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Abstract

This thesis deals with simulations of liquids on a molecular level, making use
of different multiscale techniques. These methods allow efficient, computationally
less demanding simulations of the liquid, which enables phenomena on longer time-
and length-scale to be investigated. One crucial component is a simplified (coarse-
grained) model, which is derived in a systematic way from a more detailed atomistic
reference model, such that selected properties of the detailed model (such as pair-
correlation function, pressure, etc.) are reproduced.

In addition, algorithms that allow a concurrent coupling of the detailed and sim-
plified model (Adaptive Resolution Scheme, AdResS) are investigated. Thereby,
the detailed model is used in a well-defined sub-volume, whereas the remainder is
treated using the coarse-grained model. A method was developed (thermodynamic
force) to enable the coupling also in the case that the two coupled models are at
different state points. Furthermore, a novel algorithm (H-AdResS) is presented,
which formulates the coupling with the aid of a Hamiltonian. In this algorithm, a
compensation analogous to the Thermodynamic Force is available at lesser com-
putational cost.

As an application of these basic techniques, path integral MD simulations of
liquid water were studied. Using this method it is possible to include nuclear
quantum effects (delocalization, zero-point energy) in the simulation. In the first
step, a multiscale technique (force-matching) was used to parametrize an effective
interaction based on a detailed simulation employing density functional theory
(DFT). The path integral technique improves the description of the intramolecular
structure in comparison with the experiment. The model derived in this way is
also suitable for concurrent coupling, in which a water molecule (represented by
48 point particles in the path integral model) is coupled to a coarse-grained model
(single point particle). In this fashion, a water-vacuum interface was simulated,
where the interface is treated in the detailed path integral model, while the bulk
is described by the coarse-grained model.
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Zusammenfassung

In dieser Arbeit wurden Simulation von Fliissigkeiten auf molekularer Ebene durch-
gefiihrt, wobei unterschiedliche Multi-Skalen Techniken verwendet wurden. Diese
erlauben eine effektive Beschreibung der Fliissigkeit, die weniger Rechenzeit im
Computer benotigt und somit Phanomene auf langeren Zeit- und Langenskalen
beschreiben kann. Ein wesentlicher Aspekt ist dabei ein vereinfachtes (coarse-
grained) Modell, welches in einem systematischen Verfahren aus Simulationen des
detaillierten Modells gewonnen wird. Dabei werden ausgewahlte Eigenschaften des
detaillierten Modells (z.B. Paar-Korrelationsfunktion, Druck, etc.) reproduziert.

Es wurden Algorithmen untersucht, die eine gleichzeitige Kopplung von detail-
lierten und vereinfachten Modell erlauben (Adaptive Resolution Scheme, AdResS).
Dabei wird das detaillierte Modell in einem vordefinierten Teilvolumen der Fliissig-
keit (z.B. nahe einer Oberfliche) verwendet, wihrend der Rest mithilfe des vere-
infachten Modells beschrieben wird. Hierzu wurde eine Methode (Thermody-
namische Kraft) entwickelt um die Kopplung auch dann zu ermdoglichen, wenn
die Modelle in verschiedenen thermodynamischen Zustanden befinden. Zudem
wurde ein neuartiger Algorithmus der Kopplung beschrieben (H-AdResS) der die
Kopplung mittels einer Hamilton-Funktion beschreibt. In diesem Algorithmus ist
eine zur Thermodynamischen Kraft analoge Korrektur mit weniger Rechenaufwand
moglich.

Als Anwendung dieser grundlegenden Techniken wurden Pfadintegral Moleku-
lardynamik (MD) Simulationen von Wasser untersucht. Mithilfe dieser Methode
ist es moglich, quantenmechanische Effekte der Kerne (Delokalisation, Nullpunkt-
senergie) in die Simulation einzubeziehen. Hierbei wurde zuerst eine Multi-Skalen
Technik (Force-matching) verwendet um eine effektive Wechselwirkung aus einer
detaillierten Simulation auf Basis der Dichtefunktionaltheorie zu extrahieren. Die
Pfadintegral MD Simulation verbessert die Beschreibung der intra-molekularen
Struktur im Vergleich mit experimentellen Daten. Das Modell eignet sich auch zur
gleichzeitigen Kopplung in einer Simulation, wobei ein Wassermolekiil (beschrieben
durch 48 Punktteilchen im Pfadintegral-MD Modell) mit einem vereinfachten Mod-
ell (ein Punktteilchen) gekoppelt wird. Auf diese Weise konnte eine Wasser-
Vakuum Grenzflache simuliert werden, wobei nur die Oberfliche im Pfadintegral
Modell und der Rest im vereinfachten Modell beschrieben wird.

IV



Contents

|2 Theorq

2.1  Molecular Dynamics Simulationd . . . . . . . o oo
1.1 Intesration . . . . . . . oo

[2.1.21  Langevin thermostatl . . . . . . . . . . .. ...

2.1.2.2  Other thermostatd . . . . .. ... .. .. ... ..

2.1.3  Moadel potentiald . . . . . . . ...

[2.1.4 _Electrostatic interactiond . . . . . . . . . .. ... ... ...
2.2 Properties of liquidd . . . . . . . . . .
2.3 Coarse-graining . . . . . . . .o

231 Mapping . . . . . o

2.3.6  Inverse Monte Carld . . . . . o o oo
2.3.7  Summard . . . ..o
2.4 Adaptive resolution scheme (AdResSY . . . . . . . . . ... ... ..
241 Force interpolationl . . . . . . .o
2.4.2  Internal degrees of freedoml . . . . . . . . . ...
243 Thermostal . . . . . . . . ..
2.4.4  Equilibrium conditiond . . . . . . . ...
D45 Summard . . . ..o




13.1  Coarse-graining of liquid water . . . . . . . . . o o i

Properties of the coarse-grained model . ... ... ... ..

13.1.3  Summarv coarse-graining . . . . . . . ..o
13.2  Adaptive resolution simulationd . . . . . . . ..o
13.3  Thermodynamic fored . . . . . . . . . ..

14.0.3 _Adaptive simulation setuﬂ ...................
4.0.4  Thermodvnamic forcd . . . . . . .o

Results of the adaptive simulationd . . . . . . . ... ....
14.0.6  Freely diffusing all-atom regionl . . . . . . . . . .. ... ..

4.1.2  Dvnamic load balancing . . . . . . . . ..

l4.1.3 _Computational performancd . . . . . . ... ... ... ...

|_5_Ra_th_im;_egral description of water]

5.1 Test case: SPC/FW . . . . . ..o

Setup . . .

15.2.3  Thermodvnamic propertied . . . . . . . . . . . .. ... ...
5.2.4 _Dynamical propertiesl ......................
Modifving the spectruml . . . . . . .o

5.3 Pathinteeral MDY . . . . . o . o

45
46
48
ol
54
o4
95
57
29
64
65

67
68
70
72
72
4
5
7
7
78
79
81



|5,;3,2 Numerical resultd . . . . . . . . . 98

5.4 Discussion of resultd . . . . .. .o 101

6.5 Comparison to AdResS thermodynamic fored . . . . . . . . . . . .| 119
6.6 Summarvl . . . . . .., 123

7 Summary & Conclusion 125

131

131
131
132

133
136

139

141

155

VII



VIII



List of Figures

2.2 AdResS setupl . . . .. . 29
2.3 Discretized path integral . . . . . . . ... ... 39

ical representation of the SPC/E water model . . . . . . . . 47
3.2 IBLof SPC/E waterl . . . . . . o oo 49

3.3 Errorin IBI for water . . . . . . . ... ... 50

13.8  AdResS simulation of water emploving the thermodvnamic fored . . 61

3.9 Thermodynamic force during the iteration . . ... ... 62
3.10 Particle distribution in AdRes§ . . ... ... ... ... ... .. 63
1311 Diffusion profiled . . . . . ... 64

3.12 Transferability of the thermodynamic fored . . . . . . . . ... ... 65

4.3 _Toluene spherical order Q 71
l4.4 _Spherical thermodynamic fored . ... 73

l+.5 Spherical mass distribution . . . . . ... ... 75

5.4 FM RDF COmDAIiSON . . . . « o o oo 91
I5.5  Vibrational densitv of stated . . . . . . . . .. .. ... 93

5.6 Modified vibrational density of stated . . . . . . . . ... ... ... 95

IX




5.7 Potential energy as function of Trotter number . . . . . . . .. . . . 98

.8  RDF of water in PIMD simulationd . . . . . . . . ... ... .... 100
9 Pressure correction for the FM water potential . . . . . . . . . . .. 102
0 Water-vacuum slab: classical adaptive simulationl . . . . . . . . .. 104

Water-vacuum slab: adaptive PIMD simulation . . . . . . . . . .. 106

6.1 Setup of tetrahedral test svtem for H-AdResS . . ... ... .. .. 110

6.2 Density profiles in H-AdResS . . . . .. ... ... ... ... ... 112

M&%mm ..................... 113
6.4 H-AdResS Cartoo 117

6.5 Density profiles for different compensation routed . . . . . ... .. 118
6.6 omparison of compensation terms and thermodvnamic forcd . . . 120
(6 omparison Kirkwood compensation and thermodynamic forca . . . 122



List of Tables

3.1 Parameters of the SPC/E water model| . . . . . . .. .. ... ... 47

3.2  Properties of the CG model . . . . . . . . . . . ... .. ... ... 54

XI



XII



Related Publications

[1] S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, and K. Kre-
mer. Adaptive resolution molecular dynamics simulation through coupling to
an internal particle reservoir. Physical Review Letters, 108(17):170602, 2012.

[2] S. Fritsch, C. Junghans, and K. Kremer. Structure formation of toluene around
c60: Implementation of the adaptive resolution scheme (AdResS) into GRO-
MACS. Journal of Chemical Theory and Computation, 8(2):398-403, 2012.

[3] R. Potestio, S. Fritsch, P. Espanol, R. Delgado-Buscalioni, K. Kremer, R. Ever-
aers, and D. Donadio. Hamiltonian adaptive resolution simulation for molecular
liquids. (manuscript under review).






Chapter 1

Introduction

The physical properties of complex fluids often arise from an interplay between
phenomena occurring at different scales, ranging from a quantum mechanical de-
scription, classical mechanics, up to (mesoscale) hydrodynamics and thermody-
namics.

In recent decades, it has become routine to investigate such systems with the
aid of computer simulations M] Such “computer experiments” can be seen as a
third way to study nature, besides experiments and analytical theory. The ad-
vantages are especially apparent for complex systems, where a large number of
interconnected degrees of freedom must be described simultaneously.

In many cases, however, limited computational resources force the researcher
to compromise on the level of detail in order to simulate long enough time and
length scales. For polymeric fluids, for example, the timescales at the atomistic
level are characterized by the bond vibrations 7 ~ 10713 s, while typical relaxation
times of the overall chain are of the order of 7 ~ 10~" — 10~*s [5]. If the bond
vibrations need to be resolved in the simulation, the relaxation time can hardly
be reached. For inferring generic properties, such as scaling behavior, it is often
advisable to neglect chemical details and build a simple model which contains the
most important physical aspects ﬂa]

In other cases, the chemical details need to be incorporated. The properties
of water, for example, depend crucially on its ability to form hydrogen bonds,
which establishes a near-ordering in the liquid. Despite being the most studied
of all liquids [B], there is still debate about many issues in liquid water, one of
them being the exact hydrogen bonding arrangement. This fact was highlighted
by Science magazine, which listed the determination of the exact structure of water
as one of the remaining unanswered questions with high impact for research [|§]

To arrive at a model which includes all the “a priori” knowledge we have about
a system and which still is simple enough to be simulated efficiently, a way of
transferring properties from one scale to another is needed. For example, in water,
we know that electronic effects play an important role, which are described by



CHAPTER 1. INTRODUCTION

Shrodinger’s equation. It is, however, computationally very demanding to treat
larger systems with full electronic interactions everywhere (even though efficient
approximate methods, such as the density functional theory (DFT) Ejg are avail-
able). Therefore, often classical effective models are constructed by fitting a simple
model potential to either quantum simulations at the level of Shrédinger’s equation
or to experimentally observed properties.

For some applications even an classical atomistic model is not efficient enough
and a simpler model at the level of “super-atoms” (or “coarse-grained” beads)
is necessary. This approach has especially been explored for biomolecules and
polymer melts [@, EEII,J@, |E, @, %} Again, a method is needed to transfer
properties from the detailed to the coarse level of description. Different strategies
are adopted, which focus on reproducing the structure, forces or thermodynamic
properties of the underlying atomistic system. Such techniques are often called
hierarchical multi-scale techniques: First, the atomistic model is simulated as to to
construct a “coarse-grained” model. In a second step, the “coarse-grained” model
is then used to build larger systems which can be simulated with less computer
time.

In many cases the “coarse-grained” model indeed enables larger time and length
scales to be reached, but some physical properties are lost. One possibility is then
to re-introduce atomistic degrees of freedom in a “back-mapping” procedure ﬂﬁ]
There are, however, systems where the process studied needs a high level of detail
locally during the whole simulation. A classic example for this is crack propaga-
tion in a solid, where the breaking of the bonds locally needs quantum mechanical
details. For these situations simultaneous multi-scale methods have been devel-
oped, which describe one region in space according to a more detailed model and
the remainder using a simplified “coarse-grained” model. The simulation scheme
then has to provide a way of coupling the different sub-regions, whereby boundary
conditions inferred from physical arguments need to be defined. Such approaches
have been established for solids , , ], quantum-classical coupling of elec-
tronic systems (QM/MM) [@, ] and recently also for liquids @, @g]; Due to
the importance of fluctuations in liquids, the coupling needs to be performed such
that molecules can leave and enter either region, which poses special challenges
to the simulation scheme. The commonly used QM/MM schemes do not allow
for such fluctuations as molecules have to be assigned to be represented by either
a quantum or classical model. Furthermore, the fact that the “coarse-grained”
models can often not reproduce all relevant thermodynamic properties requires a
coupling which ensures that the simultaneous coupling is performed at the state
point of interest.
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1.1. OUTLINE
1.1 Outline

In chapter 1, the fundamental aspects of molecular dynamics simulations and re-
lated coarse-graining techniques are presented. The adaptive resolution scheme
(AdResS) is introduced, which allows for the simultaneous treatment of atomistic
and coarse-grained models based on force interpolation.

Chapter 2 introduces a method for ensuring the correct thermodynamic bound-
ary conditions in AdResS simulation through a “thermodynamic force”. The
method is tested for an atomistic model of liquid water coupled to a coarse-grained
water model.

Chapter 3 describes adaptive simulations where the ability to preserve the near-
ordering in a C60-fullerene embedded in a toluene solvent is tested. The most
important technical aspects of the implementation of the AdResS scheme developed
within this work are outlined.

In chapter 4 a combination of hierarchical methods is used to obtain a water
model based on quantum-level simulations (DFT) and its representations on the
all-atom and coarse-grained level. It is then demonstrated that this can be used
to simulate a water-vacuum interface where the interface region is treated within
the path-integral MD picture (and hence including nuclear quantum effects) and
the bulk liquid as a coarse-grained system.

Chapter 5 describes the design and testing of an improved adaptive resolution
method, which is based on a Hamiltonian interpolation scheme. This new scheme
(H-AdResS) can be used to run energy-conserving adaptive simulations and allows
for a straightforward application of standard concepts from statistical mechanics
to derive the appropriate thermodynamic coupling conditions.
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Chapter 2

Theory

Typical condensed and soft matter applications deal with inferring properties for a
system consisting of a large number of particles, which altogether form the thermo-
dynamic state of the system. The connection between the microscopic state (i.e.
a set of atoms described by their positions and momenta) and the macroscopic
state (i.e. pressure, density, heat capacity, etc.) is given by the laws of statistical
mechanics. In molecular dynamics simulations, the aim is to use computers to
calculate the trajectory for a sufficiently large number of particles in order to infer
information on the macroscopic properties. Even with the power of present day
computers, which are able to simulate a few ten-thousand of particles for up to
microseconds ﬂﬁ], the time- and length scales available are still small compared to
macroscopic sizes (where the number of particles is typically ~ 10%).

In the following section, the fundamental physical principles which are used
in molecular dynamics simulations are briefly outlined. Subsequently, techniques
for systematic coarse-graining are discussed, which aim to extend the time and
length scales available in simulations. Finally, the adaptive resolution scheme is
introduced, which is able to concurrently couple different scales.

2.1 Molecular Dynamics Simulations

The purpose of Molecular Dynamics (MD) simulations is to generate a trajectory,
given a set of particles and their interaction potentials. From this trajectory,
dynamical properties or averages can be extracted. These results can be related
to experimental measurements or be used for example to predict properties of new
materials.

A system consisting of N particles is described by a set of point particles with
positions r; and momenta p;. The set of particle positions can be formally denoted
as a 3N dimensional vector

rV ={ry,...,rn} (2.1)

7



CHAPTER 2. THEORY

for the particle positions and

PN = {p1,...,Pn} (2.2)

for the momenta, spanning a 6N dimensional phase space. What would be the
observable in an experiment, can be expressed as an ensemble average in classical
statistical mechanics

() = [ £ M) AGY p s drvdpr o dpy . (23)

where A is an observable and f(r", p”) a weighting function which is different for
each ensemble. Given that the system is ergodic, i.e. all points in the phase space
are visited during the time evolution, it is possible to write this integral as a time
average[26]

<A>=<A>=lim /OTA(rl(t), coorn(),pi(t), .. pa(t))dE . (2.4)

The assumption of ergodicity is very strong. In practice it has to be carefully
checked whether the simulated time 7 was sufficient to represent the ensemble
average

In classical mechanics, the dynamics is completely specified by the 6N initial
conditions (3N positions r{ and 3N momenta pY) and the Hamiltonian which has
the form [27]

+UEY) . (2.5)

i=1
The microcanonical ensemble describes the situation of an isolated system with a
fixed number of particles NV in a Volume V' at a total energy E. The corresponding
weighting function appearing in the average eq. is

f(rN,pN)zé(H(rN,pN)—E) ) (2.6)

The Hamiltonian gives rise to the microscopic dynamics through the canonical
equations of motion, which for the Hamiltonian in eq. simplifies to

dr; _ OH _ b (2.7)
dt  op;, m’ '
for the positions and
= — = -V, 2.
S - ), 28)

for the momenta. In order to numerically determine the time average eq. 2.4 in
the microcanonical ensemble, the system is evolved according to the canonical
equations.



2.1. MOLECULAR DYNAMICS SIMULATIONS

2.1.1 Integration
The set of first order differential equations in eqs. 2.7 and 2.8 can be solved approx-

imately using the velocity-verlet algorithm [28]. A Taylor expansion (discarding
terms of the order At?) with respect to the coordinates gives
At?
and for the momenta
. At? 5
At . :
~ pi(t) + (it + At) + pilt)) (2.11)

where an additional Taylor expansion of p(t + At) neglecting terms of the order
At? has been used to eliminate the unknown p. This algorithm has the advantage
of evaluating the positions and momenta at the same time, whereas for example
the leap frog algorithm @] needs to evaluate the velocities at time ¢ + %At .
Practically on a computer, the algorithm can be performed as follows:

1. Calculate positions r;(t+ At) using velocities and momenta at time ¢ (eq.29).

2. Calculate accelerations a;(t + At) from the interaction forces which depend
on positions r;(t + At).

3. Calculate momenta p;(t + At) (eq. 2IT]).

Note that the simulation is started with positions and momenta as input. It can be
easily shown that the velocity-verlet algorithm is time reversible and thus preserves
an important property of the Hamiltonian @]

The dynamics generated on a computer are however very sensitive on the ini-
tial conditions. This can be seen from the fact that two trajectories, started from
very close points in phase space, diverge exponentially fast, which can be charac-
terized by so called Lypanov exponents M] Hence to predict the exact trajectory
of a starting point, the initial conditions have to be known with infinite precision.
However, in most cases one is not interested in knowing the exact time propaga-
tion of a given initial condition, but instead in a statistical average which is well
represented on long time scales.

2.1.2 Thermostats

The microcanonical ensemble, which describes an isolated system at constant en-
ergy F, is usually not the most appropriate ensemble to work in, given that ex-
periments usually consider a subsystem which exchanges energy with its surround-
ings. If the subsystem is small compared to the surrounding reservoir, the energy

9



CHAPTER 2. THEORY

exchange imposes a temperature (as described in the canonical ensemble). In
principle one could just explicitly include the reservoir in the simulation, but this
would consume a lot of computational resources as the reservoir needs to be large
compared to the sub-system of interest. Instead a thermostating algorithm is em-
ployed which models the heat transferred between the system of interest and the
heat bath.

2.1.2.1 Langevin thermostat

The Langevin thermostat is inspired by the Brownian motion of a heavy particle
immersed in a bath. For heavy particles, the frequent collisions with the solvent
particles can be represented by a random force and a friction term which is pro-
ﬁtional to the velocity. The equations of motion for the particle in a bath are

|

do(t)  ~ 1

g = v+ () (2.12)
dr(t)

= () (2.13)

where v is a friction constant and £(t) a stochastic random variable such that
< £(t) >= 0. The equations are written here for simplicity as one-dimensional
equations, but the extension to higher dimensions is straightforward. The noise
term is delta correlated in time:

(€(t1)E(t2)) = go(ta — 1) (2.14)

where the strength g is a yet to be determined factor. In order to find g one can
explicitly integrate eq. 2121 which yields @]

0l 1 t o
v(t) = voe m' + —/ ds e"m=9)¢(s) (2.15)
mJo

From this solution, it is then possible to compute the autocorrelation function,
using the fact that (v&(t)) = 0 and eq. 2141

(W(t)v(ty)) = v2e™mte+ty) (2.16)
+g/ dSQ/ dsi0(se — sl)em(s1 t1) g (s2—t2) (2.17)

— — L (t2+t1) 9 e (t2—t1) 2.18

(UO 2m7> "o ' (2.18)

In equilibrium, this velocity autocorrelation needs to be stationary, i.e. it cannot
have an explicit dependence on time. Hence the first term in eq. 218 (containing

10
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to + t1) must vanish, which is only true if

2
vy = —— . 2.19
$= 5t (219)
In the canonical ensemble, in equilibrium, each degree of freedom has a kinetic
energy according to the equipartition theorem

7 () = %kBT, (2.20)

where kg is the Boltzmann constant and 7' the target temperature. This has to
be valid at all times, and hence, the vy can be taken to be the average velocity.
Inserting the average velocity into eq. .19 yields:

g =2vkgT . (2.21)

Thus, the temperature T fixes the ratio between the friction v and the noise
strength ¢ (Fluctuation-Dissipation theorem). A more formal way to arrive at
this result is given in the Fokker-Planck picture @]

For some applications (e.g. analytical models of large Brownian particles), one
can use the Stokes friction 7 = 67mnR and model for example diffusion processes
(Brownian motion) without explicitly considering the solvent. When used as a
thermostat in MD simulations, the noise and friction terms are added to the forces
acting on each degree of freedom. The only free parameter is then the friction
constant 7, which needs to be carefully chosen(in many publications, the char-
acteristic time 7iangevin = 1/7 is specified instead of ). This is also applied to
systems where the solvent is modeled explicitly. The “random kicks” on each atom
can be imagined to originate from the reservoir controlling the temperature.

