses benchmark calculations using wave function Monte Carlo technique. Finally, we
summarize our results in Chapter [7] and comment on possible fields of future research.

1.1 Rydberg Atoms

Rydberg atoms are atoms with at least one electron excited to a high principal quantum
number n. They were first observed in the Balmer series of hydrogen [I], which refers to the
spectral lines resulting from the transitions n — 2 with n being a principal quantum number
> 3. Rydberg atoms are named after Johannes Rydberg (1854 — 1919), who discovered that
the various spectral lines observed for some elements could be assigned to different series
which followed a simple formula [48], the Rydberg formula. It was several years later that a
theoretical grasp of the physical origins of this phenomenological description was developed by
Niels Bohr. Restricting ourselves to the discussion of alkali metals (e.g. Li, Cs or Rb) whose
valence electron is excited to a high principal quantum number, the charge seen by the electron
is the charge Z of the nucleus shielded by Z —1 electrons, resulting in an effective hydrogen-like
system. For low angular momentum [, the electronic wave function still penetrates the core,
modifying the Coulomb potential seen by the valence electron. Introducing a quantum defect
Onij, slowly varying with n, the energy levels can be accurately described by the formula
7, 49]

Ry

Bpj=———"
nlj (n — 6nlj)2 )

(1.1)
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Property Scaling behavior
Dipole moment n*?
Polarizability n*’
Level spacing of adjacent states n*3
Orbital radius n*?
Lifetime n*3

Table 1.1: Scaling behavior of selected properties of Rydberg atoms with the effective principal
number n*.

with Ry being the Rydberg constant, Ry ~ 13.6eV [50]. For the following discussion, we
define the effective principal quantum number as n* = n — d,;;. While the binding energy of
the Rydberg states scales as n* "2, the level spacing of the adjacent energy levels E, — E,_;
scales as n* 3 [2]. Being loosely bound, the electrons are extremely sensitive to electric
fields, giving rise to a polarizability scaling as n*” [7]. Moreover, at large principal quantum
numbers, the correspondence limit applies and the orbital radius of the electron is adequately
described by the Bohr model, which predicts radii of ~ agn*? [I], with ag being the Bohr
radius, ag ~ 0.53 A[50]. For n = 50, this yields an orbital radius of already ~ 0.1 um. Since the
dipole matrix elements also scale as n*? [2], there is a strong, long-range interaction between
Rydberg atoms, which facilitates numerous applications in quantum optics and many-body
physics. At zero temperature, when the blackbody contribution to the lifetime of the Rydberg
excitation can be safely neglected, the lifetime of the Rydberg excitation scales as 7 ~ n*? [7].
Typical lifetimes are some tens to few hundred ps; for the state [555 /5) of 85Rb, the lifetime
is e.g. ~ 80 us [51]. A collection of the most prominent scalings is listed in Table .

1.2 Rydberg Interaction

Rydberg-Rydberg interactions essentially stem from dipole couplings of energetically nearby
states [7]. According to a classical reasoning, the interaction between two Rydberg atoms is
given by the electrostatic interaction that is induced by the point charges associated with
atomic nuclei and Rydberg electrons respectively, as depicted in Figure Assuming that
the electron-nucleus distance is much smaller than the distance between the two nuclei,
Ry, Ry < R, we can expand the electrostatic potentia]E]

Vol 0
@ Urey ||R] |R—Ri| |R+Ry  |R—R;+ Ry '

around R, yielding as leading contribution the dipole-dipole interaction [2]

2
e ~ A
O e (Ri- Ry 3(R: - R)(R»- R)), (1.3)

with R being the unit vector in R direction and e the electron charge.

Moving from classical to quantum mechanics, the classical dipole moments eR1, e Ry have
to be replaced with the dipole operators eR;, as the correspondence principle requires the
replacement of classical observables by quantum mechanical operators. The expectation value
of the quantum mechanical dipole operator can be expressed as the expectation value of the

'The potentials e?/|R1|, e*/|R2| are intra-atomic potentials which do not contribute to the inter-atomic
potential V.
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Figure 1.1: Illustration of a two-atomic system in classical terms. The dipole interaction is induced by
the point charges associated with positively charged nuclei (green) and negatively charged
electrons (red).

radial matrix element [7]
(nl|R|nT') = / r Ry (r) Ry (1) dr (1.4)

times the expectation value of the angular part quantified by the spherical harmonics Y (6, ¢).
In Eq. (1.4), R,; denotes the radial wave function of a Rydberg state with quantum numbers
n,l.

In brief, the quantum version of the dipole-dipole interaction ([1.3)) can be parametrized as

C
V:MDﬁg, (1.5)

introducing the parameter Cs = e*(nl|R|n} 1) (nl|R|nlb) /(47eo) and the coefficient D,,, which
contains information about angular momentum coupling (Clebsch-Gordan coefficients) not
resolved in C5 [7]. Note that Eq. is only valid if the spatial overlap of the wave functions
can be neglected, which is justified if the distance between the atoms is much larger than the
extent of the electronic wave function. For the systems discussed in this thesis, this condition
is always fulfilled.

The dipole-dipole interaction couples energetically neighboring states with energy
defect § which comply with the dipole selection rules 14,15 = [+ 1. That is, a quantum system
in state |¢n¢hn) with energy E can perform a transition to the state 1,y ¢y, ) with energy
E’ as a consequence of the dipole interaction, (0| H ]1/1n/1 I ¢n’2l’2> = hV. Here, H is the
Hamiltonian of our system and the quantum defect is given by 6 = E' — E.

Disregarding for the moment that in principle multiple states contribute to the dipole
coupling, we can set up the Hamiltonian for the two states (\wnxl I wn/21/2> b)), reading

%:n(i K) (1.6)

The energy shift due to the dipole-dipole coupling is readily obtained via diagonalization,

) |62 C2
Vir = 3 sign(6) 1 + R—2D¢. (1.7)

At large distances, the energy shift is governed by the energy defect §, allowing us to expand
Eq. (1.7) in V/4, resulting in an energy shift of the state [1,0n),

_ D,C3
SRS

Vir (1.8)

This is simply a van der Waals-type interaction. At small distances, however, the energy
defect becomes negligible compared to the dipole coupling, leading to a R~ behavior of the
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Figure 1.2: Dependence of the energy shift V.. (solid, blue) on the inter-particle distance R for Rb
|60S1/2) (cf. text). The dashed lines indicate R~ scaling (blue) and R~ scaling (red),
respectively. The crossover takes place at R, = (Cs,/D,/8)'/3 [1].

eigenenergies instead of R76. In fact, plugging some numbers into Eq. , ie, D, =4/3
[7 and 6/2m = (Eyp 1 + Enpipjr — 2E5)/h = —1.12 GHz, C3 calculated via the formulas in
Ref. [2] using the quantum defects stated in [52], we obtain Figure which nicely illustrates
the transition between the two scaling regimes. It should be noted, however, that the
calculation takes into account only the dominant coupling |60S; /2 605 /2) <> [60P5 /5 59P59)
[53] and not the full manifold of states that would lead to a slightly modified energy shift.

For the sake of convenience, Eq. (1.8) is typically written as Cg/ RS, defining Cg = —Dng /0.
Since the dipole elements scale as n*2, C3 as n** and the energy defect as the level spacing
n*73, as listed in Table we have [2]

Cs ~n*, (1.9)

illustrating that Rydberg systems feature strong tunable interactions.

The Cg coefficient is usually stated in units of MHz um® and can be calculated from the
numerical data given in Ref. [54]; a typical figure is Cg/27 = 16 000 MHz pm® for the Rubidium
1505, /2> state. For S states, the van der Waals interaction potential is isotropic, as nicely
discussed in Ref. [55]. In this thesis, we exclusively study van der Waals-type interaction of
S-states.

1.3 Dipole Blockade

One of the most important consequences of the strong dipole-dipole interaction between two
Rydberg atoms is what became famous under the name dipole blockade [56]. It denotes the
prevention of simultaneous excitation of two closely spaced Rydberg atoms due to the Rydberg
interaction. This can be most easily understood by considering Figure [I.3] If two excited
Rydberg atoms are far apart from each other, the energy shift of the twofold excited state
due to dipole-dipole interaction is negligible (dropping off as R~%). Accordingly, two ground
state atoms can be simultaneously and independently excited via resonant |g) <> |r) laser
driving. Conversely, if the two atoms are closely spaced, the dipole-dipole interaction shifts
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E-\V, Q.17
‘—i |rr)
X
yy = lgr),Irg)
- l99)
Ry,

Figure 1.3: Illustration of the dipole blockade effect. The dipole interaction shifts the energy of the
doubly excited state out of resonance if two atoms have a distance that is smaller than the
blockade radius, R < Rp. The precise value of R, depends on both the Rabi frequency 2
and the dephasing rate I introduced in Chapter [2}

the energy level of the doubly excited state out of resonance, such that the second atom
cannot be excited. Thus, both atoms have to share the excitation. Loosely speaking, as soon
as two atoms are too closely spaced, the energy provided by the laser field is not sufficient
to excite both atoms simultaneously on account of the Rydberg-Rydberg interaction that
increases (for repulsively interacting systems) the energy of the doubly excited state. The
separation at which the blockade effect sets in is commonly called blockade radius Ry.

The dipole blockade not only inhibits nearby Rydberg excitations, it also causes collective
effects. In our simple two-atom picture with only one excitation possible, the eigenstates with
respect to the laser coupling are no longer the product states |gr), |rg), but rather

+) = ¢1§ (lgr) +1rg)), |-} = ¢1§ (lgr) — Irg))- (1.10)

In this more appropriate basis, introducing the laser Hamiltonian on resonance, H =
1 /2(|g) (r| + h.c.), which couples ground and excited state, we immediately see that the
antisymmetric state |—) is not coupled at all by the laser field, (gg| H |—) = 0. In contrast, the
coupling of the symmetric state is enhanced, (gg| H |+) = V2 hQ/2. As (gg| H |gr) = h§2/2,
the excitation rate using the symmetric state |+) is enhanced by a factor of /2, clearly hinting
at collective effects. For a thorough derivation of the laser Hamiltonian we refer to Section [2.1

The enhancement of the Rabi oscillations holds for any number Np of blockaded atoms, i.e.,
the symmetric Dicke state |[+) = 1/v/Ny ZivL |g1...7a ... gn,) is coupled to the collective
ground state via the enhanced Rabi frequency /N2 whereas the N, — 1 antisymmetric states
are — in the absence of dephasing — totally decoupled. The collective effects induced by the
dipole blockade have been observed for two atoms [20} 21] as well as for many atoms [18] [19].
Since in the blockade regime one excitation is shared by all atoms, it is useful to introduce
the concept of a super atom, denoting the compound of atoms which share a single excitation
[57, B8].

Considering the fact that the energy shift due to the dipole-dipole interaction is distance-
dependent, it is clear that the blockade effect is spatially confined. Thus, it is convenient to
introduce the blockade radius Ry, which quantifies the spatial extent of the super atom on
resonance (i.e., the transition |g) <+ |r) is resonant), via the condition

Cs
= = /N,Q 1.11
RS b (1.11)
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Figure 1.4: Illustration of the super atom picture. Atoms lying inside the blockade sphere of an excited
Rydberg atom (radius Rp) are blockaded.

with NV}, being the number of blockaded atoms [32]. This condition basically states that the
blockade sets in as soon as the interaction-induced energy shift becomes comparable to the
(collective) Rabi frequency with which the ground-to-Rydberg transition in the super atom is
driven. Estimating the number of blockaded atoms N using a homogeneous atomic density
p in a d-dimensional system (d € {1,2,3}) via N, ~ pRl‘f, we can solve Eq. for Ry,
yielding [32]

o, )\
Ry ~ . 1.12
o~ (o) (112

The effect of the blockade radius using the super atom picture is illustrated in Figure [T.4]

Apart from the case where the transition |g) <> |r) is resonant, there is another regime in
which an interesting, less explored feature of Rydberg physics arises. That is, for off-resonant
laser frequency (i.e., the transition |g) <> |r) is not resonant, but detuned by a detuning A),
the interaction V,, can compensate for the detuning, yielding the conditions for single-photon
and two-photon resonance [23]

Vir = A and V., = 2A, (1.13)

respectively, such that two nearby atoms can be excited indeed, despite the interaction-induced
blockade. The latter condition yields the two-photon resonance distance

1/6
CG) , (1.14)

RQ'Y ~ (2A
which is smaller than the single-photon resonance distance. These resonances are discussed in
detail in the later chapters.

The notion of a super atoms is generally a useful concept as it allows the intuitive derivation
of some estimates for a non-trivially interacting many-body system that has to be treated
quantum mechanically in principle. It must, however, be treated with care when considering
real systems, since the double excitation probability typically is not a ©(R) step function
of the distance as suggested by the term “blockade radius”. Moreover, power broadening of
the laser as well as dephasing has a softening impact on the blockade radius, as discussed in
Section [5.3| and illustrated in Figure 1.3



2 Theoretical Background

A sound theoretical description of our system of interest is vital when working towards the
modeling of interacting many-body systems. Consequently, we first review the theoretical
framework required to describe a single atom coupled coherently to a classical laser field
in Section [2.1] and introduce incoherent processes subsequently in Section Section
discusses the reduction of a general three-level scheme to an effective two-level one, which
can be simulated with the wave function Monte Carlo technique detailed in Section [3.2]
In Section and Section we generalize the single-atom description to the interacting
many-body case for coherent and incoherent systems respectively. This provides us with
the necessary means to discuss state-of-the-art techniques to model interacting many-body
Rydberg systems, which we do in Chapter

2.1 Single-Atom Hamiltonian

To treat light-atom interactions quantum mechanically, we first need to know how the
interaction between light and charged particles influences the energy of the atomic system,
i.e., we need to find a suitable Hamiltonian. In semi-classical theory (following Refs. [50} 59]),
this can be done by starting from the electromagnetic non-relativistic minimal coupling
Hamiltonian, which describes the interaction of an electron with a classical electromagnetic
field. In radiation gauge, i.e., using gauge freedom to enforce V - A(r,t) =0, U(r,t) = 0 on
the gauge potentials, the minimal coupling Hamiltonian reads

h? iq 2
Hoe = =5 |V = FAG. 0]+ V(). (2.1)
Here, m denotes the mass of the electron at position r, g its charge and V' its binding potential.

Further employing the dipole approrimation, which assumes that the wavelength of the
incident field is large compared to the size of the atom and hence the variation of the electric
field over the distance separating electron and nucleus can be neglected, the vector potential
can be approximated by its (constant) value at the nucleus, A(r,t) ~ A(R,t). Remembering

O A(R,t) = —E(R,t) and performing a gauge transformation on the electronic wave function
Y(r,t) — /AR o (p 1) we finally obtain

2
ihopp(r,t) = ;; +V(r)—qr-E(R,t)| p(r,t) (2.2)
m
with the momentum operator p = —thV, containing the electromagnetic interaction Hamilto-

nian in the semi-classical limit
Hy, = —qr - E(R,t). (2.3)

Having found a way to treat the interaction between a classical electromagnetic field and
an electron quantum mechanically, we now aim to remove any explicit time dependence from
the laser Hamiltonian Hy,. To this end, we assume the electromagnetic field E(R,t) at the
center of mass of the atom to be a plane wave and thus write it using the unit vector € as

E(t) = R{€ exp(—iwt)e}, (2.4)

where £ denotes the field amplitude and w the carrier frequency. In this notation, the dipole
moment between the electronic states ¢ and j is given by di; = q (@;| 7 - € |p;). Typically, the
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Figure 2.1: Three-level scheme cousisting of the states |g), |m) and |r), illustrating the definitions of
the laser parameters.

non-vanishing components of the transition moment are constrained by selection rules, such
that only one polarization direction € yields a nonzero transition moment [60].

Next, we define the real Rabi frequency €2;; quantifying the strength of the laser coupling
as
gdij

Qij€i¢ = B (25)

where the complex degrees of freedom of the Rabi frequency are incorporated via the phase ¢.
By means of these definitions we are now able to rewrite the interaction Hamiltonian ,
considering for simplicity’s sake only the single electronic transition |i) <> |j) and assuming
linear polarization of the electromagnetic field, as

(Hy)ij = hQyje'® cos(wt). (2.6)

Eq. still exhibits an explicit time dependence, which we want to remove. Therefore,
we introduce a unitary transformation that changes our frame of reference to a frame rotating
with the laser frequencies [52] similar to the interaction picture where the stationary, free
Hamiltonian is shuffled into the time evolution of the state vector. In particular, we consider
the transformed basis states

(1)) = U(t) [4ho(?)) , (2.7)

where the index 0 denotes the states before the transformation. For a three-level scheme
consisting of ground state |g), intermediate state |m) and Rydberg state |r), the unitary
matrix U(¢) is given by

U(t) = g) (gl + €' [m) (m| + e/ rHt |r) (r] (2.8)

with w), being the probe laser frequency and w, the coupling laser frequency (cf. Figure [2.1)).
The ground state energy is set to zero as a constant energy offset drops out of any differential
equation which quantifies the dynamics of the system.

Calculating the time evolution of the transformed frame we find
ihO U (t) [vo(t))] = ik ([0:U(2)] [vho(t)) + U (t)0k [0 (1))
= [ho U (t) + U (t)H] [¢o(t))
= (iU DI (1) + UOHUT () (1) (2.9)



2 Theoretical Background

Accordingly, the transformed system evolves under the counter-rotating Hamiltonian

Heor = iR[OU (1)]UT(t) + U(H)HU ()
=Ho + U)HLU(t) — hwy [m) (m| — h(w, + we) |r) (r], (2.10)

where Hp denotes the stationary Hamiltonian of the free system, which is diagonal in the
electronic states and hence commutes with the transformation matrix U(¢). Plugging in
the definition of U(t) from Eq. , we obtain after the cancellation of some phases and
rearrangement

UMHLUT () = 52 [ (14 ¢25") [g) (m] + ¢ (14 *7*) m) {g]]
i ) . 4 ,
+ 50 €770 (1 + 7268 jm) (1| + €9 (1 + €2) |r) (m]| (2.11)

Here, ¢, and ¢. denote the phases corresponding to the transition |g) <+ |m) and |m) < |r),
respectively.

The crucial part known as the rotating wave approximation (RWA) is now to drop the
rapidly oscillating phases eT2%pt et2iwet a5 they oscillate on a much faster time scale than
the one given by the Rabi frequency €2;;. In fact, a typical Rabi frequency is of order MHz
up to few GHz [17, 29], whereas the carrier frequency (for, e.g., the transition |g) <> |m)
with the intermediate state |m) being the |5P3/5, F' = 3) state and |g) the |55y, F' = 2)
state of 8"Rb) is of order w,/2m = ¢/\, ~ 10* MHz and hence typically at least four orders
of magnitude larger than the Rabi frequency. Thus, since we are usually interested in the
dynamics of the electronic states whose coupling to the laser is quantified by the Rabi
frequency, the Hamiltonian relevant for us is the one averaged over many carrier frequency
cycles. Consequently, we can just drop the time-dependent phases in Eq. since they
average to zero over a Rabi cycle with period T,

1 r +2iwp,ct 1 1
= / e retdt ~ 0 for T > max{—,— ;. (2.12)
T Jo Wp We

Further simplifying Eq. (2.10) by defining the laser detunings via the laser parameters as
En—wp=—-A1, Er—(wptwe)=(E—Ep)—w.—A1 =—(As+ A1) =—A, (2.13)
the full single-atom Hamiltonian reads

H /b= —Ay |m) (m| — Alr) (r] + % (7% g) (m| + hoc.) + % (€77 fm) (| + h.c.).
(2.14)

For a non-closed three-level scheme meaning that not all the levels are coupled to each other
by a laser, we can lastly eliminate the complex degrees of freedom of the Rabi frequencies via

a phase transformation of the states according to H = PH'PT, where the matrix P is given
by

P = ) [g) (g] + €™ fm) ] + 00 1) 1], (215)
Hence we finally obtain for the single-atom Hamiltonian in the rotating wave approximation
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2.2 Single-Atom Master Equation

the real expression
B Q1o Qo3
H="h|—A1|m)(m|—Alr) {r|+ - (lg) (m| + h.c.) + - (|m) (r| + h.c)|. (2.16)

Note that for a closed scheme this is no longer possible, as can be seen from a simple
counting argument. Since we do not want our transformation matrix to mix the different
levels, we have to choose a transformation P which is diagonal in the atomic levels. One
of the phases in can be made a global phase, which drops out immediately in the
transformation, consistent with the fact that the quantum states [) and €e? b)) cannot be
distinguished by any quantum measurement [61]. Thus, only two phases remain, which can
be adjusted to remove the complex degrees of freedom of the Rabi frequencies, leaving one
Rabi frequency complex.