The strength of the friction constant determines the time the system takes
to arrive at the target temperature T. If the initial temperature deviates from
the equilibrium temperature, a strong friction constant quickly relaxes the veloci-
ties. However, dynamical properties (such as the self-diffusion constant) measured
from such a simulation, are significantly altered from the realistic values. Fur-
thermore, hydrodynamic correlations between particles, which occur on timescales
much larger than the average time between collisions, are lost ﬂﬁ] As a con-
sequence, when interpreting dynamical quantities, it should be ensured that the
coupling was sufficiently weak. The friction coefficient is commonly chosen pro-
portional to the mass of a particle «; = m;7 in order to have the same acceleration
from the random forces for each atom [34].

One appealing feature of the method is that it always generates a canonical
ensemble (in contrast to other thermostating methods). Moreover, the Langevin
thermostat is local, meaning that the force on each atom does not depend on the
other degrees of freedom.

11
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2.1.2.2 Other thermostats

The problem of generating a canonical trajectory without perturbing the dynamics
in the simulation has a long history in literature M] The thermostats can be
categorized to belong either to the class of global or local thermostats. In global
thermostats, the kinetic energy of a molecule is coupled to all other degrees of
freedom while for local thermostats no such coupling is present.

The most simple approach is based on a rescaling of velocities at each time step
according to the target temperature, which is done for randomly selected atoms in
the Anderson thermostat [35]. In the Berendsen @] thermostat, a weak-coupling
relaxation scheme is employed to reach the target temperature. In its original form,
this does not give the correct canonical fluctuations, but a stochastic term can be
added to eliminate this deficiency [@] A different class of thermostats starts from
constructing an “extended system”. The Hamiltonian is extended by one or more
degrees of freedom which represent the reservoir, which controls the temperature by
exchanging energy with the other degrees of freedom (“Nosé-Hoover thermostat”)
@, ] A local stochastic thermostat which also preserves the linear momentum
and thus leads to the correct hydrodynamics is the DPD thermostat @, , ]

All those algorithms allow to sample a canonical ensemble, but perturb the
dynamics in some way. Therefore, the results in terms of dynamics have to be
analyzed carefully as to exclude a strong influence of the thermostat.

2.1.3 Model potentials

In order to solve the equations of motion, knowledge of the interaction potential
U(r™) is required. There are several strategies for finding an appropriate potential
depending on the required accuracy and context.

In general, U(r™) is a multi-body potential, where the potential energy of each
atom depends on all degrees of freedom. To simplify the the intermolecular interac-
tions, in many liquids the assumption of pairwise, radial symmetric interactions is
often made, i.e. U(r") = >_,; U(|r;—rj|). A commonly used form of the interaction
potential is the Lennard-Jones type:

Uss(ri;) = dei; [(%)12 - (%)6] , (2.22)

where 7;; is the distance between atoms ¢ and j and oy, €;; are coefficients.
Electrostatic effects are included using “partial” charges which refer to using
non-integer charge coefficients ¢; in the Coulomb potential Uc(r;;) = % (see
next section 2.1.4)).
The chemical bonds in molecules are either treated as rigid using a constrained
integration [@, 43 ] or modeled as a combination of linear (two-body), angular

12



2.1. MOLECULAR DYNAMICS SIMULATIONS

(three-body), and dihedral (four-body) potentials. The bond potential is often
simply modeled as a harmonic potential

—kb'(ri]’ — bij)z y (223)

which takes the bond length b;; and the force constant k:b ~as parameters. For
polymers, it is often useful to limit the bond distance to a maximum value as to
avoid crossing of chains, which can be achieved by the FENE potential [E For the
three-body interaction, the harmonic angular term is frequently used

1
Us(0ijx) = §kfjk(9mk —00)° (2.24)

In general the unknown parameters can be obtained by fitting to known experi-
mental data (e.g. density, heat capacity, etc.) or to calculations based on more
accurate physical models (for example solving the Schrodinger equation) [@] For
bio-molecular contexts several groups have developed sets of parameters bundled
in so called “force-fields” (e.g. OPLS] CHARMM@ AMBER])

In most cases, periodic boundary conditions are used|29]. This means that
the simulation volume represents a unit cell which is thought to be replicated
an infinite number of times. Particles which are out of the unit cell after the
Verlet integration step are placed back on the opposite side of the unit cell. The
interactions are then calculated using the “minimum image convention”: Each
particle interacts only with the closest replica, which can be computed easily from
geometrical considerations.

The evaluation of the pairwise terms can become computationally untraceable
due to the scaling oc N2. Therefore, the sum is often performed such that only
terms with 7;; < r¢y are included. The cutoff 7., then defines a sphere within
which a particle interacts. This approximation however can cause serious artifacts,
among which is a drift in the total energy due to the discontinuous forces at r.y.
Hence, a modified potential which is shifted to be zero at the cutoft is often used ﬂﬁ]

2.1.4 Electrostatic interactions

Electrostatic interactions are difficult to handle in MD simulations because of the
slow decay with % If the interaction of charges which are further then the cut-off
distance r.,; away from an atom ¢ are simply neglected, the Coulomb energy reads

atom ato’m

r7d
Ulomtom = Z > (2.25)
7<i
755 <Tcut
where r;; = |r; — r;| denotes the distance between the atoms ¢ and j. The trun-

cation at r., can cause artifacts to occur due to the remaining net charges on the
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CHAPTER 2. THEORY

surface of the sphere defined by the cutoff radius. To overcome this, many different
techniques have been used in the past. The most frequently used technique is the
Ewald-summation and variants thereof @] In the Ewald-summation, a charge
interacts with all its periodic images. This interaction can be calculated efficiently
by splitting the interaction in short- and long-ranged parts and solving the latter
in Fourier space. The Ewald-method has rarely been used in this thesis due to
unsolved difficulties with long range electrostatics in the AdResS scheme, which
will be explained in more detail later. Instead, the reaction-field technique [@, @]
was mostly used.

In the reaction-field technique, the cutoff radius r.,; defines as spherical cavity
with volume V/_,, centered on molecule o within which charges interact explicitly.
Outside the cavity, a dielectric medium with a dielectric constant ezp is assumed.
The charges within the cavity polarize the surrounding medium, which in turn
produces a field. This field can be shown to be of the form [@]

(QERF — 1

E, = LY W (2.26)
3

2¢pp +1 12 peven
where pg = 3. qgrp, is the dipole moment of a molecule § and V denotes a
sphere with radius r.,; centered on molecule o. The contribution to the potential
energy from the interaction with the reaction field for a molecule « is —% n.E, and

hence the total electrostatic energy is

Nmolecules

Urr = — Z 1o - Ba + Ui, (2.27)

where the first sum runs over all molecules. The only unknown is the dielectric
constant egp which has to be determined e.g. from preliminary simulations em-
ploying long-range electrostatics. The force due to charges used in the simulation
then simply follow from F; = =V, Ugp.

It has to be noted that the reaction-field technique can lead to problems with
energy conversion as jumps in the energy occur whenever a molecule enters or leaves
the cavity [29]. Furthermore, the assumption of a constant dielectric surrounding
is only valid for a homogeneous system. An advantage over the Ewald-technique
is however the reduced computational cost.

2.2 Properties of liquids

The presence of near-order and the importance of inter-molecular interactions are
characteristic features of liquids. In contrast to solids, where the potential energy
is much larger than the kinetic energy and gases, where the potential energy is
much smaller than the kinetic energy, both terms are comparable in liquids ﬂ%}

14



2.3. COARSE-GRAINING

To characterize the liquid structure, pair correlation functions are frequently
used. The pair correlation function, which is also called radial distribution function
(RDF), is defined in the canonical ensemble for homogeneous systems as @]

p@ (r1,1s)

g(ry,re) = 5 , (2.28)
p
where p is the density and p(ry, ry) the 2-particle density defined as
N(N -1
p0erms) = SO gl g, ey (229

The factor N(N — 1) reflects that the particles r; and ry can be chosen arbitrarily.
Equation 229 thus describes the probability density of finding a particle at ry given
a particle at ry. For isotropic systems, the RDF depends only on the distance of
particles and is thus often written as ¢g(r), which can be computed from simulation

as
o(r) = % <Z S 60— n-j)> , (2.30)
i g
where the the brackets denote the ensemble average.

For most liquids this function shows a peak at low r values, which represents
the next neighbors (on average). In the limit of r — oo it approaches the ideal
gas value g(r) — 1. In case of pairwise additive interactions and a homogeneous,
isotropic system, some thermodynamic properties are completely specified by the
RDEF. For example the excess energy U, which is defined as the difference in
internal energy U® = U — U™ = with respect to the ideal gas value U™ is: @]

U /N =2mp /OOO U(r)g(r)rdr . (2.31)

The g(r) is also related to the pressure and the compressibility, which will be made
use of in section 2.3.4.2]

2.3 Coarse-graining

MD simulations usually treat the system of interest with atomistic details, meaning
that each atom is represented by a point particle. The cost for evaluating the
interactions on a computer increases with the number of atoms and limits the length
and time scales available. Coarse-graining (CG) techniques aim at a simplified,
effective description with less degrees of freedom. These simpler models can then
be simulated using significantly less computational resources and thus bring larger
length and timescales within reach. This usually means to replace a subset of
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CHAPTER 2. THEORY

atoms by a single “superatom” or CG bead. The interaction potentials of these
CG beads are unknown a priori, and have to be determined within a numerical
scheme. Other CG exist which aim for a continuum ﬂﬂ], or lattice [@] based
description.

The central question is how to preserve the physical properties of interest in the
coarse-grained system. These properties of interest can be structural properties,
ié:h as pair correlation functions, free energies or other thermodynamic properties.

|
This requirement dictates the choice of mapping from the all-atom to the CG
representation, but also the method used to obtain the CG integration potential.
Formally, the question can be posed as follows: Given an atomistic Hamiltonian

n 2

H =S 2 e, (2.32)

which spans a 6n dimensional phase space, we are looking for and effective Hamil-
tonian

2
g =N Py peeR, R 2.33

£ 2Ma + ( 1, ) N) y ( )

where the Ry,..., Ry denote the CG particles with masses M, and momenta

Po- The CG Hamiltonian is only 6 N dimensional (N < n) and preserves certain
features of the system of interest. How the CG positions are connected to the
underlying all-atom Hamiltonian is discussed next.

2.3.1 Mapping

The mapping scheme is a ‘geometric rule’ defining how the CG beads are con-
structed from the underlying all-atom simulation. The most intuitive rule is to
use the center of mass of a subset of atoms to represent a CG bead. This kind of
mapping was used throughout this thesis, however, other mapping schemes (e.g.
representing an entire water molecule by its oxygen position @I]J) are generally pos-
sible. Note that for big molecules (e.g. polymers) it is desirable to represent one
molecule by multiple CG beads, depending on the local chemical details which need
to be preserved. In this case, the CG model also has to include an effective poten-
tial for the internal interactions of the CG beads ﬂﬂ] . In the following paragraphs,
only simple mappings of one molecule to one CG bead will be discussed. It is thus
convenient to denote the distances between CG particles by R = R,3 = |R, — Rg|
and the CG configuration by

RY ={R;,...,Rn} . (2.34)
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2.3. COARSE-GRAINING

The connection between all-atom and CG systems is formally given by application
of the mapping operator [@]

M(r™) = {M, (r"), ..., Mpy(t")} . (2.35)

For the case of a center of mass mapping, each component is given by

M, (r") = —Zféama"r“i : (2.36)
i=1 Mo,

where the index ¢ denotes n, different atoms within a molecule «. The atomic
masses are denoted as m,,.

2.3.2 Potential of mean force

Any CG model should fulfill certain consistency requirements with regard to the all-
atom Hamiltonian it is constructed from. In the optimal case, properties measured
in the CG simulation give identical results to the atomistic simulation. This can
be enforced by matching the phase-space probabilities of the all-atom and CG
system. The consistency condition in coordinate space is thus written as matching
the probabilities of finding a phase space point in the atomistic (p,) and CG system
(Pr) [53):

PR(Rl,...,RN) :pr(leuRN) . (237)

This directly implies

exp(—BU(R4,...,Ry)) x /exp(—ﬂU(rl, o r))6(M(r, ... ry,) — RY)dr™ |
(2.38)

where RY denotes a 3N dimensional vector of the CG coordinates. An equivalent
condition can be written for the momentum space. Taking the logarithm on both
sides of eq.2.38] the potential on the left hand side is a multi-dimensional potential
of mean force (PMF), which has the form of a free energy. The PMF U(Ry, ..., Ry)
depends on all CG degrees of freedom, and hence is hard to evaluate. Even if it
was available, in the CG simulation, the calculation of the force at each time step
would involve all the CG degrees of freedom and thus be too inefficient.

Therefore, the multi-body PMF represents only a formal solution of the prob-
lem. All the methods introduced in the following paragraphs try to approximate
the multi-body PMF by finding a two-body effective potential. In the literature,
there exist also methods considering three-body CG potentials @], which where
not used in this thesis.
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2.3.3 Boltzmann inversion

A very simple guess of the effective potential can be made by inverting the cor-
responding distribution function ] measured in the all-atom simulation. In
the canonical ensemble, an independent degree of freedom ¢ is distributed as
p(q) oc e7PU@ An effective potential can thus simply be calculated as

U(q) = —kgT'Inp(q) , (2.39)

where the distribution function p(q) is as a normalized histogram in the reference
all-atom simulation. Hence the potential U(q) is the inverted Boltzmann distribu-
tion, which gives the scheme its name. In practice this technique is mostly used for
internal interactions (e.g. bonds, angles, etc). When using these, the appropriate
normalization factors have to be included, i.e.

U, = —kgT'In [H,(r)/(47r?)] , (2.40)

for bonds and
Upg = —kgT' In [Hy(0)/sin 6] , (2.41)

for angular interactions ﬂﬁ] However, in many cases the degrees of freedom cannot
be taken to be independent, which is why more sophisticated approaches have to
be taken.

2.3.4 Iterative Boltzmann inversion

The iterative Boltzmann inversion (IBI) method [@] is based on the relation be-
tween the pair distribution function g(r) and the 2-body potential of mean force
w(r). The latter corresponds to the reversible work of pulling two arbitrary parti-
cles in the system from infinite separation to a distance r ﬂﬁ

w(r) = —kgTIng(r) . (2.42)

As a first step, the initial guess for the CG is thus simply taken to be the inversion
of the all-atom distribution function:

Uég(R) = —kpTIngaa(R) (2.43)

where gaa(R) is the RDF of the CG beads calculated in the all-atom reference
simulation. The resulting potential U2, (R) is then used in a CG simulation from
which the distribution function g'(R) is calculated. This new distribution function
will however usually deviate from the reference.

To correct for this deviation, the approach taken in iterative Boltzmann inver-
sion is to iteratively correct the CG potential based on the difference of distributions
ﬂﬁ] Thus an update is constructed which reads:
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2.3. COARSE-GRAINING

AUD(R) = w™™(R) = w(R) = ksT In[g" (R)/gan(R)] - (2.44)
This is then used to correct the CG potentials in step i + 1:
US(R) = USL(R) + AUD(R) | (2.45)

The iteration is considered to be converged if the difference between the 2-body
PMFs small. A suitable criterion can be defined as

=0 = / (99 (R) — g“N(R))dR , (2.46)

where the iteration is converged once = has dropped below some chosen value.
The iteration scheme is outlined in fig. 211 The CG potential from a converged
iterative Boltzmann inversion thus closely reproduces the 2-body-PMF of an atom-
istic simulation. It can be seen from the explicit appearance of the temperature
in the IBI equations, that the CG potentials will depend on a specific state point.
Thus it is necessary to perform the IBI procedure for each state point of interest.
To understand the need for determining iteratively the CG potential, we can set
coarse-graining aside and consider a simple mono-atomic liquid interacting through
a pairwise potential. Given the corresponding structure g(r), is it possible to re-
construct the interaction potential U(r)? This problem is also known as the inverse
problem of statistical mechanics [53].

The full relationship is given by a density expansion@]

g(r) = exp[=BUI(1+ Y p"ga(r)) , (2.47)

where the g, are coefficients of the power series from a density expansion of g(r)
and p is the density. The fact that eq. 247 and eq. are only equivalent for
the limit p — 0 already indicates that the 2-body PMF eq. used as potential
gives the correct distribution only when 3-body and higher order correlations are
unimportant. This is the case in the limit of zero density. In the case of coarse-
graining the situation can be even more complex because of the additional reduction
in degrees of freedom. No exact relation as in eq. 2247 can be derived and hence
the CG potential is approximated numerically.

The IBI procedure iteratively converges to a solution which reproduces, within
specified accuracy, the target structure g(R). Hence, the two-body PMF between
two CG particles matches the reference all-atom two-body PMF. The effective
potential U““(R) which generates this structure is unique up to a constant. This
is known as the Henderson theorem, which is discussed next.

2.3.4.1 The Henderson theorem

The IBI technique relies entirely on the knowledge of the g(r) to calculate a CG
potential. Weather a unique potential exists, which generates a given g(r) was

19



CHAPTER 2. THEORY
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UGD(R) =
UD(R) +
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Figure 2.1: Flow chart of the IBI update procedure
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answered by Henderson in 1974 @, @] The Henderson theorem states that given
a g(r), the pairwise potential generating this g(r) is unique up to a constant. The
proof is based on the Gibbs-Bogoliubov inequality, which states for the free energies
F| and F5 of two Hamiltonians H; and Ho:

Fy < Fy+ (Hy— Hy), (2.48)

where
<H2 . H1>1 _ /drndpneHl(Tn7pn)/kBT(H2(7”n,pn) - Hl(rn’pn)> ’ (249)

is the canonical average at the configurations compatible with H;. The equality
in eq. only holds if Hy — H; is independent of all coordinates. Henderson‘s
theorem can be proven by constructing a contradiction: Assume two identical
systems with different pair potentials w; and us, but identical RDFs gy (r) = ¢a(r).
Now if u; — us is not constant, equality in eq. does not hold and thus

fi< fot g [ drius(r) — o) (2.50)

where f; is the free energy per particle in each system and p the particle density.
The inequality must also hold if the labels of the two systems are exchanged

fo< it 3o [ drin) = w()g) 2.51)

However, inserting the assumption g;(r) = go(r) and adding eq. and eq. 257
yields 0 < 0. Hence the assumption that u; — us is not constant must be wrong.
For a system of identical particles and assuming a pairwise interaction potential,
it is thus proven that if a solution is found that reproduces a given g(r), the
solution is unique up to a constant. The theorem, however, makes no statement
about the existence of such a potential. This means that all structure based CG
methods, including IBI, must generate the same CG potential (if it exists) once the
structure g(r) is exactly reproduced. As will be shown numerically in section B.1.2]
the statement has to be treated with care in the context of numerical simulations.
The reason is that the Henderson theorem does not give an upper boundary as to
how much a deviation in the g(r) affects the corresponding potential.

2.3.4.2 Pressure correction

The pressure of the CG model often differs significantly from the reference all-atom
pressure (at the same density and temperature). This has been found by many
studies using Iterative Boltzmann Inversion , @}, but is also true for other
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coarse-graining methods [@] In a pairwise interacting, mono-atomic liquid, the
pressure can be related exactly to the g(r) by the formula [@]

dU(r)

p = pkpT — 2/37er/ T3d—g(r)dr : (2.52)
0 r

where p is the density and N the number of particles. IBI preserves the g(r) by
construction, the derivative of the potential d(fl—ff) however is not necessarily the
one that gives the reference all-atom pressure in eq. The reason is that no
knowledge about the pressure has been used for the update eq. 22441

In order to correct the IBI potential to give the pressure of the reference all-
atom system, a linear correction term was proposed in ﬂﬁ] This correction is

defined as

AUpressu're(T) =A <]- - T ) y (253)

Teut
where 7., is the cutoff distance and A a constant prefactor. The correction yields
a constant force and is defined to be zero at the cutoff. The prefactor A can be
estimated based on the difference between the current pressure at step ¢ and the
target by exploiting equation eq. @]

2tNp
37 et fooo r3 —dzy) g(r)dr

As the target pressure is usually not reached within one correction, iterations of the
correction need to be performed. Note that the pressure correction can possibly
alter the potential such that the structure is not exactly preserved. This can lead
to a significant change in the compressibility, the implications of which will be
discussed in chapter Bl

A= (P = Puygear)V/ (2.54)

2.3.5 Force matching

The force-matching (FM) @] (or Multi-Scale Coarse-Graining [@, 55, ]) ap-
proach takes a different strategy to find the effective potential. The idea is to use
a minimization technique to find the CG force which matches the total force on a
CG bead as closely as possible. Although this approach seems to be very different
from IBI, a careful analysis reveals some similarities which will be discussed in the
next section.

FM starts with a representation of the CG force

FCC =FS(f1,..., fn) (2.55)

in terms of unknown parameters fi,..., fy. If no functional form is known, the f;
can be defined as discrete values of the CG force FC“. Additionally, the smoothness
of the CG force can be enforced by using a cubic spline representation @]
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2.3. COARSE-GRAINING

A minimization is carried out to find the parameters of the CG force, which
closely reproduce the forces in the all-atom simulation:

Nr Nca

v 3N1NCG Z Z

Here I labels the N; instantaneous force vectors F/** at different times taken from
a reference all-atom simulation, i labels the Nog CG beads. The minimization
dx%/0f; = 0 leads to an overdetermined system of linear equations, which can be
solved using standard techniques. In contrast to IBI, FM is thus based on the
knowledge of positions and all-atom forces.

N TS (2.56)

2.3.5.1 Relation to structure based coarse-graining

Quite remarkably, FM can be shown to be equivalent to solving an equation relating
the 2- and 3-body structural correlations to the potential [64], known as the YBG
equation. To make the connection, it is first assumed that the CG force is pairwise
and radially symmetric

FIOC = wiif(ry) | (2.57)

J#i

where u;; denotes the unit distance vector w;; = r;;/|r;;|. The interaction force can
be calculated using discrete bins of size Ar. For the notation of this discretized
force, it is convenient to define a discrete delta-functions dp, which is 1 if —Ar/2 <
r < Ar/2 and 0 otherwise. Using this definition, the force is written as

r) = ZDfd5D(7“ —74) , (2.58)
d

where the sum runs over the Np discrete points representing the force. Inserting
these definitions into eq. 2.50] leads to

IAA Zuwzfd(SD T—Td

J#i d

Nr Nca

v 3N1NCG Z Z

The least-square minimization 9x?/df; = 0 then yields

0= Z Z <F£,AA _ Zuij Z fd/5D(T — T&)) (Z _uij5D(T _ Td))

J#i d J#i

(2.59)

< S F Ay (g — > T Z fur <Z > wiupdp(ri; — ra)dp(ri — 1))

1,574 v jAL kA

(2.60)
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where the brackets denote the average over the N; frames. The minimization thus
yields an equation connecting the force coefficients f; with structural averages.
The forces on the CG molecule from the reference simulation only appear in the
first term. The sum in the second term contains contributions coming from config-
urations of three distinct particles i # j # k, as well as two particles (j = k). The
three-particle contributions are weighted by the projection of the direction vector
of the i, k pair onto the ¢, 7 pair. Because of this, it is clear that FM explicitly
incorporates three-body correlations.

What happens if the three-body terms are neglected? In order to do this, all terms
in the sum with j # k can be set to zero, which then because of u;;u;; = 1 simplifies

to
<Z FiI’AAuijcSD(mj — T‘d)> = fd <Z 5D(Tij — Td)> (261)

i,J71 i,J71
The expression can be recast in a familiar form noting that the definition of the
radial distribution function (see also section 2.2]) is

g(r) = m <Z op(rij — r)> : (2.62)

i,j71

where the brackets denote the average in the canonical ensemble. In @] it was
proven (making use of the properties of the dp function in spherical coordinates)
that the derivative dg(r)/dr is related to the atomistic forces on a CG molecule as

dg(r) 1 1 I,AA
- Fy 50D (Tij — 2.
dr kgT 4mwp?Vr? <; i i0p (1 r) (2.63)

Using eq. 2.62 and eq. 2.63] the FM equation (without 3-body terms) can then be
rewritten in the continuum limit (i.e. the limit of infinitesimally small discretization
steps r4) as

kT — 700 (2:60)

Integration of both sides then leads to

—kgT In(g(r)) = U(r) + const. (2.65)

This means that neglecting the three-body terms only the 2-body potential of
mean force is left, which is exactly the starting point of IBI in eq. When the
three-body terms are kept, FM can be shown to be equivalent to the Yvon-Born-
Green—equationﬂ@]

(kgTV,, — FZ-J)g(Q)(ri,rj) = p/drkFi7kg(3)(ri,rj,rk) (2.66)
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where F;; is the force between CG molecules, under the assumption that the
force is pairwise. This well-known result from liquid-state theory NE] connects
the two-and three-body correlation functions in a pairwise interacting liquid. ]
Thus, “starting” with the same first order term, IBI and FM incorporate different
corrections to the two-body PMF. In IBI the correction is based on the difference
in structure (eq. 244]) using the 2-body potential of mean force. FM on the other
hand, tries to find a “compromise” in the least-square sense in matching both 2-
and 3-body correlations.

In practice, FM is quite efficient as no iterations are needed.

Overall, there are two main sources of error: First, the two-body effective
potential might not have enough degrees of freedom to represent two-body as well
as three-body PMFs. The FM potential found is a “compromise” (in the least-
square sense) between matching two- and three-body correlations. One solution is
then to extend the CG model by another degree of freedom which can represent the
“lost” correlations. This, on the other hand, raises the computational costs again
which might not be desired. Secondly, higher order correlations (4-body, etc..)
might as also be important reference all-atom structure. Both sources of error will
lead to deviations in the CG structure with respect to the all-atom structure.

The connection to structural averages allows to solve a set of equations equiva-
lent to the FM equations making use only of structural (2- and 3-body) information
ﬂﬁ, @, @] An iterative extension, which tries match the structure by construction
(similar to the iteration in IBI) has also been discussed [@]

2.3.6 Inverse Monte Carlo

For completeness, the Inverse Monte Carlo (IMC) technique m] is also mentioned
here although it was not used within this thesis. The technique can be used to
generate CG potentials from either MD or Monte Carlo simulations ﬂﬁ]

The approach starts with decomposing the potential part of the Hamiltonian into
a sum of discrete contributions

H =" UsSafr:} (2.67)

where the Uy are constants representing the interaction potential and the S; func-
tions of the coordinates. The goal is to express known measurables (e.g. the g(r))
as averages (Sg) and use these to refine an initial guess of the unknown CG po-
tential. For the case where the g(r) is the known measurable in the canonical
ensemble it is suitable to choose

N(N — 1) 4mr2or

(i) = g g ) (2.65)

where 07 is the bin width and V' the volume. Because of eq. 267 the (S;) can also
be seen to be a function of U;. In order to arrive at an update scheme one can
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Taylor expand with respect to small changes AU, in the potential

(Su) = () ug + 3 S AUy + O(a0?) (2.69)
>

the derivative can be carried out explicitly by writing out the expectation value in
the canonical ensemble. The final result is

9 (Sa)
oUy

Using this definition, eq. 2.69 is easily written as a system of linear equations

Add’ =

— B({S4) (S} — (SuS)) (2.70)

(Sa) = (Sa) lvg = Aaw AUa (2.71)

These expressions are used to construct an iterative scheme: Using an initial guess
for U C(lo) a first simulation is performed which yields a correlation (Sq) 9 possibly
deviating from the target. The first guess UJ can be taken to be the 2-body
potential of mean force as in IBI (eq. 2.43]). By solving the linear eq. 269, a new
guess

v = U + AU (2.72)

is then calculated. The procedure is repeated until the update term is sufficiently
small i.e. the CG potential generates a distribution close to the target. It is
important to restrict the range of interest to d values which are reached within the
simulated time since the matrix A4y has to be well-defined for the inversion.

IMC thus presents a coarse-graining approach which uses the linearization in
eq. to refine the initial guess of the RDF based on the structure. Similar to
FM, 3-body correlations enter explicitly through the cross-correlation term (SgzSq ).
The detailed differences between this and the other methods are beyond the scope
of this thesis, a numerical comparison can be found in [@]

2.3.7 Summary

In this section different methods for systematic coarse-graining were introduced.
All methods approximate in some way the multi-body PMF, which represents
the exact solution of the problem. The CG potentials obtained in this way are
likely to be system- and state- dependent and should thus be carefully analyzed
in the context of the desired application. Additionally, due to the simplification
of matching only selected properties, physical properties calculated from the CG
simulations can differ from the ones calculated in the reference simulation. Hence
the coarse-graining technique has to be chosen such that the desired properties are
reproduced.

However, CG techniques offer possibilities to speed up MD simulations by sev-
eral orders of magnitude. This is due to their simplicity, which allows to calculate
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the interactions much faster on a computer. Furthermore, in the CG system also
dynamical quantities, such as the diffusion constant, are found increased due to
a smoother energy landscape @, @, ] One attempt to exploit the advantages
and at the same time overcome the loss of the atomistic details, is presented in the
Adaptive Resolution Scheme introduced in the next section.
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2.4 Adaptive resolution scheme (AdResS)

With the knowledge of the coarse-grained interaction a simplified, computational
efficient model is available. It is desirable to use this simplified model to reach
longer length and time scales, using the same amount of computer time. How-
ever, the CG model is constructed based on selected properties (such as the radial
distribution function), while other properties may be lost.

The idea of adaptive resolution schemes is to subdivide the simulation volume
into regions of different resolution. The full, computationally expensive interactions
are calculated where it is absolutely necessary, while using the efficient simplified
CG interactions are used for the rest. The molecules are allowed to leave either
region and adapt their interactions based on the local level of resolution. As an
example, one may think of aggregation phenomena where full detail is important
close to a surface. The “bulk” supply of aggregating molecules could then be
described in an efficient CG fashion. Another example is the solvation of larger
molecules where the first solvation shell is treated in full resolution.

To this end, the ADaptive RESolution Scheme (AdResS) @, ﬂ, @] was de-
signed. The simulation volume is divided into an all-atom (AA, high-resolution)
and coarse-grained (CG, low-resolution) region and the exchange between them
is mediated by a transition (hybrid) region. A pictorial representation is given in
fig. Note that, for simplicity of the notation, the “low-resolution” region model
is assumed to stem from systematic coarse-graining techniques (as discussed in the
previous section 23)). In principle, however, arbitrary models can be coupled in
the AdResS scheme. Such a coupling scheme has to fulfill certain minimal criteria:

e [t should allow for the free exchange of molecules between the regions
e There should be no free energy barrier between the regions

e The resolution switching in the transition region should be smooth as to
avoid discontinuous jumps in the forces

e In the high-resolution region the structure and dynamics should be unper-
turbed

How can such a scheme be realized?

First, in the hybrid region, there has to be a smooth transition between the
molecular interactions in the all-atom and CG region. For this, the interactions of
the all-atom and CG models need to be interpolated. Secondly it has to be well
defined what happens to the internal degrees of freedom which are not present in
the CG model. The following part is divided into the discussion of the non-bonded
forces and the treatment of the internal degrees of freedom.
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Atomistic Hybrid Coarse-grained

Figure 2.2: Pictorial representation of the adaptive simulation box. On the right is the coarse-
grained (CG) region and on the left is the all-atom (AA) region. In between is the transition
(hybrid) region with the switching function w(z) (curve in grey).

2.4.1 Force interpolation

For the interpolation, which is necessary to adapt the interactions, a position-
dependent weighting function is introduced. The weighting function w(X,) (de-
picted in fig. 2Z2), assigns to molecule a a “level of resolution”, where w = 1
represents the all-atom and w = 0 the CG resolution. To accomplish a smooth
transition, a continuous, differentiable function is chosen to interpolate between
the two representations:

0 tr>b
w(r) =< cos? [ﬁ(r—a)] cb>r>a (2.73)
1 a>r

where a is the width of the all-atom region and b— a the width of the hybrid region.
The geometry of the regions and the origin can be suitably chosen depending on the
problem studied. For example, if the resolution change is required to be along the
x-axis, 1 = €,(x — Xo) can be chosen, where x, denotes the center of the all-atom
region.

The next step is to derive interactions for the hybrid scheme. For simplicity
the following notations are defined: Molecules are labeled with Greek indices «, 8
which consists of atoms (Latin indices) «; and ;. For the derivation it is assumed
that there are N molecules of the same type, consisting of n atoms each, but the
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treatment of different kinds of molecules is straightforward.
The vector X,,, denotes the coordinate of atom ¢ which is part of molecule o and
if no Latin index is specified X,, refers to the center of mass of the molecule:

Xo=M"Y maX,, . (2.74)
=1

where M, is the total mass of the molecule.

The aim of the coarse-graining procedure (as discussed in section [23) was
to eliminate the internal degrees of freedom and represent their intermolecular
interaction through the CG potential. Thus, the interactions of the internal degrees
of freedom has to be “switched off” in the CG region. How exactly this can be
treated will be explained in more detail in the following section For the
non-bonded interactions, requiring that there is no influence of internal degrees of
freedom which are in the CG region implies that

U4 (X4, Xp,) =0 if w(Xy) =0Vw(Xs) =0, (2.75)

i.e. the all-atom interaction potential in the adaptive simulation U4 between any
atom «; and f3; is zero once any of the two molecules a or 3 is in the CG region.

In all cases studied so far, atoms are assumed to interact with a pairwise additive
potential as described in section Z.T.3l One of the fundamental design principles in
AdResS was to ensure that the forces between molecules are anti-symmetric with
respect to the exchange of molecule labels, i.e. the force exerted by molecule o on
molecule [ is the negative of the force exerted by molecule § on molecule «. This
statement is simply Newton’s third law, stated for the interaction of molecules. For
the interpolation scheme to fulfill this, the weight assigned to the pairwise force
must hence depend on both molecules.

The condition eq. suggest that the pairwise interaction should be weighted
by the product of weighting functions, i.e. for the non-bonded interaction

UL, = wX)w(Xp)ULE (|Xa, = Xpg,|)  a#5, (2.76)

where U4 denotes the all-atom pairwise interaction. This interaction is thus zero
if one of the molecules «, [ is in the CG region because of the definition of the
weighting function eq. 273 The CG interaction could then be defined as

Uss' = (1 — w(Xa)w(Xe)) Ugs (| Xa; = Xg,]) (2.77)

where UY% is the CG effective potential. The total Hamiltonian would thus be

H = Z Z ﬁigj + Z ﬁgg + Hintra 9 (278)

a<p ij a<p
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which contains the full internal Hamiltonian H;,;,,, the contribution of which will

be discussed later. There is however a fundamental problem with this approach as
is visible when taking the derivative in order to calculate the forces. For simplic-
ity a system containing only two molecules with no internal interactions will be
considered here. Then the force on atom «; due to atom 3; (o # f3) is:

Fos = Vo, [w(Xa)w(Xp)Uss, + (1 = w(Xa)w(Xs))UgsT  (2.79)
= —w(Xo)w(Xp) Ve, Ui, — (1 - w(Xa)w(Xp)) Vo, USs (2.80)

Q3 o

~[Va,wXa)Jw(Xp)(Uss, — Uss)

(677

Fod = Va,w(Xa)w(Xg) (Un5, — U ) (2.81)

where terms involving the gradient of the potentials have been included in FYeyton,
The total force consists of these “Newtonian” forces and a term involving the
gradient of the weighting function. This contribution is nonzero only in the hybrid
region since the gradient of the weighting function vanishes in the all-atom and CG
region. The strength of this “drift” force, which would not arise in a simulation
employing a single resolution (w = constant), is proportional to the difference in
potential energies between the AA and CG representation.

Moreover, the pairwise force defined in this way violate Newton’s third law
which states that Fo,3, = —Fpg,,. This can be seen by taking the gradient for
atom [3;

Foa, = FYO0 — w(X)[Vs,w(Xa) (U4~ USS) (282)

The forces eq. 28T and eq. can only fulfill Newton’s third law for a constant
weighting function, which would correspond to no change in the resolution ﬂﬂ] In
order to avoid the drift forces in the in the AdResS method, only the Newtonian
part fov eﬁz_’“’” of eq. 2.&T] is used for the forces in the simulation. The drawback
is however that the potential energy according to Févz ‘gjt‘m is then path-dependent
and thus no Hamiltonian exists which can generate such a force. Therefore, the
integration using the forces of eq. 2.8l leads to a constant increase in the total
energy of the system @] As will be shown later numerically, the perturbation
due to the elimination of the non-Newtonian terms, which only appear in the
hybrid region, is however rather weak. If used in an NVT ensemble where the
temperature is controlled by an appropriate local thermostat (see section [2.1.2)),
the excess heat coming from the non-conservative nature of the forces is removed,
generating a well defined temperature everywhere.

In this work, the CG interaction was always chosen to depend on the center
of mass of the molecule, which means that the CG force acting between molecules
gets redistributed onto the atoms according to:

Foi = %FSE - (2.83)
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The total AdResS non-bonded forces acting on atom «; is then given by summing
up all pairwise forces Fgfé”jton in eq. .82k

M,
Fgg a# .

Pl =3 > w(Xa)w(X)FAg, + D (1 - w(Xa)uw(Xs)) 57
B=1 o

B=1 j=1
(2.84)

In summary, the interactions due to these forces can be categorized in 4 cases:
(i) w(X,) = w(Xs) = 0: Only the centers of mass of CG molecules interact via
the CG potential Ugg.
(i) w(X,) = w(Xp) = 1: The full atomistic interaction is used, which is exactly
the same as in a conventional all-atom simulation.
(iii) 0 < w(X,) < 1 and w(Xp) # 0: At least one molecule is in the hybrid regions.
The molecules interact in a hybrid way, which is the weighted sum of all-atom and
CG interaction as specified in eq. 284l
(iv) w(X,) # 0 and w(X3) = 0: One molecule is in the CG region. The interaction
between the two molecules is only the CG potential.
Using this scheme the forces are well defined in the whole simulation. Atomistic
degrees of freedom in the CG region do not contribute to the force and Newton’s
third law is fulfilled. In the cases (i) and (ii) the full interactions of the all-atom and
CG systems are recovered, and thus bulk AA and CG interactions are described.
The hybrid zone smoothly fades out atomistic details which contribute less to the
forces if a molecule diffuses towards the CG region. How the internal degrees of
freedom can be treated in this process is discussed in the next section.

2.4.2 Internal degrees of freedom

In the CG description, information about the internal degrees of freedom (e.g. the
intra-molecular energy) is lost. What does that mean for a scheme, like AdResS,
where molecules are exchanged between CG an all atom subsystems?

Once a molecule has left the hybrid region to enter the CG region, the informa-
tion about position and momenta of the internal degrees of freedom would have to
be “deleted” from the memory of the computer. If the trajectory is reversed (i.e.
the velocity of all molecules is inverted) the molecule could not enter in the same
configuration as before, as there would be no unique way of reintroducing the full
internal degrees of freedom in the instance the molecule reenters into the hybrid
region [, Thus, a scheme, where molecules can diffuse back and forth between the
two regions would be non-reversible by construction. This line of arguing is mostly

I This is true even if no stochastic thermostat is used. A conventional integration scheme, like
Verlet, is time-reversible in principle (see section 2IT])
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of theoretical interest as in practice, the reversibility (for longer times) does not
play a major role (see section 2.T.T]).

However, in practice the removal of internal degrees of freedom also introduces
the the problem of reintroducing velocities to the internal degrees of freedom once a
molecule enters from the CG region. There is no unique way of assigning a velocity,
since only the average kinetic energy is known (in the canonical ensemble). One
approach could hence be to draw momenta randomly from a Maxwell-Boltzmann
distribution at the target temperature.

In the implementation developed within this work, a simpler approach is taken,
described in @] The internal degrees of freedom are integrated in the entire
simulation volume in the CG region, as defined in eq. 2284 The “resolution-
change” is in practice only performed in terms of the non-bonded forces and can
thus be seen as a decoupling of the internal degrees of freedom from the center of
mass of the molecule. When calculating structural properties of the CG region,
the internal degrees of freedom are discarded. From a practical perspective this is
still advantageous since most of the computational time is typically spent on the
calculation of the non-bonded forces, and therefore the decoupling can be used to
reach longer simulation times. Because a Hamiltonian that generates the forces in
eq. 2.84] cannot be derived, the thermodynamical equilibrium properties need to
be carefully analyzed. As discussed above, the forces are non-conservative only in
the (ideally small) hybrid region. Using a local thermostat with a coupling strong
enough to remove the excess heat generated by this non-equilibrium process, the
equilibrium temperature distribution can be ensured everywhere.

In previous publications, the transition of a molecule from the all-atom to CG
region was described as an continuous change of phase space dimensionality [@, @]
In this picture, the process is formally a projection from higher to lower-dimensional
phase space. The phase space which an atom in the hybrid region occupies is
of fractional dimension, which allows for the generalization of the equipartition
theorem such that the kinetic energy for a degree of freedom

(K)o = —w(Xg)kBT : (2.85)

where T is the temperature and w(X,) the weighting function introduced in the
previous section. This means that each degree of freedom contributes to the kinetic
energy according to its weight which depends on the position. This is thought to re-
flect the change in dimensionality of the phase space. The approach is theoretically
appealing, but was not further considered in this thesis.

As described above, the “resolution change” is more easily realized using a
decoupling of the internal from the external degrees of freedom. The internal
energy term H,,;., was treated simply as the atomistic kinetic and internal energy
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terms in all the regions:

Hintra - Z pai + Uintra(Xoav R 7Xan> (286)

2m,

where Ujpirq denotes internal interactions (e.g. bonds, angles, etc., as introduced in
section Z1.3), which are left unaffected by the force interpolation. For calculating
the temperature thus all the degrees of freedom contribute. In equilibrium, by
the equipartition theorem each degree of freedom has a kinetic energy (K) = kBTT
When calculating the temperature from the simulation in equilibrium the fractional

and conventional formula thus lead to the same results.

2.4.3 Thermostat

Due to the non-conservative nature of the AdResS forces in the hybrid region,
it is necessary to apply a local thermostatting algorithm which takes care of the
excess heat. For simplicity of the implementation, the thermostat acts on all
degrees of freedom including the decoupled atomistic ones in the CG region @]
This approach has the practical advantage that the internal degrees of freedom
are thermalized according to the target temperature when they enter the hybrid
region. However, it has to be shown that the CG sub-system follows a canonical
trajectory which is equivalent to the the canonical trajectory a system composed
of only CG particles would follow.

According to eq. [ZI3] when thermostatting using a Langevin thermostat (as
discussed in section ZT.2T]), the force on each atom in molecule « is

Fo, = —ymive, + na, (t) ) (287)
where the noise term fulfills the property
(Mo, (t) @ g, (1)) = 2mivkpTo(t — ')0apdiiT (2.88)

where I denotes the unit matrix. The total force, including the Langevin terms,
on a CG molecule can be calculated as follows: The intra-molecular atomistic
interactions do not contribute to the total force on a molecule. In the CG region,
the only force acting on the molecule’s center of mass is due to the CG potential
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and the thermostat acting on all degrees of freedom:

F,=) F, (2.89)

iEa

= FSG - Z miYVa, + Z Na; (t) (290)
i=1 i=1

=FC — Mayva+ > na,(t) - (2.91)
=1
(2.92)

where M, is the total mass and v, the velocity of the center of mass of the molecule.
The noise part has the property

<Z M () > 1, <t'>> =30 (et () (2.93)

i=1 j=1

=) 2kpTyma,6apdiio(t — )T (2.94)
i=1 j=1
= 2kpTyma,dasd(t — )T (2.95)
=1
= QkBT’yMa5aﬂ(5(t - t,)I . (296)
(2.97)

By comparison to the Langevin equation for a single atom (eq. I8, it is ap-
parent that thermostatting the atomistic degrees of freedom can be seen as an
effective Langevin thermostat acting on CG particles with mass M,. The relation-
ship between friction coefficient and noise strength given through the fluctuation-
dissipation theorem is preserved, which means that a canonical ensemble for the
CG particles is generated.

2.4.4 Equilibrium conditions

It is natural to ask what are the appropriate thermodynamical variables to describe
a situation where the CG and atomistic regions are in equilibrium. One might think
of this in analogy to the phase-coexistence condition @] between two phases A
and B

pa(p, T) = ps(p, T) | (2.98)

i.e. the chemical potentials i are equal at given pressure p and temperature T’
In the AdResS simulation the aim should be to reach a state where the thermo-
dynamical properties of the all-atom reference system are preserved at least in
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the all-atom region ﬂﬂ, @] As will be shown later, in most cases the CG model
does not reproduce the atomistic state point. The system will then still reach a
“phase-coexistence” but at different thermodynamic conditions ', p’, T" eq.

In order to overcome this discrepancy, several strategies have been developed,
which are able to preserve the equilibrium thermodynamic conditions of the all-
atom system in the adaptive simulation. An approach based on measuring the
chemical potential in simulations with constant weighting function w was presented
in [@] In this thesis, new methods to ensure the thermodynamic coupling are
presented in chapter [l and chapter

2.4.5 Summary

The AdResS scheme, which enables to treat all-atom and CG models concurrently
in one simulation, was studied throughout this thesis. The resolution coupling
poses many challenges, among which are a good physical understanding of the
CG potentials, consistent description in terms thermodynamics and technical chal-
lenges of the MD simulation code. Within this work an efficient implementation
in the GROMACS software package was achieved which is discussed in chapter (]
and appendix

In chapter Bl an extension to the method is proposed which allows to couple
systems at arbitrary state points. The ability to preserve the local order in a
toluene solvent is analyzed in chapter @l The method can also be used to couple
a quantum simulation (through use of path-integral MD) to an effective, classical
model as discussed in[Bl Finally, in chapter [, a variant is presented which allows
energy conserving adaptive simulations by relaxing the requirement of fulfilling
Newton’s third law instantaneously.
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2.5 Path integral molecular dynamics

2.5.1 Introduction

So far, only systems interacting in an effective classical way were discussed. It is
assumed that atoms are point particles which interact through pairwise effective
potentials. On the molecular scale, however, the laws of quantum mechanics can
be of importance depending on the temperature and system studied. In the case
of heavy atoms at high temperatures, the nuclei can be safely treated as classical
point particles. However, for hydrogen at room temperature, the thermal de Brogli
wavelength is ﬂﬂ]

A= U ~ 0.1 nm (2.99)

vV 2mmkgT
which is roughly the same as the average “bond-length” (i.e. the hydrogen-oxygen
distance) of a hydrogen in a water molecule. From this it can be seen that there
is some interest in including quantum effects in Monte-Carlo or MD simulations
even at room temperature |78, @, .