In Figure the three-level scheme corresponding to the Hamiltonian is depicted;
the colors indicate the wavelengths of the laser light that is typically used for the corresponding
transition.

The Hamiltonian only describes the dynamics of a single atom correctly if an
additional approximation, the frozen gas approximation, is employed. In this approximation,
the motional degrees of freedom of the atom are neglected, assuming that the atom stays at
its initial position for all times. Without a doubt, this approximation is never met exactly in
experiments; however, as we model gases in the ultracold regime at typical temperatures of a
few up to some ten pK [5 17, [19], the thermal motion is of the order of ~ 10nm/us and can
thus be neglected for typical excitation times of a few us.

Although different conventions exist (cf., for example, Refs. [3, [4]), the Rabi frequency as
well as other terms contained in the Hamiltonian (2.16]) are usually stated in units of MHz
(frequency), while in the Hamiltonian the angular frequency (x27) is plugged in. This is
consistent with the fact that the Schrédinger as well as the von Neumann equation (2.18))
contain the reduced Planck constant and not the plain Planck constant and thus allow to
obtain the time evolution by solving the respective differential equations in proper time units.
This can be easily seen by noting that for a two-level system on resonance, the inversion
prr(t) — pgg(t) is just —cos(Q2t) [59]. As the cosine is 27 periodic, we obtain Rabi oscillations
with the period given by the inverse Rabi frequency (not the angular frequency). Alternatively,
one can plug in mere frequencies in the Hamiltonian and shuffle the 27 into the time units
(which is sometimes done in theory), such that ¢ = ¢'/2r, where ¢’ denotes the simulated time
and t the ‘real’ time. To avoid confusion, we stick to the most commonly used convention,
which states the parameters in units of frequency, i.e., when speaking of a Rabi frequency we
refer to the quantity /27 with Q as defined in Eq. .

2.2 Single-Atom Master Equation

Up to now, we have only considered coherent dynamics, i.e., we considered closed quantum
systems, meaning that there is no exchange of any information or the likeﬂ with the environment
[63], such that the dynamics of the system is completely described by a hermitian, possibly
time-dependent Hamiltonian.

Expecting that coupling our system of interest to a surrounding environment might change
the coherence properties of our system, we ought to switch over to the density matriz formalism,

2Note that, strictly speaking, an atomic system interacting with a laser is no longer a closed system. However,
it turns out that the dynamics of the atomic states is almost perfectly described by the atomic Hamiltonian
introduced before [62]. This is why we refer to an atomic system interacting with classical laser light as to a
closed system.

11



2 Theoretical Background

which allows for a statistical mixture of our system states. A numerically-equivalent method
to this approach without employing a density matrix is being discussed in Section [3.2]

Considering an open system consisting of a quantum mechanical system S coupled to a
reservoir R, the dynamics of the (closed) composite system S + R can be described by the
Hamiltonian

H=Hs+Hr+Hi, (2.17)

where we have introduced the system and reservoir Hamiltonians Hg and Hg respectively,
as well as the the Hamiltonian H; = Zg ® Zgr describing the interaction between system and
reservoir. Thus, in the interaction picture, the equations of motion for the total density matrix
p read

ihd,p(t) = [H1(t), p(t)]. (2.18)

Assuming weak coupling between the system and the reservoir, we can, as a perturbative
expansion, insert the integral form of the von Neumann equation (2.18]) back into Eq. (2.18])
and find?|

i

Ops(t) = Tra {~ ;s (0,00} 3 [ arTee (0. PO (219
0

Here, the partial trace over the reservoir has been inserted since we are only interested in the
system dynamics. Eq. (2.19)) can be further simplified by assuming

Trr{[H1(t), p(0)]} = 0, (2.20)

which is always possible to obtain by modifying both system and interaction Hamiltonian [64].

The next important step is now to replace the total density matrix by the tensor product
p(t) ~ ps(t) ® ppr, since in the weak coupling limit the reservoir is hardly affected by its
interaction with the system. This approximation is known as Born approxzimation. Still,
Eq. is hard to solve, being non-local in time. We thus employ another approximation,
known as the Markov approzimation, which states that if the reservoir correlation time is
much smaller than the typical time scale of the system, we can replace p(7) by p(t). This is a
valid approximation if the system couples to (infinitely) many reservoir energy levels. To see
this, we note that if the reservoir Hamiltonian commutes with the reservoir density matrix,
the reservoir correlation function Trg {Zr(t)Zr(7)pr} depends only on the difference of the
time argument&ﬂ |t — 7|. For a dense energy spectrum, the correlation function peaks strongly
around ¢ = 7, implying that the system loses all memory about its past.

As a last step, we need to remove the remaining dependence on the system configuration at
t = 0 to obtain a truly Markovian equation, which can — arguing along the lines above — be
done by replacing the lower limit of the integral in by —oo. Thus, we finally obtain the
Born-Markov master equation

Oups(t) =~ [ dr Te ([0, (11 (). ps(0) @ ]} (221)

However, to obtain a master equation of Lindblad type, i.e., an hermitian equation preserving

3Though the interaction is weak, we cannot stay with Eq. (2.18) since only the second-order equation yields a
non-vanishing contribution to the master equation.
“Inserting the definition Zg(t) = e MRYNT pe= MR/ into the trace yields this result immediately.

12



2.2 Single-Atom Master Equation

trace and positivity of the density matrix equation, we need to apply yet another approximation,
namely the rotating wave approximation (which is, in this context, also known as secular
approximation) discussed before. The demand for a master equation of Lindblad type stems
from the fact that Eq. does not necessarily preserve the positivity of the density
matrix, which might lead to non-physical ‘probabilities’. Accordingly, it is to a master
equation of Lindblad type that we refer whenever we refer to a ‘master equation’ in the
following. Furthermore, we are only interested in long-term observables for which the performed
approximations (i.e., the Markov and the rotating wave approximation) are valid. A more
detailed discussion of the master equation derivation can be found in Refs. [62], 64} [65].

As mentioned before, the major advantage of the master equation over the standard
Schrodinger equation is that it allows for the inclusion of incoherent effects arising via the
interaction of the system with its environment. Despite the multitude of incoherent processes,
we will limit ourselves to dephasing and decay as they comprise the most important incoherent
effects occurring in experiments.

For the sake of convenience, we now introduce the Lindblad super-operator [62]
i1 (et f
LE)lpl = cpct - 5 (ciep+ peic), (2.22)

where C denotes a jump operator corresponding to an incoherent process and p is the reduced
density matrix p = Trr{ps(t) ® pr}.

For spontaneous emission (i.e., decay), the jump operators corresponding to the decays
|r) — |m) and |m) — |g) in our three-level system (cf. Figure read

C’Ysz = V732 |m> <’I"| and C’Y21 = /721 |g> <m| (2'23)

respectively. Here, 3o denotes the rate by which the population of the excited atomic state |r)
is transferred to the energetically lower lying state |m) via photon emission into the vacuum.
As the decay rates ;; are proportional to the modulus of the the dipole matrix element of
the respective transition, selection rules apply to spontaneous emission as well, such that the
decay |r) — |g) is strongly suppressed in a three-level scheme with the Rydberg state being
an S state. Spontaneous emission is usually derived by assuming the system to couple to
either a reservoir of simple harmonic oscillators in thermal equilibrium at zero temperature or
via Weisskopf-Wigner theory, assuming coupling to infinite, closely spaced cavity modes with
an emission spectrum centered at the atomic transition frequency [59].

Dephasing, conversely, denotes the process where atomic coherences decay in an atomic
system. In general, one can distinguish between two types of dephasing, namely homogeneous
and inhomogeneous dephasing [I1]. Homogeneous dephasing acts on all atoms in the same way,
which is the case for, e.g., fluctuations in the laser frequency being due to a finite (Lorentzian)
laser linewidth. This laser linewidth-induced type of dephasing only affects the off-diagonal
part of the Lindblad term by which the coherences decay, resulting in the super-operator

Lid iy (il o 13) (] + e, (2.24)

LTy 6 o) =~

with 4, j being the states coupled by the laser and I';; the dephasing rate [66]. If two states
are indirectly coupled (as the case for the states |g) and |r) in Figure 2.1)), one has to add a
dephasing term with I's; ~ I'sy 4+ I'21, accounting for the convolution of the two Lorentzians,
which is again a Lorentzian whose width equals the sum of the single Lorentzian widths.
Inhomogeneous dephasing in turn influences each atom individually, which is the case for
e.g. motion-induced Doppler shifts or a speckle light field with short range correlations in
time and space (see Ref. [I1] and Section . This type of dephasing can be described using
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2 Theoretical Background

the standard Lindblad super-operator L(+/I'; |7) (i|)[p].
Having now collected all the incoherent terms from above, we arrive at the full single-atom
master equation

ou(t) =~ M)

+ L(As2 [m) {r)[p] + L(v/A21 |g) (ml)[p)
+ L' (T32,3 <> 2)[p] + L' (T21,2 <> 1)[p] + L' (T332 + Ta1,3 <> 1)[p]

+L(VTs|r) (rl)lp] + L(VTz|m) (m])[p]. (2.25)

In Eq. (2.25)), the first line describes the coherent evolution using the Hamiltonian (2.16}),
the second one spontaneous emission processes and the last two lines dephasing processes due
to laser linewidth and e.g. motional dephasing respectively.

2.3 Two-Level Approximation

From a computational point of view, it is very challenging to calculate the exact dynamics of
the full three-level master equation for multiple atoms (cf. Chapter [3]). In the usual
two-step excitation scheme depicted in Figure the intermediate level |m) is typically
weakly coupled and far detuned,

A1 > |A] and A1 > /O3, + Q35, (2.26)

such that the population of the intermediate state stays small. In this case also the dynamics
of the intermediate state is much faster than the dynamics between the states |g) <> |r).
Focusing on the slow dynamics, we can therefore approximate [67]

O [Ym(t)) ~ 0, (2.27)

where |1,,) denotes the wave function of the intermediate state. Solving the Schrédinger
equation thdy |¢) = H |¢) with H from Eq. under the constraint |¢,,(0)) = 0, we
obtain the effective Hamiltonian after adiabatic elimination, with the effective Rabi frequency
012893 /2A [67],

0%, 012003
h 2A 2A
How = - ! t (2.28)
2 | Q120093 oA+ 033
2/ 2/

For pulsed excitation using a smooth pulse, i.e., if €(¢) is pulse-shaped, the condition on
the detuning can be significantly relaxed if one is mainly interested in the system’s state after
the pulse [68].

Note that there is an additional detuning shift of (Q3;—Q%,)/2A1 introduced by the adiabatic
elimination procedure, which needs to be accounted for when comparing, for instance, two-level
simulation results with experimental three-level data.

The adiabatic elimination procedure, which is illustrated in Figure [2.2] is only applicable
in the coherent case, which we do not consider too much in this thesis. In the incoherent
case, there is no trivial mapping of a three-level system onto an effective two-level system
without employing rather strong approximations such as extremely weak coupling [69], where
the perturbative expansion of the laser driving can be stopped at a low order, or the presence
of strong decoherence sources, which destroy any atomic coherences and allow for an effective
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’A1| > 9,03 —----o-o-

T T,
[A1] > [A]

Ay

Q2
— g

Figure 2.2: Tllustration of the adiabatic elimination procedure of the intermediate level discussed in

Section @

description [35]. These rather strong assumptions have to be made since the master equation
resulting from a similar elimination procedure as discussed above is typically not of Lindblad
form, which allows for negative populations and renders computation with the methods
developed in Section impossible. In addition, an EIT configuration (discussed e.g. in
Ref. [I7]) cannot be reduced to a two-level description, which, together with the afore
mentioned assumptions, sets clear limitations on the adiabatic elimination method. In certain
cases, these constraints might be relaxed by using more involved perturbation theory [70].

Note that even though we will primarily consider two-level systems in the following, we do
not rely on the Hamiltonian . Rather, we regard the adiabatic elimination procedure
discussed above as a justification to consider instead of a three-level Rydberg system consisting
of the states |g), |m) and |r) a two-level system consisting of the states |g) and |r) only, assuming
we have reasonable estimates for the effective parameters 2, A, v and T.

2.4 Many-Body Hamiltonian

In what has been discussed so far, we only considered a single atom interacting with a classical
laser field and a decoherence-inducing environment. The intriguing feature of Rydberg physics,
however, is the non-trivial many-body dynamics that is brought about by Rydberg-Rydberg
interaction. Thus, we need to take a step further and generalize Egs. , (2.25) to an
interacting many-body case.

To improve readability, we set & to 1 in the following. Moreover, internal atomic degrees of
freedom (such as electronic states) are labeled using Roman letters whereas the individual
atoms are labeled using Greek letters.

Starting from the single-atom Hamiltonian , the many-body Hamiltonian of a cloud of
N Rydberg atoms is — up to the Rydberg-Rydberg interaction — straightforwardly obtained
by summing up the single-atom contributions [2| [7, 57, [71],

N (o)
Hiso = (Ql? (Iga) (ra] + h.c.) = A |ry) <7’a]>. (2.29)

a=1 2

Here, we explicitly allowed for an individual detuning A(® as well as an individual Rabi
frequency Qgg) Often, however, these parameters will be the same for all atoms.

As a side note, transforming into the many-body basis o109 ... on) with o, € {g,7}, we see
that each Rydberg excitation contributes a detuning shift of —A to the total detuning of the
state; moreover, only states differing by one excitation are coupled via the laser Hamiltonian

‘Hr.. These observations are useful when aiming at implementing the many-body Hamiltonian
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numerically [33].
The interaction between the Rydberg states can be included via the Hamiltonian V,, which
accounts for the repulsive van der Waals interaction,

Z |R R ’6 ’TOé> <T0l’ ® |Tﬁ> <T6‘7 (2.30)
a<f

with R, g denoting the position of the atoms o and 3 respectively. The validity of Eq.
requires that the interparticle distance is much larger than the size of the Rydberg atom
wave function such that the interaction between the atoms can only be due to dipole-dipole
interactions.

In addition, as discussed in [3I], modeling Rydberg-Rydberg interactions via pairwise
interactions is only valid as long as the energy defect of the (nearest) Forster resonance is large
compared to the largest dipole coupling. By Forster resonances we denote energy-exchange
resonances of type r1 + ro <+ 1] + rh of two Rydberg states 1, r2 [2]. For van der Waals-type
interaction, however, approximating the Rydberg-Rydberg interaction by pairwise interactions
is valid, an assumption used throughout this thesis.

Hence, using the definitions from above, the general full many-body two-level Hamiltonian
reads

N Q(a)
Z ( 3 (‘ga> <ra‘ + h.c. ) Al ‘7'04> <"”a>
N
2 &, R Ry o) (ral ®1rs) (ral (2.31)
a<f

2.5 Many-Body Master Equation

From all this, the extension of the master equation to the many-body case seems obvious, except
for the caveat that we need to be sure that incoherent processes such as dephasing and decay
are not modified by the presence of other atoms. In fact, collective effects such as superradiance
can occur in systems in which the interparticle distance is much smaller than the wavelength
corresponding to the dipole transition |g) <> |m), e.g., through which the intermediate state
decays [72]. In this Dicke limit, the dipole elements can mix, leading to superradiance [72]. For
this reason we compare along the lines of Ref. [35] the typical interparticle distances in current
experiments to the wavelength of the transition |g) <> |m) by means of the dimensionless
quantity z = k,R = 2rR/)\, with R being the mean interparticle distance and )\, = 27c/w,.
For x <« 1, superradiant effects are dominant whereas superradiance is negligible for = > 1.
In our simulations, x 2 1, so we neglect the impact of superradiance in this thesiﬂ

Given the independence of incoherent processes, the full many-body master equation
becomes

Op =~ Hp+z( (v/21 |9a) (ra)lp) + L(VT2 [ra) {ral) ] (2:32)

where H is the many-body Hamiltonian (2.31)) and p the many-body density matrix.
Let us now supplement the previous discussion about inhomogeneous dephasing with a more
rigorous treatment, starting from Eq. (2.21)). Dropping the index S whenever the reservoir

5To obtain this relation, we assumed A\, = 780nm as the case for the two-step excitation scheme in the
experiments [4, [T, [29].
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is already traced out, the Lindblad term used to model inhomogeneous dephasing can be
derived from Eq. (2.21)) by utilizing the microscopic noise term [11]

N
Hroise = Z A(a) (t> ’ra> <ra’a (233)
a=1

where A(® denotes an ac stark shift of the Rydberg level, being different for every atom o.
Assuming further uncorrelated white noise, (A (t)AP) (7)) = T/26,36(t — 7), where the
correlation function is defined in the reservoir subspace, (-) = Trg {- pr}, we find

Ohp = — / dr ) Trp {A(a)(t)A(ﬁ)(T) 70} (ral @ |75) (rs| ps @ pr + h.c.
—00 a,B
—A() ra) (ral ps ® pr AP (7) 1) (ra| + hc.}
— _g %: / dré6(t —7) (Jra) (ral p — |7a) (ral p|7a) (ra| + h.c.)

=Y L(VT[ra) {ral)[p]- (2.34)
Note that, in the two-level case at least, the two dephasing terms L£(v/I'2 |7a) (ral)[p] and

L'(Tg,14 <> 24)[p] introduced in Egs. (2.22)), (2.24]) coincide. Moreover, the super-operator
L) Ty, 14 ¢ 24)[p] can be rewritten to fit the standard Lindblad form as [44]

(Tl 2)[o] = £ (“?w (ral = l90) <gar>) ) (235)

However, no measurement process can be assigned to the Lindblad jump operator introduced
in Eq. , which collapses the atomic wave function to a theoretically infinite number of
final states [44) [73]. To avoid this issue and maintain a physical interpretable jump operator
without employing the cumbersome quantum-jump technique described in Ref. [73], we will
stick to the dephasing term introduced in Eq. in the following.

Operator (2.35) (and, equivalently, the dephasing term in Eq. ) can be also used to
model the effect of atomic collisions [74] and has been used in Ref. [75] to model dephasing
induced by both laser linewidth and decay from the eliminated intermediate state |m).

Lastly, it should be noted that the dephasing constants plugged into the respective Lindblad
terms in Eq. differ by a factor of 4, which needs to be adjusted when comparing
simulations that employ different definitions of the Lindblad operator modeling atomic
dephasing. Specifically, the dephasing constant I pertaining to the jump operator I'(|r) (r| —
lg) (g|) is actually 4 x T" with I pertaining to our conventional jump operator I'|r) (r|.
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The task of simulating an interacting many-body system quantum mechanically is quite
challenging from a computational perspective since the Hilbert space of a many-body system
grows exponentially with the number of atoms. More precisely, the number of basis states
for a system consisting of N atoms, each having [ levels, is given by V. From a technical
point of view this implies, assuming the complex amplitude of each state being stored in a
variable of type double (8 bytes) each, that N < 30 for a two-level system and N < 19 for a
three-level system, to not exhaust a typical RAM of 16 GB, not considering the feasibility to
solve coupled differential equations of that size. If one wants to take into account incoherent
effects as well by means of the density matrix formalism, the state space grows as 2V, lowering
the limit based on memory arguments alone to N < 19 for a two-level system and N < 9 for
a three-level system.

Several approaches have been developed to tackle this problem, each having its own range
of validity. In this thesis, we focus primarily on the two main approaches, namely the rate
equation approach (Section Chapter @ and the wave function Monte Carlo approach
(Section , Chapter 4| and . For other approaches, see Chapter [1| and the references
introduced there.

3.1 Rate Equation Model

The main idea behind the rate equation model first introduced in Refs. [34, [35] is to reduce
the many-body master equation to a rate equation for the populations of the many-body
states, taking into account the Rydberg-Rydberg interaction via an effective energy shift of
the Rydberg level depending on the state of the surrounding atoms. The resulting equations
can be solved numerically very efficiently via Monte Carlo algorithms, allowing one to simulate
systems consisting of several thousands of atoms. In addition, the rate equation approach can
— with some caveats — be generalized to a three-level description, which can still be solved
efficiently. Though there are some variations in what is meant in particular by “rate equation
model”, we discuss the rate equation model developed in Ref. [35] in the following since it
is this kind of rate equation model which was used to model the experiments described in
Ref. [4]. Later on we also comment on the modifications introduced in Ref. [36].

As discussed in Section it is valid under typical experimental conditions to write
the Lindblad terms appearing in the many-body master equation simply as the sum of the
individual single-atom Lindblad terms given by Eq. , which — neglecting for the moment
the Rydberg interaction between the atoms — yields a totally decoupled master equation for
each atom. The main approximation at this level is now to adiabatically eliminate the atomic
coherences by setting

Opij =0 for i #j. (3.1)

This is a valid approximation if, for example, the intermediate level is far detuned, such that
a) the dynamics of the system is governed by the (slow) effective two-photon Rabi frequency
Qor = N128223/2A1 and b) the time scale of incoherent effects damping the atomic coherences
is fast compared to the time evolution of the population, I';;, v;; > Qeg. Using Eq. as
well as the trace condition for the conservation of probability, Tr[p]= >, pii = 1 , one can
solve Eq. for pr, and ppym. Approximating further pp,m, — pgg ~ 0, which is valid if the
decay 791 is large, and using once again the trace condition to rewrite this approximation as
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3.1 Rate Equation Model

Figure 3.1: Illustration of the rate equation approach. Surrounding Rydberg atoms effectively shift
the energy of the atom’s Rydberg level, which is accounted for by a modified, effective
detuning A.g-.