The technique studied here to include nuclear quantum effects is derived from
the path integral picture of quantum mechanics, originally developed by Richard
Feynman @,g@] For calculating equilibrium properties (no time dependence) a
relatively simple derivation exists making use of the “Trotter expansion”. In the
following, the path integral approach will be discussed where the focus is not on
presenting a complete derivation, but on understanding the technique used later
in the thesis for (adaptive) path integral MD (PIMD). A more detailed derivation
can be found in i@]

In quantum statistical mechanics, the properties of a system are contained in
the density matrix @]

=3 pal T (B (2.100)

where ]\IJ(”)) denotes a unique microscopic quantum state and the sum runs over
all such states, weighted by p,. In the canonical ensemble, the weight is p, =
e P /Tr[e=P]. Once the density operator is known the expectation value of an
operator is simply given as < A >= Tr(pA), which has to be evaluated in an
appropriate basis.
The basis can also be continuous, as it is the case for the position representation,
where the density matrix becomes
plx, o)) = (2'|e PH|z) | (2.101)
where # = U + K are the non-commuting kinetic and potential energy operators.
The goal is now to arrive at an approximation for calculating the quantum expec-
tation value of an operator A, < A >= Tr(pA) in the position basis. Thereby, it
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is first assumed that the system consists of a single particle in one dimension, the
extension to a many-particle system is discussed in section 2.5.2]
The trotter theorem @] states that for non-commuting operators A, B

B = Tim [eB/2PeAPBPP) (2.102)

for integer P. The proof of this theorem is rather involved and thus does not fit
this introduction. Using the Trotter theorem, the density operator can be written
as

. P
p(x,x') = (2| [eU/2PeK/P6U/2P] |z) . (2.103)

Defining Q = eU/2PeK/PeU/2P the expression can more simply be written as
o, a') = (2} (2.10)

By inserting the identity operator I = [ dz|z)(x| P-1 times one arrives at
ple,a) = lim [ day-- -dap (@ |Qap) @p|Qlep_i ) @p_y| - - - |22) (22| Q) (2.105)

which expresses the density matrix as a P-1 dimensional integral. Now the aim
is to explicitly calculate the elements (2p|Q|zp_1) in order to evaluate the multi-
dimensional integral eq. Since the potential energy operator depends only
on coordinates, the eigenvalues of the potential operator are simply given by
exp(—pU(x)/2P). The eigenvalues of the kinetic energy operator K are only
know in the momentum space, which can be made use of by inserting the identity
operator for the momentum space I = [dp|p)(p|. The integration can then be

. .. . _ 1 ip:l,‘/h .
carried out explicitly (and using (x|p) N ) to yield
1/2
_BR/P [ mP mP 9
Tpt1le Tp) = exp | ———5(Tp41 — @ ) 2.106
< k+1| | k> (ZWBHQ) Xp { 25h2< k+1 k) ( )

Substituting eq. 2.I06] back into the density matrix, it can be written:

p A\ P
p(z,2") = lim ( m ) /de---dxp

P—oo QWBFLZ
P Ip+1:a:/
1 mP Bh
xexp{—ﬁk (o xk>2+ﬁ<v<xk+l>—v<xk>>]} 7
(2.107)

Now, in order to arrive at the partition function Z = Tr(p) the diagonal elements
of the matrix are integrated:

7 = /OL dzp(z,x) | (2.108)
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Figure 2.3: Tlustration of the sum over path in the discretized path integral (adapted from @])
Three representative configurations are shown. The integral runs over all possible (discrete) path
which lead from 0 to Sh.

where the integration has to be restricted to an arbitrary spatial domain [0, L], in
order to have a finite integral. Because now only diagonal elements of the density
matrix are calculated, the endpoints of the integral in eq. 22107 are x1 = xpy1 = .
Hence the integration over x can be equilvalently written as integration over xq,
and the expression becomes

mpP \ P2
Z = lim (—— / dzy - - - dzpe P2EL2p) (2.109)
where the symbol D(L) denotes the restriction to the spatial domain of length L.
The “effective Hamiltonian” ®(zy,...,zp) is given by
Sy 1
(I)(l'l, C. ,.’L’P) = ; |:§mw123<1'k — $k+1)2 + FU(.CEk) , (2110)

where the frequency wp = vV P /Bh was defined. The partition function in eq.
is called the discretized path integral representation of the partition function. The
partition function in eq. on the other hand also resembles a completely clas-
sical partition function which describes a polymer necklace with P beads each
connected by harmonic springs of strength wp (the polymer beads do not have
momenta, which will be introduced later). The external potential acting on each
of the beads is reduced by a factor %. In the limit of P going to infinity it provides
an exact solution of Schrédingers equation for one particle (in one dimensionlﬁ. The
sum over all paths of the discretized path integral is illustrated in fig. . The

2For many applications the path integral is formulated as an integral over continuous paths,
which however cannot be calculated by MD simulation.
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integration is over all possible path in the domain D(L) which lead from x to x in
imaginary time [h.

The meaning of “imaginary time” becomes apparent from the connection be-
tween density matrix and time propagator. The amplitude A of finding a particle
prepared in position x at a position 2’ after time ¢ is given by the time propagator
U(t) = e=™/" guch that A = («/|U(t)|x). The time propagator is connected to
the density matrix by setting ¢ = —ifh, i.e. p(3) = U(—iBh). This way, knowing
the propagator in principle the density matrix can be computed and vice-versa.
The path in fig. can thus be seen to be generated by a propagator evaluated at
imaginary time. In principle, eq. 2107 can also be used to obtain quantum dynam-
ical information. However, transforming back to real time makes the exponential
a rapidly oscillating function which is extremely difficult to converge in practice.

For this work only the equilibrium statistical mechanics results are relevant
which are computed from the diagonal elements of the density matrix. How the
multi-dimensional integral in eq. can be computed in practice will be ex-
plained in the following section.

2.5.2 Path integral MD

So far only the single particle (1-dimensional) case has been considered. The
extension to 3 dimension is straightforward, however describing multiple particles
is more difficult and in general needs to incorporate important quantum physical
phenomena. The reason is that the symmetry of the wavefunctions needs to be
taken account for. For bosons the wavefunction is symmetric and for fermions
antisymmetric upon exchange of particle labels. This means that for two particles
labeled 1 and 2, the boundary conditions x1(0) = x1, x2(0) = x2 and x1(Sh) = x,
x9(Sh) = x1 have to be included in the partition sum. This represents a particle
exchange where particle 1 has switched roles with particle 2 and vice-versa. For
fermions, including this exchange term leads to two terms in the exponential in
eq. 2109 which have opposite sign and are on the same order of magnitude. This, so
called “Fermi sign problem” makes it very hard to calculate properties of fermionic
systems. The bosonic exchange terms however do not have this problem and the
path integral formalism can be used to investigate for example superfluid He? @]

Within this thesis, the path integral Molecular Dynamics (PIMD) is used to
include nuclear quantum effects in the (adaptive) MD simulation ﬂ@, @, @] In
this approach, the exchange term is neglected, which is still a reasonable approx-
imation for most liquids at room temperature. The path integral is then used to
model the nuclear quantum effects, i.e. zero-point energy and delocalization. For
light nuclei, like hydrogen, the nuclear quantum effect has significant consequences
even at room temperature.

For the PIMD algorithms, the resemblance with a classical ring polymer system
of eq. is exploited further. The prefactor is simply written as an integral over
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P momenta pq,...,pp
P/2 P9
mP 3
— = [dp,---d — L 2.111
(5z) = [ pp< D3 2m,) (2.111)
where use of the Gaussian integral has been made and the “mass” m’ = % has

been assigned. This mass does not correspond to the physical mass of the particles
m. However, if only equilibrium properties are of interest, setting m’ = m yields the
same results because a constant term in the partition function has no influence on
equilibrium averages. These momenta thus are taken to be the momenta conjugate
to the imaginary time beads x. The partition function is then the one of a ring
polymer at temperature 1" with an effective bead mass m’. The corresponding
Hamiltonian (now in 3-dimensions), reads

P N N

2

b; 1 k+1 k 1 & i

H=> >, Sy +Z§miw§,(x§ ) x ))2+FU(x§ ) x
k=1 Li=1 =i =1

(2.112)

This Hamiltonian can be evaluated in a fairly simple fashion using MD or Monte
Carlo @] The potential acts only between beads at the same imaginary time.
For PIMD, some care is needed for converging the simulation. The reason is that
the harmonic springs connecting the imaginary time beads often constitute the
fastest motion in the system and thus limit the convergencyg]. Thus, the so
called “staging” or “normal-mode” path integral techniques [89] are often used.
These algorithms use analytical transformations to evolve the different frequencies
at different timescales.

The problem of non-ergodicty can also be overcome with the help of local
thermostatting @, @] When simulating the canonical ensemble the thermostat
(in this thesis the Langevin thermostat, section [ZT.2.1]) couples to all 3NP degrees
of freedom. Hence also the slow modes receive energy from the random kicks of
the noise term. The computational effort of a PIMD simulation is roughly P times
bigger compared to a conventional simulation since the cost of evaluating the non-
bonded forces increases roughly by P. The trade-off between speed and accuracy
also determines the value of P used in practice; the higher P the more accurate
and expensive is the simulation.

Thus, in summary the following effects are included in the PIMD

e nuclear zero point energy
e nuclear delocalization
e nuclear tunneling

and the following effects are neglected
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e exchange (symmetry of wavefunction)
e clectronic quantum effects

One important aspect to be discussed in chapter [6 is how to obtain the interac-
tion potentials which are valid in the path integral MD simulation. This is of
importance as most interaction potentials are derived from fitting to experimental
quantities. These quantities already include the nuclear quantum effect and thus
lead to a double counting when used with the PIMD technique @]

2.5.2.1 Measuring quantities from PIMD simulations

Measuring observables from the PIMD follows from applying the usual concepts
of quantum statistical mechanics. In the following, the most important aspects
will be discussed. First the simple one-dimensional case is considered again. The
expectation value of an observable A in quantum statistical mechanics is @]

<A> - %Tr[/ie—ﬂﬁ] . (2.113)

In case the observable can be written as a function of the position operator with
A(Z)|z) = a(x)|x), the expectation value in the discrete PI approximation becomes

<121> = %/daz a(:c)(x\e"gg\@ (2.114)

1 mpP \
= — lim (—2) / dzy - - dzpa(x,) e PPEL—er) (2.115)
7 P—oo 27Tﬂh D(1)

Where the previous result for the diagonal elements of the density matrix from
eq. has been used. This expression can be used to evaluate the expectation
values from simulation, it is however not very efficient. The reason is that one
imaginary time bead x; is preferred over the others. This shortcoming can be
overcome by noting that the integral is invariant under relabeling of the particles
due to the cyclic path. The average could hence be performed on any of the P
imaginary time beads. Thus an completely equivalent expression is

a1 mpP \"? 1 —
A> = — lim / dey---dep | = a(x e Pe@LTP)
< Z oo (%5#) by r (P ; ( ‘“)>
(2.116)

The observable can be measured by taking the average over imaginary time slices
and the ensemble average. In case the operator cannot be expressed in terms

of coordinate eigenfunctions, the calculation becomes much more tedious as also
off-diagonal elements need to be included. In the canonical ensemble however,
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thermodynamic relations can be used to avoid this and evaluate the total energy
using only diagonal elements of the density matrix. This results in expressions
for pressure and total energy which are easily available from the simulation. In
general, evaluated at finite trotter number P, the expectation value is called an
estimate and the estimator ap(zy,...,zp) is a function which allows to write the
estimate < ap > as

1

(ap(er,.. zp)) = - ( mP

21 Bh?

P/2
) / dzy---dxp ap(xy,... ,:vp)e_m(““““’”) )
D()

(2.117)
The estimator for the total energy can be derived from thermodynamics by using
elementary thermodynamic relations, for example for the total energy

0
E= —%an(N, V., T) (2.118)

which can be used to define the estimator for the total energy:

P N P
dN P 1 2 1
ep(Xq,...Xp) = —— — E E §miw123 (ng) —xgkﬂ)) +F E U(xgk),...,xgk)) ,
k 1 k=1

(2.119)
and similarly for the pressure which can be derived from the thermodynamic rela-
tion

0

P =kgT—InZ(N,V,T) . 2.12
B avln ( 7V7 ) ( O)

The estimator for the pressure is then given by inserting the path integral repre-
sentation (eq. 2.109) for the partition sum Z:

P 2
Pp(x1,...Xp) = AL Z Z [lmiw% (xgk) — xz(»kﬂ)) + %xgk)vrgk) U}
(2.121)
Using these estimators, the thermodynamically relevant measurables can be easily
calculated from the PIMD simulations. In some cases, numerical problems are
observed due to large fluctuations of the estimators in the simulation. For these
measurables, special estimators have been developed which provide a more efficient

convergency [93].

2.5.2.2 Summary

The PIMD technique presents a way of including nuclear quantum effects in MD
simulations. There is a considerable interest in including this effect, even for liquid
water at room temperature @] This will be explored in chapter [l where the
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determination of interaction potentials suitable for use in PIMD simulation of
liquid water are discussed.

As has been demonstrated in @, @, @], this technique can also be used in
conjunction with the Adaptive Resolution Scheme. In some sense, one might view
the path integral picture as another scale or level of detail, just as the CG repre-
sentation introduced before was a change in resolution (although in general finding
a classically equivalent description of quantum system is not straightforward or
not possible at all). It is therefore interesting to explore the possibilities of cou-
pling this “quantum-scale” to the classical scale. The application of the adaptive
scheme to PIMD simulations will be discussed in chapter [l at the example of a
hybrid simulation of a slab of liquid water slab in vacuum.
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Chapter 3

Adaptive resolution simulation of
water

This part of the thesis lead to the following publication:

“Adaptive resolution molecular dynamics simulation through coupling to an internal
particle reservoir”

S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site and K. Kremer
Physical Review Letters, 108, 17, 170602, 2012

In this part of the thesis, the application of the adaptive resolution scheme was
probed as a method for simulating an explicit particle reservoir coupled to the all-
atom region. Such a method is interesting, as there is a number of problems where
the full detail is required only in a small sub-region, while a supply of particles from
outside the subregion is needed. As an example one might think of aggregation on
a surface, where only the surface region needs to be resolved with full details.

In Monte Carlo simulations, related techniques based on direct insertion of
molecules have been used to provide a grand canonical ensemble @, @, @] These
techniques are similar in the sense that the number of particles in the simulation
box is allowed to fluctuate. Extensions were also made to perform hybrid molecular
dynamics/monte carlo simulations where the insertion attempts are restricted to
special regions @]

Here, the AdresS concept was generalized to allow for the coupling of systems
with different chemical potential and different pressure. The type of models that
are coupled is rather arbitrary in this approach. For practical applications, one way
to make use of this would be the case where the CG region is much larger and thus
acts like a grand-canonical reservoir. Properties measured in the high-resolution
region are thus effectively in the VT ensemble, the accuracy of the approximation
can be tuned with varying the size of the reservoir simulated. The main advantage
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CHAPTER 3. ADAPTIVE RESOLUTION SIMULATION OF WATER

is that the CG “reservoir” can be simulated more efficiently because of the reduced
number of intermolecular interactions.

The test system was liquid water at room temperature. This choice is natural
considering the immense importance of liquid water in simulation of biological and
soft matter systems ﬂﬂ], but also the enormous complexity of its physical properties.
Water thus represents a benchmark which is important to master for any new
simulation scheme.

The following section starts with introducing the atomistic model of liquid
water followed by the development of a CG potential. Subsequently the coupling
between the all-atom and CG model in the adaptive resolution scheme is discussed.
In the last part, the concept of the thermodynamic force is developed, which takes
care of the differences of the all-atom and CG model in the adaptive simulation.

3.1 Coarse-graining of liquid water

The properties of water arise as a complex interplay of hydrogen bonding and polar-
ization @] The structure is commonly thought to follow on average a tetrahedral
arrangement, formed by the four next-neighbor molecules @] In a coarse-grained
description of a complex liquid like water, many of the properties of the liquid are
lost. Hence, a choice has to be made beforehand as to which properties are needed
in the CG model. Since this also plays a role for the adaptive simulations using
the AdResS scheme, introduced in section B.2] the results from CG simulations of
water are first discussed here. The CG interaction was determined from the IBI
scheme discussed in section 2.3

The all-atom model used was the simple point charge SPC/E water mode]El m,
@] which is widely used in computer simulations [7]. In this model, three point
charges represent the two hydrogens and oxygen and a Lennard-Jones interaction
(see section ZT.3)) accounts for the non-covalent interaction between molecules.
The length of the bond (OH) and angle (HOH) are fixed. In the simulation a
constrained integration (using the SETTLE @} algorithm) was used to maintain
the rigidity. The parameters are given in table 3] and a schematic illustration is
given in fig. B.11

All simulations were carried out using the GROMACS M] package. The
IBI method is implemented in the “Versatile Object-oriented Toolkit for Coarse-
graining Applications” (VOTCA) [@], which provides an interface to GROMACS.

For the atomistic reference simulation 2180 molecules were simulated in a cubic
box. In order to equilibrate the simulation of the SPC/E water at ambient pressure
(p = 1bar), initial simulations were run for of 107 steps, employing a Berendsen
barostat Nﬁﬂ] with a timestep of At = 2fs. The simulations were run with the

!Note that this model was originally parametrized for use with Ewald-summation long-range
interactions M], which were not considered here.
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Figure 3.1: Schematical representation of the SPC/E water model

] Hydrogen \ Oxygen ‘
qu = —0.8476e qo = 0.4238e
c=20 o = 0.316557 nm
e=0 ¢ = 0.650194 kJ/ mol
Bond Angle
rog = 0.1nm Onon = 109.47°

Table 3.1: Parameters of the SPC/E water model
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Langevin thermostat at a temperature 7' = 300K and a coupling constant of
Trangevin = 0.5 ps. Electrostatic interactions were treated using the reaction-field
(see section [ZI.4]) approach using a cut-off length of 1.2 nm. The equilibrium
density was calculated from NPT simulations using the Berendsen barostat@]
and found to be p = 994.19 + 0.03%.

In a subsequent simulation (107 steps) at fixed density in the NVT ensemble,
the structure in terms of the g(r) of the molecules center of mass was calculated
(shown in fig. 3.2]). In the CG model, one water molecule is represented by its center
of mass. The corresponding effective potential was derived using IBI (as described
in section 2234]) using the atomistic center of mass g(r) as target distribution. 100
steps of IBI were carried out, where for each iteration step 50 x 10% steps of MD
using a timestep of At = 2fs were run.

The evolution of the CG potential during the IBI is shown in fig. The
potential in the first step, which is simply Uy = w(r) = kg7 In g(r) does give liquid
structure significantly different from the target. During the iteration, the initial is
corrected based on the difference of current and reference g(r) (see section [23.7]).
The iteration converges once the structure produced by the CG model is sufficiently
close to the target structure. To quantify this, the error defined as mean squared
deviation with respect to the target g(r) (eq. 240 is calculated in each step (show
in fig. B3). After approximately 100 steps the accuracy was considered sufficient
(2 < 0.001). This error is mostly determined by the numerical precision (the
binning of the numerical representation of the potential) and can thus be further
improved by reducing the bin width and increasing the simulation length as to
decrease the statistical fluctuations in each bin.

The RDF calculated from the CG simulation very closely matches the reference
RDF. It is interesting to note the change of the first two minima in the CG poten-
tial during the IBI. These minima correspond to the first and second neighbors of
a water molecule. Initially, the first minimum is deeper and the corresponding g(7)
over-structured with respect to the atomistic reference. As the iteration proceeds,
the minima change their relative depth and converge to a state where the second-
neighbor minimum is deeper than the first-neighbor minimum. Hence, the initial
guess for the two-body potential of mean force (PMF) (see section 2234 for defi-
nition) overestimates the interaction between next neighbors. This overestimation
gets successively correct during the IBI.

3.1.1 Properties of the coarse-grained model

The previous section showed that using IBI it is possible converge a CG potential
in terms of the matching the radial distribution function (and hence the two-body
PMF). Other structural properties are however not guaranteed to be reproduced.
One example is the tetrahedral order parameter defined as M]
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Figure 3.2: IBI of SPC/E water. Top: The evolution of the coarse-grained potential during
IBI. Bottom: The radial distribution function for the final iteration compared to the all-atom
reference (center of mass). 19
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Figure 3.3: Error in IBI for finding a CG interaction potential that matches the g("*/)(R)) of
SPC/E water. The error is defined as £(*) = \/forc'” (gD (R) — greH)(R))2dR)

=1 gi 24: (cos(\pjk) + %)2 , (3.1)

where W, = arccos(I;;T;;) is the angle between a selected oxygen atom ¢ and the
vectors connecting the oxygen position r; to its four next neighbors r; and rj, (with
Jj,k <4). The g4 order parameter characterizes the orientational structure of next
neighbor water molecules by measuring the deviation from the ideal tetrahedral-
angle arccos(—1/3) ~ 109.47°. In an ideal gas, where no near ordering exists the
order parameter is ¢4 = 0, while in a perfect tetrahedral network ¢, = 1. The value
for liquid water at room temperature is expected to lie between these two limits.
From the atomistic water model simulations the tetrahedral order parameter was
found to be < q4 > A_atom= 0.6282 £ 0.0002 where the average is taken over time
and molecules. Measuring the order parameter in the CG simulation however gives
< q4 >ce= 0.4393 £ 0.0002 . A qualitatively similar result was found by Wang
et al. [54]. This result illustrates that the orientational properties are not carried
over to the coarse-grained model. The reason is the hydrogen bonding which is
very crucial property of water. In the atomistic model this is included as oxygens
and hydrogens attract each other due to the partial charges with opposite sign
(this is in fact plays a major role for the design of atomistic water models ﬂ]g)
The IBI based CG model has no degree of freedom to describe the orientation as
each molecule is represented by a point particle with isotropic interactions. The
measured < g4 >¢¢ thus simply corresponds to the near-ordering in a liquid of
spherical particles.

So far, no knowledge about thermodynamic properties has been used in the con-
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struction of UY(R) (with the exception of the compressibility which is completely
specified by the g(r) E}) An analysis of the CG simulation (at the density of the
reference atomistic simulation) gives an average pressure of pog = 6234 £ 0.5 bar,
which deviates almost five orders of magnitude from the pressure p,; = 1bar the
atomistic reference simulation was prepared at. This finding might seem surprising
at first but is in fact consistent with other findings in the literature @, Ej] In
order to overcome this mismatch, different techniques will be discussed which in-
clude either a correction to the potential (described in the following section B.1.2l)
or use of a “thermodynamic force” (discussed in section B3]).

Dynamical properties like diffusion rates or relaxation times measured from the
CG simulation, show strong deviations from the reference all-atom values as well.
It has been found in [@], for example, that the self-diffusion constant is increased
by approximately a factor 5 in the CG model. This can be explained by the fact
that the friction depends on the roughness of the local energy landscape, which
is smoother in the CG model due to the reduced number of degrees of freedom.
Thus, if time dependent properties are calculated from the CG simulation it is
not possible to directly compare them to the timescales in the referce all-atom
simulation (also in complex systems, such as polymers, the dynamics of different
parts of the system might change non-uniformly @]) This very complex matter
was not in focus of this thesis, however, whether this has an affect on the dynamics
of the adaptive resolution simulations will be discussed in chapter @l

3.1.2 Pressure corrected coarse-grained model

The most simple technique for correcting the pressure is to add a linear attractive
potential to the coarse-grained interaction as explained in detail in section 2.3.4.2]
For the pressure correction, 20 additional steps of IBI were carried out, 10 of which
are performed with an update

AU (r) = AU, (r) + A; (1 - TT ) , (3.2)
cut
where the first term is the standard IBI update (eq. [Z45]) and the second is the
pressure correction (eq. 253]). This correction is able to significantly reduce the
pressure to (p),, ~ 300bar within 5 iteration steps. After these 5 steps the
pressure does not change further. The reason is that the two terms in eq.
represent competing contributions to the potential. In order to overcome this the
final 10 steps of the iteration were carried out using only

AUD = 4, (1— ! ) : (3.3)

Teut

which leads to a pressure of pcg = 0.7 & 2 bar in the final step.
The pressure corrected potential is shown together with the unaltered potential

o1



CHAPTER 3. ADAPTIVE RESOLUTION SIMULATION OF WATER

= 40} ©IBI ]
g IBI corrected ———
= 2.0 + i
iy
= 0.0 | -
=)

-2.0 F . , . . . . i

3.0 b A atomistic reference ——— |

J 5] [u——

= 2.0 t+ IBI corrected i
=

1.0 |

0.0 : : : : : :
. 0.05 L . gcorrected(r) _ gIBI(T’) i
g 0.00 —— /”W V*MNWMJWWVMNWWWWWAMMWM
< -0.05 | il

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r [nm)]

Figure 3.4: Pressure correction for IBI of water: The top plot shows the difference in the CG
potential introduced by the pressure correction (as explained in the text). The bottom plot shows
the difference introduced by this correction in terms of the g(r).

in fig. B4l The pressure correction shifts the potential down, rendering it over-
all more attractive. While this change is sufficient to reach the desired pressure,
the difference between corrected g«ec**d(r) and the reference g(r)™! is very small
(Ag(r) < 0.1, as shown in fig. B4]). This outcome might seem a bit surprising at
first considering the uniqueness statement in the Henderson theorem. A discussed
in section 22341l the Henderson theorem states that there exists a unique corre-
spondence between g(r) and U°“(r). As a consequence, the IBI potential which
gives a perfect agreement with the atomistic reference RDF, is unique. Thus,
any modification, including the pressure correction must introduce an error in the

structure.