2pmm + prr ~ 0, we finally obtain a rate equation for an effective two-level atom [35]

atprr (t) = ’YTPZI;E (t) = Y Prr (t)7 (32)

where we introduced an effective ground state population pgg as well as the (de-)excitation
rates ) and <4, respectively. The rates 7|, 74 are analytical functions of the master equation’s
parameters.

Using the approximations discussed above, the density matrix simplifies to a matrix
containing the populations of the atoms only. For convenience, we let p, , denote the Rydberg
population of atom « and p,,4 the population of the effective ground state.

The next important step is now to approximate the Rydberg-Rydberg interaction ,
neglecting two-photon processes |gg) <+ |rr). In essence, it is an approximation which allows
us to include the energy shift induced by surrounding Rydberg atoms in the detuning of the
individual atoms [35],

ALY = A =S pef g (3.3)
fa

Neglecting two-photon processes is fully consistent with approximation since the adiabatic
elimination of single-atom coherences inhibits the direct transition |gg) <> |rr), which requires
two-atom correlations.

Two remarks are in order. First, the interaction and the detuning in Eq. have different
signs. This holds for a repulsive van der Waals interaction with Cg > 0. For attractive
interaction, the interaction-induced energy shift changes sign an hence negative detunings are
required to observe the same qualitative dynamics as for repulsive interaction and positive
detuning. Second, Eq. allows us to generalize our effective two-level equation (3.2) to
the interacting case without the need to abandon its convenient structure. An illustration of
the procedure described in Eq. is shown in Figure

The time-dependent rate equation can be most efficiently solved using kinetic Monte
Carlo (kMC) technique [76], [77]. Monte Carlo typically denotes any kind of algorithm that
involves (pseudo) random numbers, i.e., no deterministic simulation of the underlying equations
is performed, but rather a stochastic one [78]. More specifically, by sampling many realizations
of the system under consideration, a reliable estimate is obtained by averaging the various
outcomes if the sample size is sufficiently large (cf. Section [4.2)).

In essence, there are two kinds of Monte Carlo techniques involved in the numerical solution
of the rate equation . First, the states of the atoms become discrete numbers, i.e., an
atom is either excited or not, p,; € {0,1}. There is no statistical mixture at this level. The
correct excitation fraction of the respective configuration is obtained only by sampling many
realizations of the system. This procedure is usually referred to as ‘Monte Carlo sampling’ as
it represents a standard example of a Monte Carlo solution along the lines of the definition
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given in the previous paragraph. Second, the time evolution is calculated using kinetic Monte
Carlo technique.

In the many-body basis B = {(i1,...,in)" |i € {g,7}}, we can rewrite the rate equation
B3 as 77
ot _ 5~ ¢ r 3.4
= > (Towwop — Togop), (3.4)
K/

with o, € B denoting the probability for configuration ¢, I'yy the respective excitation rates
to the many-body state o, and I'yry the respective de-excitation rates from the many-body
state oy. Since the master equation is a loss-gain equation, I'yy = 0 by definition (in the von
Neumann equation, the commutator takes care of this). Defining the matrices (U)gr = gy,
(D)o =35, for £ = ¢" and zero otherwise, Eq. is readily written in matrix notation
as

do

—=—(D—-U)o. 3.9
e p-v) (35)
By means of the matrix S(t) = exp[—Dt] we can determine the probability that a system
being initially in the configuration ¢ is at time ¢ still in configuration £:

pe(t) = (S)ee(t) = exp[—(D)et]. (3.6)

Hence, the time of the first reaction is given by p;(t) = 1 — pe(t), which has the probability
distribution Oyp; = (D) exp[—(D)eet]. The normalization is easily checked by integrating
the distribution from 0 to t.

We can thus draw the time of the first change of the system by solving p; = r, where 7 is a
uniform random number on the unit interval [77], which gives simply exp[—(D)gt] = r, or,
solved for t,

t= —ln[r]/(D)gg. (3.7)

In our simulation, the system is always in a certain state oy, as a consequence of the Monte
Carlo approach. Accordingly, the total rate y44,; by which the system changes its state can,

with respect to our rate equation l} be obtained by adding 'yia) if atom « is excited and

7%04) otherwise to the total rate vq4t. The time for the next change of the system is then

calculated via t = —In[r] /4ot

We have now everything required to solve the many-body version of Eq. by means
of the kinetic Monte Carlo algorithm, which is summarized in Algorithm [I} After one run
of Algorithm [I] we obtain a certain realization of the system, which does not capture the
full available configuration space. In practice, we need to embed Algorithm [I] in some loop
which ensures that enough simulations are performed to sample a representative part of the
system’s configuration space. The number of simulations that are required depends on the
observables and the geometry; for “typical” parameters, several thousand simulations suffice to
produce reasonable data for the Rydberg population. Observables are calculated subsequent
to Algorithm [I} By design, the kMC algorithm does not allow for calculating time resolved
observablesﬁ, but it allows one to compute observables measured at a certain (end-)time by
following the dynamics of the system.

5 Admittedly, one can devise a way to compute the time evolution by considering only configurations of the
system at times that match the given time interval, but this comes at the expense of an increased number of
total simulations to ensure reasonable statistics for all time intervals.
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3.2 Wave Function Monte Carlo Technique

Algorithm 1: Kinetic Monte Carlo algorithm for the rate equation

Place the atoms (randomly) in the trap

Set all atoms to the ground state

while ¢ < tepnq do

for o < N do

Calculate Agg based on the current configuration
if Atom « is excited then

‘ Calculate ,Yia)

else
L Calculate 'y(a)

| Add rate to 40t

Draw random numbers 71,79 € [0,1)
Determine 0t = — In[r1]/y410t, update time

Determine atom [ that changes its state via Zg;% 'yiaT) < 72 Vot < Z§:1 WiaT)

Change state of atom [

The rate equation model is applicable as long as many-body-coherence effects such as
two-photon excitations |gg) <> |rr) are negligible and thus inter-atomic coherences do not
play a significant role in the system’s dynamics.

Moreover, the dynamics of the system can only be calculated reliably if the reduction to
an effective two-level scheme (as performed above) is possible. In the full three-level case,
non-physical negative rates frequently occur [36]. By modifying the rates in a way that ensures
that the respective steady state is still reached, positive rates can be obtained [79], however,
this cumbersome technique is usually impractical for general systems [55].

Consequently, another approach has been developed in Refs. [36] 55] to circumvent this
problem. There, the calculation of the dynamics of the system was abandoned in favor of
the steady-state calculation. In particular, the calculation of a three-level single-atom steady
state was optimized and the global steady state of the system was determined via Monte
Carlo sampling. That is, after initialization, the atom that is supposed to change its state is
randomly picked and its steady state is calculated taking into account the current realization
of the system via the effective detuning A.g as above. Then, using a random number, it is
determined whether the atom changes its state or not, by comparing the random number
with the steady-state populations of the single-atom levels (linear search algorithm as in
Algorithm . The same procedure is repeated several times until the global steady state is
reached (which is usually the case after a few N steps [30]).

In conclusion, rate equation models allow to efficiently simulate interacting many-body
Rydberg systems in the strong dissipative regime where inter-atomic coherences as well as
multi-photon processes are negligible. Realistic systems consisting of several thousand atoms
can be simulated and even the steady-state properties of EIT systems can be analyzed [17, [80].

3.2 Wave Function Monte Carlo Technique
The wave function Monte Carlo (MCWTF') technique [41H44] is a numerical simulation technique
which allows one to solve the many-body master equation (2.32]) without employing the density

matrix formalism. Accordingly, the problem of the quadratic scaling of the number of density
matrix elements with respect to the number of many-body states can be avoided without
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3 Modeling

giving up the ability to account for incoherent processes.

In short, the MCWF technique is based on an analytical equivalence between the master
equation and the average of quantum wave function trajectories that are obtained using
non-hermitian time evolution combined with additional random quantum jumps [44]. In other
words, instead of a deterministic evolution of the density matrix, a piecewise deterministic
process of the wave function is employed, which is sometimes called the unraveling of the
master equation [62]. The periods of deterministic evolution are interrupted by discontinuous
jumps of the wave function that, in a statistical average, reproduce the deterministic time
evolution of the density matrix.

More precisely, the many-body Hamiltonian governing the coherent time evolution is
replaced by a non-hermitian Hamiltonian including the anti-commutator part of the Lindblad

term (2:22) in Eq. (2:32),

. N . N
1 2 o «
Hon=H = S(y+1) Y Ira) (ral = H =5 3 (e e + eltele). (3.8)

a=1 a=1

\]

Here, we have again made use of the jump operators associated with dephasing and decay,
respectively, i.e.,

e\ = VT |ra) (ral, €\ = /7 1ga) {ral (3.9)

For an infinitesimal time step ¢, the time evolution of the many-body wave function |1 ()) is
given by

W/ (t+6t)) = (1 — iHundt) [¢(2)) , (3.10)

which is simply the expansion of the time translation operator exp[—iH,,0t] to first order in
dt. The time evolution given by a non-hermitian Hamiltonian does not preserve the norm of
the wave function since the time translation operator is no longer unitary,

(W (SO (¢ + 8)) = (B(0)] (1+ HE,58) (1= Hundt) [1(1))
=1 — 6t V()] (Hun — HEy ) [9(2)

N
=18t ((n)] 3 (e + e el ()
a=1
=1-dp, (3.11)

where we dropped all terms of order 6¢2 and assumed that the wave function is normalized at
time ¢, (¢(¢)|¥(t)) = 1. This is why we introduced the prime ’ in Eq. (3.11)): it indicates that
the wave function is not normalized. Additionally, we have introduced the jump probability

op =3 0pay with dpas = (w(t)CI T w(t)) bt (3.12)

o, fF

and F € {7,I'}. The association of jp with a quantum jump becomes obvious when considering

Eq. : The operators C,(fa) collapse the wave function (thus the term quantum jump) and
perform so to speak (at least for our choice of operators) a measurement, called a gedanken
measurement in [44], on the wave function. As C,EO‘)TC,SQ) is hermitian, the jump probability is
always > 0. However, in order for the first-order-in-time-approximation to be valid, we need
to adjust dt such that dp < 1.

Stochastically speaking, the wave function undergoes in a given interval §t either a non-
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3.2 Wave Function Monte Carlo Technique

Algorithm 2: Wave function Monte Carlo algorithm

Place the atoms (randomly) in the trap
for many times do
Initialize the system in the ground state
while ¢t < t.yq do
Calculate the jump probability ép
Draw a random number r; € [0,1)
if op <71 then

| Calculate the non-hermitian time evolution exp[—iHnn6t] [)(t))
else

Draw a random number 7y € [O 1)

Determine the jump /¢ via Ze 1 Yope < redp < Ze 10Dy

Collapse the wave function using C,(r ) With {a,F} < 7 (ie., atom a
decays/dephases)

Normalize the wave function
Update the time t — t + ¢

Average over the quantum trajectories

hermitian time evolution with probability 1 — dp (3.11)) or a certain quantum jump associated

with the operator C,(fa) with probability dpq,r.

Putting these two observations together and ensuring the physical interpretation of the wave
function by correct normalization (cf. Egs. , ), we can write down the equation
for the respective density matrix p(t + 0t) = |¢(t + dt)) (p(t + 6t)| averaged over the various
possible outcomes at time ¢ + dt:

! ! (@) (o) f
T = (1 o) W W8] sy ) WOIGD

a, .
VI—dp T—=0p \/5paf /5t \/5paf /6t

Simplifying this equation and plugging in the definitions (3.9)), (3.10) yields, using p(t) =
[(t)) (¥ (t)],
p(t +dt) = p(t) — idt[H, p(t)]

1 (e} « o o
Z( 261k p(e) = Splc e + e ployci ) st (3.14)
F

For a small time step dt, this is simply the master equation with the time derivative written
as a difference quotient,

) = (plE-+80) = pli) ot = =i, o0 + 3£ (67) (00, (3.15)

where we averaged over the density matrix at time ¢ as well. If the initial conditions of master
equation and the above approach coincide, the exact density matrix and the one obtained by
averaging, Eq. (3.15)), coincide as well, at any time ¢ [44].

There is, however, a caveat concerning the approximation performed in Eq. (3.10). Although
there are no explicit constraints on the time step 6t so far (except for the condition dp < 1
already mentioned), the first order approximation of the time evolution requires H,,0t to be
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3 Modeling

small; in particular the eigenvalues of the Hamiltonian multiplied with the numerical time
step, |Amdt|, need to be small compared to 1 [44]. This requirement is non-trivial for an
interacting many-body system where the interaction energy depends on the atoms’ spacings
(cf. Section . The converse condition on ¢, namely that dt needs to be larger than the
correlation time of the reservoir [44], is typically not an issue in numerical simulations of
Rydberg systems for the parameter range considered in the later chapters.

From the viewpoint of numerical computation, the procedure described above is easily
translated into an algorithm by realizing the stochasticity of the time evolution by means of
random numbers. To ensure a clear notation, we define a one-to-one correspondence between
every number ¢ and the tuple {«, F } with a € {1,..., N} and F € {,T'}. With the help of
this definition we can summarize the MCWF technique in an algorithm, Algorithm [2}

To sum up, the wave function Monte Carlo technique allows one to numerically solve the
master equation without employing the density matrix formalism. Instead, an equation of
Schrodinger type is solved; incoherent processes are included via non-hermitian time evolution
and additional random quantum jumps. In each step of the time evolution the system can
either undergo a coherent, non-hermitian time evolution or perform a quantum jump associated
with incoherent processes such as dephasing or decay. Whether or not a jump occurs in a
single time step is determined by a Monte Carlo method, which randomly selects the jumping
atom as well as the jump operator according to the respective jump probability. Averaging
many random trajectories allows us to obtain a ‘mixed’ state that solves the corresponding
master equation.
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4 Implementation and Characterization of the MCWF
Technique

Since a thorough understanding of the MCWF technique is indispensable to simulating
interacting many-body Rydberg systems for experimentally relevant parameters, we address
the technical details of our MCWF simulations in this chapter.

In Section we discuss details on the implementation of the MCWF technique, which was
implemented in an existing code that allows one to solve the coherent many-body Schrédinger
equation [23], 32 [33]. As state space truncation is applied in this code, the projection operators
for the MCWF model need to be adjusted to ensure correct simulation results.

Subsequently, we analyze the MCWF technique with respect to accuracy and convergence
(Section as well as to the robustness of the pair correlation function against variations of the
numerical blockade radius (Section . In particular, we review the convergence properties
of a general Monte Carlo procedure and discuss different instances that might decrease or
increase the rate of convergence of the signal-to-noise ratio, which is the actually important
quantity in our simulations. As expected from theory, we find that the MCWF calculation
converges to the master equation result with increasing sample size. It turns out, though,
that the finite size of the numerical time step required in the MCWEF algorithm introduces
a small error in the strongly interacting and far-detuned regime, due to the breakdown of
the first-order approximation of the non-hermitian time evolution. The numerical blockade
radius, in contrast, causes strong deviations of the pair correlation function only if varied
considerably.

Moreover, the averaging procedure (Section and the computational efficiency (Sec-
tion is examined. Considering observables consisting of individually averaged quantitiesﬂ
it turns out to be favorable to increase the number of simulated geometries rather than the
number of trajectories simulated for each geometrical realization to obtain an accurate result
most rapidly. The efficiency of our simulation is found to depend crucially on the number of
matrix-vector multiplications performed in the simulation, which constitute the bottleneck of
our simulation in terms of CPU time.

With these results, we can then turn to the discussion of simulation results of physically
more relevant systems in Chapter

Note that, in this as well as the following chapters, the units of the master equation
parameters are dropped to improve readability. They can be easily restored, however, by
consistently adding the unit MHz to the parameters A, Q. +, I and V,,., MHz um® to the van
der Waals coefficient Cs and pum to any length/distance. The numerical time step ¢ is given
in 2mwus.

4.1 Details on the Implementation

Before discussing the technical details of the implementation of the wave function Monte
Carlo technique, we need to first review the approach employed in [23], B2 [33] to tackle the
problem of the exponentially growing Hilbert space, as it constitutes the starting point of our
implementation of the MCWEF technique.

In general, an established technique to deal with the exponential growth of the Hilbert space
is state space truncation [22] 31l 32, [57], which essentially removes any state from the Hilbert
space which cannot be populated due to the blockade effect. More specifically, considering the

"“Individually averaged’ in this context means that these quantities can be calculated subsequent to both
Monte Carlo and geometrical sampling (see below), such as the Rydberg population, for instance.
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4 Implementation and Characterization of the MCWEF Technique

Figure 4.1: Tllustration of the state space truncation procedure. States that cannot be populated
due to the blockade effect (i.e., the doubly excited states in the reddish shaded area) are
removed from the Hilbert space.

system shown in Figure the state space truncation removes the states |rrg), |rrr) from
the total many-body basis

{1010203) |01, 02,05 € {g, 1} }. (4.1)

The truncation condition can either be given by setting a limit on the energy of the Rydberg
states by hand or by estimating the cutoff energy Cg/ Rzﬁ using a numerical blockade radius
R} < Ry, with R denoting the estimated blockade radius that can be calculated, for instance,
via Eq. . In our simulations, the latter procedure is used and the numerical blockade
radius is adjusted so that no states with a relevant population contribution are removed, which
can be checked for example by considering the pair correlation function that is introduced
in Section The linewidth broadening effect of the dephasing is factored in via the naive
replacement 2 — Q + I' in Eq. . For typical parameters such as the ones stated in
Figure the state space consists of O(10%) states after truncation.

Details on the state space truncation (as well as state space construction) employed in
123, 32] can be found in Ref. [33]. For two-level systems, the state space truncation is extremely
helpful since it allows one to significantly increase the number of atoms that can be simulated
(for strong blockade and hence few excitations, N > 100 is possible). For three-level systems,
however, the state space truncation is rendered inefficient as only interacting Rydberg states
can be eliminated, leaving the number of intermediate states unaltered.

Consequently, our implementation of the wave function Monte Carlo technique has to
take into account the modified Hilbert space underlying the simulation, induced by state
space truncation, which particularly affects the many-body projection operators introduced in
Section That is, the many-body projection operator C,(ra) defined in Eq. needs to set
all many-body wave function amplitudes to zero which do not correspond to any excited state
(for F =T') or ground state with existing excited state (for F =) of atom . For f =T, the
wave function amplitude is multiplied by VT and stays in the excited (many-body) states
of atom «, for F = ~ the amplitude is multiplied with /7 and transfered to the respective
ground states of atom «a (cf. Egs. , for a two-atom example). If, due to the state
space truncation, the excited states corresponding to certain ground states do not exist, the
jump operator of both decay and dephasing needs to set the amplitudes of the respective
ground states to zero nonetheless, since it is assumed that the amplitudes of the excited
states are negligible, and that any transfer or mere multiplication with /f will not change
the simulation result. This modification is the most important one when trying to apply the
MCWEF technique detailed in [44] to Rydberg systems, apart from the implementation details.

In our three-atom example from above, for instance, the jump operator Cl(}) projects the
amplitudes of the states |grg), |grr) to zero although the corresponding excited states |rrg),
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4.2 Accuracy and Convergence

|rrr) do not exist, since we know that only a tiny error is introduced by neglecting the
states |rrg), |rrr). Cgl) conversely projects the amplitudes of the states |grg), |grr) to zero
since the corresponding excited states |rrg), |rrr) do not exist and hence zero population is
transfered from the excited states. This can be directly seen by applying the jump operator
Cgl) = /7 |g1) (r1] to the wave function

V) = Cagg 1999) + Crgg |799) + Corg |979) + Cogr |997) + Crgr [Tgr) + Cgrr lgrT) (4.2)

yielding only two nonzero amplitudes,
CSV ) = V7 (¢rgg 1999) + rgr l9gm)) - (4.3)

To determine the respective ground states of our many-body Hilbert space, a routine, which
we call “calculation of jump connection array”, is implemented. The routine loops over each
excited state with m excitations and determines the states that are coupled to it by means
of the many-body Hauniltonianlﬂ7 satisfying m’ = m — 1 with m’ being the excitations of the
coupled state. With this in mind, the jump operators can be implemented according to the
aforementioned instruction.

Apart from this caveat, Algorithm [2] can be implemented in a straightforward manner.
Considering that the GSL routines available to solve ordinary differential equations treat real
and imaginary part separately, the non-hermitian modification to the coherent Hamiltonian
has to be split into two parts that act on the real and imaginary part of the many-body wave
function. Denoting the real part of the wave function by |¢%), the imaginary part by |1g) and
the imaginary part of the Hamiltonian by Hg = —i(Hnn — H) (cf. Eq. (3.8)), the modified
Schrédinger equation reads

Olm) +ils)) = Hn [vs) — itz [vw) + Hs [Yn) + iHs |ids)). (4.4)

4.2 Accuracy and Convergence

Aiming to study the accuracy and convergence properties of the wave function Monte Carlo
method, we start off by reviewing some statistics related to Monte Carlo procedures in general,
i.e., the law of large numbers (LLN) and the central limit theorem (CLT).

Let X,, denote the arithmetic mean of a sequence of independent, identically distributed
(i.i.d.) random variables X; (i = 1,...,n) with expectation value p each. Then, the law of
large numbers states that

Jim X, = p, (4.5)
even if the variance o2 is not bounded from above [81]. Eq. is the essence of the two
formulations of the LLN, i.e., the weak and a strong one. Whereas the weak formulation
asserts the convergence of X, to u while leaving open the possibility for a large deviation
]Xn — p| to occur an arbitrary number of times (but very infrequently, of course) as n increases,
the strong formulation ensures that such deviations cannot happen arbitrarily often [81]. The
LLN thus guarantees convergence to the true mean without giving any information on the
rate of convergence or the error. For this, we need the central limit theorem.

The central limit theorem states that if the variance is bounded from above, 0% < 0o, the

8Strictly speaking, only the lower triangular part of the Hamiltonian is required for this procedure.
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probability P satisfies

_ A
. |Xn*/‘| 1 /72/2
Im Pl ——— <\ | = — e d 4.
i, (a/\/ﬁ VY (46)

for the random variable X; introduced above. In other words, the X; are asymptotically
distributed with mean p and standard deviation o/y/n [81]. Accordingly, the error of our
estimate X, decreases with 1//n for standard Monte Carlo sampling. By replacing the ‘true’
variance 02 = 3, (X; — p)? by the estimated one, one can in principle specify a confidence
interval for the estimate X,, via Eq. .

Although the Monte Carlo sampling technique has a rather poor convergence rate of 1/y/n
compared to direct numerical integration schemes which solve ordinary differential equations,
for example, it is an extremely flexible method which can be applied to highly complex and
multidimensional problems without altering the convergence properties.

As a side note, a false understanding of the law of large numbers can lead to the gambler’s
fallacy by which a gambler might reason that if a fair coin was tossed ten times with eight
occurrences of “tail”, the probability for “head” in subsequent tosses would be larger than
one half to even out the excess of “tails” [81].

Analysis of Convergence With Respect To Sample Size

Relating Eq. (4.6) to the wave function Monte Carlo technique, we expect a 1/y/n scaling of
the population error with respect to the number of simulations n. To quantify this scaling,
we introduce the effective, time-averaged variance

2 1 a ) 2
ot =+ > (Wt)ue — N (47)

v=1

where ME abbreviates the master equation solution, ¢,, denotes the discrete evaluation times
and the measurement operator for the total Rydberg population is defined as

N =Y N with N©@ =|ry) (rg]. (4.8)

Plotting the variance over the number of Monte Carlo simulations, we obtain a scaling
compatible with the expected 1/y/n scaling (cf. Figure [4.2a)).

Note that, to compare the accuracy of different simulation results, one should use a relative
error estimate like the signal-to-noise ratio j/o rather than the simple variance o2. For this
ratio, the condition for good statistics is crucially dependent on the observable that is to be
evaluated [44]. For an observable to which many states contribute, called global operator
in Ref. [44], less statistics is required to obtain a good signal-to-noise ratio than for a local
operator which acts on a single state only. As the Rydberg population operator N is a global
operator, the number of Monte Carlo runs required for good statistics decreases as we simulate
a system consisting of many atoms.

Moreover, from the full time-averaged variance shown in Figure we cannot deduce an
error estimate for the population (N (¢,)) as the standard deviation o (t,) is not uniform. More
precisely, the variance depends both on the jump rate and the effect of the quantum jump.
At the beginning of the simulation, the jump rate is negligible, leading to a small variance
which is approximately independent of the number of Monte Carlo runs. This adds another
explanation for the deviations in the fit in Figure As soon as the jump probability
becomes clearly nonzero, quantum jumps can occur, projecting the system onto a distinct
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Figure 4.2: Accuracy of the MCWF simulation for two atoms (quantified by the variance o2, cf. text).
Parameters: Q/2r =1, A/2xr =5, V,,. /27 = 10, /27 = 0.5 and T'/27 = 0.5.

quantum state. To illustrate the effect of dephasing and decay on the wave function, let us
consider for simplicity a two-atom system, whose wave function can be written as

[46) = cug l9g) + crg Irg) + cor lgr) + cor 7). (4.9)
If atom 2 decays by emitting a photon, the wave function becomes

[ 2) = Cor 199) + Crr |rg) ' (4.10)

|Cgr‘2 + lerr|?

In the case of dephasing, we rather have

) = Car |gT) + Cpr |17)

|Cg7"’2 + [cpr |2

[Yr 2

(4.11)

Accordingly, the total jump probability decreases after a decay if the amplitude ¢, for double
excitation is almost vanishing, |c,r|? < |erg|?, |cgr|?. Conversely, if |c,.|? is comparable to
crgl?, |cgr|?, the jump probability for atom 1 increases and collective jumps become likely [47].
For dephasing, in contrast, the jump probability always increases unless the amplitudes cyq,
crg are negligible; in that case, the probability stays the same as the dephasing jump does not
alter the wave function. If no jumps occur for some time, the system is, via the non-hermitian
time evolution, evolved into the ground state again, reducing the jump probability.

In the presence of a large detuning, the Rydberg population is usually small, implying
that a dephasing jump can have a significant impact on the wave function. This is shown
in Figure For zero detuning, the doubly excited state is essentially blockaded and the
population is bounded by one. For A =V, /2, resonant double excitation is possible, leading
to an enhanced fluctuation. Accordingly, the variance is larger for positive detunings, requiring
more statistics to obtain a smooth curve. This is an observation somewhat equivalent to the
one elaborated in Ref. [44]. There, it was noted that the sample variance depends on the
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Figure 4.3: Tmpact of detuning and interaction on the Rydberg population. Parameters: (a) N = 2,
Vrr/2m =10. (b) N =5, A =0, n =2000. Common parameters: Q/27 =1, I'/2r =1,
v =0, 5t = 0.01.

particular jump operator used for measurement, which was chosen from a class of operators
that yield the same master equation. For an operator that projects onto an eigenstate of the
system, an enhanced variance was observed compared to an operator which projects onto a
superposition. As the dephasing jump operator projects onto an eigenstate of the system, the
fluctuation induced by this jump is particularly large for positive detunings, so more statistics
(or a larger atom number) are required to obtain a good signal-to-noise ratio.

Analysis of the Numerical Time Step

In addition to the number of simulations, we have to examine yet another parameter and its
impact on the accuracy of the wave function Monte Carlo simulation, namely the numerical
time step dt introduced in Section Constraining ourselves again to the two-atom case
where we can compare the simulation results most easily with the exact master equation
solution, we find for the parameters in Figure [£.2] no obvious scaling of the accuracy with
the numerical step size (cf. Figure . At first sight, this is not too surprising since the
equivalence between the master equation and the MCWEFE approach does not depend on a
particular value of 6t [44]. Nevertheless, it is unclear whether the generalization of the simple
two-atom system with easily tunable interaction strength to a many-body system with more
versatile interactions affects our conclusion concerning the arbitrariness of the numerical time
step 0t. Indeed, for multiple atoms, we find a deviation in the Rydberg population depending
on the numerical step size dt, which is shown in Figure [£.4]

To check whether this is an effect of the numerical time step dt only or of the violation of the
condition dp < 1, we first observe that the total jump probability dp can be easily calculated
from the total Rydberg population via dp = (v + I')(N)dt. With respect to Figure this
implies that the condition dp < 1 is met for all numerical time steps 6t. However, the condition
|Amdt] < 1 with A, denoting the eigenvalues of the Hamiltonian #,), is more difficult to
fulfill as we do not know the exact eigenvalues. Assuming weak driving (2 < A, V,..), the
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Figure 4.4: Analysis of the dependence of simulation results on the numerical time step 0t: §t = 0.02
(green, dotted), ot = 0.01 (blue, dashed) and 6t = 0.001 (red, solid). Parameters: N = 30,
Lip =10, Q/2r = 1, AJ2r = 5, Cs /21 = 900, v/27 = 0.2 and T = 0.

eigenvalues of the non-hermitian Hamiltonian are basically given by

o~ v (a.)
Am ~ —m (A +50r+ F)) + 0y vied), (4.12)

a<fEom

with o, denoting the many-body state restricted to m excitations, ", 5(‘7m)a'f' = m. For any
number m of excitations, the number of interaction terms is given by the binomial coefficient
m
(3):
At first sight, Eq. (4.12)) looks as if the condition |A,,0t| < 1 could not be fulfilled in general

if the number of excitations is larger than, say, two, since vﬁ? #) is unbounded. Nonetheless,

we need to remind ourselves that state space truncation ensures that the sum of the interaction
energies is bounded from above, and, what is more, that far detuned states do not contribute
significantly to the simulation result. Accordingly, the error introduced by the numerical time
step is expected to only affect the subspace of sparsely populated states, which should reduce
the impact on the simulation result.

In fact, for the simulations shown in Figure we have a relative deviation of < 1%.
For another simulation with slightly different parameters (N = 35, L1p = 15, Q/27 = 0.8,
A/2m =5, Cs/2m = 16000, v = 0.025, I'/2m = 2) we find a relative deviation of ~ 2% when
comparing the steady-state values for §t = 0.01 and 6t = 0.002. This suggests that the relative
deviation introduced by the large eigenvalues of the Hamiltonian can be as large as a few
percent for typical simulation parameters in the strongly interacting regime. It should be
noted, however, that the relative deviation of 2% between the simulation results does not
necessarily translate into a relative error of 2 % as the two simulation results could correspond
to upward and downward fluctuations, respectively (cf. Figure . Notwithstanding, the
relative deviation strongly suggests that some non-vanishing error is introduced by choosing a
computationally favorable, i.e., large numerical time step in a strongly interacting and far
detuned regime.

We do not attribute this deviation to the lack of statistics with respect to geometrical
averaging since a comparison of simulations with equal numerical time steps 6t = 0.02,0.01
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4 Implementation and Characterization of the MCWEF Technique

and number of simulations nge, X 1 ~ 103 x 100 yields a deviation < 3 %o, which is one order
of magnitude smaller than the deviation found by comparing different numerical step sizes.
Thus, there is an inaccuracy arising from the numerical step size 6t if the simulated system
is strongly interacting and far detuned, which we have to tolerate if we want to avoid very
computationally-expensive, time-consuming numerical simulations. Based on the relative
deviation of the simulation results, we estimate this error to be in the order of few percent in
a worst, case scenario.

Another regime where the dipole interaction brings about a numerically challenging regime
with respect to steady-state (SS) calculations is the regime with zero decay but nonzero
dephasing. In this regime, the steady-state value of the population is reached extremely slowly,
as shown in Figure This can be understood as follows: If the interaction potential
between the atoms is large enough to significantly reduce the speed of the population transfer
to the excited level, but still sufficiently small to not prevent a measurable population transfer,
the population will reach its steady state only in the limit of large times. It is clear that an
improper choice of the numerical time step §t entails a non-negligible population error in this
regime where the sparsely populated subspace plays an important role.

In addition, the state space truncation criterion is, strictly speaking, invalidated in this
regime since the blockade only applies dynamically for zero decay, i.e., for zero decay, the
equally populated steady state of a strongly interacting system is only reached in the limit
of ‘infinite’ times. In our simulations, however, we only consider finite times ¢ < 60 us, so
that the (dynamical) truncation still applies and thus also the static truncation. In a sense, a
system with zero decay is unphysical, as in real physical systems there is a particular direction
towards the energetic ground state of the system in the long-term dynamics. This tendency
is only negligible for short-term dynamics for which the steady state of the system is never
reached. For a detailed analysis of a two-atomic system with zero decay, see Section

In the coherent case, the resulting stiﬁness{g] of the Hamiltonian is typically taken care of by
an appropriate adaptive step size of the ODE solving routine (cf. Section . For the MCWF
technique as detailed above, the step size needs to be fixed at the beginning, introducing a
small error in the case of stiff ODEs, i.e., if |A;,0t| < 1 is not fulfilled.

4.3 Numerical Blockade Radius

Besides the numerical parameters on which the MCWF technique explicitly depends, our
simulation also relies on the state space truncation introduced in Section [3.2] To quantify
its impact, it is convenient to introduce an new observable: the pair correlation function. In
particular the blockade radius Rp, which affects the many-body dynamics as discussed in
Section is easily accessible via the pair correlation function.

The pair correlation function G2 is defined as [36, [82]

Sacs N@ONB) 500
2 o ,
(F V) Cacs o

G(R) = (4.13)

where 5%1’& ) is 1 only if the two atoms «, 3 are separated by a distance which lies in the

interval R < |R, — Rg| < R+ AR,

(o) = [@ (W) _6 (W _ 1)} , (4.14)

9In computational language, an ordinary differential equation (ODE) is called stiff if the eigenvalues of its
Jacobian matrix (in our case the Hamiltonian) have greatly differing magnitudes [78].
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4.3 Numerical Blockade Radius

where ©(x) is the Heaviside step function, O(z) =1 for x > 0 and ©(z) = 0 for z < 0. The
pair correlation function defined in quantifies the probability to find two excited atoms
in a certain distance R. There is, however, a drawback in the definition of G, namely that
it is not immune to finite-size effects. More specifically, the division by the total number of
pairs with distance R takes into account the spatial distribution of the atoms, but not of the
excitations.

To illustrate this, let us consider an atom positioned at the trap border. Following a simple
mean-field argument, atoms positioned at the trap border are preferentially excited, since the
total dipole interaction is reduced at the trap border as only atoms inside the trap contribute
to it and hence the background field is smaller for border atoms. Thus, the excitation fraction
is larger for atoms at the trap border, yielding an increase of G® (R) as R approaches the trap
length. This increase is not what one would expect from a properly defined pair correlation
function, because for a finite correlation length, atoms separated by large distances should
not be correlated, (N ON®)) ~ (N@)Y(NVB)) and hence the correlation function should
approach the constant value G?) =1 for large R.

The drawback in the definition of G®)(R) could be remedied by using a different definition
[32], introducing the observable ¢(®(R) via

(25“‘” N )/25 o), (4.15)

a<f

Here, finite-size effects are divided out since 9(2) explicitly respects the distribution of ex-
citations via normalization by (N(@)(NB). Eq. provides a normalized measure of
the conditional probability of finding an excitation at Ry if there is already an excitation at
R, with |R, — Rg| = R [32]. Besides the definition (4.15)), there are also slightly different
definitions like the one given in Ref. [3] where numerator and denominator are summed
separately. In practice, the precise definition of ¢(?) is usually modified depending on how
casily the quantities needed to calculate ¢ are experimentally accessible and how numerically
stable ¢(@ can be calculated.

Though the pair correlation function ¢(®) is somewhat more advantageous than G, we
use Eq. in the following. The reason is that, due to a quantum jump (in particular a
dephasing jump) during a MCWF simulation, the product of the single excitation probabilities
can be much smaller than the doubly excited one, (N (@) (NP)) < (NN B which causes
@ to diverge. In the averaging procedure, this divergence doesn’t average out since the single
quantum trajectory is weighted far too much by means of the quotient-taking. Hence, the
calculation of ¢(® requires averaging of the quantum trajectories prior to geometry averaging
discussed in Section both with good statistics. If we use the pair correlation function G
instead, the first condition (i.e., good statistics for the trajectory average) can be relaxed.
Hence, we use G in the following since it can be calculated from separately averaged
quantities only. Note that we expect G®@ to prove more favorable as compared to 9(2) in
experiments with disordered gases that measure spatial correlations via excitation imaging
techniques, since it requires less statistics to obtain meaningful data.

Although we have access to the time-dependent pair correlation function G(Q)(R, t), it is for
most purposes more expedient to show the pair correlation function in the steady state of the
system if it is reached for typical simulation times. If it is, we perform a temporal average
to improve statistics, calculating <G(2)(th)>te[ts,tend] where ¢ denotes the time where the
system has reached its steady state. If not stated otherwise, it is this averaged G function
that is shown in the following.

By means of the definition (4.13) we can now plot the pair correlation function G (R) for
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Figure 4.5: Analysis of G(?)(R) for different numerical blockade radii: R; = 0.68R;, (blue), R} = R,
(red), R} = 1.1R; (green) and R; = 1.25R;, (yellow), using an estimated Ry = 2.35 (cf.
text). The reddish shaded area indicates dominance of finite-size effects. Parameters:
N =30, Lip = 10, /27 = 1, A = 0, Cs/27 = 900, 7/27 = 0.1, T/21 = 1, ngeo = 1000
and 6t = 0.02.

several numerical blockade radii, which is done in Figure There, the blockade radius R
was estimated via Eq. using the naive replacement 2 — 2 + I'. For positive detuning,
resonant processes can occur, as discussed in Sections and 3.1} In that case, the estimate
for Ry is rather given by Eq. . These estimates for the blockade radius R} are reasonable
estimates in general, but they take into account the effect of dephasing only approximately
and neglect the effect of spontaneous decay on the blockade radius. Thus, the numerical
blockade radius should be smaller than the estimate R in general to be on the safe side; in
our simulations, R = 0.8 Ry, is usually used.

As can be seen from Figure the pair correlation function G?(R) is fairly robust with
respect to the choice of the numerical blockade radius; the distinct curves agree well for
R; < Ry. For R; > Ry, however, even relevant states are excluded from the numerical
calculation, spoiling the simulation result. Pictorially, the numerical blockade radius must be
smaller than the first point of inflection of the G(?) function to preserve the main features of
the G® function as well as the correct steady state of (N), since the Rydberg population
obviously decreases as more and more excited states are removed. For R < Ry, the state space
truncation only introduces a small error without changing the main properties of both the
G® function and the population data, which is exactly what is required for an approximation
to be valid. For the analysis of the pair correlation function G(?), though, the numerical
blockade radius should be chosen such that the onset of G is still captured, requiring R} to
be considerably smaller than Rjp.

4.4 Averaging Procedure
Unless lattice geometries are considered, the simulation includes, in addition to the quantum

trajectory averaging, an averaging over different geometrical configurations. That is, the
atoms are randomly placed inside the trap volume at the beginning of the simulation and a
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Figure 4.6: Analysis of the averaging procedure. Parameters: (a) N = 30, v/27 = 0.01, 1000 runs. (b)
N =15, v/2m = 0.1. Common parameters: /27 =1, Cs/2m =900, I'/27 =1, A/27 =0,
Lip = 10, 6t = 0.02.

number n of quantum trajectories (traj.) are simulated using this particular geometry (geom.).
After this, another geometrical realization is determined randomly and another set of quantum
trajectories is simulated. This is typically repeated a large number of times and the resulting
data is averaged, yielding the simulation result. The procedure is illustrated in Figure
For each geometrical realization, the dynamics of the system are different, resulting in a
fluctuation in the observables such as the Rydberg population. The average, however, reduces
the impact of uncommon geometrical configurations and balances the different realizations. In
that sense, the simulation reproduces the experimental procedure as it comprises the averages
over different geometrical configurations that can arise in an experiment.

The averaging procedure begs the question of how the two averaging procedures relate
to each other and whether both of them are required to yield good results. Considering
Figure [£.6b] we find that the global population average does not depend on the number of
quantum trajectories considered for a single geometrical configuration, but rather on the total
sample size. Note that this statement does not implicate any insight into the interchangeability
of the two averages — for the population observable, the averages are trivially interchangeable.
It rather confirms the assumption that for an unordered sample the trajectory for a single
geometrical configuration does not need to be fully converged to guarantee an accurate
simulation result, as long as sufficient different realizations are taken into account. Indeed,
one could imagine regrouping the quantum trajectories into ‘geometrical similarity classes’,
thus obtaining converged trajectories for each representative geometry as is the case for a
larger trajectory sample size for each geometry.

This conclusion holds even for the observable G(?) since the normalization of the correlation
function is performed with the global population average, which does not — according to the
previous explanation — depend on the number of quantum trajectories for a single geometrical
realization.