The statement of uniqueness however makes no sense in the context of numer-
ical simulations as the numerical error was not considered. Due to finite precision
of the numerical calculation and numerical approximation formulas (e.g. for per-
forming integration) the properties always include an numerical error (g(r)+0dg(r),
UCY(r)4+6U%%(r)). The Henderson theorem shows the uniqueness of the potential,
but it does not make a statement on how an error §U%(r) affects g(r) + dg(r).
Thus, a priori, large changes 6U“%(r) could have little effect on g(r) + dg(r). This
is indeed what has been found here (and by other studies [57]) and is shown in

figure 3.4

The isothermal compressibility on the other hand is very sensitive to changes
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Figure 3.5: Isothermal compressibility estimate as obtained from eq. B4l as a function of the upper
integration boundary r,,,,. The estimate converges in the limit of r,,,, — oco. At large rpaz
the compressibility of the pressure corrected CG model deviates significantly from the atomistic
reference due to the sensitivity on the g(r).

in structure. Here, the isothermal compressibility was calculated from the virial
expression HE]

Tmaz —>00

pkgTrky = lim 1—|—47Tp/ r*(g(r) — 1)dr , (3.4)
0

where s is the isothermal compressibility and p is the density. For IBI without
pressure correction, the compressibility is matched by construction (up to numer-
ical errors), if the g(r) of the reference simulation is reproduced. Using eq. B.4]
the compressibility was estimated integrating the radial distribution function up
t0 T'maz for both all-atom and CG simulations. In fig. the estimate of the com-
pressibility is shown as function of r,,,,. The pressure corrected model gives an
compressibility which is almost 5 times higher as shown in table B2l Although
the CG model now still represents the structure well, this is only possible at the
expense of changing the compressibility. This fact is quite relevant for the usage of
the CG potential in the multi-scale simulation. The isothermal compressibility is,
in the grand canonical ensemble @], connected to the number density fluctuation
by the formula pkgTky = W Therefore, an increase in compressibility will
promote density fluctuations, which is not desirable in applications where finite
size effects are relevant. One example is the calculation of Kirkwood-Buff integrals
used to determine solvation free energies [@, @]
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| | All-atom | IBI | IBIPC |
Pressure p Dtarget = 1 bar | 6243 bar £ 1bar | 0.7 £ 2 bar
Compressibility #7 [1071° Pa™] 5.140.3 4.840.7 14.740.7

Table 3.2: Summary of properties measured in NVT simulations using the CG potential compared
to the all-atom reference simulation. Errors for the compressibility are calculated by considering
the statistical error of the respective g(r), which enters in the integral in eq. Bl The systematic
error of truncating at finite r,,,, is not included.

3.1.3 Summary coarse-graining

Using the IBI technique it is possible to obtain a CG potential, which accurately
reproduces the fluid structure in terms of pair correlation function and the com-
pressibility. Other properties are however not necessarily reproduced. Hence these
properties should be carefully checked before interpreting results which are ob-
tained in CG simulations. For the example of the pressure it was shown that
compromises have to be made if it is necessary to fit a thermodynamic property in
addition to structure.

It has been frequently reported in the literature that in addition to this problem,
which can be called a representability problem M] there exist also transferabilty
problems, meaning that the coarse-grained model fails at state points different from
the one it was parametrized in ﬂﬁi This is a consequence of explicit appearance
of the temperature in the derivation of the IBI formula eq. Overall, there
exists no unique way to derive a CG model, only different strategies (discussed in
section 23]) to ensure the representation of a set of selected properties.

In the next section results from coupling CG and all-atom representation of
water in the adaptive resolution scheme (see section 24 are presented. For this,
the differences in the two models play a major role.

3.2 Adaptive resolution simulations

In this part, the AdResS method is extended to couple sub-systems at arbitrary
state points. This is done by introducing the concept of a “thermodynamic force”,
which takes care of the pressure differences occurring due to the mismatch of all-
atom and CG pressures. Using the thermodynamic force it is possible to use of the
uncorrected CG model in the adaptive simulation.

First the adaptive simulations using the pressure corrected CG model is pre-
sented. The thermodynamic force is introduced in section and applied to sim-
ulation of liquid water in section [3.4
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Figure 3.6: Density profile (top) and local particle number fluctuation (bottom) in the AdResS
simulation employing the pressure corrected CG model. The particle fluctuation is calculated in
sub-volumes of size 1nm x 4nm X 4nm along the x-axis.

3.2.1 Pressure corrected CG model

This section briefly presents the numerical results obtained with the pressure cor-
rected CG model described in previous section B2l A similar study of water
(using the TIP3P water model) was already reported in NE]

The system consisted of 8507 SPC/E water molecules in a box of dimensions
16 nm x 4 nm x 4 nm, employing periodic boundary conditions. All simulations
were carried out in a modified version of GROMACS@] B The implementation
is discussed in section 1] and appendix [Bl

Electrostatic interactions were treated with the reaction-field approach using a
cut-off length of 1.2 nm (see section ZT4]). The temperature was controlled using a
Langevin thermostat (see sec. 2 IT.2.1]) with a coupling constant of 7 angevin = 0.5ps.
The change of resolution is performed along the x-axis of the simulation box, with
the center of the all-atom region at x+ = 8 nm. The width of all-atom region was
chosen to be a = 2nm while, b — a = 3nm were admitted for the hybrid region
width (compare eq. for the definitions). Note that this system represents a
somewhat idealized case, in practice, it is more useful to have a thinner hybrid
region and a larger CG “reservoir”.

The system was then evolved for 10° MD steps employing a time step of
At = 2fs. The resulting density profile along the x-axis is shown in fig.
The profile shows deviations from the reference flat density profile py in agreement
with previous studies [ﬂ, m] In the all-atom region the density is preserved,

2This implementation of the AdResS method will be included in the GROMACS release
version 4.6 (www.gromacs.org)
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while the hybrid region and also the CG region show deviations on the order of
10%. The artifact of the density depletion is well know from previous AdResS
studies and several rationalizations have been discussed. In the first article [@] it
was noted that even when the pressures of the “pure” all-atom and CG systems
(i.e. a constant w(x) = w = 1 and w = 0, respectively) are the same, a system
simulated with a constant w(z) = w = % has a different pressure. The pressure in
the simulation with w = % is higher in this case and thus particles are pushed out
of the hybrid region. In a subsequent paper ] an “interface-pressure” correction
was introduced which can, in first approximation, correct for this by calculating
the pressure from a single hybrid simulation with w(z) = w = % A more detailed
study @], the density depletion was rationalized to stem from a dependency of
the chemical potential p(w) on the weighting function. A correction was derived
from considering several independent simulations at constant w and calculating
the chemical potential difference using Widoms insertion method ]

Although the density in the all-atom region remains unchanged, for some ap-
plications it might be necessary to restore a full density profile everwhere. With
the concept of the thermodynamic force, introduced in section B3] another way of
compensating the pressure artifact is available.

Since the pressure corrected model has a five times higher compressibility, it
is interesting to know the compressibility of the adaptive simulation. In a con-
ventional simulation, the compressibility would be accessible for example from the
fluctuations of the volume at constant pressure @] Here however, since the com-
pressibilities in all-atom and CG model is different, it is more appropriate to define
a local compressibility by making use of the expression [26]

(N?) — (N)?

pkBTI{T = s
(N)

(3.5)
where N is the number of molecules. This expression is valid only in the thermody-
namic limit, but can be used to analyze the qualitative behavior of the compress-
ibility by comparing the molecule number fluctuations in different sub-regions.
To this end, the molecular number fluctuations are evaluated in slabs of width
Ax = 1nm along the x-axis. The bottom part of figure fig. shows that for all-
atom simulation, the molecule number fluctuations are constant along the x-axis as
is expected for a homogeneous system. In the adaptive resolution system however,
the fluctuations are different for the all-atom and CG region. The fluctuations
in the CG region are higher, which corresponds well with the already discussed
5-fold increase in compressibility in the CG model. In the hybrid region, a smooth
transition in fluctuations is observed.

Although this setup has been used in various studies in the past, for certain
applications it is of importance to keep the molecule fluctuations everywhere (e.g.
the calculation of Kirkwood-Buff integrals in mixtures m, @]) For matching the
pressure of the all-atom and CG model, a sacrifice in accuracy of the pair structure
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had to be made which causes the difference in molecule number fluctuations. A
more consistent scheme should certainly follow the premise of structural coarse-
graining and preserve the structure as accurately as possible. Thus in the following,
a scheme is presented which allows to couple the IBI CG model directly by taking
care of the pressure difference through the “thermodynamic force”.

3.3 Thermodynamic force

As was explained in the previous sections, the structural coarse-graining does not
necessarily generate a system at the reference state-point. By construction, the
compressibilities match (krce = Kr.a4), but pressure, free energies and other
thermodynamic properties are not preserved. If one attempts to couple this CG
model to the all-atom model in a concurrent scheme, the system evolves into a new
state driven by the free energy and/or pressure differences. Usually however, the
aim is to reproduce the all-atom state point at least in the region of interest (which
is usually the all-atom region). One possible solution would be to alter the CG
two-body potential, but this leads to drastic changes in the compressibility (see
section B.I.2)). Since it is desirable to preserve compressibility (and thus particle
number fluctuations), a mechanism for coupling the two sub-systems at different
state points is needed.

The approach taken here was to introduce an external force, Fy,(z) which
removes the effect of the mismatching state points. Fy,(z) can be restricted to be
non-zero only in the hybrid region, as to minimize direct influence on properties
studied in the all-atom and CG regions. The force defined in this way provides the
thermodynamic work necessary to adjust the pressure felt by a molecule crossing
the hybrid region.

In the following, an iterative scheme will be presented which makes it possible
to evaluate the thermodynamic force. As suggested by the requirement that the
two sub-systems A and B exchange particles, the ansatz is made in the grand-
canonical ensemble with u, V, T as natural variables (provided that A and B contain
a sufficient amount of particles). The corresponding thermodynamic potential is
the grand potential ®(u,V,T) = pV. To apply this to the present problem, one
can first consider the sub-regions as two independent systems A and B at the same
volume and temperature. The grand potential of the system are unequal:

Dy =palpa, T)V # pp(ps, T)V = Op (3.6)

with the chemical potentials pus and pp being different for each system. The
difference in ® can be compensated by adding a constant term, which is the integral
of the thermodynamic force Fy,(z):

<pA(,UA7T) + Po /ab Fth(x)dﬁ) V =pp(us,T)V, (3.7)
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where pg is the molecular number density. The integral corresponds to the amount
of thermodynamic work equivalent to the difference in grand potential (per molecule)
between systems A and B. This thermodynamic work does not have a meaning yet
for the two isolated systems, but can be associated with the work that has to be
provided when molecules cross the hybrid region in the adaptive simulation.

The connection to the adaptive simulation is now made by considering a situa-
tion, where the systems has been enforced to be homogeneous in terms of pressure
p, temperature 1" and chemical potential p. Note that these are the conditions of
two-phase equilibrium (see section Z44]). Since in the adaptive simulation, dif-
ferent representation of the same liquid (in the same phase) are coupled to each
other, it is in addition useful to require the density to be uniform and match the
reference density py of the all-atom system.

The ansatz is now made considering the adaptive simulation to be constrained
at the reference density of the all-atom system p, everywhere. Under this con-
straint, the pressure becomes a function of the spatial coordinates p(z, pg). This
is due to the AdResS forces which interpolate between models with different pres-
sure and chemical potential. For a nonuniform pressure profile, an analogous to
expression eq. B can be written as

A / Fo(z)dz = p(z, po) (3.8)

The thermodynamic force Fy;, can hence be taken to be the force, which balances
the pressure gradient in the adaptive simulation where p(z) = py is enforced. This
is written as

Fyy(z) = %Vpcc,po) | (3.9)

Note that the local pressure profile p(z, pg) is not measurable directly since there
is a priori no way to enforce the constraint p(z) = py = const. Instead, an approx-
imation is made by considering the pressure which is reached once the adaptive
simulation reaches a mechanical equilibrium. The pressure without a constrained
on the density, denoted as p(z, p(x)), is expanded as a function of the local density
p(x)

op

P, pl)) = p(x, po) + (o) =po) 50|+ O(p(x)?) - (3.10)

PO

In mechanical equilibrium however, the pressure gradient must disappear, i.e.
Vp(z, p(x)) = 0. By taking the gradient on both sides, eq. B.I0 becomes

dp
Vp(x, po) = =Vp(x) EN IR (3.11)
p
PO
where terms of order p(z)? are neglected. Because of the elementary thermody-
namic relation g_z|T,V = ﬁ%T @], where K is the isothermal compressibility, this
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can be simplified to
1

PoRT
The compressibility k7 can be assumed to be identical for A and B, given that B is

obtained by structural coarse-graining of A. By substituting eq. B.10 into eq. B.9]
the thermodynamic force becomes

Vp(z, po) = ———Vp(z) . (3.12)

M,

VO (z), 3.13
o p () (3.13)

F?h(x) ==

where the molecular number density py = po/M, has been written as a mass
density for a system composed of molecules with mass M,. This approach thus
relates (to the first order) the density profile p(z) visible in an unperturbed adaptive
simulation to the force Fy, which compensates the pressure differences in the two
models.

As will be clear from the numerical results, this first guess is not fully sufficient
to reach a constant density in the simulation, although it is represents a good
approximation. Because of this an iterative refinement is attempted as

Fitl(z) = Fiy(2) — 22 v,0 (), (3.14)

which can be carried out until the gradient in the density Vo () is sufficiently
small. The work-flow of the iteration is depicted in fig. 3.7

Once system is simulated with the converged thermodynamic force, the effect
of the pressure difference is removed and a flat density profile is restored. The
condition of matching the chemical potential x was included implicitly by assuming
that the local pressure is a function of the chemical potentia]ﬁ. The thermodynamic
force therefore couples the two representation by providing the work necessary to
overcome the difference in pressure and chemical potential. As the homogeneous
temperature distribution is ensured by the thermostat, the conditions of matching
i, p and T for the two sub-regions are hence fulfilled. At the same time, the CG
model retains its original properties as no modification is necessary to enforce the
correct pressure. This will be put to a practical test in the next section [3.4]

3.4 Numerical results

For evaluating the concept of the thermodynamic force, simulations with the same
geometry and parameters as in section ([B:2]) were prepared, now employing the
CG model without pressure correction, as described in section B.I.2l The pressure
difference, which is approximately 6 x 10%bar, drives the adaptive system into
a stationary state with non-uniform density profile, the density in the all-atom

59



CHAPTER 3. ADAPTIVE RESOLUTION SIMULATION OF WATER

Uncorrected
AdResS simulation
p0(z)

Spline smooth
p(‘” (@)

p(x) sufficently
flat?

done ]

p(z)

Calculate Fy(z) =
Fj (@) — 2V (@)

Figure 3.7: Work flow of the thermodynamic force iteration. The criterion for “sufficiently flat
density profile” can be realized e.g. as checking that maz((p(x) — p(0))/po) < €.

[ Spline smooth ]

region being higher (top graph in fig. B8). The thermodynamic force iteration was
implemented into the VOTCA package ﬂﬁ] The work-flow is depicted in figure
fig. B.1 .

5 steps of the iteration were performed, each using an MD simulation of 10°
steps. The first 10° steps were discarded and the density profile was averaged over
the remaining frames taken at an interval of 500 MD steps. Due to the sensitivity
of the thermodynamic force on the local density fluctuations, a spline fit m] using
a grid 0.4nm was used in order to smoothen the force. The thermodynamic force
was then calculated in the range 1.4nm < | < 4.2nm where [ = |z — x| and x
denotes the center of the all-atom region (see section [2Z4] for definition). The setup
thus extends the thermodynamic force slightly into the all-atom region. This is
necessary because molecules can interact in a hybrid way (i.e. w(X,)w(Xs) # 1)
up to one cut-off distance away from the hybrid zone. As is visible from fig. B.9 this
perturbation of the all-atom region is however very small. For the compressibility
appearing in eq. B.14] the all-atom value of k7 = 0.3 x 107! was used. The change
of the thermodynamic force during the iteration is depicted in fig.

The iteration converges to an accuracy of maz((p(z) — p(0))/po) = 0.4% after
4 steps of the procedure. It is important to stress here that a sufficient time for

3The contribution of the chemical potential is further clarified in chapter
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Figure 3.8: (a) Density profile p(z) in the adaptive simulation without and during the iteration
of the thermodynamic force. (b) Local pressure as measured through the method of the planes
in the simulation employing the converged thermodynamic force in iteration 4. Also shown is
the integral of the thermodynamic force. (¢) Molecule number fluctuations calculated in bins of
width Az = 1nm.
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Figure 3.9: Evaluation of the thermodynamic force during the iteration. Since the change of
resolution is performed in x-direction (Fy)y = (Fin). = 0.

each simulation has to be admitted for the relaxation of the system from the initial
condition to the new density profile.

The density profile is shown in fig. B:8h) for the first 4 steps of the iteration.
Due to the effect of the thermodynamic force, the density imbalance is removed
and the original density restored.

The derivation for the thermodynamic force started with the ansatz of balancing
the pressure gradient, given that the system is constraint to be at py. It is thus of
interest to check numerically that the pressure is exactly balanced in the simulation
with the thermodynamic force. To that end, the p,, component of the pressure
tensor was computed locally a long the x-axis using the formula derived by Todd,
Evans and Daivis ] (for a description, see appendix[AT]). In figure fig. B.8b) the
resulting pressure profile is compared to the integral of the thermodynamic force
(i.e. the work related with pulling a particle across the hybrid region). The two
curves overlap within the error bars. Thus the contribution of the thermodynamic
force and pressure in x-direction on a molecule are equal and of opposite sign and
cancel each other. The local virial pressures (not counting the contribution of the
external force) are however different. The thermodynamic force therefore fulfills
the initial requirement of canceling the drift and coupling the systems at different
state points.

It is natural to ask how this coupling affects physical properties. In fig. B.8c)
the particle number fluctuations in slabs (calculated as in the previous section)
along the x-axis are shown. In the simulation with the thermodynamic force the
fluctuations are now constant over the full simulation box. This indicates that
also the compressibility is now preserved everywhere. The remaining deviation
between all-atom and CG fluctuations can be attributed to the small difference in
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Figure 3.10: Particle number distribution in a slab of width [ = 4 nm and for an atomistic zone
in adaptive resolution with the same width. Both distributions match a Gaussian behavior with
mean p = (N) and variance 02 = pkpTkr(N)

compressibility, which is due to the residual error in the CG RDF observed for the
CG model without pressure correction (see section B.ILZ). The accuracy could be
further approved by tuning the discretization of the numerical representation of
the potential and performing more iterations.

For a more detailed analysis, the distribution of the number of molecules p(V)
in the all-atom region was calculated and compared to a sub-volume of the same
size in an all-atom simulation. This represents an important check using the CG
sub-system as a particle reservoir, the particle fluctuations provided should match
the all-atom ones. The all-atom distribution was found to match a Gaussian dis-
tribution with mean < N >= 6380 and variance 0 = pkgTkr < N >. The p(N)
in the adaptive simulation matches very closely the reference all-atom distribution
(shown in fig. BI0) which suggests that the hybrid setup is able to provide exactly
the same fluctuations as the all-atom simulation.

The results so far still do not prove that there is free molecule exchange overall
in the system, i.e. there a no (free-) energy barriers for crossing the hybrid region.
Numerically, this can be checked by “monitoring” a selected set of molecules which
are initially in specified region o < z < x; at t = 3. The density profile as a
function of time is averaged over different initial times ¢y, which can be denoted
as < p(z,At) >4 , where At =t —t5. The result is shown in fig. BIIl This
analysis is repeated for molecules which are initially all in the all-atom and all in
the CG region. The diffusion profiles spread in time and cross the hybrid region,
which proves that the sub-systems exchange particles. Furthermore, the profiles
are asymmetric, which can be explained with the fact that the diffusion constant
are different in all-atom and CG simulation (see section B.I]). The fact that the
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Figure 3.11: Inter-diffusion between the two regions. This shows the density profiles over time for
particles originally in a cubic sub-volume with width Az = Inm at ¢ = ¢y. By this it is clear that
both domains constantly exchange particles. The profiles are asymmetric as diffusion constants
are different in each representation.

CG system can provide and take out particles in a manner consistent with the
all-atom simulation suggest a new way of performing effectively grand-canonical
simulations. Of course, for the all-atom sub-system to be in truly grand-canonical
equilibrium an infinite reservoir is required. However, the present method can be
used for approximating such a reservoir explicitly in a computer simulation since
the CG model is cheap to compute.

3.5 Transferability

The thermodynamic force approach enables the coupling of sub-systems which are
at different state points. One issue with the present technique is the transferability
of the thermodynamic force. Certainly, the shape and magnitude of the force
depends on the both atomistic and coarse-grained interactions and thus has to be
re-parametrized for each new model. For the use of thermodynamic force in other
geometries at least some transferability is expected. Figure shows the result
from a simulation using a smaller hybrid region width (b — a = 1.8), for which the
thermodynamic force iteration was re-done. The converged thermodynamic force
is shown together with the thermodynamic force for the simulation with b—a = 3.0
and rescaled force with Fje*¢d(2') = LF(sx) where s is a scaling parameter defined
as the relative width of the hybrid zones s = 3.0/1.8. The scaled thermodynamic
force is similar to the originally calculated one, with some small deviations.

This suggest that the thermodynamic force shows some transferability between
different geometries. Therefore, the iteration can be performed using smaller sys-
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Figure 3.12: Transferability of the thermodynamic force for different geometries. Fy, was calcu-
lated for a hybrid zone width of b —a = 3nm and 1.8 nm. The thermodynamic force rescaled
with s = 3/1.8 matches quite closely the reference thermodynamic force

tems, which saves computer time and then be rescaled to fit the larger system. If
this approximation is not accurate enough, it can be at least used as an initial guess
in the larger system. One possible explanation for the differences is the presences
of correlations in the liquid, which lead to different effective pressures along the
direction of the switching function w(x).

3.6 Summary

In this part of the thesis it was shown how sub-systems at very different state points
can be coupled in a concurrent adaptive simulation. The concept of the thermo-
dynamic force was used to derive an external field, which removes efficiently the
drift coming from the mismatch based on the density profile. With this approach
it is possible to preserve the structure everywhere in the adaptive simulation. This
was not possible before as the fitting of the pressure into the CG model severely
alters the compressibility. The CG system can be viewed as a computationally
efficient way to consider a particle reservoir, which yields a grand-canonical MD
simulation in the limit of the CG system being much larger then the all-atom sys-
tems. In addition, to provide an even better approximation to the grand-canonical
system, coupling to continuum models has also been explored ] In these
approaches, the CG model facilitates the insertion of molecules into the liquid.
The results for liquid water indicate that the method works for complex, realis-
tic system where local ordering, mediated by the hydrogen bonds, is of importance.
Potential practical applications include structure formation phenomena (crystal
growth, etc) where a supply of particles is needed. The method was already used
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for studying co-solvent mixtures [@, @]

Despite the robustness of the thermodynamic force iteration, there is also room
for improvement. One drawback certainly is that the relaxation time of the density
profile is quite long and thus long simulations are required to reach the mechanical
equilibrium. Furthermore, the fluctuations in density control the accuracy and
thus the simulation time has be increased. This can be partially overcome by
simulating smaller systems and scaling the results as described in the previous
sections. However, it would be preferable to have an analytical first guess of the
zeroth order thermodynamic force. An alternative approach, which does not rely
the density approximation, is discussed in chapter [6

More generally, it has to be evaluated carefully for each new application if
the adaptive resolution method is able to preserve the properties of interest. The
coarse-graining procedure itself is connected with some loss of thermodynamic
properties which might influence the physical properties of interest. Further testing
of the adaptive resolution scheme was done in the following chapter, where a C60
fullerene was simulated with the solvent described in adaptive resolution.

66



Chapter 4

Adaptive resolution simulation of
toluene

This part of the thesis lead to the following publication:

“Structure Formation of Toluene around C60: Implementation of the Adaptive Resolu-
tion Scheme (AdResS) into GROMACS”

S. Fritsch, C. Junghans, and K. Kremer

J. Chem. Theory Comput. 2012, 8 (2), pp 398-403

In the following chapter, the adaptive resolution technique is put to the test in
a study of a C60 fullerene @] in a toluene solvent. This system was used as a
reference for the implementation of the AdResS method into the GROMACS M]
molecular dynamics software package.

The C60 fullerene was selected as a test molecule considering that there are
many potential applications in organic electronics ﬂﬂ], biopharmaceutics and drug
delivery HE] For these applications, a microscopic understanding available from
a computer simulation can be of aid with the interpretation of experiments. An
efficient simulation scheme could extend the length and time scales available for
example for studies of the aggregation behavior. The C60 is surrounded by a spher-
ical all-atom region, where the full all-atom interactions for the toluene solvent are
used. Outside this region, the toluene solvent is represented by a CG interaction
potential obtained by IBI as described in the previous chapters (a schematic rep-
resentation of this setup is given in fig. T]). Toluene was chosen as solvent as this
molecule is very planar and thus near-ordering is expected.

The adaptive resolution technique then allows to answer questions, which can-
not be answered by conventional simulations: Since the size of the all-atom and
hybrid layers can be varied, it is possible to ask how much of the full detailed
structure in the surrounding is required to support the all-atom ordering. Besides

67



CHAPTER 4. ADAPTIVE RESOLUTION SIMULATION OF TOLUENE

this being an interesting study by itself, for practical AdResS simulations it will be
required to maintain the all-atom ordering in the high-resolution region. The test
system studied thus provides a benchmark as to what size of all-atom and hybrid
regions has to be chosen in order to maintaint the order close to the solute. In a
similar study, this approach was used to investigate the influence of the bulk water
hydrogen bonding network on the solvation structure around fullerenes NE]
This chapter is organized as follows: First the development of a CG model for
toluene is discussed. An order parameter is introduced for characterizing the local
solvent structure. Then, results from adaptive simulations of the CG model with
a C60 molecule in the center of the all-atom region are presented. The main focus
lies on how the local ordering is affected by contact with the CG reservoir and
what effects on the systems dynamics can be observed. At the end of the chapter
the challenges of an efficient implementation of the AdResS scheme are outlined.

4.0.1 Coarse-grained model of liquid toluene

For the all-atom reference system, 1000 molecules of pure toluene were simulated
in a box of size 5.6nm x 5.6nm x 5.6 nm, employing periodic boundary condi-
tions. The parameters used to model the all-atom toluene interactions were taken
from the OPLS forcefield m, @] where the CHj3 group is represented by a sin-
gle interaction site (united atom model). Electrostatic interactions needed due
to the partially charged atoms in toluene were evaluated using the reaction field
method (as described in section 2.1.4). In order to determine the unknown ef-
fective dielectric constant for this model, initial simulations employing long range
electrostatics (PME) M] were performed. The dielectric constant was calculated
using the fluctuation of the total dipole moment M], which yielded epyg = 1.1619.
Using epmg as reaction-field constant however yields a system with a slightly de-
viating dielectric constant eg?pole. A series of simulations was then performed,
where 6&;1) = egi)pole until both values were close. The final iteration yielded
egpp = 1.16735 for the reaction-field constant. In order to relax the system to
the target pressure p = 1bar, simulations with a Berendsen barostat | were
performed, which resulted in an equilibrium density of p = 5.636/ nm?. For ther-
mostatting, a Langevin thermostat (as explained in section ZT.21]) with a time
constant of Tangevin = 3 Ps was used.

The CG potential of toluene was then determined using the iterative Boltzmann
technique (as described in [Z34]). The interaction potential was chosen to be a
function of the toluene center of mass. Using the VOTCA @] package, 150 steps
of IBI were carried out, each of a 2ns length. The cutoff of the CG potential was
set to be 7., = 1.32nm, which corresponds to the second minimum in the RDF of
the all-atom system, depicted in fig. L2

As described for the case of water (section B.1.2)), the pressure in the CG model
was found to be severely altered. A pressure correction protocol was used as
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Figure 4.1: Illustration of the adaptive simulation setup with spherical all-atom region. The
solvent molecules close to the solute are treated with full detail. In the CG region a toluene
molecule only interacts according to its center of mass.
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Figure 4.2: Toluene center of mass radial distribution function in all-atom and coarse-grained
representation. The RDFs match within line thickness.

described in section B.1.2, here using 17 steps with pressure and potential update
terms (eq. B.2)) and the last 3 with only the pressure term (eq. B3]). The resulting
CG potential is shown together with the RDF in fig. £21 The CG RDF matches
perfectly the reference distribution. The pressure correction is however known to
alter the compressibility, which was measured from the volume fluctuations during
an NPT simulation, using the Parrinello-Rahman barostat ] For the all-atom
compressibility it was found that s&atom ~ 1.18 x 10~* bar~!, while in the CG
model k$¢ ~ 7.7 x 107*bar™". The CG model hence reproduces well the overal
pair-wise structure and the pressure, while the compressibility is not preserved.

4.0.2 All-atom simulation

First all-atom reference simulations consisting of 3987 molecules of pure toluene and
the C60 fullerene were performed in a box of size 8.9 nm x 8.9 nm x 8.9 nm, employ-
ing periodic boundary conditions. The C60 interactions were chosen as in Weiss et
al. |, where the same non-bonded interaction parameters for the carbon-carbon
interaction as the OPLS force-field (¢ = 0.355 nm and € = 0.293 kJ /mol) were used.
The equilibrium density of the all-atom system containing the fullerene was deter-
mined by 400 ps simulation employing a Parrinello-Rahman barostat @] 4ns
where then simulated for the production runs in the NVT ensemble.

In order to characterize the orientational structure of the solvent an order pa-
rameter is introduced which resembles a nematic order parameter ﬂ@]

Q= <gcos2(9)—%> (4.1)
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Figure 4.3: Spherical order parameter () and spherical center of mass distribution for an all-atom
simulation as a function of the relative distance rggo to the center of mass of the C60 molecule.
All values are averaged over the simulation trajectory (error bars are smaller than the line width).
The inset shows the toluene molecule in the the same length scale.

where the angle cos(f) = n - r describes the relative orientation of the smallest
principal axis n of a toluene molecule and the direction vector r connecting C60 and
toluene center of mass. The value of () describes the orientation of the molecules
relative to the C60 surface. The order parameter can be analyzed by averaging
over molecules and time in spherical shells a distance r away from the fullerene.
(Q = 1 represents parallel orientation with respect to the surface, = —0.5 is
perpendicular orientation. An average () = 0 value means that there is no preferred
orientation with respect to the surface. Figure depecits the order parameter
and the density as a function of the radial distance from the fullerene. The shell
up to 0.9nm consists of a double peak in density. The order parameter reveals
that molecules in the first density peak prefer perpendicular and in the second
peak orthogonal orientation relative to the surface. At » = 1nm a minimum in
the density is visible in which the average order parameter is 0. The position
of this minimum is in agreement with experimental studies using small-angle x-
ray scattering @, ] Another maximum in the density at » = 1.2nm shows
only weak ordering perpendicular to the surface. Thus it can be concluded that
approximately up to a distance of 1.2nm the ordering of the molecules is affected
by the presence of the C60. In the next section it will be discussed how this is
affected by the adaptive simulation.
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4.0.3 Adaptive simulation setup

The adaptive resolution simulations were performed as described in section [2.4]
with the difference that the all-atom region is spherical. This was realized by
choosing a weighting function w(r) which depends on the absolute distance to the
center of mass of the fullerene r, = |X,—Xcgo|- As was already discussed in section
B4, the all-atom region is slightly perturbed by the presence of hybrid interactions
(w(ra)w(rg) # 1) up to a cutoff distance away. To exclude an influence from this,
a slighlty modified definition of all-atom region is used. The interpolation function
(compare to eq. 273)) then is

0 cr > dly - dyy
w(r) = § cos? (=(r = diy))  di - diy > 7>y (4.2)
1 cd >

where dyy = dut + dgpin is the definition of the force interpolation region region
as in section 2.4l The radius of the all-atom region is then defined by d,; and is
hence simply shifted by the value of dg;,. The value of dg;, is chosen such that
an pertubation from the hybrid interactions can be savely exluded.

For the simulations where the average structure of the solvent molecules is
studied, the C60 molecule was restrained to its initial position by using harmonic
restraints (i.e. the potential energy is extended by V. = %(Xceo — X,er)? where

E=1x 104 mo}‘imQ and X,y was chosen as the center of the simulation box.

4.0.4 Thermodynamic force

As described in section [3.2] the adaptive scheme is known to produce a density
depletion in the hybrid region. This artifact can be healed by the thermodynamic
force approach, as described in the previous chapter. To this end, the thermo-
dynamic force was parametrized in a smaller system containing 1000 molecules
of pure toluene at the same density. Since in this simulation the all-atom region
was spherical, the thermodynamic force is a function of the distance to the C60
center of mass Fy, = F(r),,r an points radially away from the the center of the
all-atom zone. The size of the hybrid region was d,; = 0.75 nm where a skin width
dskin = 0.2nm was found to give good results.

The thermodyamic force was calculated in 60 iterations of the scheme described
in section 3.3} each iteration step consisting of 5x 10> MD steps. The density profile
of the initial (withouth thermodynamic force) and final step is compared in fig. (4.4
The iteration shows a flat density profile after 60 steps.

Also shown is the initial guess compared to the final converged integrated ther-
modynamic force V;(hfjo) (r). Tt is visible that a linear scaling of the inital guess is
not sufficient to arrive at the converged thermodynamic force. This emphasizes
the need for determining the thermodynamic force in a iterative procedure. It
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is important to stress a few differences to the thermodynamic force iteration in
the previous chapter: First of all, as the volume of a thin spherical slab increases
with 72, the fluctuations in the radial density profile are larger for small r. This
can cause difficulties as the density profile needs to be converged for deriving the
thermodynamic force. Secondly, more iterations where necessary to converge the
Vin(r) compared to the AdResS simulation where the resolution was change along
the x-axis. A possible explanation is that correlations in the liquid have a larger ef-
fect here since the volume of two subsequent spherical shells is different, which may
invalidate the ansatz of linearizing the pressure in terms of the density. Another
difference compared to chapter [3is that here the pressure corrected CG potential
has been used. As discussed before this alters the compressibility in the CG model,
which was found to be increased by approximatly a factor of 7 (see section [£.0.1]).
The ansatz in the thermodynamic force iteration eq. B.14 however assumes constant
compressibility. As a consequence of this, preliminary simulations employing the
all-atom compressibility were found to lead to an diverging thermodynamic force.
This was overcome by inserting an increased value ky = 3x$¢ for the compress-
ibility, which leads to a smaller prefactor to the density gradient. The iteration
was then stable, however also required a larger number of iterations to converge.

4.0.5 Results of the adaptive simulations

Now being able to run adaptive simulations at constant density throughout, it is
interesting to ask how the ordering of the solvent molecules is affected. In the CG
part of the simulation the order parameter () is zero by definition as the internal
degrees of freedom are decoupled from the rest and thus cannot be ordered. How
does this influence the all-atom order?

By varying the size of the all-atom region, the influence of the resolution change
on the local ordering can be studied. The adaptive simulations were performed
using three different radii of the all-atom region (d,; = 0.75nm, d,; = 1.0nm,
dgt = 1.5nm), while the size of the hybrid region was kept fixed dj, = 1.4nm.

First, the density is compared for different all-atom region sizes (fig. E0l). The
density profile matches in the all-atom region for all simulations, however in the
hybrid region artifacts are visible. As discussed above, without the thermodynamic
force there is a small depletion in the hybrid region, which also affects the solvation
structure in the C60. The thermodynamic force, which was parameterized in the
small system of pure toluene, was then used for the solvated C60. As can be seen
from fig. 5] using the thermodynamic force, it is possible to recover the all-atom
density profile. This is an interesting result as it is not clear a priory, but very
desirable, if the thermodynamic force is transferable from the bulk to the solute
system where strong local density variations are present.

The order parameter () in the adaptive simulation is shown in fig. for the
simulation employing the smallest all-atom region (a=0.75nm). It is visible that
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Figure 4.5: Spherical center of mass distribution relative to the center of mass of the C60. The
distribution (red line) is plotted for different sizes of the all-atom region and with the thermody-
namic force applied to the hybrid region in comparison to the purely all-atom distribution (black
line). The vertical lines indicate the size of the all-atom region.

the ordering remains very close to the all-atom ordering in the simulation where
no thermodynamic force is applied (even in the hybrid region, where the density
is perturbed). In the hybrid region, the all-atom order is still present because the
internal degrees of freedom are not yet fully decoupled. The simulation with the
density corrected by the thermodynamic force, however, shows a slight deviation
in the order parameter (). The reason for this deviation is that the thermodynamic
force does not take into account the orientation of the molecules. The fact that
there is almost no deviation in the hybrid region, indicates that the ordering is a
local effect. It would be interesting to reduce the size of the hybrid region further,
but this is limited by a drawback in the current scheme: The width of the hybrid
region cannot be reduced below the interaction cutoff in the simulation. If the
hybrid region is smaller then the cutoff, strong layering and eventually freezing of
the liquid was observed.

4.0.6 Freely diffusing all-atom region

Another interesting aspect of this are the dynamical properties. It is a well known
fact that the dynamical properties in the CG model can show severe deviations with
respect to the all-atom model. This is due to a much smoother energy landscape
as a consequence of the reduced degrees of freedom which enhances the diffusion
rates M] The diffusion constant found for the CG model was increased by approx-
imately a factor of 4 (see tab. [l for the exact values). Certainly this also affects
the self diffusion constant in the CG region of the adaptive simulation. But what
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Figure 4.6: Comparison of order parameter with and without thermodynamic force for an all-
atom region with size d,y = 0.75nm. The all-atom value is shown for reference. All values
are averaged over the simulation trajectory and normalized to the respective average number
of molecules in spherical slabs with a thickness of 0.05nm. The verticals lines indicate the
boundaries of the hybrid region.

about the all-atom part? Is the effect fully localized to the CG region? This effect
was studied here by removing the restraint on the C60 molecule thus allowing it
to diffuse freely. The all-atom region was coupled to the C60 such that it diffuses
along with its center of mass (i.e. allowing the center of the all-atom region to be
a time dependant vector Xcgo(t)). This study has to be performed with some care
as, due to the non-conservative forces occurring in the hybrid region, a thermostat
has to be used. Thermostatting however alters the dynamics of the system due to
the friction with the heat bath. To probe the influence of this, a series of initial
test simulations with varying relaxation times were performed and the diffusion
constant was measure as a function of the thermostat relaxation time (see section
ZT2T). It was found that for a value of Ty angevin = 3 ps the diffusion constant
reaches a plateau, such that a weak influence of the heat reservoir can be assumed.
Using the weak coupling, adaptive simulations were performed for the different
region sizes. The diffusion of the C60 center of mass is measured from the mean-
squared displacement of the center of mass given by the Einstein relation @]

6Dt =< |X(t) — X(0)]* > (4.3)

where D is the diffusion constant, and ¢ is the time. The resulting diffusion con-
stants are shown in tab. 1] and the mean-square displacement in fig. L7l For
long times, the diffusive regime is reached where the mean-squared displacement
is linear in time (coressponding to horizontal curves in fig. [.7). The adaptive sim-
ulation shows enlarged diffusion rates compared to the all-atom simulation which
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Table 4.1: Diffusion constants for the C60/toluene center of mass

| Ceo | Diffusion constants [nm?/ ps] |
All-atom | D=63x10"£6x107°
AdResS

dae = 0.75nm D=90x10"*£7x 107"
d,y = 1.0nm D=82x10"*+£2x 107"
d,y = 1.5nm D=79x10"*4£3x 107"
AdResS with TF
doy = 0.75nm | D=73x10*"£8x 107"
Pure toluene
All-atom D=2216x 103 4£3x107°
Coarse-grained | D = 8.629 x 1073 &1 x 107°

decrease with increasing all-atom region sizes. This could be explained considering
that for the smallest all-atom region sizes, the CG influence is largest as the C60
feels least resistance from the mostly CG surroundings.

Part of the effect is however also due to the density variations which are present
without the thermodynamic force. With applying the thermodynamic force, the
diffusion constant is recovered within 15% error, even for the smallest all-atom
region. This result indicates that for most practical applications, even the smallest
all-atom region can reproduce the diffusion properties with good accuracy.

4.1 Implementation details

Within the projects of this thesis, the adaptive resolution scheme was implemented
into the GROMACS M] software package. Though AdResS is in principle easy
to implement, an efficient computer code, which enables speed-ups compared to
the all-atom simulation is more difficult. In the following the most critical aspects
necessary for the GROMACS implementation are discussed.

4.1.1 Force-kernels

In a MD simulation, the most time consuming part is the force calculation, mostly
dominated by the sum over non-bonded pairs (in some simulations also the long-
range electrostatics plays a major role which were not considered here). Therefore,
in GROMACS the sum over pairs is split into the different possible interaction
types (Coulomb, Lennard-Jones, etc...) and optimized routines are used for each
of these pair loops (these are called “kernels”). The optimizations make use of
special hardware instructions (SSE, etc.), which can process multiple instructions
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Figure 4.7: Diffusion behavior of the fullerene simulated in all-atom and in adaptive resolutions
using different all-atom region sizes das.

in a single CPU cycle. Since water is the most abundant molecule used in these
simulations, special routines exist which are optimized for the water-water inter-
actions.

The AdResS simulation requires that for each molecule pair within the interac-
tion range, the product of the weighting function is calculated in order to obtain
the forces. For the adaptive scheme, a new set of kernels was needed to include
the calculation of the force weights. According to the force interpolation eq. 2.84]
each pair is weighted depending on the position of both molecules w(X,)w(X3).
Hence, these hybrid kernels require more floating point operations for each pair
and are slower than the “standard” kernels.

4.1.2 Dynamic load balancing

The systems studied using MD are often not homogeneous, which leads to different
computational load in different regions of the simulation. This is of great impor-
tance in parallel computing codes (like GROMACS), where multiple CPUs are used
to perform the simulation. The most common form of splitting the workload be-
tween processors is the domain-decomposition, where each processor calculates the
interactions for a given spatial region. Since after each step, the new updated po-
sitions need to be communicated to each processor, the simulation speed is limited
to the slowest processor (with the highest interaction density).

This is an absolutely crucial aspect for an AdResS simulation since the imbal-
ance there is much greater compared to conventional simulations. The reason is
that the coarse-grained interactions can be calculated with less effort. GROMACS
includes a dynamical load balancing algorithm, which adapts the size of the region
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w(x) timesteps

Figure 4.8: Dynamic load balancing in the AdResS simulation of water with the linear resolution
change along the x-axis of the simulation box. For this, an adaptive simulation with a box size
64 X 4 X 4nm and using 16 processors was run. The right hand plot shows the evolution of
the domain boundaries between subvolumes assigned to different processors. Lines being close
together indicate a high computational load. As time evolves, the processors assigned to the CG
domain take a larger volume. Most computational effort is spent in the hybrid region, where the
number of interactions per volume is larger and the force weights have to be calculated.

each processor is assigned to dynamical during the simulation. The resulting do-
main decomposition as a function of time is shown for the water system discussed
in chapter[8 As can be seen from fig. .8 the algorithm adapts in a few steps to a
situation where most processors are assigned to the hybrid region while, a few can
calculate the interactions for the coarse-grained region.

4.1.3 Computational performance

What is the actual gain in computational speed of the adaptive scheme? In order
to answer this, simulations with different sizes of the CG regions were prepared.
The test system consisted of pure toluene molecules coupled to the CG model
introduced in section 0.1l The molecular density and the size of the all-atom and
hybrid region were kept fixed. It is expected that the AdResS gains most speed
compared to a conventional MD simulation when the CG part is large compared
to all-atom and hybrid regions. This behavior was indeed found in the scaling plot
fig. For small systems, AdResS simulations are slower then the conventional
simulation. The reason is that the gain from simulating only CG interactions is
outweighed by the additional cost of the hybrid interactions. For this system, a
maximal speed up of a factor 3 was observed.

It is illustrative to calculate a maximal possible speed up using the current
scheme. The total computer time needed consist of the time spent on the pairwise
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Figure 4.9: Computational scaling as function of total system size. For the AdResS simulation,
the volume of the all-atom and hybrid regions are kept fixed (dq: = 1nm, dp,y = 1.4nm).

force tgpce and the time for the rest (neighbor search, bonded interactions, inte-
gration) t.es. In the corresponding all-atom conventional simulation of the largest
system (64,000) molecules, 73% of the computer time were spent on calculating
the non-bonded forces. In this system, the hybrid and all-atom volume makes up
only 0.5% of the simulation volume and hence its contribution can be neglected. If
t; denotes the total time in the all-atom and ¢} the time needed for the AdResS sim-

ulation, the speed up would be k£ = % = % The theoretically best possible

force

speedup would be reached if the CG model would be an ideal gas (no non-bonded

interactions) and thus ¢’ = 0. Assuming that ¢/ ., &~ t,.s this would yield a

speed up of k = ttf"ﬂ + 1 =~ 4. In this sense, the measured speed up of ~ 3 for big

rest

systems is satisfactory.

orce

The second biggest part (=~ 9%) of the computational effort is spent for the
neighbor search. In GROMACS the neighbor search is based on charge-groups
(groups of atoms which are in interaction range). This concept was used here to
make the neighbor search based on (CG) molecules (one molecule is represented by
one charge-group). Hence, the cost of this part cannot be easily reduced further.