It is therefore advantageous to decrease the number n of quantum trajectories for each
geometrical configuration with respect to the number nge, of geometrical configurations. For a
typical simulation involving N 2 30 atoms in a one-dimensional trap of Lip ~ 10, we usually
use n = 100 and 500 < ngeo S 1000. Considering the time evolution of the population as well

~
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Routine Scaling behavior

Calculation of jump connection array — ~ O(N2ng (m)?) ~ O(N?ng)

Calculation of jump probability vector O(ngt(m)) ~ O(ng)
Determination of jumping atom O(N)
Jump projection O(ng)
Normalizing O(nst)
Matrix-vector multiplication O(ngN)

Table 4.1: Scaling behavior of the numerical routines of the MCWF implementation.

as the G function, it is readily apparent whether the number of simulations was enough to
provide accurate data.

4.5 Efficiency

To fully characterize the MCWF technique we also need to discuss the efficiency of its
implementation. Denoting the number of states with ng, the number of atoms with N as
before and the number of excitations with m, we find for the routines introduced in Algorithm 2]
for the current implementation the scaling behaviors listed in Table Except for the first
routine ‘Calculation of jump connection array’, which belongs to the initialization block, all
routines are called in each time stepm, leading to an overall scaling additionally multiplied by
the number of time steps n, = tenq/dt.

The initialization procedure ‘Calculation of jump connection array’ has a rather unfavorable
scaling ~ O(N?ng), which could be significantly reduced by including it in the optimized
state space construction routine described in Ref. [33]. However, this is not the bottleneck of
our simulation since the array storing the jump connections has to be calculated only once for
each geometry and can be reused in the successive simulations of the same geometry, which
are required to obtain reasonable statistics. It is the time evolution which constitutes the
bottleneck of our simulation as it involves the matrix-vector multiplication Hyy |¢), which is
of order O(ngN).

For a fixed set of typical parameters, the runtime for the MCWF simulation is shown in
Figure All calculations were performed on a single 3.4 GHz CPU core. To ensure a well-
defined increase of the state space with the number of atoms, a lattice geometry was employed
for the runtime study. As the number of states increases, the scaling O(ns/N) becomes
dominant; the runtime for the remaining parts of the program such as state space construction
or calculation of the jump connection array is negligible (well below 1%) compared to the
calculation of the time evolution.

Due to adaptive step size control, the time step chosen by the GSL ordinary differential
equations routine gsl_odeiv_step_rk8pd is typically much larger than &t on average for a
coherent time evolution. Thus, enforcing the constant time step 6t leads to an overall scaling
of O(ngNn,) for the non-hermitian time evolution, with n, ~ O(10%) in typical simulations.
Though an adaptive step size would be highly desirable for the MCWF algorithm (e.g. by
requiring 0p ~ const < 1), is is not feasible since the additional |\,,0t| < 1 constraint has to
be taken care of as well, as discussed in Section A fixed step size 0t is therefore most
convenient to use. A generalization of Eq. to a higher order in dt as suggested in
Ref. [44] might prove beneficial, yet even this approach is limited by the condition |\,,0t| < 1.

10WWhile the matrix-vector multiplication may be called several times in each time step, all other routines are
called at most once per time step.
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Figure 4.7: Runtime of a set of MCWF simulations (n = 1000) as a function of the product ng N
(blue crosses). The blue, dashed line shows to a linear fit to the data.

If large systems consisting of many atoms are simulated, trivial parallelization is used to
decrease the simulation time, i.e., the same simulation is run with fewer statistics on several
kernels and the simulation results are combined at the end.

In summary, for the simulations typically performed using MCWF technique, the efficiency
is basically limited by the time step dt which determines the number of matrix-vector
multiplications that scale most unfavorably in the routine calculating a single quantum
trajectory. The (unfavorable) scalings in the initialization procedure can be ignored compared
to the scaling of the time evolution for our purposes. Therefore, any optimization must
address primarily the acceleration of the matrix-vector multiplication. For further details on
the implementation of the Schrodinger model, see Ref. [33].

Noting that the data structure used to store the Hamiltonian is a sparse matrix format [33]
akin to the general compressed sparse row (CSR or CRS, compressed row storage) format, a
genuine parallelization on graphics processing units (GPUs) using Compute Unified Device
Architecture (CUDA) could be utilized to accelerate particular functions that perform the
matrix-vector multiplication Hyy, [1) (cf. Ref. [83]).
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5 MCWF Results

Having discussed the technicalities and possible issues concerning the wave function Monte
Carlo technique in Chapter |4, we can now turn to the discussion of more physically motivated
simulations, which is the topic of this chapter.

In the first part, Sections [5.1H5.3], we focus on the comparison between the MCWEF and
the two-level rate equation model developed in Refs. [36, [55] on the basis of the observables
population and pair correlation function. The aim is to benchmark the rate equation in a
partially coherent regime, and to assess the consequences of the approximations introduced
during the derivation of the rate equation. We find that the rate equation yields correct
results only in the strong dissipative regime (v # 0, I' 2 Qcg), where coherent effects such as
two-photon resonances do not contribute significantly to the the system’s dynamics.

In addition, we study the impact of dissipative effects on the pair correlation function
G®)(R) in Section . While both dephasing and decay smear out the structure of the pair
correlation function on resonance, the dephasing substantially decreases the blockade radius
in addition and destroys the two-photon resonance present for off-resonant (A > 0) excitation.

In Section we discuss the build-up of spectral asymmetry in a small sample in which at
most two excitations are possible. Comparing this to super atom dynamics, the differences in
the dynamics can be ascribed to the different number of atoms contributing to the collective
Rabi oscillations as well as to resonance effects.

Subsequently, the response of the atomic coherences present in our two-level model to an
excitation pulse is examined in Section motivated by recent experiments reported in
Ref. [29]. Comparing our results with experimental data, it turns out that our two-level model
does not reproduce the high-density data adequately, which we attribute to the elimination of
the intermediate level not being justified here.

Finally, we investigate incoherent, off-resonant excitation dynamics in a one-dimensional
disordered trap geometry in Section in particular with respect to the dynamics of the
excitation number fluctuation quantified by the Mandel Q parameter. We find non-trivial
dynamics in the ) parameter for both resonant and far off-resonant excitation, associated
with slow population increase due to slow equilibration in the weak dissipative regime (y = 0).
For off-resonant (A/2m = 5) excitation, bimodal excitation statistics are observed at rather
large times in the quasi coherent regime, which we trace back to coherent oscillations between
ground and doubly excited states that are visible only for small system sizes.

Overall, this chapter comprises our main simulation results of the wave function Monte
Carlo model, emphasizing the necessity to take dissipative as well as multi-photon effects
into account when considering the dynamics of many-body Rydberg systems in the weak
dissipative regime.

5.1 Super Atom Dephasing

Recalling the super atom picture introduced in Section we could ask how incoherent effects
such as dephasing modify the dynamics of a super atom [I1]. This is an interesting question,
since the super atom we discussed so far was a coherent system that exhibited an enhanced
Rabi coupling of v/N,Q2. Assuming negligible decay, v = 0, but nonzero dephasing, the system
can no longer be described using the collective states |g...g) and |+) only, but the full singly
excited state manifold is required as dephasing damps the atomic coherences, leaving the
system in a totally mixed state. The population of the mixed state can easily be calculated
by enforcing the detailed balance condition on the steady state, i.e., the rate by which the
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Figure 5.1: Model comparison plots. In (a), the steady-state values using Q/27 =04, v=0,'/2r =1
and A = 0 are plotted, in (b) N = 15, Q/27 = 2, Cs/27 =900, v/27 = 0.5, /27 = 1 and
the lattice spacing is AR = 0.7.

ground state loses population must be equal to the rate by which it gains population,

N
Npgl...gN = Zpgl...ra...gN . (51)
=1

Here, the diagonal density matrix elements are written in short-hand notation, p;,. j, =
Pivir....injn a0d we already canceled the effective (de-)excitation rate. Using the trace condition
Pgi..gn = 1 =2 Pgr..re...gn» We find for the excited Rydberg fraction the simple expression
[11]

N

N
=—. 5.2
;pgl...ra.“g]\r N +1 ( )
This result can be intuitively understood by recalling that in the dephasing-induced mixed
state all states, in particular the N excited states and the ground state, are equally populated,
yielding an excitation fraction of N/(N + 1).

Eq. provides us with a nice relation to cross-check our MCWF model on the basis of
an easy physical system. Choosing the numerical blockade radius to be large enough such
that only one excitation is allowed in our system and selecting some arbitrary nonzero laser
parameters which transform the system into the steady state, we can plot the excitation
probability as a function of the atom number N. The result is shown in Figure the
MCWEF simulations nicely follow the theoretical prediction. The time evolution of the Rydberg
population is shown in the inset of Figure featuring collective oscillations with Rabi
frequency v NQ with N = 30. The collectivity of the oscillations can be easily seen by noting
that 1/Q = 2.5 us, which is a time scale much larger than the period for the oscillations in
the inset.
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5 MCWF Results

To assess the benefit of the MCWF simulations, we can also contrast its results with the
ones obtained from solving the coherent Schrédinger equation (cf. Ref. [32]) as well as the
steady-state rate equation (cf. Ref. [36]). The results, which are also shown in Figure
clearly differ from the theoretical prediction. For the coherent Schrédinger model, the reason
is simply that the population coherently oscillates between the ground and the excited state
with Rabi frequency v/ NQ and hence the temporal averaging required to obtain a steady-state
value yields just 1/2 for the excited Rydberg fraction.

For the rate equation, the reason is more subtle. Calculating the single-atom steady-state
value for a two-level atom

1
A%+ (1 +1)?)
4(y +T)Q2

V(@) = (5.3)

2+

on which the rate equation [36] is based on, we see that for v — 0 the steady-state value
converges to 1/2, independent of the interaction which is incorporated in the effective detuning
Acg. Ergo, the blockade is not accounted fodﬂ7 leading to a steady-state value of 1/2 for both
Rydberg and ground state. The overall Rydberg excitation probability is thus N/2, which
has been scaled in Figure by a factor of 1/N to fit the scale of the plot. The particular
choice of v = 0 is somewhat artificial, admittedly, as it renders the rate equation useless by
focusing on a case that can be argued to be a pathological casﬂ Nevertheless, the system
considered is a very illuminating example of a system for which the existing models, namely
the rate equation and the coherent Schrodinger model, do not capture the relevant properties.

Similar findings have been reported in Ref. [38]. There, a benchmark of the rate equation
for a super atom consisting of N < 10 atoms using full density matrix calculation is discussed,
finding good agreement for v # 0, I' = 4Q (note the different definition of the dephasing term
as discussed in Section .

It should be noted that the regime v ~ 0 is troublesome in general with respect to
convergence properties (cf. Section if more than one super atom is considered. In many
experiments (e.g. [4]), however, the system is measured before it has reached its steady state,
such that a dynamical simulation of the system is inevitable and techniques like the MCWF
technique are needed.

5.2 Resonant Effects in a Lattice Geometry

In the previous section we have checked the correct implementation of the wave function
Monte Carlo model as well as discussed its advantages with respect to other state-of-the-art
models, especially the rate equation. In this section we now consider a lattice geometry with
lattice spacing AR = 0.7 and Cg /27w = 900 to further examine the range of validity of the
rate equation, specifically the validity of the approximation made by ignoring the two-photon
resonance process (cf. Section in this particular setup. Due to the strong nearest neighbor
interaction, the lattice sites are blockaded up to the next-nearest-neighbor site, implying that
excitations are spaced by at least 3 AR.

Plotting the Rydberg population as a function of the detuning, we expect a peaked structure
with the peak position corresponding to the specific (positive) detuning values for which the
Rydberg interaction of a certain inter-atomic separation corresponding to integral multiples
of AR is compensated. This is shown in Figure [5.1b, Whereas the rate equation and the

M)\ ore precisely, for v = 0 the blockade effect only applies for finite times, as discussed in Section and at
the end of Section
12For 4 ~ € with € an ‘arbitrarily small’ positive quantity, the rate equation converges to ~ N/(N + 1).
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5.3 Pair Correlation Function: A Parameter Study

MCWEF simulation both show a peak at A(Wl) and Ag), the peak at A%) is unique for the
MCWF simulation, indicating the breakdown of the rate equation approximation, namely the
approximation that two-photon resonance effects can be ignored. Not surprisingly, neglecting
the two-photon process also leads to a slight overestimation of the single-photon resonant
process for the rate equation.

In fact, regarding the definitions

C C
M jop — 26 W) jor 26
ALY [2m GARS 20, /27 GAR) and
C 1 1
2) jog ~ =26
AV /2w ~ 5 <(4AR)6+(5AR)6)’ (5.4)

we immediately see that the resonance A%) can be attributed to a two-photon resonance,

even in the presence of dephasing. This is a particular property of lattice geometries, since
for an appropriate detuning, the number of atoms which have a nearest neighbor distance
that overlaps with the narrow two-photon resonance width is much smaller in an unordered
sample than in a lattice geometry with fixed lattice spacing.

Note that the estimate is an effective estimate which assumes that the single-photon
resonances Cg/(4AR)% and Cg/(5AR)% are approximately equally likely and hence the peak
at a small positive detuning is just the superposition of the two resonances. This seems
to be justified since, due to the rapid decrease of the van der Waals potential, only the
smallest resonance distances need to be considered to understand the excitation structure of
Figure [5.1b

Consequently, rate equation results should be treated with care regarding off-resonantly
driven lattice geometries in the weakly dissipative regime 2 > I',~.

5.3 Pair Correlation Function: A Parameter Study

A complementary way to use lattice geometries to access the spatial excitation characteristics of
the atomic cloud is to utilize the pair correlation function G(?(R) as introduced in Section
With the help of the pair correlation function, the ratio of single to two-photon excitation
processes can be assessed even for an unordered sample since the resonance distances for both
kinds of resonances differ.

To study the impact of incoherent processes on the pair correlation function it is most
expedient to contrast simulation results that differ in a single parameter only. With respect
to dephasing, a plot of the pair correlation function G(Q)(R) is shown in Figure for the
dephasing constants I' = 0 and I'/27 = 2, respectively. Note, however, that apart from the
dephasing constants, also the range of detuning values scanned in Figure differ, the reason
being that with increasing dephasing, the numerical blockade radius decreases, rendering the
simulation highly time consuming, such that the simulation of Figure had to be aborted
after a fair simulation time.

For zero dephasing, two pronounced peaks can be observed in Figure [5.2h, corresponding
to the single and two-photon resonance, whose conditions read R, = (Cg/A)Y® and Ry, =
(Cs/ 2A)1/ 6 respectively. The dashed, white line shows the expected resonance positions,
nicely fitting the simulation results. The resonance peaks are echoed at larger distances,
corresponding to higher order correlations which naturally arise in a system with well defined
excitation distances. That is, a strong probability to find two excitations in a distance R’ also
entails a nonzero probability to find two excitations in the distance 2 R/, which is simply the
next-nearest resonant excitation distance.

For increasing dephasing, the two-photon resonance gets smaller and even vanishes, while
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Figure 5.2: Pair correlation function G(?)(R) as a function of the detuning for different dephasing
rates ' =0 (a) and I'/27 = 2 (b). Further parameters: N = 30, /27 =1, Cg/27 = 900,
~v/27 = 0.2, Lip = 10. The dashed, white lines correspond to the resonant distances
Ry, = (Cs/2A)Y6 and R, = (C/A)'/6, from bottom to top.

the single-photon resonance gets smeared out and broadened. This can be most easily seen
in Figure which shows a vertical cut through Figure at the detuning A/27 = 5.
Loosely speaking, while for I' = 0 the two photon peak dominates, only the single-photon
resonance peak is left for I'/2r = 2. Strictly speaking, we cannot state anything but that
the single-photon peak apparently dominates in Figure [5.3p, since due to the small distance
separating the two peaks we cannot exclude the two-photon peak just being superposed with
the broadened single-photon resonance peak, yielding a single peak with a slight shoulder.

The reduction of the two-photon resonance can be intuitively understood by considering
the damping effect of the dephasing on the coherences. The direct transition |gg) <> |rr) not
populating the singly excited states is possible only by means of two-atom coherences, which
get destroyed by a large dephasing. Consequently, a large dephasing leads to population
dynamics that always involve the singly excited states, which, in turn, result in a relative
enhancement of single-photon processes.

In addition to the wave function Monte Carlo results, also rate equation [36] results are
shown in Figure [5.3] allowing us again to judge the range of validity of the rate equation. For
zero dephasing when coherent effects such as two-photon excitations are not negligible, the
rate equation clearly fails (cf. Figure ) Basically, this is not surprising, given the fact that
the rate equation a) totally ignores inter-atomic coherences which are essential in coherent
(or quasi coherent) systems and b) ignores any resonant processes higher than first order
(single-photon) processes. It is not clear, however, how the neglect of inter-atomic coherences
translates into observables such as the G(?) function apart from the missing two-photon peak.
Figure suggests that for a quasi coherent system (nonzero, but relatively small decay),
the single-photon resonance is significantly overestimated by the rate equation model. The
reason for introducing the decay constant /27 = 0.2 is that the rate equation [36] is only able
to calculate steady-state values. The decay ensures that the system has reached its steady
state in the time scales simulated using MCWF technique.

For nonzero dephasing, the rate equation agrees surprisingly well with the MCWF results
(cf. Figure ), supporting the claim that for large dephasing (large compared to coherent
quantities such as the collective Rabi frequency) the rate equation becomes a valid model
since the ‘classical’ approximation, i.e., the disregard of inter-atomic coherences, applies. The
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Figure 5.3: Off-resonant (A/27 = 5) pair correlation function G (R) for different dephasing rates
I' =0 (a) and I'/27 = 2 (b), comparing MCWF (blue, solid) and rate equation [36] (red,
dashed) simulations. All other parameters are identical to Figure

same conclusion can be drawn by considering, instead of off-resonant excitation, resonant
excitation with A = 0. Just as in the off-resonant case, the G function of the rate equation
agrees with MCWF simulations for I'/2m = 2 whereas a significant deviation is observed for
r=o.

As a rule of thumb, the rate equation can be applied whenever the simulated system is
strongly dissipative, i.e., I'/Qeg = 1 and =y # 0. The effective Rabi frequency Qg includes the
collective enhancement /N, and possibly some (weak) detuning-dependence. To give a precise
formula is beyond the scope of this thesis, since it would require an extensive parameter study
involving I', v, N and A for different trap dimensionalities d. While significantly nonzero
decay ensures convergence to a steady state in finite time, the dephasing guarantees the
validity of the rate equation approximations, viz. negligible inter-atomic coherences that allow
for the neglect of resonant two-photon excitations. Note that strong atomic decay also reduces
the inter-atomic coherences by reducing the Rydberg population. Though the above analysis
is based on pair correlation functions only, our conclusion also applies to other observables
such as the Rydberg population. The need for large atomic dephasing for the rate equation to
yield valid results has also been noted in Ref. [38].

To get a sense of how incoherent effects such as dephasing and decay modify the resonance
properties captured by G(®)(R), let us now consider the limiting cases, i.e., I' =0, v # 0 and
vy 0, #0.

In Figure , G®(R) is shown on resonance (A = 0) for I' = 0, v # 0, contrasted to the
coherent case I' = v = 0 (blue, dashed). As the decay constant increases, the blockade radius
slightly decreases while the peak position of G(Q)(R) does not significantly change. In addition,
the maximum of G(®)(R) gets smaller and the structure of the pair correlation function gets
smeared out. Interestingly, the effect of the increased decay constant does not seem to be
very strong for the chosen laser parameters (in particular A = 0): it only slightly changes the
curve progression.

For ‘approximately zero’ decay, the system hardly reaches its steady state for ‘finite
simulation times, making it an extremely unfavorable system to simulate numerically. Still,
one can evaluate G(Z)(R) at a point at which the population is changing only slightly. This
is done in Figure where G(?) (R) is averaged over a time span for which the population

)
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Figure 5.4: Pair correlation functions G®)(R) for different rates v, T': (a) T' = 0 and /27 = 0.5
(solid, green), v/2m = 2 (solid, magenta); (b) v/27 = 0.001, T'/27 = 1 (red, solid). In the
inset, the time evolution is shown; the dash-dotted line indicates the start of the temporal
G®@(R) averaging for the red line in (b). The blue, dashed line in both figures shows
the coherent case with v =T = 0 [32]. The reddish shaded area indicates dominance of
finite-size effects. The abrupt onset of G(?)(R) is due to the numerical blockade radius,
i.e., an artifact of the numerical calculation. Further parameters: N = 30, Q/27 = 1,
Cs/2m = 900, A = 0, Lip = 10.

doesn’t change significantly, as indicated by the dash-dotted line in the inset, which marks
the starting point of the averaging. Figure allows two observations.