The third largest contribution is due to the cost of calculating the constraints
for the internal interactions and integration (approximately 8% of the simulation
time where spent on this for the largest system). Note that this is a consequence
of the decision to integrate all degrees of freedom, even the internal degrees in the
coarse-grained region. Thus further improvements are possible by considering an
algorithm which freezes the internal motion entirely (with the drawback at having
to re-introduce the velocities of the internal degrees of freedom when molecules
enter the hybrid region).
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4.2 Summary

In this part of the thesis the adaptive resolution scheme was applied to model a
C60 fullerene in toluene solution. The embedding of the the spherical all-atom
region into a reservoir of CG molecules offers several possibilities not available in
a conventional simulation. One possibility is to study how the lack of chemical
details in the CG region affects the local properties. In this case it was found that
the ordering is only weakly perturbed. This is important for applications of the
adaptive resolution in which the CG model is used to reduce the computational
time needed to perform the simulation. Since the all-atom structure and diffusion
constant could already well be reproduced by the smallest all-atom region, future
studies could rely on this to save computational resources by replacing the bulk
solvent with the efficient CG model. The technical challenges and actual measured
speedups for the simulation are discussed in the following section.

It has to be said however, that there are also several pitfalls the user has to
keep in mind. One pitfall is that, the extend to which coarse-graining will affect
local properties is likely to be system dependent. Thus prior to using the adaptive
scheme as a tool to speed up the simulation, test have to be performed to ensure
that the physical properties important to the study are preserved. The concept of
the thermodynamic force can help with this as it ensures the removal of pressure
gradients coming from the mismatch in the all-atom and CG models. However, the
thermodynamic force is also not cheap to compute and thus the costs of calculation
the correction has to be compared to the gain from the coarse-graining. Thus it
would be desirable to find a cheaper way of estimating the thermodynamic force
or alter the adaptive scheme such that the pressure gradients do not appear.
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Chapter 5

Path integral description of water

This chapter of the thesis connects several techniques discussed so far. It is demon-
strated that a multi-scale model, which bridges several levels of description can
be constructed using a combination of force-matching (FM), iterative Boltzmann
inversion (IBI) and the adaptive resolution scheme (AdResS). A schematic illus-
tration of the work flow is given in fig. 5.1

The focus is on the inclusion of nuclear quantum effects in classical MD simula-
tions of water. The path integral description of the nuclear quantum effect in water
has been an active field of research since the pioneering simulations of Rossky et al.
in the mid 80s M} Nuclear quantum effects are speculated to play a non-trivial
role for the hydrogen bonding network even at room temperatureﬂé]. Connected
to this, is the observation of isotope effects that occur when water is replaced by
heavy water, which can affect stability and thermodynamic properties of solvated
biomolecules [@] :

The first part deals with finding effective potentials for water based on a molec-
ular dynamics simulation which does not rely on experimental quantities. In this
“ab initio” simulation, electronic degrees of freedom are included explicitly by
making use of the density functional theory (DFT)[@] The nucleii are treated as
classical point particles. The goal is to derive effective potentials based on the ab
initio reference simulation which are suitable for path integral MD (PIMD) (see
section 2.5]), where nuclear qunatum effects are included. This way, double count-
ing of nuclear quantum effects, as it is present when using empirical water models

, ], can be avoided. Thereby, use is made of force-matching to capture the
essential physics of this description in the effective potentials, keeping the water
molecule polarizable by allowing intra-molecular flexibility.

Using the FM potential in the PIMD simulation assumes that the nuclear quan-
tum effect does not strongly alter the effective electron-electron interaction and thus
the effective forces from the classical configurations are still valid as interactions in
the PI picture. The advantage lies in the fact that the effective potentials can be
simulated at much lower computational cost compared to the ab initio simulation
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Figure 5.1: Schematical work flow of the path integral adaptive approach.

based on DFT. The simultaneous treatment of ab initio level electronic interactions
and nuclear quantum effects is currently only possible for very small systems [@]

In the second part, it is demonstrated that based on this one can go to even
larger scales using the adaptive resolution scheme. For this, an effective potential
is derived which describes the path integral water model at the level of center of
mass interaction, as it has been done in chapter 8l This is applied to simulating a
water-vacuum slab where only the interface region is treated with full path integral
MD interactions. It is demonstrated that a stable water-vacuum interface can be
achieved and the nuclear qunatum effects are preserved close to the surface.

The two parts together thus connect models at different resolutions which is
especially favorable for situations when the detailed model is needed only in a sub-
region and the rest of the system can be described in a coarser way @, @, @]

5.1 Test case: SPC/Fw

5.1.1 Setup

As a preliminary test, the ability of coarse-graining techniques to recover a known
interaction potential based only on knowledge of the trajectory and total force
per atom was investigated. The SPC/Fw } model was chosen because it de-
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Figure 5.2: Results of testing the ability to recover the interaction potentials using FM and IBI
in a test system of SPC/Fw water. The top figure shows the non-bonded interaction potential
compared to the reference reaction-field Coulomb interaction (reutof = 0.78 nm) in SPC/Fw. In
the bottom plot, the resulting structures from MD simulations using these potentials are shown.
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’ Hydrogen \ Oxygen ‘
qg = 0.41e qgo = —0.82¢
oc=0 o = 0.316557 nm
e=0 e = 0.650194 kJ/ mol
Bond Angle
rdy = 0.1012nm 0% o = 113.24°
ko = 445153 kJ/(molnm?) | k%o, = 317.565kJ/( mol rad?)

Table 5.1: Parameters of the SPC/Fw water model [131]

scribes the bond and angular interaction using a flexible, harmonic potential (the
parameters are given in tab. [5]). Thus also the ability to recover intra-molecular
potentials can be tested. First, a reference classical MD simulation of bulk water
using the SPC/Fw model was performed and the configurations saved together
with the total force on each atom. Then FM and IBI were applied on this refer-
ence trajectory in order to find non-bonded interactions potentials for oxygen and
hydrogen, as well as intra-molecular (bond- and angular) interactions. This “one-
to-one” mapping represents a test case to which the answer is known beforehand.

As a reference simulation, 324 water molecules at a density of 1.002g/cm?
(corresponding to the equilibirum density of the SPC/Fw model at "= 300K and
p = 1bar) were simulated with a timestep of At = 0.5fs for a total length of 10 ns.
The total force on each atom was saved every 100 steps. In order to be better
comparable to the results in the previous chapters, long-range electrostatics were
not considered. Instead, the reaction-field approach with an dielectric constant
err = 80 was used (see also section 2.1.4]), where the interactions where truncated
at 7oy = 0.78 nm.

In the case of IBI, the bond- and angular interaction potentials were calculated
from simple Boltzmann inversion as described in section 2.3.3l For the non-bonded
interactions, iterative Boltzmann inversion with the partial radial distribution func-
tions ¢(roo), 9(rou), g(rum) as target distributions. The CG potentials were cal-
culated up to 7,,.. = 0.78 nm which corresponds to the cut-off of the interaction in
the reference simulation. 300 iteration steps were carried out, each step consisting
of 10° MD steps. The potentials were updated from the partial RDFs in each step
based on eq. 244l where the partial RDFs were assumed to be independent of each
other.

For force matching (FM), a smaller part of the reference trajectory consisting
of 320 x 10® MD steps had to be considered due to the larger computational cost.
The FM algorithm was used as implemented in the VOTCA software package ﬂﬁ]
Therein, cubic splines represent the set of unknown forces. For the y? minimiza-
tion, the reference trajectory is sub-divided into sets of 100 configurations and the
minimization carried out for each set separately @] Subsequently, the final forces
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‘ T'min| 0IN] ‘ T'max| M| ‘ Ar[nm] ‘ P [nm] ‘ rfit [nm] ‘
Von—bonded () 24 0.78 0.01 0.28 -
Vjpon—bonded () 14 0.78 0.01 0.17 -
Vnen=bonded [ 16 0.78 0.01 0.20 -

Vira 0.09 0.11 0.001 0.093 0.107
Vintra 1.57rad | 2.1rad | 0.01rad full range

Table 5.2: Ranges of tabulated potentials used for FM

are calculated from the average over all sets.

It has to be stressed, that for each interaction the range has to be adapted
as the FM equations are ill-defined for regions where ¢(r) is zero. The ranges
used are shown in tab. .2l The forces from the converged y? minimization were
extrapolated into the regions not sampled in the references simulation. This was
done by fitting a power law of the form f(r) oc % for the H-H and H-O interactions
and Van-der-Waals+reaction field for the O-O interaction f(r) o< =L (= —2kpr)+

ERF T
(?T? + 82, For the fit only points in the range from ry,, to /" were considered
because no functional form for the entire range could be found. For the bonded
interactions, second-order polynomials were fit in order to extrapolate into the
unsampled regions r < 7,;, and r > 7,.,.. The exact fit ranges are specified in
tab.

5.1.2 Comparison

The resulting potentials and structures calculated from MD simulationd] using
these potentials are shown in fig. It is visible that FM recovers the coulombic
form of the potentials used in the reference simulation, while IBI fails to do so.
On the other hand, it may be quite surprising to see that both IBI and FM very
accurately recover the reference structure in terms of g(r). The reason for this
difference are the 3-body terms which are present in FM (as discussed in section
235.T)) whereas IBI does only take into account 2-body correlations through the
g(r). This effect is best explained at the example of the O-O interaction potential,
which shows a stable minimum at r ~ 0.3 nm when calculated with IBI. The two-
body O-O PMF at this position is attractive trough the “mediating” function of
the hydrogen bond, which makes the oxygen atoms attract each other on average.
In FM, the 3-body terms associated with the O-H-O configuration are subtracted
from the resulting forces (see eq. 260). Thus FM recovers the repulsive nature
of the reference O-O interaction. Similar arguments can be made for all other
interactions.

!The parameters used for these simulations were identical to the reference MD simulation.
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Overall, the potential energies in IBI are drastically lower compared to the
FM energies. This is due to the effective 2-body interaction being much weaker
in the case of IBI compared to the reference. The IBI thus gives the correct
structure, but the pairwise forces deviate significantly from the reference. The FM
interactions however are only slightly softened compared to the reference. This is
most likely due to the effect of higher order correlations (e.g. 4-body and higher
order correlations), which are not included. Note that one common source of error
in FM, the lack of representability of the “coarse-grained” potentials, is excluded
here in this simple test case, as no degrees of freedoms are lost. The pressure for
the FM potentials was ppy =~ 670 bar, while IBI showed a significantly increased
pressure of pigr ~ 4100 bar.

The situation is thus somewhat different compared to the case of coarse-graining

in terms of an effective center-of-mass interaction between water molecules (as
discussed in chapter [B]). For this case, the comparison between FM and IBI in E]
found that the potentials are not dramatically different, but FM fails to reproduce
the structure.
As a consequence, the FM algorithm was chosen here for the effective atomistic
interaction potential from the ab initio simulation. The IBI algorithm was then
used in section .0 for the molecules center-of-mass interaction for which it is known
that FM does not reproduce the pairwise strucutre @]

5.2 AbDb initio reference simulation

In the previous section, it was shown that the FM technique can be used to recover
pairwise interaction potentials. Now, FM will be used to fit effective interaction
potentials from an “ab initio” simulation as was initially suggested in @] In
contrast to the simple test case described in the previous section, this is more
similar to coarse-graining in the sense that the electronic degrees of freedom are
removed. Their interaction is incorporated in the effective potentials, which can
then be used to run classical MD simulation.

As a reference ab initio simulation, DFT-based ab initio molecular dynamics
(AIMD) simulations was performed using the CP2K-QuickStep packagdd. This
approach employs a mixed localized and plane waves basis set approach. In real
space the electronic Kohn-Sham wavefunctions are expanded on a TZV2P localized
basis set [@], while an auxiliary planewave basis set up to 280 Ry is used for the
density in dual space. The PBE generalized gradient approximation is chosen
for the DFT exchange and correlation (XC) functional LE’)Q] Even if this XC
functional gives an excellent description of the energetics of the water dimer [@],
PBE water at 300 K is reported to be overstructured and less fluid than real water,
with a relatively high shear viscosity @], however it is still debated how much of

Zhttp://cp2k.berlios.de
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such overstructuring comes from neglecting quantum effects in the dynamics of the
ions. In the abinitio simulation, the dynamics was evolved by integrating Newtons
equations of motion with a timestep of 0t = 0.3fs. A system containing 128 heavy
water molecules at the density of 1.1 g/cm?® was simulated in the microcanonical
NVE ensemble for 10 ps, after equilibration at 7" =~ 320 K at constant V and T.
The average temperature of the NVE run was found to be T" = 325 £+ 0.8 K.

Heavy water was chosen as to reduce the computational resources needed: Be-
cause the bending and stretching modes occur at a smaller frequency compared
to H-O, the timestep of the integration can be significantly increased and a larger
fraction of the phase space can be sampled. The use of heavy water instead of
light water is justified as the nuclear quantum effect is not included in the ab
initio simulation. In this sense, heavy water represents a “more classical” case
then light water due to the larger mass of the deuterium. The nuclear quantum
effect is added in the path integral MD simulations (see section [£.3)) using the FM
effective potentials, wherby it is assumed that the effective interaction potential
representing the elelctronic interactions of heavy water are also representative for
light water.

The ab initio trajectory was then used to find the effective interaction via
the FM approach. Non-bonded interactions were considered for D-D, D-O and
O-0O interactions, for the internal degrees of freedom the O-D bond and D-O-D
angular potentials were used (see section Z.1.3]). The force for these interactions
were represented by cubic splines and the same ranges considered as specified in
tab. £.21 In the ab initio reference trajectory, the first 2.5ps were considered
equilibration and discarded, of the remaining 14.5 ps configurations at an interval
of 5fs where used for the force-matching. All other parameters were identical to
the ones in the previous section. These forces were then integrated to yield the
corresponding potentials, which are plotted in fig. 5.3l

5.2.1 Properties of the FM model

The interaction potentials obtained by FM were calculated with the aim of effec-
tively incorporating the properties of the ab initio simulation. In order to put
this to the test, simulations using the newly generated potentials were performed.
Classical MD simulations (the nuclear quantum effect will be discussed in section
(.3) were run employing the effective bonded and non-bonded potentials. For this
a, box containting 324 heavy water molecules at the same density of the ab-inito
reference simulation was prepared. In order to be directly comparable to the ab
initio simulation, a temperature of T" = 325 K was enforced using a Langevin ther-
mostat (TLangevin = 0.5ps). Simulations were then run for a total length of 1ns
using a timestep of At = 0.5fs.
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Figure 5.3: (left) Potential resulting from integration of the non-bonded pair forces from force-
matching of the ab initio reference. (right) Internal interaction potential for angle- and bond

interactions.

|

| 300K NVT SPC/Fw | ab initio FM |
< Vhond > 1400 kJ/mol 1897 kJ /mol
<Vyp> 918 kJ/mol 582 kJ/mol
< Vion-bonded > 3259 kJ/mol -17516 kJ/mol
< Veoulomb > -18939.5 kJ/mol -
<V> -13587 kJ/mol | -15037 kJ/mol
Pressure 100 £ 20 bar —2450 £ 21 bar
Density (p = 1bar) | 1.002 g/cm? 1.075 g/cm?
< q > 0.6336 0.7560

Table 5.3: Comparison of energy terms in bulk SPC/Fw and the FM system. Averages are taken

over 900 ps from MD simulations of 324 water molecules
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Figure 5.4: RDFs in the ab initio reference simulation and an MD simulation at T = 325K
employing the FM effective potentials. The intra-molecular correlations are included (first peaks

in the D-O and D-D distributions).
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5.2.2 Structure

The resulting g(r) is compared to the ab initio reference structure in fig. (41 The
structure of the FM model closely recovers the structure found in the ab initio
reference simulation. There is some deviation visible for the first non-bonded peak
in the D-D distribution. This deviation will be discussed further by aid of the
vibrational spectrum (see section B.2.5)). The intra-molecular structure, which is
included in the distribution functions shown in fig. 54 (first peaks of D-D and
D-0), is also well reproduced.

5.2.3 Thermodynamic properties

The dimer energy, i.e. the total energy for the energy-minimized structure of
two-water molecules in vacuum was calculatead by optimizing the dimer geometry
using the steepest descent technique [@] For the FM model, a value of Fgmer =
—23.71‘—({l was found. In an ab initio simulation using the PBE XC by Zhang et
al. M, the dimer energy was found to be Egyper = —21.0%. The FM potential
(fitted in the bulk phase) hence gives a dimer energy deviating by only 12% from
the value obtained in the ab initio simulation of a dimer in vacuum. The SPC/Fw
model has a lower dimer energy of Fginer = —29.2%.

The bulk thermodynamic properties are compared to the SPC/Fw model, where
it has to be noted that the parameters for SPC/Fw were derived through the very
different route of fitting selected experimental properties ﬂﬂ], thus discrepancies
are expected. For this the classical simulations were re-rerun using the mass of the
hydrogen instead of deuterium (and all other parameters as in section E.1.T]).

Table compares several properties of the FM to the SPC/Fw model. The
potential energies in the bulk were found to be lower compared to the SPC/Fw
model. The sum of Coulomb and Van-der-Waals energies is comparable to the
non-bonded potential energy in the FM model.

The presure in the FM model, measured at the equilibrium density of light
water, was found to be (ppy = —2400 bar)ﬁ.There is two sources of error which can
explain this deviation: First, the pressure in the ab initio simulation is not easiliy
available and was therefore chosen based on the experimentally known equilibrium
pressure of heavy water @]) Secondly, it also known (see test case in section
ET.T) that the FM technique does not preserve the pressure. Since only the total
force on an atom is reproduced, but not the virial it can not be expected for the
pressure to be identical. As a solution to this, it has been suggested to included the
virial pressure in the y? minimization ﬂﬂ] This however requires the knowledge

3Tt may seem surprising that the FM model, which is a coarse-grained model, gives a negative
pressure, wheras in chapter 2 it was found that the CG model of water has an pressure increased
by 6kbar. However as the pressure does not enter the derivation in the CG algorithms, no clear
trend for over or undererstimating can be expected.
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Figure 5.5: Vibrational density of states calculated from eq. Bl For the FM model, also results
from replacing the internal interaction by harmonic potentials are shown (see the main text for
an explanation).

of pairwise forces in the reference trajectory, a quantity not easily available from
ab initio simulations. The ¢4 order parameter (as defined in section BI1]) shows a
significant increase, indicating a more ordered liquid. This can be explained as a
consequence of more structured liquid with respect to the the experiment, which
will be discussed in section [5.41

5.2.4 Dynamical properties

Another interesting property is the vibrational spectrum. To facilitate the com-
parison with the ab initio reference simulation, short simulations (20 ps) of heavy
water were performed (using the same setup as in the previous section [(.2.T]).
The vibrational spectrum was calculated by taking the Fourier transform of the
velocity-autocorrelation function

Np

1 [~ ,

l(w)=— dwe ™! < vP(t)vP(0) >) 5.1

@)=y, [ a0 > 6.
where the bracket indictes the average different initial times and the sum runs over
all Np deuterium atoms. The resulting vibrational spectrum shown in fig.
can be compared to experimental infrared absorption datal. The position of
these bands matches well with experimental results from infra-red absorption spec-

troscopy [137] .

4In order to compute the infra-red spectrum, the autocorrelation of the dipoles has to be
computed. This requires the assignment of charges to the FM atoms which cannot be done easily
in a unique way an hence was left for future works.
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For comparison, the procedure was also repeated for the SPC/Fw model. In the
spectrum, the peaks corresponding to the D-D bend mode at 1100 — 1300 cm ™! and
the D-O stretch mode at 2000 — 2700 cm ™! are clearly visible. The low frequency
regime < 1000 cm™?, is dominated by the hindered rotations (librations) and dif-
fusion of the atoms. The FM model matches the reference ab initio spectrum very
well. In particular, in the range of the D-O stretch mode, one single broad peak is
visible. This feature cannot be reproduced by the flexible SPC/Fw model, which
shows two separate peaks.

To further understand this effect, additional simulations using the FM potential
for the non-bonded interactions, but simple harmonic potentials for the bond were
carried out. Assuming that it is possible to describe bond and angle motions by
classical harmonic oscillators k = mpw?, the force constants can be calculated from
the ab initio spectrum, which yields kpo = 422.3 x 10*kJ/(molnm) for the D-O
kpp = 102.8 x 10>kJ/(molnm) for the D-D peak. The resulting spectrum is also
shown in fig. B0 It is found that with these harmonic internal interactions, the
single broad D-O stretch band splits into two single peaks (which are separated fur-
ther compared to the SPC/Fw model). A possible explanation is that the balance
between bonded and non-bonded D-O forces is perturbed by the assumption of a
simple harmonic potential. As a consequence intra-molecular and inter-molecular
D-O vibrational modes oscillate at different frequencies. It can be concluded that
the broad D-O peak cannot be reproduced by harmonic internal interactions. This
is supported by the fact that the FM potentials show some anharmonicity, which
can be seen from fig.

The D-D bending mode at 1100 — 1300 cm ™! is slightly shifted to lower frequen-
cies in the FM model, as well as as in the SPC/Fw model. For what concerns FM,
this can be explained as follows: As can be seen in fig. 5.8] the distribution for D-D,
the internal (first peak) and non-bonded configurations overlap. Since in FM only
the total force enters the minimization at the position of the overlap, the bonded
and non-bonded force cannot be distinguished. As a consequence, the internal force
contains contributions from the non-bonded interactions and vice-versa. This can
lead to an effective softening or strengthening of the bending mode. In this case,
the reduced frequency of the D-D bend mode seems to suggest a weakening of in-
ternal interaction. This is supported by the g(rpp) (fig. B4, where a broadening
of the distribution distribution was found.

Interestingly, both in the ab initio as well as in the FM simulation, a weak band
in the region of 4000 — 5200 cm ™! is visible, which is roughly twice the wavenumber
of the DO-stretch band. It is thus likely that this peak is due to the first over-
tone of the DO-stretching vibration. This feature is lost by using the harmonic
approximation FM or the SPC/Fw model. Overall, in contrast to the finding in
a similar study @], it has been found here that the spectrum can be reasonably
well reproduced by the FM using tabulated internal interactions.
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Figure 5.6: Vibrational density of states measured in short (20 ps) simulations with the bonded
potential slightly modified as described in the main text. (top) scaling applied to the D-D angular
interaction with &’ = 1.251; (bottom) scaling applied to the D-O bond interaction with & = 1.1.

5.2.5 Modifying the spectrum

The spectrum, although reproducing remarkably well the reference, shows some de-
viations in the bend frequency which peaks approximately at wihmite = 1203 cm~!
in the ab initio simulation. This behavior can be further analyzed using a simple
rescaling of the intra-molecular interactions. To that end, the FM D-O-D angular
potential was altered V; (6pop) = kVa(Opop) with k' = w? ; ..o/wiy- This scal-
ing assumes that the bond can be treated as approximately harmonic and thus
w = y/k/m. Since in FM model the D-D bend frequency was wh¥ = 1075 cm ™,
the scaling factor is &' = 1.251. The spectrum of a simulation with the modified
potential is shown in fig. 5.6l It can be seen that the harmonic correction is suffi-
cient to shift the D-D bend position such that it matches the reference. The rest
of the spectrum is unaffected indicating that there is no strong coupling between
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the internal modes.

The D-O stretch band is well reproduced in the FM potential, it is however
still useful to see the effect of scaling the potential with a small, arbitrary factor
kE=1.1. As fig. shows, the D-O peak is independent of the other modes except
for the peak at 4000 — 5200 cm ™!, which also shifts to higher frequencies. This
proves that this peak is the D-O overtone.