Firstly, the double peak structure disappears. Analyzing the contributions of the different
excitation subspaces, we find that the double peak structure is mainly due to the threefold
excited subspace m = 3 whereas for the red curve, the m = 4 subspace dominates. This
observation is consistent with our expectation that an increased dephasing leads to an
enhanced population of the higher excited subspaces, stemming from the observation that
for two interacting atoms with A = 0, dephasing-induced damping of the coherences leads to
an enhanced population of the doubly excited state in the absence of an appreciable decay
(cf. Figure and the associated discussion in Section . Reconsidering Figure where
the main contribution to G(2)(R) is due to the m = 2, 3 subspaces, we conclude that the first
sub-peak is caused by coherent effects which vanish as incoherent processes become stronger.

Secondly, the blockade radius gets smaller. Simply put, the dephasing increases the laser
linewidtkﬂ, thereby allowing to excite atoms with higher interaction energies (cf. Figure ,
which explains the decrease of the blockade radius. For the sake of completeness we should add
that the laser linewidth is also broadened by power-broadening, which denotes broadening due
to the laser intensity itself, as can be seen from Eq. : The FWHM is directly proportional
to Q.

For general systems, usually none of the limiting cases applies, but rather both incoherent
processes need to be taken into account. Highly excited Rydberg states in the ultracold
regime might represent an exception to this rule, featuring extremely small decay constants,
but in these cases, experiments normally don’t access the steady state of the system but an
intermediate state which is readily obtained using MCWF technique.

We cannot state a precise estimate of the blockade radius as a function of the master
equation parameters since the Rydberg blockade in a disordered sample depends non-trivially

13This can be seen by plotting the single-atom Rydberg steady-state value (5.3]) over the detuning and varying
the dephasing constant.
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on many-body interactions and collective effects. For a resonant system to which the rate
equation can be applied, an estimate taking into account incoherent effects can be determined
semi-analytically by solving for the distance at which the super atom excitation probability
as a function of the interaction-induced detuning has fallen off to 1/2, as has been discussed
in Ref. [33]. However, our simulation results shown above suggest that, while decay mainly
smoothens the pair correlation function, dephasing also has a significant impact on the
blockade radius in addition to its spoiling of the two-photon resonance. Note that these
conclusions are drawn from the analysis of the pair correlation function on resonance, i.e.,
we did not study the impact of spontaneous emission on the two-photon resonance peak in
detail. Instead, we focused on the experimentally most important parameter regime, which is
characterized by small Rydberg decay but potentially large dephasing.

5.4 Time-Dependent Population Asymmetry

Having mainly discussed the steady-state behavior of the simulated observables, we now focus
on the time dependence of observables such as the Rydberg population. In particular, we are
interested in what happens when we move from a single super atom to a system with more —
say, two excitations for the beginning.

For that purpose, we first consider a single super atom and evaluate the time-dependent
Rydberg population as a function of the detuning. The resulting dynamics are shown in
Figure [5.5h. Since only one excitation is possible, no resonant excitations can occur, leading to
a totally symmetric excitation spectrum around A = 0. The dynamics of the system are easily
understood by means of single-atom characteristics only, i.e., the collective Rabi oscillation is
modified according to

Qp — Q(A) = /NQ2 + A2, (5.5)

where €y denotes the single-atom Rabi frequency and N the number of atoms that are
contributing to the collective behavior. In Figure [5.5h, the white, dashed lines indicate the
positions of the population maxima, which are given by (0.5 + 1)/ (A) with i € {1,...,4},
respecting that the first maximum of a single-atom Rabi cycle with /27 = 1 occurs at
t = 0.5 us. The inset shows the Rydberg population as a function of the detuning at two times,
t = 0.13 us (blue curve) and t = 4.8 us (red curve). It can be seen that the population stays
symmetric around resonance A = 0 for all times and that the steady-state population of the
super atom is independent of the detuning, whose only effect is to slow down the equilibration.
Moreover, given the time evolution of the system, quantities like the atom number can be
readily determined. For instance, reading off At ~ 0.18 us for a single Rabi oscillation on
resonance, we find v NQq ~ 1 /0.18 which yields NV & 30 for the parameters of Figure , as
expected.

Considering a system in which two excitations are possible, we find that the dynamics is

much more versatile, even though collective Rabi oscillations are observed in this case as well,
with +/Np€) instead of vV N,

Qo — Q(A) = /NQ2 + A2 (5.6)

The corresponding dynamics are shown in Figure [5.5p; the white, dashed lines are given
as above by '(A) with the only difference being the replacement N — N, where N, can
be estimated from the G function via Ny ~ N X Ronset /L. However, while in the super
atom case we found a totally symmetric excitation spectrum around resonance, there is a
population maxima in Figure at all times, which shifts towards positive detuning values
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Figure 5.5: Time-dependent Rydberg population per atom as a function of the detuning for a super
atom (a) with only one excitation and for a system with two excitations (b). In (a),
N =30 and v = 0; in (b), N = 10, v/27 = 0.1 and trap length Lip = 3.5. Common
parameters: /27 =1, Cs/2m = 900 and I'/27n = 1. The dashed, white lines follow the
population maxima (cf. text). The insets show the Rydberg population as a function of
the detuning at ¢ = 0.13 us (blue curve) and t = 4.8 us (red curve), respectively. The
arrows in corresponding colors indicate the evaluation times in the main figures.

over time as shown in the inset.

This behavior can be understood by recalling that, for positive detuning values, the detuning
can compensate for the Rydberg-Rydberg interaction, giving rise to resonant effects. Since
such processes build up over time, the maximum of the Rydberg excitation shifts towards
positive detunings until the steady state of the system is reached.

More specifically, in the coherent case we can write an interacting two-atom system at two-
photon resonance in the basis {|gg),|+),|rr)} and subsequently eliminate the intermediate
level assuming A > 1 and 2A ~ V,,.. Then, the reduced system exhibits Rabi oscillations
between the ground and the doubly excited state with the Rabi frequency Q2/A. In the
presence of dephasing and decay, the impact of two-photon resonance effects decreases in favor
of single-photon resonance effects. Still, resonant excitations build up over time, rendering
the excitation spectrum manifestly time-dependent.

In principle, one can quantify the asymmetry by introducing the asymmetry parameter

Nr— N

MNMpr+ N (5.7)

ALR =

with (-); = |ngmax (YAdA] and (-)p = |f0Ama" (Y AdA|. Analyzing the asymmetry
parameter A;r we find that the asymmetry is dominated by the Rabi oscillations whose
phases are different for each detuning value at short times, while a constant value is reached
as the system approaches its steady state.

When discussing resonance effects, note that the notion of ‘either’ single-photon ‘or’ two-
photon processes involved in the dynamics is misleading in general as quantum mechanics
never ‘keeps things separate’. We can only identify dominant contributions of certain processes
to the observables we are interested in, while needing to keep in mind that our simple picture
of two separate and separable processes holds only for systems for which the interaction
strength as well as the detuning can be accurately controlled (e.g. in a lattice geometry).
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5.5 Dynamics of Atomic Coherences

Motivated by recent experiments [29], we now turn to the study of the atomic coherences
present in our two-level system. More precisely, we evaluate the imaginary part of the atomic
coherences,

(D) = <Z {lra) <ga|}>, (5-8)

«

in our simulation. As the imaginary part of the susceptibility x quantifies the absorption of
light by an atomic gas [84] and x  p,4 for a two-level atom [50], (D) is proportional to the
absorption of the laser light propagating through a gas of two-level atoms. Technically, the
coherence can be easily extracted since the single-atom operator in Eq. couples states
differing by one excitation, which is simply the upper triangular part of the Hamiltonian

matrix (2.29) modulo the Rabi frequency €2/2.

In thermal Rydberg vapor, the motional degrees of freedom cannot be neglected in the first
place, so we need to take into account the Doppler shift in our simulation. Starting from a
three-level system, this can be done by replacing the detuning of the intermediate level by
Ay — Ay + kpv and A — Ay — A — Ay — ke [85], with p, ¢ denoting probe and coupling
laser wave vector, respectively (cf. Figure . Accordingly, the interacting Rydberg level is
effectively shifted by

Appr = (kp — ke)v. (5.9)

Note that the different signs for probe and coupling beam originate from the experimental
setup, i.e., counter-propagating lasers. The Doppler shift can now be easily implemented
in our two-level MCWF simulation. First, the velocity v is drawn from the Maxwell-Boltzmann
distribution

1 —v?
e 2u? (5.10)

flo) = ——
with u = \/kpT/m, m being the atom mass, kp the Boltzmann constant and 7" the temperature
in Kelvin. Each atom is Doppler shifted according to its velocity, randomly drawn from the
distribution . In the simulation, many-body states form the basis states and hence the
shifts need to be summed up in order to yield the effective Doppler shift, Ag?t =>4 A](;;))l
with a denoting the excited atom in the many-body state £.

The model introduced for the Doppler shift is only a first approximation since it totally
disregards the motion of the atoms, i.e., it considers the atoms as non-colliding particles with
fixed velocities that are frozen in position space during the time evolution of the system. This
approximation only holds for very small excitation times as the ones used in the experiments
[29]. In the parameter regime of the experiments [29], the impact of the Doppler shift on the
coherence is expected to be rather small (cf. supplemental of Ref. [29]).

In the experiments, the effective Rabi frequency is /27 ~ 550 [29]; much larger than the
frequencies usually employed in our simulations. To avoid possible issues with numerical
instabilities, all parameters entering the MCWF simulation are rescaled by the effective Rabi
frequency, reading Cg/(272) ~ 0.7 for the 375 state [54], I'/(272) ~ 0.5 and A = v = 0;
moreover, also the Doppler shift calculated via is rescaled by the Rabi frequency. To
make simulation data as comparable as possible, the experimental excitation pulse of Ref. [29]
with peak height normalized to 1 is implemented.

With a rescaled Cg coefficient smaller than unity and consequently weak blockade, the

47



5 MCWF Results

(a)

0.4r

0.2r

o
o

T -08f ’ 000216 s 10
_10lk Time [ns]

|
e
o

|
<
=~
T

(D) [arb. unit]

|
o
=)

0 2 4 6 8 10
Time [ns] 1

|
o
o0

~ 08} ARV 0.0
—1.0} W . ,
-1.0¢ N . Time [n‘s]

0 2 4 6 810

0 2 1 6 8 10 0 2 1 6 8 10
Time [ns] Time [ns]

Figure 5.6: Time-dependent atomic coherences in the low (a) and high (b), (¢) density regime. In
(a), the MCWF simulation (blue) is compared to experimental data [29] (black). The
experimental density ~ 1.6 x 10'2 cm™3 is modeled using a cylindrical trap containing
N = 3 atoms (cf. text). In (b) and (c), a density of ~ 6.5 x 1012 cm? is simulated and
for fixed Rabi frequency the dephasing constant is varied (b) and vice versa (c). The solid
blue line in both plots corresponds to the parameters (N,I'/27Q, Qpear /2782) = (20,0.5, 1)
while the curves in (b) correspond to (16,0.2,1.0) (green, dash-dotted), (16,1.0,1.0) (red,
dashed) and in (c) to (16,0.5,0.5) (green, dash-dotted) and (16,0.5,2.0) (red, dashed).
The insets show the pulse shape employed in the respective simulation [86].

simulation of some physical density is only possible using a very small excitation volume that
contains few atoms. For an experimental densityE of ~ 1.6 x 102 cm™3 (T ~ 65°C), N = 3
atoms are placed in a cylindrical trap of radius R = 0.72 um and length L = 4 um. In the
high density regime (~ 6.5 x 10'2 cm™2), the impact of using different excitation volumes is
analyzed by placing on the one hand N = 16 atoms in a cylindrical trap of radius R = 0.8 um
and length L = 4 ym whereas on the other hand N = 20 in the same trap with increased
length L =5 pum.

The simulation results are shown in Figure Figure [5.6h shows that the low density
MCWEF simulation reproduces the first one and a half Rabi cycles of the coherence correctly but
fails to reproduce the enhanced duration of the second Rabi cycle. The two-level coherences
also approach small values more rapidly than the experimental data. Keeping in mind that
the signal basically quantifies the absorption of the laser beam driving the lower transition, the
positive values measured experimentally could indicate that some population is still trapped
in the Rydberg state, reducing the absorption on the lower transition.

Figures [5.6p, correspond to high density simulations; in Figure the dephasing
constant is varied for a fixed Rabi frequency whereas conversely the Rabi frequency is varied
for a fixed dephasing in Figure[5.6c. The latter two plots allow for more in-depth observations.

Firstly, comparing the blue with the red dashed and the green dash-dotted line, respectively,
we see that the atomic coherences seem to be already converged with respect to system size,
i.e., the slight variation of the number of atoms and the trap size does not have any significant
impact on (D) (cf. Figure ) Secondly, while an increasing dephasing damps out the
coherences more rapidly, the main features remain unchanged. This observation holds true
for the variation of the Rabi frequency as well, though the oscillation period as well as the

MNote that the densities modeled are actually the experimental densities multiplied by a factor of ~ 0.3,
accounting for the fraction of 8*Rb atoms and the fraction of the laser-addressed hyperfine F' = 2 level [29] [86].
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number of oscillations strongly depend on the Rabi frequency (cf. Figure ) Lastly, the
qualitative features of the time-dependent atomic coherences, notably the overshooting above
(D) = 0 after the first Rabi cycle, can be observed in all simulations.

Supplementary simulations indicate that the qualitative features mentioned before do not
change in the presence of a small decay; the many-body coherence is modified after its first
local maximum but maintains its main properties before reaching the first local maximum, as
expected for the large time scale associated with a small decay constant.

We conclude that our simple two-level model fails to reproduce the experimental data in
the high density regime which exhibits a non-trivial dependency of the shape of the first
local maximum on the density [86]. We attribute the failure to the neglect of the third,
intermediate level, whose coherence with the ground state is experimentally probed. Thus, a
three-level treatment seems to be required to obtain meaningful information on the atomic
coherences, which are not well modeled by means of a two-level description, even though full
quantum correlations between the atoms are taken into account. We conclude this, although
the simulation results discussed above feature some uncertainty associated with the model
parameters, on grounds of the invariant qualitative features of the extracted coherences. The
importance of the third level has also been noted in [29], and is a consequence of the large
Rabi frequencies, which are comparable to the detuning of the intermediate state.

5.6 Excitation Dynamics

Up to now, only the Rydberg population (') as well as the atomic coherences (D) have been
analyzed from the point of view of dynamics. Therefore, a detailed analysis of excitation
dynamics is performed for a simple one-dimensional geometry in this section.

More precisely, we study the impact of spontaneous decay on dynamical observables such
as the Rydberg population and the Mandel () parameter introduced below for resonant
and off-resonant excitation in the presence of considerable dephasing. Depending on the
equilibration time scale, these observables are found to exhibit significant dynamics which
might be relevant in current experiments [4, [40]. Besides that, we consider quasi-coherent,
off-resonant excitation, which features a bimodality in the excitation statistics even at times
large as t = 6 us at A/2w = 5. We attribute this bimodality to dynamical effects, namely the
coherent oscillation between ground states and doubly excited states, as well as finite-size
effects, namely the limited number of excited pairs constrained by the system size.

Aiming at a comprehensive study of excitation dynamics, we realize that the observables
such as the Rydberg population introduced so far provide only limited information on the
excitation dynamics, meaning that detailed knowledge of the mean Rydberg population (N')
does not include any information on whether, in each simulation, a fixed number of atoms is
excited from the cloud or whether the excitation statistics features a strongly bimodality with
respect to the excitation numbers. These features, which characterize the excitation statistics,
are not quantified by the first moment (N') of the excitation distribution. Higher moments
are required to further characterize the full excitation (counting) statistics.

For this purpose, it has become conventional to utilize the Mandel () parameter defined as

2
o WP, (5.11)

which compares the measured excitation number fluctuations directly with Poisson statistics
with (N — (N))?) = (N), i.e., @ = 0 indicates Poissonian, Q < 0 sub-Poissonian (squeezed),
and @ > 0 super-Poissonian (broadened) statistics. In the same manner, the third cumulant
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Figure 5.7: Time-dependent @) parameter (a) and Rydberg population (b) at resonance (A = 0) for
both very weak decay (€,v,T)/27 = (0.8,0.004, 1) (solid, red) and weak decay (0.8,0.02,1)
(solid, blue). The horizontal, dashed line in (a) is positioned at min[Q(¢)], indicating that
@ increases slightly for very weak decay. The insets in (a) show the excitation histograms
for the respective curves at times t = {8,31} us; the red, dashed line in the right inset
corresponds to the solid, red line in the left inset. In (b), the inset shows an enlarged
detail of Q(t) for small times.

is quantified via the ()3 parameter

(W = N))*)

Q3 = W

-1, (5.12)
which, as before, is by design zero for Poissonian statistics.

By means of these parameters, in particular the ) parameter, the excitation statistics is
commonly studied (cf., for example, Refs. [4, [17, [40]), usually as a function of the detuning or
the density. In contrast, we focus on the dynamics of the () value for a fixed detuning as well
as a fixed line density of 2.67 x 10* cm™! (N = 40 atoms randomly placed in a one-dimensional
trap of length Lip = 15 um). The (repulsive) van der Waals interaction by which the Rydberg
excitations interact is given by Cg /27 = 16 000, corresponding to the |505 /5) state of Rb [54].

Comparing the () parameter on resonance (A = 0) for two different decay rates (y/2m = 0.004
and /27 = 0.02, respectively) and a fixed dephasing constant of I'/2m = 1, we find interesting
dynamical features shown in Figure [5.7] Specifically, Figure [5.7h shows that the @ parameter
first drops rapidly below zero but subsequently increases for very weak decay (v/2m = 0.004).

The first observation can be readily understood by the blockade effect, which reduces the
excitation number fluctuation since only a rather well-defined number of excitations fits in
the excitation volume [87]. The increase of @), conversely, is a dynamical effect rooted in
equilibration dynamics. That is, for very weak decay and nonzero dephasing, the Rydberg
population reaches its steady-state value only in the limit of large times (cf. Figure ),
implicating a (slight) increase in higher excitation numbers at large times. Considering the
two insets in Figure , notably the right one, and comparing the solid, red (¢ = 31 us) and
dashed, red (¢t = 8 us) histograms, one observes that the histogram at t = 31 us is slightly
shifted towards higher excitation numbers, increasing the excitation number fluctuation
quantified by the ) parameter.

The observed increase requires extremely weak decay, such that the Rydberg population
equilibrates very slowly, since for a larger decay constant of v/2r = 0.02 the Rydberg
population equilibrates much faster (cf. Figure , blue curve), which is also reflected in the
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Figure 5.8: Time-dependent Rydberg population for a simple two-atom master equation simulation on
resonance using (2,T") /27 = (0.8,1). In (a), the population is shown for different interaction
strengths, V.. = 0 (red) and V,../27 = 3 (blue) for very weak decay (v/27 = 0.004). In
(b), the interaction strength is held fixed at V,,./27m = 3 and the decay constant is varied.
The different lines correspond to v = 0 (red, dash-dotted), v/2m = 0.004 (blue, solid) and
~v/2m = 0.02 (green, dashed). The dotted, magenta line indicates the Rydberg population
for zero dephasing, (v,T')/27 = (0.02,0).

@ parameter (cf. Figure[5.7h, blue curve). The oscillations in Q(t) at small times (cf. inset in
Figure ) are due to the Rabi oscillations in the Rydberg population.

The slow equilibration time scale can be traced back to the Rydberg interaction, which, in
combination with a large dephasing, induces slow equilibration, as has been already noted in
Figure [£.3D] and the corresponding discussion in the main text. A more rigorous analysis of a
simple system consisting of two atoms, however, is shown in Figure

Comparing the two lines in Figure [5.8h, we immediately see that nonzero interaction is
crucial for slow equilibration in the dissipative regime, i.e., independent atoms equilibrate fast
for sufficiently large dephasing. For a fixed interaction strength V,,. /27w = 3, the equilibration
time scale for large dephasing is basically given by the decay constant, as illustrated in
Figure . While for v/27 = 0.02 the steady state is already reached at t ~ 8 us, it takes
t ~ 18 us if no decay is present.

The impact of dephasing on the Rydberg population of an interacting system can also
be deduced from Figure [5.8b, notably from the comparison of the the dotted, magenta line
showing damped oscillations obtained for (v,T')/27r = (0.02,0) with the red, dash-dotted
line obtained for (v,I')/2m = (0,1). Being far detuned, the doubly excited state is hardly
populated for zero dephasing, and the population, which features coherent oscillations at
small times, further decreases due to nonzero decay of the Rydberg state until it reaches its
steady-state value

4
lim (VN ) = jgaz=yy

= 1
-0 >’t—>oo (72 +292)2 + V2 (72 + 492) (5.13)

For large dephasing and small decay (both compared to the Rabi frequency), conversely,
the population of the doubly excited state increases significantly over time, reaching its
steady-state value

1

lim (NN ) = (5.14)
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Figure 5.9: Time-dependent off-resonant (A/27w = 15) @ parameter (a) and Rydberg population (b)
for very weak Rydberg decay (2,~,T)/27 = (0.8,0.004,1) (solid, red) and intermediate
decay (0.8,0.1,1) (solid, blue). The insets in (a) show the excitation histograms at two
times, t = {8, 31} us for both decay constants.

only in the limit of large times. For zero decay and strong interaction, V,, > €1, the steady
state of the system is only reached in the limit of infinite times, t — oco. Eq. can be
understood via symmetry arguments: In the absence of decay, there is no particular direction
due to the absence of a distinct lower state, so in equilibrium, all states are equally populated.
This is simply the detailed balance condition discussed in Section [5.1] Decay conversely
breaks the symmetry and imposes a particular direction towards the ground state of the
system, reducing the population of the doubly excited state in equilibrium and imposing the
equilibration time scale for sufficiently large values.

With this in mind, we conclude that the slow dynamics for zero decay is due to the slow
time scale associated with the equilibration of the far-detuned excited state(s), which can be
shifted off resonance by both laser-detuning and Rydberg interaction. Nonzero dephasing,
in turn, is necessary to guarantee convergence to the steady state; for zero dephasing, the
system needs to be prepared in an configuration with all states equally populated in order
to feature a time-independent solution. For nonzero decay, the equilibration time scale is
basically given by the shorter of the two time scales associated with off-resonant excitation
and decay of the excited state respectively, as — in a classical model — discussed below.
Hence, the equilibration dynamics can be well understood on the basis of a two-atom system.

Returning to the many-body case, we can summarize that for interacting systems in the
dissipative regime the slow equilibration time scale leads to non-trivial dynamics of the @
parameter. As a matter of fact, this does not only hold true for resonant, but also for
off-resonant excitation.

Indeed, for off-resonant excitation (A/27 = 15) the dynamics of the () parameter shown in
Figure is even more remarkable as the Rydberg population increases considerably up to
large times (cf. Figure[5.9p). As a consequence of the excitation histogram as a whole shifting
towards higher excitation numbers, the () parameter decreases strongly after having reached
its (positive) maximum at ¢t ~ 1.6. These dynamics are a consequence of “slow resonant
effects”: Due to the large detuning, the excitation of a single atom is — in classical terms —
very unlikely, happening only on a large time scale. Resonant excitation can occur on smaller
time scales, yet requiring well-defined inter-atomic separation, which is not always provided
in a small trap, leading to an overall slow population increase.

In a simple single-atom two-level rate equation obtained by eliminating the atomic coherences
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5.6 Excitation Dynamics

(cf. Section [3.1]), the off-resonant excitation rate is given by

P +T)  agsra Py +1)

_ 5.15
Y1 ,offres 4Agﬂ T (7 T F)2 4Agﬁ ) ( )
while the resonant excitation rate reads
Q2(v+ 1) sy Q2
Vt,res = L Y (516)

(v+T)? r’

being much larger than the off-resonant excitation rate for large Aeg. Thus, initial
off-resonant excitation followed by resonant excitation results in slow population increase in
the classical model, as the first excitation occurs on a large time scale and not all subsequent
excitations fulfill the exact resonance conditions but are detuned by an effective detuning
(including the Rydberg interaction) Aeg/2m < 15. The de-excitation rate, conversely, is
simply | = ¥4 + 7, indicating that the equilibration time scale results from the interplay of
(off-resonant) excitation and atomic decay.

The simple classical model given above is only valid, however, if two-photon processes
can safely be neglected. Examining the pair correlation function G, we find that for very
weak decay single-photon and two-photon excitations contribute almost equally to resonant
excitations whereas for intermediate decay the single-photon contribution dominates over the
two-photon contribution. This observation is consistent with the conclusions drawn from
Figure [5.9| since coherent two-photon processes typically occur on a larger time scale than
single-photon processes, given by the effective two-photon Rabi frequency Qe = Q22/A with A
being the detuning of the singly excited state (cf. Section. Accordingly, the classical model
is not fully appropriate for quantitative discussion, but taking into account slow coherent
double-excitation processes does not alter the “slow resonant excitation” picture established
above.

For intermediate decay (v/2m = 0.1), the equilibration time scale is much smaller (cf.
Figure ); the atomic decay competes with the slow excitation process, yielding a broad
excitation histogram with dominant ground state contribution and consequently a super-
Poissonian @) value (cf. Figure ) In simple terms, as soon as the decay constant
dominates over the slow time scale of the excitation processes, the equilibration time scale is
imposed by the inverse of the decay constant, trapping a substantial fraction of the Rydberg
population in the ground state. In a classical model, the equilibration time scale is given by
min{1/7,4A%/Q*(y +T)}.

In a nutshell, for far off-resonant and incoherent (I" > 0) excitation, appreciable atomic
decay, competing with the slow excitation processes, leads to fast equilibration and broad
excitation histograms featuring a positive ) value even at large times. Negligible decay, in
contrast, implies slow equilibration, entailing a strong decrease of the ) value after initial
increase, reaching significant negative values at large times. These particular dynamics can
be attributed to resonant effects, which first give rise to super-Poissonian @ values via broad
excitation histograms and subsequently sub-Poissonian () values as the excitation histograms
shift towards and peak at higher excitation numbers. This shows that the precise value of the
Rydberg decay can be crucial for the long-time properties in the far blue detuned case. Note
that, for larger system sizes, our observation @ > 0 for intermediate decay constants might
not necessarily hold true any more, but distinct differences in the dynamics for small and
intermediate decay, respectively, are still expected to emerge, due to the different equilibration
time scales present in the systems.

Finally, we consider off-resonant excitation in the weakly dissipative regime, i.e., A/2m =5,
I' =0 and /27 = 0.005. In this regime, bimodal excitation histograms can be observed even
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Figure 5.10: Time-dependent off-resonant (A/27 = 5) Rydberg population for two different dephasing
constants, (2,~,T")/27 = (0.8,0.005,0) (a) and (0.8,0.005,0.05) (b). The insets show the
excitation histograms at two times, t = {6, 18} us.

at rather large times ¢t = 6 us (cf. left inset in Figure|5.10a).

Before studying in detail the reasons for this bimodality, we first note that it is a) a transient
effect which b) requires strong coherence (I' ~ 0). This can be directly seen from Figure
While for I" = 0 the excitation histogram displays bimodality at ¢ = 6 us, this feature is lost at
larger times. Furthermore, for I'/2m = 0.05 the ground state is already strongly depopulated
at t = 6 us, such that no bimodal feature can be observed anymore (cf. Figure )

The striking feature of the bimodality shown in Figure [5.10]is that it is visible for a small
detuning at rather large times, while a bimodality stemming from the fact that resonant
processes depopulate the ground state on a faster time scale than the one by which it loses
population via off-resonant excitation (cf. Section would, for a small detuning, be expected
to be visible only at small times. The reason for this is that the off-resonant excitation rate
for a small detuning is rather large, such that the population quickly escapes the ground
state. As a matter of fact, our explanation must not involve classical terms as we consider a
rather coherent system (I' = 0, v < 2). Instead, we need to have a closer look at the different
geometrical realizations underlying the population average.

This is done in Figure which shows the time-dependent Rydberg population for two
different geometrical realizations. In Figure[5.11h, a realization with a small density of excited
states (i.e., a small state space) is shown, whereas Figure |5.11p shows a realization for a large
density of excited states corresponding to a state space consisting of many states, which is
also reflected in the larger mean Rydberg population. Considering the excitation histograms
at different times, one observes strong fluctuations in the excitation statistics, associated with
the collective Rabi oscillations between ground and doubly-excited Rydberg state.

Thus, we attribute the bimodality observed in Figure to both finite-size as well as
dynamical effects. That is, in a geometrical configuration in which only a small density of
excited states exist, only few pairs feature a inter-atomic separation which approximately
corresponds to the resonant distance. These pairs can oscillate coherently, leading to strong
oscillations in the total Rydberg population between the ground and doubly-excited state,
m = 0 <> m = 2. These oscillations constitute the transient nature of the bimodality. For a
configuration with a large density of excited states, more pairs separated by approximately
the resonant distance exist, leading to oscillations which dephase more quickly. This is what
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Figure 5.11: Time-dependent off-resonant (A /27 = 5) Rydberg population for two different geometries,
notably a geometry with small density of excited states (a) and a geometry with large
density of excited states (b). The insets show the excitation histograms at two times,
t ={4.9,20} pus in (a) and t = {4.4,25.9} s in (b).

we refer to as finite-size effect, as the dephasing time scale depends strongly on the number of
excited pairs, i.e., the density of excited states, which is limited by the system size.

In conclusion, averaging over various different geometrical realizations yields a bimodal
excitation histogram up to times ¢ = 6 us in the approximately coherent regime (I' = 0,
v < Q) for the considered sample. This bimodality is due to both finite-size and dynamical
effects. Dynamical in the sense that the average over oscillating Rydberg pairs with distinct
frequencies (depending on how precisely the resonant distance is realized) yields an excitation
histogram with non-negligible ground state population even at larger times. The reason for
such oscillations being visible is given by finite-size effects, which limit the total number of
excitations, thereby allowing for oscillations that re-populate the ground state as well as clearly
visible oscillations which are not smeared out by the superposition of various frequencies. For
larger systems, these oscillations are not expected to be visible but smeared out by natural
dephasing; dynamical effects, in turn, are expected to involve only higher excited states at
larger times rather than the ground state.
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6 Rate Equation Results

In this chapter, we discuss simulations performed for the the experimental setuplE of Ref. [4],
using the rate equation introduced in Section We start off by describing the experimental
setup as well as the relevant simulation parameters in Section [6.1] and subsequently explain
some details of the implementation of the kinetic Monte Carlo algorithm (cf. Section in
Section In Section [6.3] the simulation results are discussed, whereupon the pertinent
interpretation is given in Section [6.4] stemming from thorough analysis of the numerical data.
Finally, the benchmark of the kMC rate equation model using the wave function Monte Carlo
technique is discussed for the parameters of the preceding simulations in Section [6.5]

We find that the asymmetry of the excitation spectra as well as the super-Poissonian Mandel
@ values for positive detunings can be assigned to resonant processes which lead to aggregate
formation subsequent to initial seeding on a much faster time scale than the initial seeding
process. Benchmark simulations comparing wave function Monte Carlo (MCWF) with rate
equation results show good agreement for the considered parameter regime.

6.1 Experimental Setup

The experimental setup on which our simulations are based is the setup of Ref. [4]. Specifically,
we consider 8’Rb atoms that are excited to the |505; /2) Rydberg state from the ground
state |55 s, F=2mp = 2) via two step excitation scheme involving the intermediate state
15P3/5, F' = 3,mp = 3). The laser that drives the lower transition with Q9/27 ~ 8 uniformly
illuminates the cloud while the second laser with 93 0/2m >~ 6.7 is focused to an elliptical
region of size 19 um x 7.5 um (vertical x horizontal Gaussian e~ 1/2 beam radii). To reduce the
effect of the intermediate state on the system dynamics, the lower transition is red-detuned by
Ay /21 = 65. The Rydberg and the intermediate state decay with decay constants 32 ~ 0.025
and 791 /27 ~ 6.07, respectively.

Due to finite laser linewidth, the system undergoes dephasing of type , with the
dephasing rates given by I'sy /27 ~ 0.7, T'9; /27 ~ 0.33 and I's; /27 = (I'sa + I'91) /27 ~ 1.03.
The Rydberg states interact repulsively via van der Waals interaction quantified by the
coefficient Cg/2m ~ 16000 [54]. All measurements are taken after an excitation time of
t=5pus.

The trap in which the atoms are loaded is an optical dipole trap of cigar shape with e 1/2
radii of ~ 1.65 pum (radial) and ~ 240 pm (axial, horizontal), providing a quasi one-dimensional
geometry.

Due to the uncertainties with respect to the radial size of the cloud caused by finite optical
resolution as well as with respect to the Rabi frequency driving the lower transition, the
numbers given above are to be taken as ‘best fit’ parameters, which we plugged into our model
to theoretically investigate the dynamics arising therein.

For the simulation, the parameters stated above are plugged into the rates for the kinetic
Monte Carlo algorithm that have been calculated analytically. For the upper transition, the
non-uniform Rabi frequency is taken into account via the spatially varying Rabi frequency

2 2
Qgg(aj,z) == 92370 exp (— :U - i ) 5 (61)

20925’ 205,

with the z axis aligned along the direction of largest extension of the cloud (horizontal), the y

5The interpretation and discussion of the results presented in this chapter have been carried out in close
collaboration with Martin Gérttner.
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Figure 6.1: (a) Rydberg excitation spectrum for different densities: 5 x 101%cm™=2 (blue), 2 x 10! cm™
(cyan), 8 x 10 em™3 (green), 1.2 x 102 cm ™3 (magenta) and 1.5 x 10*2 cm™3 (red). In
(b), Q (solid) and Q3 (dashed) values are shown for the two the corresponding densities
8 x 10t em ™2 (green) and 1.5 x 102 ecm ™3 (red). The dash-dotted line in (b) indicates
Poissonian statistics where Q = Q3 = 0.

axis aligned along the propagation direction of the laser and the z axis aligned perpendicular
to both (vertical). In Eq. (6.1)), 0,» and o,/ are given by 19 um and 7.5 um, respectively, as
mentioned above.

6.2 Computational Implementation

Starting from Algorithm [T} some extensions, specifications and improvements are necessary to
facilitate an efficient calculation of the experimental setup described in Section [6.1

Firstly, the simulation is significantly sped up if the effective detuning is not calculated
anew for each time step in the kMC algorithm, but only updated after each system change
[55]. As all atoms start in the ground state, the effective detuning is, for the first run, given
by the two-photon detuning; subsequent excitations and de-excitations of atoms then modify
the effective detuning, which can be efficiently stored in an array and updated after each
system change. Implementing the storage of the effective detuning and calculating in addition
the (de-)excitation rates by means of inline functions using the optimized GSL power routines
gsl_pow_n(x) [88] for the nth power of x, an efficient simulation of several hundreds of atoms
is rendered possible.

Further speedup is obtained by trivial parallelization, i.e., running the same simulation
with less statistics on several kernels and combining the simulation results in the end. While
observables such as the Rydberg population and the excitation histograms can be simply
averaged, observables such as the pair correlation function G2 or the Q parameter require
separate averaging of the numerator and denominator in principle to yield the correct result. It
is only in the limit of good statistics for each individual calculation (i.e., when the population
average (N) is already converged) that observables such as @ or Q3 can be directly averaged.

Secondly, the precise experimental geometry is implemented computationally efficiently by
using the trap parameters to sample the positions of the atoms utilizing the GSL routine
gsl_ran_gaussian, but only keeping the atoms that lie inside the laser spot 20, X 20,/ for
the simulation. Thereby, the number of simulated atoms is significantly reduced. For the
highest considered density of 1.5 x 102 cm ™3, ~ 750 atoms lie inside the laser spot volume
given by 20, X 20,/, whereas ~ 15000 atoms are contained inside the total trap volume. By
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Figure 6.2: Rydberg population (a) and Mandel @) parameter (b) as a function of the laser detuning.
The solid, blue line is identical to the magenta one in Figure [6.1] The dotted, red line
is obtained for Q;2/27 = 5, the dash-dotted, magenta line for approximately doubled
dephasing constants and the dashed, green line for an enhanced radial trap size o,» =
2.5 while holding the total number of atoms constant, corresponding to a density of
0.5 x 102 cm™3. All other parameters are identical to the ones in Figure

increasing the spot size to 3 x {o,/, 0/} while holding the density constant, it was verified
that our simulation results are converged with respect to a further increase of the simulated
excitation volume.

6.3 Simulation Results

For different atomic densities, the Rydberg population is plotted in Figure [6.1p. With
increasing density the maximum of the excitation probability shifts towards positive detuning
values and the excitation spectrum becomes increasingly asymmetric. In Figure [6.1p, the
higher moments () and ()3 defined in Egs. , are shown as a function of the
detuning. Around the resonance A = 0, the @) value is clearly negative, indicating sub-
Poissonian excitation statistics induced by the Rydberg blockade [17]. For positive detuning
values, the @ value rapidly increases, reaching values as high as 2.5 for the highest density
1.5 x 102 em™3. This super-Poissonian behavior points to enhanced fluctuations in the
excitation statistics. Similar behavior is found for the Q)3 value. Interestingly, the @ value
decreases for the intermediate density 8 x 10! em™3 for large detunings after having reached
its maximum around A /27 ~ 15.

In Figure [6.2] the impact of the variation of the lower Rabi frequency 212, the dephasing
and the radial trap size on the excitation spectrum as well as the Mandel ) parameter is
shown. While the increase of the radial trap size (implying an effective decrease in density)
leads to a narrower excitation spectrum with larger peak population as well as narrower ()
parameter, an increased dephasing broadens both excitation spectrum and ) parameter, with
the broadening affecting the blue side of the spectrum somewhat stronger than the red side. A
decrease of the Rabi frequency yields a reduced and less asymmetric excitation spectrum and,
accordingly, a ) parameter that decreases for large detunings, indicating that slow off-resonant
excitations (and not resonance effects) dominate the dynamics at large values of A.

Before discussing the behavior of the ) parameter in more detail, we note that both Q
and @3 quantify higher moments of the full counting statistics, i.e., the excitation histograms
measured in the simulation. They provide measures to estimate the deviation of the simulated
excitation histograms from Poissonian statistics, i.e., totally uncorrelated excitation statistics.
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Figure 6.3: (a) Full Rydberg excitation histograms for the highest density 1.5 x 10'2c¢cm~2. The
steel blue and crimson arrows indicate the detuning values A/27 = 8 and A/27 = 15,
respectively, for which the corresponding histograms are plotted in (b). The dashed lines
indicate the same histograms, but convoluted with a finite detection efficiency of n = 0.4.

The higher the order of the moment calculated, the better measurement statistics is required
to allow for a significant statement. Moreover, a real measurement is always complicated by
the finite detection efficiency of the detector, i.e., in real experiments, only a fraction of the
total Rydberg excitation is detected. For the experiments of Ref. [4], the detection efficiency
is 7 ~ 0.4. On that account, to make simulation results comparable, the simulation data with
flawless detection needs to be convoluted with the finite detection efficiency according to [4]

Pym) = 3 (Z)mu — )" P, (62)

m’'>m

where P,(m) is the measured probability to detect m excitations taking into account the finite
detection efficiency n and P(m’) is the true probability to find m excitations.

With this in mind, we can turn to Figure [6.3] which shows excitation histograms for the
highest density 1.5 x 102 cm~3. In Figure , the excitation histograms are plotted for the
whole range of simulated detuning values, nicely showing the anti-bunching of excitations
around resonance while enhanced fluctuations for positive detuning values. The two arrows in
the top part of the figure mark the detuning values for which the histograms are shown as
a vertical slice in Figure in the corresponding colors. In Figure [6.3p, the dashed lines
indicate the histograms convoluted with the finite detection efficiency 7 according to Eq. .
As expected, the features of the histograms, namely the bimodality observed for A/2m = 15,
get blurred and the maximal excitation number shifts towards smaller values.

6.4 Unraveling the Aggregate Formation Mechanism

While the sub-Poissonian () value around resonance is well understood in terms of the Rydberg
blockade, the reason for the super-Poissonian () is not so obvious at first glance. Certainly,
the enhanced fluctuations can be attributed to resonant effects, but the precise mechanism of
these fluctuations has yet to be analyzed.

Therefore, we first rule out that the fluctuations in the excitation number are caused by
averaging over different geometrical configurations that have different excitation properties.
Simulating for a low density several fixed, random geometries for various detuning values, we
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Figure 6.4: Time evolution of the populations of the different excitation number subspaces P(m) with
m excitations. The four curves (crosses) in the lower part of the figure show the time
evolution of the zero excitation subspace P(0) for different detunings A/27r = 5,10, 15, 25,
from bottom to top. The data points obtained from the rate equation model are overlaid
with an exponential fit. The three curves (dashed, dash-dotted, dotted) in the upper half
of the figure show the time evolution of ratios P(m)/P(m + 1) of excitation probabilities
of adjacent subspaces for m € {1,2,3}. From top to bottom, ratios with increasing m are
shown.

checked that all different geometrical realizations show the same () parameter behavior with
very small fluctuations between the distinct geometries.

Focusing now on the dynamical aspect of the excitation, we start by analyzing how the
rate equation simulation is performed in order to subsequently carve out the physics that is
incorporated therein.

At the beginning of the simulation, all atoms are in the ground state, so the total rate for
an excitation to happen is strongly suppressed by a large detuning. Consequently, for large
detunings the first excitation occurs on average at larger times. This is illustrated in Figure[6.4]
where the probability of the ground state P(0) is, on a logarithmic scale, plotted for different
detuning values in the lower part of the figure. As the detuning increases, the excitation
dynamics slow down, with the ground state probability P(0) dropping exponentially as e T
for small times. The decay constant 7 can be determined via an exponential fit and scales
approximately as A2. To leading order, this scaling can be also verified by expanding the
excitation rate 4 to second order in the master equation parameters. Neglecting two-photon
processes for the moment, the slowdown of the excitation dynamics can be easily understood
by noting that the energy gap between the ground state and any singly excited state increases
with the detuning. Two-photon processes in turn exhibit dynamics given by the effective Rabi
frequency Q2/A, which also slows down with increasing detuning.

The upper half of Figure shows the ratios P(m)/P(m + 1) for m € {1,2,3}. Initially,
the ratios are large as the probability to find higher excited states is small, but the ratios
converge rather rapidly to a stationary value, indicating that the process m <» m+1 (m # 0)
is much faster than the process 0 — 1. The reason for this is that only the first excitation
is off-resonant, while subsequent excitations are prevalent (nearly) resonant and thus occur
on a much faster time scale than the first excitation, leading to a rapid equilibration when
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Figure 6.5: Pair correlation functions G®(R) for A/2r =5 (blue) and A/27 = 15 (red). The inset
shows MCWF simulations for A/27 = 15 with dephasing rates I' = 0 (green, dotted) and
I'/2m =1 (green, dashed), compared to the rate equation simulation with I'/27w = 1 (red,
solid). To improve visibility, the dotted curve is scaled by a factor of 1/10.

compared to the time scale of the initial excitation. These (nearly) resonant processes are
single-photon resonance processes which arise when the energy shift induced by an additional
Rydberg excitation in the vicinity of the first excitation is (approximately) compensated by
the detuning. The presence of two distinct time scales, specifically the slow time scale for
the formation of the seed excitation and the fast time scale for subsequent growth, results in
enhanced excitation number fluctuations that manifest themselves in an increased () parameter
value.

It should be noted, however, that the mechanism just explained, namely the subsequent-
growth-after-initial-seed mechanism is inherent in the rate equation model which explicitly
excludes other kinds of excitation schemes such as two-photon processes. The claim is not
that since we understand our relatively simple model we can deduce the precise excitation
mechanism; the claim is that, since our simulations seem to be very well applicable in the
parameter range considered (cf. Section , we have good grounds to trust the mechanism
inherent in our model to be physically relevant. Hence, the features exhibited by the kMC
method are rooted in physical arguments such as the availability of resonant pairs, even if
they express themselves via properties of the model.

The attribution of enhanced excitation fluctuations resulting in a large @ value to (single-
photon) resonance effects is also supported by the pair correlation function G (R), which can
be calculated in the numerical simulations. In Figure G®(R) is shown for two detuning
values, A/27 = 5 and A/2r = 15, for the highest considered density. With increasing
detuning, the peak at the single-photon resonance position R, = (Cg/ A)l/ 6 becomes more
pronounced, giving rise to an enhanced excitation fluctuation since the more atoms are excited
in a well-defined distance, the larger the fluctuation in the Rydberg population can become. In
fact, for a homogeneous and isotropic system, the () parameter can be directly related to the
integral over the pair correlation function [89]. In the modeled experiments, these assumptions
do not apply; nonetheless the relation between @ and the pair correlation function supports
consulting G to infer information on the physical origin of the characteristics of the Q
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6 Rate Equation Results

parameter.

The knowledge of the aggregate formation mechanism allows us now to also understand
the properties of the ) parameter more properly. The first implication from the previous
reasoning is that the @ value is bounded from above by the total number of excitations that fit
in the system — and this value depends on the detuning since the resonance distance becomes
smaller as the detuning increases. However, also the sharpness of the resonance peak increases
for increasing A, requiring a large density to allow for a strong impact of resonance effects.
For a given (positive) detuning, for instance, the maximal number my,x of excitations that
fit in a three-dimensional trap can be estimated by solving mmax Vs = Vi with V; denoting
the volume of a sphere with radius equal to the (single-photon) resonance distance and V;
denoting the trap volume. Consequently, mmax limits the width of the excitation number
histogram, thereby imposing an upper bound on the ) parameter. For the simple picture
of densely packed spheres to be valid, many atoms need to be separated by the resonance
distance for the particular detuning, so a large density is necessitated.

The second implication is that the ) parameter is a dynamic parameter, meaning that as
soon as the ground state fraction P(0) is exhausted, the @ value will decrease again[l;gl as the
excitation numbers equilibrate around a steady-state value which corresponds to saturation of
the system (neglecting possibly experimentally relevant processes such as collisions, plasma
formation etc. which might lead to a re-population of the ground state fraction). Graphically,
the excitation histogram for positive detunings starts off by developing a small tail towards
multiple excitations, which goes over into an excitation histogram which is rather symmetric
around the mean count. Thus, for a system completely characterized by parameters like the
ones stated above, the Q value first rises for a fixed, positive detuning and subsequently drops
at larger times until it reaches its steady-state value. This is contrary to the observations
reported in Ref. [40], where the (excitation number) counting distribution was observed to
become more strongly bimodal at larger times.

In the same way, we estimate that the bimodality shown in Figure is a transient feature
that occurs as the population develops a peak around a certain excitation number for large
detunings due to resonance effects, while a considerable fraction of the population is still
trapped in the ground state. The visibility of this feature depends on the trap parameters,
i.e., density and trap size, in a non-trivial way.

In conclusion, we have found that the super-Poissonian () parameter in Figure can be
explained by the resonant excitation dynamics characterized by slow initial seed excitation
and fast, resonant subsequent excitations. This very same mechanism also causes a transient
bimodality in the exciation number statistics by coupling the ground state preferentially to
higher excited state numbers.

6.5 Benchmark Calculations

To benchmark the time-dependent rate equation, we use the two-level wave function Monte
Carlo technique developed in Section since there are no exact models that allow one to
simulate the atom numbers required for realistic modeling. As a benchmark geometry, we
choose a cylindrical three-dimensional trap with radius R = 1.65 um and length L = 6 um,
because a one-dimensional system could never feature the nearest neighbor distribution
arising in a cigar-shaped trap for realistic densities. In the cylinder, 100 atoms are placed,
corresponding to a (homogeneous) density of ~ 1.9 x 102 cm™3.

To take into account the heterogeneity of the excitation laser driving the upper transition,

168trictly speaking, this claim is not bolstered by the data shown here. Though, simulating longer excitation
periods using kMC as well as benchmark simulations using the MCWF model support our claim (cf. Section.
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Figure 6.6: Rydberg population (a) and Mandel Q) parameter (b) as a function of the laser detuning,
comparing rate equation (blue), MCWF (red) and coherent [32] (green) simulation results.
The solid, blue line as well as the red triangles correspond to I'/2m = 1 whereas the dashed
blue line and the red diamonds are obtained for I' /27 = 2. Further parameters: (/27 = 0.3,
~v = 0.025 and Cg/2m = 16 000. The dashed/dash-dotted/dotted lines connecting the data
points are intended to serve as a guide to the eye only.

we employ an averaged Rabi frequency 2/27 = 0.3 rather than Q12Q923/2A; ~ 0.4 X 27, as

/ e 20 dr ~ 0.3 (6.3)

—0

0.4 x

Oy

Furthermore, Cg/2m = 16000, v = 0.025 and I'/27 = 1. Again, the dynamics is evaluated
after t = 5 us. The state space is, in addition to the standard truncation, further truncated
by applying the self-consistent condition |E| < Cg/ Rzﬁ on the energy of the basis states.

Note that while in Sections [6.3] [6.4] we used an effective two-level rate equation model
including the three-level master equation parameters, the benchmark is performed using the
literal two-level version of the rate equation employed above to allow for direct comparison of
the simulation results of rate equation and two-level MCWF model respectively.

The results are shown in Figure [6.6] In Figure [6.6h, the Rydberg population has been
plotted as a function of the detuning, comparing for two dephasing constants MCWEF and
rate equation simulation results as well as the coherent Schrodinger equation simulation. In
Figure [6.6p, the @ parameters have been compared as a function of the detuning. For the
benchmark parameters, the results of MCWF and rate equation calculation agree remarkably
well. While, in the case of positive detunings, the population is slightly underestimated by
the rate equation, especially for the smaller dephasing constant I'/27m = 1, the ) parameters
agree well, even at large detuning values. Both MCWF and rate equation simulations show
a broadened excitation spectrum and () parameter for increased dephasing. In contrast,
the coherent simulation features a narrow excitation spectrum with coherent oscillations
dominating the population dynamics for negative detunings. Additionally, the ) parameter
yields significantly larger values for positive detunings than the MCWF simulations and
decreases rapidly to zero for large negative detunings, as opposed to MCWF simulations.
Accordingly, there is a pronounced difference between coherent and incoherent excitation
dynamics in the considered regime, emphasizing the need for a model which takes into account
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Figure 6.7: Four-atom steady-state Rydberg population, comparing rate equation (red, dashed) with
exact master equation (blue, solid) calculation for different interaction strengths, V,.,./2m =
18 (a) and V,./27m = 5 (b), respectively. Note that the master equation data is more
coarse-grained than the rate equation data.

incoherent effects.

In addition, we simulated the master equation for 4 atoms on a lattice with nearest neighbor
interaction V., /27 € {5,10,18,51} and verified that the steady state of the kMC model
(t = 500 us) agrees with the full master equation solution for the parameters stated in
Section except for the small two-photon contribution at A ~V,../2 (cf. Figure .

We also compared the G function of the kMC model to MCWF simulations using the same
geometry and laser parameters as above for A/27w = 15. The MCWF simulation is repeated
for zero dephasing, I' = 0 for the same detuning as before. The resulting G?) function is
shown in the inset of Figure Clearly, the laser dephasing strongly reduces the impact
of two-photon processes which occur at smaller distances Ry, = (Cg/ 2A)1/ 6 supporting the
assumption that the dynamics of the system can be understood by considering single-photon
resonance effects only. However, since the two-photon contribution does not totally vanish
for the effective two-level parameters corresponding to the parameters given in Section [6.1],
a small contribution of two-photon resonance effects particularly for the seeding excitation
cannot be ruled out.

Finally, we estimated the impact of atomic motion on the excitation spectrum, which may
play an important role in real systems’ dynamics [90]. For this purpose, we solved the classical
equations of motion arising from the repulsive van der Waals force for point-like atoms of
mass p ~ 1.44 x 1072 kg for 8’Rb atoms.

Specifically, we first abandoned the kinetic Monte Carlo algorithm by introducing a fixed
numerical time step 6t = 0.01 us in the simulation. Though coming at the expense of
computational efficiency, this step is required since, due to atomic motion, the (de-) excitation
rates can change over time, invalidating the kinetic Monte Carlo procedure sketched in
Algorithm (1}, which relies on time-independent (de-) excitation rates. In principle, the kinetic
Monte Carlo procedure can be modified such that it allows one to handle time-dependent rates
by employing the integral of the rates over time instead of constant rates [76]; however, since
the integral cannot be calculated analytically and numerical calculation involves discretization
of time, abandoning kinetic Monte Carlo is the most convenient procedure. In the discretized
Monte Carlo algorithm, a (de-) excitation process only takes place if the random number r;
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Figure 6.8: Rydberg population (a) and @ parameter (b) for the intermediate density 0.8 x 102 cm~3.

The red, dashed line indicates simulation results including the atomic motion induced by
the repulsive van der Waals interaction as well as Doppler shifts caused by both thermal
and interaction-induced motion. The green, solid line shows simulation results without
motion.

is smaller than the total (de-) excitation rate times the numerical time step, r1 < Ytot0t. If
this is the case, the (de-) excitation process is determined as usual via linear search, i.e., the

atom  which changes its state is determined via the condition min {8 |r; < Zgzl fyiaT) ot} If
T1 2 V4tot0t, which is true most of the time, the system remains in its current state.

In each time step, the force acting on the individual Rydberg atoms is determined by

looping over all excited atoms and summing up the force that is exerted by each atom,

pR=—-hVV,, = 6H%R. (6.4)
Subsequently, the equations of motion are solved and the Rydberg interactions as well as the
non-uniform Rabi frequencies are updated. In particular, the set of second-order differential
equations is reduced to a set of first-order differential equations, which can be readily solved
via gsl routines, by introducing the auxiliary variable R=vw.

As required by a self-consistent approach, the Doppler shifts induced by the atomic motion
are implemented as well via Eq. . The initial conditions for the velocities are drawn from
the Maxwell-Boltzmann distribution with T'= 5 uK.

The simulation results are shown in Figure for the intermediate density 0.8 x 102 cm™3.
It can be seen that atomic motion leads to a slight increase of Rydberg excitations on the
blue side of the spectrum, as well as to a larger () parameter for large positive detunings.
Overall, however, we found that the classical atomic motion as implemented in our model
does not significantly change the excitation spectrum.
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By virtue of their tunable long-range interactions, Rydberg systems are particularly suitable for
studying interacting many-body quantum systems. While in theory the most straightforward
approach to study such systems is to consider them as being closed, i.e., not interacting with
the surrounding environment, current experiments are almost always performed in the (weak)
dissipative regime. What is more, most interesting applications of Rydberg systems employ
atomic coherences in some way [0, 8, [10], giving rise to collective effects of truly quantum
nature. Off-resonant excitation experiments of large atomic samples on the other hand require
theory to provide models capable of following the dynamics of the system [4, [40].

Considering the theoretical models developed so far, there are (quasi) exact models which
account for full quantum correlations, namely models based on the Schrédinger equation
[23] 32], neglecting incoherent effects, and models which allow for simulating dissipative effects,
such as the wave function Monte Carlo method [46, 47]. Both models are only applicable
to rather small systems since they have to overcome the problem of exponentially growing
Hilbert space, but allow the study of the dynamics of the system. Furthermore, there are
effective models such as the rate equation, which can be applied to large systems, but provide
only limited [35], or no [36] access to dynamical quantities. In this thesis we covered both
kinds of approaches.

We implemented the wave function Monte Carlo method as an extension to an existing
coherent many-body Schrodinger model [23] 32], B3] and characterized the properties of the
resulting model. Specifically, we discussed the accuracy and robustness of our simulations
with respect to parameters related to numerics and introduced the pair correlation function
in the process. We found that the main caveat regarding the numerical simulation is the
appropriate choice of the numerical time step in the strongly interacting and far-detuned
regime, as we observed relative deviations of few (< 2) percent when varying the numerical time
step. Enforcing an increased number of matrix-vector multiplications, which constitute the
bottleneck of our simulation, the numerical time step was also found to reduce computational
efficiency most, along with the total state number.

To check the reliability of our model in the many-body regime, we simulated super atom
dephasing and noted excellent agreement with theoretical predictions, while both the rate
equation model [36] and coherent calculation [23] turned out to fail for the chosen parameters
(v=0,T #0).

We then compared for the first time steady-state two-level rate equation results [36] to wave
function Monte Carlo simulations and assessed the range of validity of the rate equation. In
the strong dissipative regime (y # 0, I' 2 Qeg), the simulation results of both models showed
good agreement for resonant as well as off-resonant excitation, whereas strong deviations,
especially in the pair correlation function G(2), were found in the weak dissipative regime,
where the approximations made in the derivation of the rate equation can no longer be
applied. That is, ignoring of two-photon processes is invalidated when coherent excitation
processes such as two-photon excitation become relevant, which is the case for small dephasing
and in particular in lattice geometries with appropriate lattice spacing. The benchmark of
rate equation models is of special interest as these models can easily be applied to realistic
experimental setups.

Analyzing the impact of dephasing and decay on the pair correlation function G in more
detail, we saw that dephasing decreases the blockade radius and destroys the two-photon
resonance, which can be understood in a simple two-atom picture in which the singly-excited
states (more precisely, the symmetric state |[+)) can only be eliminated if a coherent description
is possible, i.e., if the inter-atomic coherences are not destroyed by strong dephasing. Decay on
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the other hand mainly smears out the structure of the pair correlation function on resonance.

For off-resonant excitation we found that, for positive detunings, an asymmetric excitation
spectrum emerges, which can be attributed to resonant excitations that are possible if the
detuning compensates for the energy shift induced by the Rydberg interaction. This stands in
stark contrast to the super atom case where a symmetric excitation spectrum was observed
with the steady-state value being independent of the detuning.

We discussed modifications made to the wave function Monte Carlo model to take into
account the Doppler shift experienced by thermal Rydberg atoms as well as an experimental
pulse shape. In spite of employing parameters comparable to the experimental ones [29], we
found that for high atomic densities our two-level model could not reproduce the oscillations
measured in the transmission of the laser light driving the lower (|g) <> |m)) transition. This
we attributed to the disregard of the third level, which at the considered densities turned
out to be even more crucial for correct modeling than taking into account full many-body
correlations.

The Mandel @) parameter quantifying excitation number fluctuations was studied as a
function of time in a one-dimensional, disordered gas for several detuning values in the
presence of decoherence. We found non-trivial dynamics, in particular an increase of the @
parameter in the blockade regime (A = 0) as well as a strong decrease of the () parameter in
the blue-detuned regime (A/2m = 15), which was traced back to the slow equilibration time
scale of the Rydberg population for very weak decay and strong interaction. In addition, a
bimodal excitation statistics was encountered even at intermediate times (¢ = 6 us) in the weak
dissipative regime, which we ascribed to dynamical effects, namely resonant pair excitations,
that cause a clearly visible ground state fraction at intermediate times in small systems. The
findings highlight the impact of the different time scales introduced by incoherent processes
in experiments.

In the last part of the thesis we applied an effective two-level rate equation model to a
particular experimental setup [4]. We analyzed the excitation dynamics resulting from our
numerical simulation and identified the dominant mechanism by which excitations form as
subsequent-growth-after-initial-seed mechanism, meaning that after an initial seed, Rydberg
aggregates form mainly via resonant single-photon excitation. This mechanism causes en-
hanced excitation number fluctuations that manifest themselves via super-Poissonian () values.
Benchmark calculations using MCWPEF technique yielded good agreement with rate equation
results. Our simulations shed light on the aggregate growth mechanism in a certain parameter
regime, allowing an understanding of the excitation dynamics via rather classical reasoning.

Beyond the findings that have been presented in this thesis there are still many open questions
to address. Concerning our simulations, the most prominent one is under which circumstances
a weak dissipative many-body three-level system typically utilized in experiments can be
accurately modeled by a two-level system. This issue is rather crucial since rate equations are
not applicable in the weak dissipative regime, as we have seen in this thesis, and incoherent
effects might lead to different dynamics comparing full quantum two- and three-level description.
A possible approach to this matter is to extend the two-level treatment to a three-level one,
which, at the cost of much smaller system sizes, would allow one to directly compare two- and
three-level many-body simulations and discern parameter regimes of equivalent and dissimilar
dynamics.

To generalize our simulation technique, one could allow for electronic states with larger
angular momentum, such as Rydberg P states. Rydberg P states feature an interaction which
depends on the relative orientation of the dipoles, hence qualitatively different dynamics are
expected even for low-dimensional systems when applying different external fields.

Computational efficiency of our simulation in turn could be improved by harnessing graphics
processing units (GPUs) for the calculation of the matrix-vector multiplication Hyy |1), in
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that way rendering possible the simulation of larger system sizes, for instance.

Another open question concerns the validity of the classical treatment of the atomic
positions, assumed distinct in this thesis, in contrast to what one would expect from a
quantum mechanical wave function. Thorough analysis of full quantum calculations is
required to provide a profound understanding of when the classical approximation of point
particles that are exposed to an interaction potential of simple shape are no longer valid.
In addition, it is far from obvious how atomic motion, induced by the Rydberg-Rydberg
interaction, affects the excitation dynamics in cold Rydberg gases. Further research is needed
in this specific area to reliably estimate the impact of motion in current experiments [90, O1].

Starting from our findings with respect to the dynamics of observables quantifying excitation
statistics such as the Mandel () parameter, we wonder whether these effects could be observed
in experiments. A more profound understanding of the dynamical effects which depend on
the distinct time scales given by Rabi frequency, Rydberg interaction, detuning, dephasing
and decay would enable more accurate preparation techniques and avert false interpretations
stemming from the neglect of time-dependence present in the measured observables.

Moreover, experimental G2 measurements in disordered systems via imaging techniques,
for instance, could confirm the established simulation techniques and provide an independent
estimate on the strength of dissipative effects in current experiments.

Eventually, a more extensive numerical study on disordered gases using wave function Monte
Carlo simulations in similar fashion as performed in Refs. [45H47, [75] for lattice geometries
could answer questions pertaining to the intrinsic differences of lattice geometries compared
to disordered geometries. The wave function Monte Carlo technique could also be applied
to other dissipative systems (e.g. solid state systems) and could be compared to further
state-of-the-art techniques, from both methodological and interpretational point of view.
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