These modifications were not kept for the following simulations, they however
indicate a possible direction on how to improve the force-matching results: As
discussed above, there is some overlap in the D-D bonded and non-bonded distri-
butions and thus the forces belonging to bonded and non-bonded modes cannot
be assigned exactly to the appropriate interactions. The scaling factor obtained
for the D-D stretch in the harmonic approximation implies that the bonded forces
where underestimated by a factor k£ during the FM. This information could be
included into the force-matching matrix by weighting the forces according to k.

However since the spectrum was already reasonably close to the reference, this
approach was not followed further.

5.3 Path integral MD

In this section, path integral MD (PIMD) simulations using the newly derived FM
water model are discussed. The electronic interactions are treated as an effectively
classical potential, derived by FM. This assumes that the electronic and quantum
nuclear effect can be “separated” in the sense that the effective potentials are still
valid for the system with the quantum nuclear treatment. The reason for this
approximation is that ab initio simulations based on DFT come at a much larger
computational cost and a concurrent treatment of electronic and nuclear quantum
nature would increase the costs by at least one order of magnitude.

In case this methodology is successful, it suggests a computational efficient
way to improve the development of new ab initio based models in which nuclear
quantum effects are explicitly included. In the next section, first a brief overview
on the current state of resarch on modelling the nuclear quantum effect in liquid
water is given.

5.3.1 Overview of results from literature

In MD simulation, the path integral description has been used in connection with
several different water models. These models can be divided into two classes:
empirical and ab initio based models.

The empirical models, such as SPC/Fw ﬂﬂ] or TIP4P/F ﬂ@} are based on
fitting the parameters (e.g partial charges, bond length, etc.) as to match experi-
mental quantities. Using these parameters in PIMD simulations has the difficulty

96



5.3. PATH INTEGRAL MD

that the quantum nuclear effect is already effectively included, because the ex-
perimentally measured quantities do include the nuclear quantum effects. PIMD
simulations based on these models thus “double-count” the nuclear quantum ef-
fects. This has been suggested to be overcome by a two step procdure @, ]:
First simulations using the empirical model in PIMD are carried out. From this
simulation, selected thermodynamic quantities are calculated, which also have to
be known experimentally. The set of paramters in the model is then modified in a
series of PIMD simulations until the experimental quantities are matched.

The ab initio models are based on accurate quantum calculations of small
clusters. One example is the MCDHO model | or the more recent TTM3-
F model , , ] The description of the bulk phase using these models
might however be plagued by finite size effects of the clusters which are not rep-
resentative of the bulk state ﬂﬂ] the over-structuring in ab initio simulations is
partially due to treatment of the nucleii as classical particles. For what concerns
the structure, a significantly less structured liquid with respect to the classical sim-
ulations was found in most studies. A study by Stern et al [@] using the MCDHO
model concluded that quantum effects lead to a less structured hydrogen bonding
network: The agreement with intra-molecular structure measure from experiment
improved, while the inter-molecular structure remained largely unchanged.

Another class of simulations includes the nuclear quantum effects directly in
an ab inito simulation using Car-Parrinello MD (CPMD) (where the electrons
are treated explicitly with plan wave basis sets at the DFT level)]. An early
simulation using this technique found a hardening of the PIMD O-O distribution
with respect to the classical equivalent [@] In another study by Morrone et al. ﬂ@]
a significant softening of inter- and intra molecular structure compared to CPMD
using classical nucleii was found, which leads to closer agreement with experiment.
This suggest a significant improvement of the ab initio description of water when
including the nuclear quantum effect. The simultaneous treatment of nuclear and
electronic qunatum effect however comes at very high computational cost, which
limits the simulations to tiny system sizes (typically 64 water molecules) simulated
for a few ps.

These difficulties show the need for an computationally effective model which
can provide a realistic description of the bulk phase without having to rely on
experimental data. This approach is attempted here by using the FM model which
is DFT (Born-Oppenheimer MD ]) based and does not rely on clusters. Since
the ab initio simulation does not take account of any nuclear quantum effect, the
double counting is avoided.

An exact quantitative description of the nuclear quantum effect in terms of
measurable quantities is still not available in the literature. For the self-diffusion
coefficient for example an increase in 50% has been reported @] (using the re-
parametrized SPC/Fw), while a much smaller increase of 15% has been reported
for the re-parametrized TIP4P /F @] This was claimed to be a result of compe-
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Figure 5.7: Total potential energy in a PIMD simulation of a single water molecule in vacuum.
The trotter number P is varied to find a value for which the energy is reasonably converged.

tition effects: The intra-molecular zero point fluctuations increase the H-O bond
length (and thus the dipole moment) which increases the hydrogen bond strength,
while the inter-molecular quantum fluctuations lead to a less structured hydrogen
bonding network.

5.3.2 Numerical results

To probe the nuclear quantum effect in the FM water model, PIMD simulations
were performed, employing the path integral Hamiltonian of eq. 2112 The only
free parameter that has to be chosen is the the Trotter number P, which corresponds
to the number of discrete imaginary time slices. The trotter approximation is exact
in the limit of P — oo (also see section [Z0]). A higher P is however associated
with higher computational costs, which increase approximately linearly with P.

In order to choose an appropriate Trotter number P, PIMD simulations of a
single molecule were first carried out. The total potential energy as a function
of P was computed and is shown in fig. 5.7 A trotter number of P = 16 was
found to converge the potential energy to approx. 92%, thus representing a good
compromise between accuracy and computational cost.

A simulation consisting of 324 water molecules (with P=16 this corresponds to
a PIMD simulation using 15552 point particles) at the same density of the ab initio
reference system was prepared and run for a simulated time of 750 ps. Note that
now the FM potential is used for the effective interaction of hydrogen, although it
was parametrized from simulations of heavy water (also see section[5.2)). The initial
configuration was prepared by starting from an equilibrated classical configuration
and replacing each atom by its ring-polymer counterpart. For this, the positions of
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the ring-polymer beads where placed in a circle (with a radius 7 = 0.01 nm) in the
x-y plane centered in the classical position of the atom. The initial velocities where
taken from a Maxwell-Boltzmann distribution at 7" = 300 K. Short simulations
where then performed using strong Langevin thermostatting (7pangevin = 0.2ps) in
order to relax the ring polymers to their equilibrium values.

For the production runs, the timestep was set to be At = 0.5 fs, the temperature
T = 300K was controlled with a Langevin thermostat (coupled to all imaginary
time beads) using a relaxation time of Tyangevin = 2ps.

The resulting structures measured from classical and PIMD simulations using
the FM potential are shown in fig. 5.8 Compared to the classical case, in the
PIMD simulation, a softening of the intra-molecular distribution is visible, which
is most pronounced in the H-O intra-molecular bond distribution. The H-O and
H-H bonded peaks are clearly broadened. The overall inter-molecular structure,
as visible from the O-O distribution however remained mostly unaltered, although
the H-O and H-H first non-bonded peaks (second peaks in the fig. B8)) are also
slightly softened.

Experimental results from neutron diffraction M] are also shown in fig.
(adapted after M]) For the intra-molecular H-O and H-H distribution, very good
agreement with the experimental results is now reached in the PIMD description.
In the O-O distribution, an over-structuring with respect to the experimental g(r) is
visible for both the classical as well as the PIMD. Note that this over-structuring
was already present in the O-O distribution measured directly in the ab initio
simulation (fig. B4]). This is a well-known artifact of the treatment of water using
local DFT functionals M] It has been attributed to deficiencies of the exchange
correlation functional (which is approximated using local functionals) and to the
lack of a proper description of the dispersion forces. As a consequence of this, the
DFT water was found to be in a supercooled state at room temperature @, @]

As discussed above, Morrone et. al [@] attribute the overstructuring to the
lack of nuclear quantum effects. This would mean that the inclusion of nuclear
quantum effects leads to softening of the O-O distribution for DFT based models,
which improves the agreement with experiment. Here, however, no such improve-
ment for the inter-molecular degrees of freedom was found, which indicates that
the effect has been overestimated by Morrone et al.ﬂ@].

A comparison of pressures in classical and PIMD is listed in tab. 5.4l The pres-
sure in the PIMD simulation was measured using the primitive pressure estimator
(chapter 1, eq. 2121]). The inclusion of nuclear quantum effects in PIMD has a
significant effect on the pressure, visible in an increase of approximately 500 bar.
As discussed above, the FM potential in the classical MD does not reproduce the
reference pressure. A correction of the pressure was attempted by adding, as in the
pressure correction in IBI (see section [Z3.4]), a small linear term to the potential
energy of the O-O non-bonded interaction (while keeping both the IBI potential
update and the pressure update terms, as in eq. B.2). The correction, obtained
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Figure 5.8: Radial distribution function of PIMD at T' = 300K using the FM potentials. Intra
molecular interactions are included in the calculation of the g(r). The experimental data is taken
from [144].
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FM model
classical PIMD
Pressure (p = 1.001g/cm?) | —2450 & 21 bar —1816 £ 100 bar
FM-pc (pressure corrected)
classical PIMD
Pressure (p = 1.001 g/ cm?) 4 + 30 bar 500 = 30 bar
Equilibrium density (p = 1bar) | 1.001g/cm?® | 0.9902 + 0.0001 g/ cm?

Table 5.4: Pressure measured in classical and PIMD simulations using the FM model

after b steps of iteration, introduced only a minor difference to the O-O interaction
potential, while the pressure matched the ab initio reference (denoted as FM-pc in
fig. and tab. 5.4 ).

Since the pressure in the PIMD increases by approximately 500 bar, one might
argue that the comparison to the experiment (where p = 1bar) should be done
at the same pressure instead of the same density. In order to probe if the over-
structuring can be explained by this difference of pressures, the PIMD system
using the FM-pc potential was relaxed to the equilibrium density corresponding to
a pressure of p = 1bar (using the Berendsen barostat ﬂﬂ]) The g(r) was then
measured again at the corresponding equilibrium density in the NVT ensemble
(shown in fig. £.9). Only a minor effect on the O-O distribution was visible. Thus
the increase in pressure in the PIMD simulations cannot explain the remaining
over-structuring.

5.4 Discussion of results

The nuclear quantum effect in the FM model leads to a considerable softening of
intra molecular structures, but leaves the inter-molecular distributions largely un-
affected. This finding is thus consistent with the results from studies with ab initio
potentials parametrized from calculations of small water clusters @] and results
from an early study employing pathintegrals in CPMD simulations of water @]
The improvement in terms of inter-molecular structure for the O-O distribution (as
in Morrone et al. @]) could not be reproduced. However the direct comparison is
difficult due to the different ab initio techniques, exchange correlation functionals
and systems sizes used.

There exists a number of possible sources of error in the FM approach itself.
One source of error might stem from the assumption that the electronic and nuclear
quantum effect can be separated. A way to test this assumption would be to
perform PIMD with calculating the interactions using DFT at every timestep.
This approach is out of reach with present day computational resources for all but
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Figure 5.9: Effect of applying a pressure correction to the FM potential. The g(r) as measured
from PIMD simulations is shown in the top plot. FM denotes the unaltered potential. FM-pc is
the pressure corrected potential, where the pressure correction to a target pressure of p = 1 bar
was applied in the classical simulation. FM-pc NPT was measured by calculating the equilibrium
density at p = 1bar using the Berendsen barostat and then measuring the g(r) from an NVT
simulation at this density. The difference in the non-bonded interaction potential introduced by

the pressure correction, AV (r) = VI9 . (r)—VO(r) is shown below.

tiny systems due to the scaling of the computational load of DFT techniques with
O(N?) [53.

Another source of error comes from the fact that pairwise potentials (with the
exception of the intra-molecular angle term) were used. The forces found by the
FM algorithm are a projection of the multi-body potential of mean force onto the
pairwise potentials. If these cannot represent the full interactions of the ab initio
simulation, important physical details might be lost.

The force extrapolation made in order to extend the FM potentials into regions
not sampled in the ab initio simulation represent another approximation. This
can mainly affect the intra-molecular interactions as these are more delocalized
in the PIMD simulation. Although the description of the internal structure was
found improved, the extrapolation might affect the balance between non-bonded
an bonded interactions. A solution to this might be to use enhanced sampling
techniques, such as parallel tempering , in the ab initio simulation.

In summary, the FM approach is promising, the effective potentials accurately
reproduce the classical structure and vibrational density of states while reducing
the computational costs. This technique might therefore play a role in the future to
build models from bulk ab initio simulations as an alternative to empirical models
and cluster based ab initio methods. Including the nuclear quantum effect in the
FM model leads to an improved agreement with the experimental structure for the
internal degrees of freedom. Finally, it has to be noted that also the experimentally
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measured structure has a significant error M] Further improvements on the
experimental side as well as in the ab initio models are necessary to arrive at
consistent picture of the nuclear quantum effect in water.

5.5 Adaptive path integral

The PIMD method allows to include nuclear quantum effects in MD simulations at
the expense of an increase in computational cost of about one order of magnitude.
This increase is due to the fact that each atom is represented as a ring polymer
consisting of P beads which increases the cost for evaluting non-bonded interactions
by a factor of P.

The AdResS approach is therefore attractive in order to reduce the computa-
tional cost. Thereby a high-detail quantum region using the full PI Hamiltonian
can be employed, while the rest of the system is described using a CG potential
@] This CG potential can be obtained by IBI and represent each molecule in
terms of a center of mass interaction. In this approach, the CG potential is an
effective, classical representation of the molecule-molecule interaction in the PI
picture.

The coupling of the quantum to an classical region is possible if the quantum
effect is sufficiently local, such that coupling of the CG representation does not
perturb properties of the high-detail path integral region. This has been used to
change the viewpoint and use AdResS as a tool to probe the locality of quantum
effects [@, @, é] In this approach the size of the quantum (PI) region is varied
as to asses up to which size of the quantum region the quantum properties are
preserved.

Here, the example of a water slab in vacuum is presented and it is demonstrated
that the bulk water can be treated in a CG fashion while for the interface region
the full PI interaction are maintained.

5.5.1 Classical adaptive system

Preliminary simulations using the classical FM-pc (without path integral) model
described in the previous section were first carried out.

The CG model was obtained using IBI with a cutoff r.uoq = 0.8 nm, the other
parameters were identical to the ones used in section B.Il As a target distribution,
the classical center-of-mass g(r) from simulations of the FM-pc model was used.
A pressure correction, as described in section was performed in order to
match the reference pressure p = 1bar. In order to set up the water-vacuum
interface, a system of dimensions 12.093 x 4.031 x 4.031 nm was first equilibrated

5The AdResS scheme also allows in principle for a coupling of the PI representation to a
3-bead molecule instead of the 1-bead CG model
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Figure 5.10: Local density profile along the x-axis in the water-vacuum slab (classical MD simula-
tion). Shown is the unperturbed profile in the adaptive simulation (AdResS) where the center of
the water slab is described using the IBI based CG potential. The x-component of the thermody-
namic force, is shown below (y and z components are 0 by definition). Using the thermodynamic
force, the artifact from the mismatch of pressures in the hybrid region is removed an the bulk
density recovered.

at the classical density of 1.002 g/ cm? using periodic boundary conditions. Then,
the simulation volume was extended in x-direction to 25 nm, and the equilibrated
bulk configurations were placed in the center.

For AdResS, the reference coordinate xq of the resolution change was set to be
at (0,0,0), where the width of the explicit region was a = 7.5nm and the width
of the hybrid region b — a = 1.5nm. Note that due to the periodic boundary
conditions, using this definition there are two hybrid regions symmetrically from
the center of the simulation volume (also see fig. [5.10]).

A classical AdResS simulation was then run for a length of 250 ps. The resulting
density profile measured along the x-axis is shown in fig.[5. 10l Clearly a depletion is
visible in the hybrid region. This is due to the fact that even though the pressure
in the pure simulations of CG potential and FM-pc match, the pressure in the
hybrid region is locally different as an artifact of the interpolation (see also section
B.2.0). The effect is more pronounced in the case of the interface (compared to
the bulk simulation in section B.2]) since the liquid can respond to the increased
pressure by expanding further into the vacuum.

In order to compensate for this, the thermodynamic force iteration as discussed
in chapter Bl was applied in the range 7.3nm < [ < 9.2nm . For this it was assumed
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that the hybrid region is far enough away from the interface and the local density
is the same as in the bulk. After 4 steps of iteration, the flat bulk density profile
was recovred within an error of 5%. The density profile is shown together with the
converged thermodynamic force in fig.

5.5.2 Adaptive PIMD simulation

Now, the adaptive PIMD simulation is discussed, where the interface is simulated
using the PI interactions, while in the bulk the CG interactions are used. For
the setup, the equilibrated classical configuration (as described in the previous
section B.5.J]) was used as a basis for the PI system. In the initial configuration,
atoms were replaced by their ring polymer representation using a Trotter number
of P = 16. The thermodynamic force obtained in the classical case was used for the
PIMD simulation. This approximation seems reasonable as the nuclear quantum
effect was found to mostly affect intra-molecular properties (despite a difference
in pressures, see tab. [B.4]). The validity of this can be checked by analyzing the
density profile in the adaptive PIMD system. 240 ps of adaptive PIMD simulation
were then performed, wherby the identical AdResS parameters as in the classical
case where used.

The resulting density profile is shown in fig. .11} The density profile at the
interface is very similar to the classical density profile, indicating that the nuclear
quantum effect does not affect the density. The density profile in the coarse-grained
region is however slightly increased compare to the classical simulation. The reason
for this may be the use of the thermodynamic force parameterized for the classical
simulation, which represents only a first approximation. The nuclear quantum
effect is analyzed in terms of the radius of gyration of the hydrogen ring polymer

gl

P
1 .
ré{yr = E (x — x¢)? (5.2)
i=1

where x¢o = 1% Zil x(® denotes the centroid of the ring polymer. This quantity de-
scribes the delocalization of the nucleii in the PI picture: A high value corresponds
to a smeared out distribution when taking the ensemble average, while a low value
represents a collapsed polymer with a localized distribution. The radius of gyra-
tion was measured in slabs along the x-direction of the simulation and normalized
by the number of ring polymers in each slab. For comparison, the values of rgyr
measured for a the hydrogen of a water molecule in vacuum and in bulk water at
the same temperature are shown. It is visible that in the AdResS simulation, close
to the CG region, r?yr approaches the vacuum value. This is due to the AdResS
force interpolation which slowly fades out the non-bonded interaction forces. In
the CG region, rgyr is close to the constant vacuum value. Note that in the CG
region, the ring polymers do not have a physical meaning as they are completely
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Figure 5.11: (top) Density profile of the water (FM-pc model) slab in adaptive PIMD using a
Trotter number P = 16 compared against a fully classical simulation using the SPC/Fw model
(this profile was shifted to the right by 0.21 nm for alignment). The thermodynamic force obtained
from the classical equivalent was used. (bottom) Radius of gyration of the imaginary time ring
polymer defined in eq. This quantitiy was averaged over time and all- hydrogen atoms and
binned according x-position of the ring centroid.
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decoupled from the non-bonded interactions. Measurements should hence be only
performed on the center of mass of molecules. The technical reasons for this have
been discussed in detail in section

The internal structure is not affected by the interpolation and hence the ring
polymers approach the structure of isolated molecules. In the center of the hybrid
zone, the bulk value of rgyr is recovered. This indicates that at this position the
interface is already sufficiently bulk-like. Close to the vacuum, in the full-PIMD
region, rgyr is found to be increased with respect to the bulk value. This can be
explained considering that the liquid assumes a less dense structure and thus the
hydrogen atom is more delocalized.

The fact that the bulk value of rgyr is reached in the adaptive scheme indicates
that the small interface region simulated with PI interactions does not significantly
perturb the properties of the PI description. Hence it is possible to use AdResS
as a potential way to lower the computational costs for PIMD simulations while
avoiding finite size effects that would be present in smaller systems.

5.6 Summary

In this chapter a route for bridging multiple models from the level of explicit elec-
tronic interactions up interactions at the molecular scale was presented. Within
the FM approach it is possible to find a effective potentials which reproduce struc-
ture and vibrational properties of the reference ab initio simulation. These can
be used as a basis for investigating the nuclear quantum effect in bulk water as
double-counting is avoided.

The nuclear quantum effect in the water-vacuum interface was found to be
sufficiently local to be unperturbed by the coupling to an CG bulk region. This
result is promising as it shows the way for further applications of the AdResS
scheme in situations where the nuclear quantum effect is of importance. Given
that inaccuracies, possibly arising from insufficient ab initio exchange correlation
functionals can be eliminated, this represents a promising step towards a new ab
initio based model for use in PIMD simulations. This can be of interest to study
for example the solvation of biomolecules where it could be used to treat the first
solvation shell in the PI picture, while treating the remaining solvent in the efficient

CG model.
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Chapter 6

Hamiltonian based adaptive
resolution

The concepts of this part of the thesis originate from intensive discussions during the
“Physical principles of multiscale modelling” workshop at the Kavli Institute for theoret-
ical physics, Santa Barbara. The results are described in the draft:

“Hamiltonian adaptive resolution simulation for molecular liquids”

R. Potestio, S. Fritsch, P. Espanol, R. Delgado-Buscalioni, K. Kremer, R. Everaers and
D. Donadio

(manuscript under review)

In this chapter, an adaptive simulation scheme is discussed which is based
on a Hamiltonian formulation. Although the approach is different, the scheme
shares key concepts with AdResS and is therefore refereed to as H-AdResS, the
H indicating the Hamiltonian framework. As described extensively in chapter 1,
the requirement behind AdResS was to satisfy Newtons third law instantaneously,
leading to non-conservative forces. Here this requirement is loosened to be fulfilled
only on average.

The advantage is clearly that now micro-canonical simulations (NVE ensem-
ble) are possible. Although the AdResS scheme is well defined in terms of ther-
modynamic observables such as temperature, pressure and density, the Hamiltion
formulation allows for the straightforward application of all statistical mechani-
cal concepts. This paves the way for relating the thermodynamic force concept
described in chapter [3 to well known thermodynamical expressions as will be de-
scribed in the following chapter.
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Atomistic Hybrid Coarse-grained
region 4 region
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Figure 6.1: Setup showing a part of the H-AdResS test system composed of tetrahedral molecules.
In the all-atom region on the left, molecular interactions are treated in full detailed, while in the
coarse-grained region on the right, a center of mass description is used. The two regions are
interfaced by a hybrid region.

6.1 Derivation

The goal is to achieve a Hamiltonian picture of coupling the all-atom (AA) and
coarse-grained (CG) system. The coupling should be such that when the AA region
is set to have zero size, the pure CG Hamiltonian is recovered and vice-versa. First
the all-atom reference Hamiltonian needs to be defined, where the same notation
as in chapter Bl was used. For N molecules (Greek indices) composed of n atoms
(Latin indices) the Hamiltonian is written as

2
Pa, ;
HAA — 0 Ulnt UAA 61
1
AA  — AA
Ua :5 E , . E U <|rai_rﬁj’)
B,8#aica,jeB

9

where U™ denotes the intra-molecular interactions. For simplicity, the inter-
molecular interactions are again assumed to be spherical symmetric and pairwise.
The CG representation, as for example obtained by IBI is a function of the molec-
ular center of mass and is denoted as

USy = U“(|Ra — Ry)) . (6.2)

[0}

The total CG potential energy on molecule « is given by UL =37, 5, USF /2.
In contrast to AdResS, in the H-Adress the total potential energy of a molecule
« is weighted with a function A(R,,). The idea behind this is that the “local nature”
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(i.e. how much a molecule is coarse-grained or atomistic) defines the contribution
to the potential energy. Now a Hamiltonian for the adaptive resolution system is
constructed where the resolution changes based on the position of a molecule:

2
H= Z 2% +) {ARIUM + (1= AMR)US} + U™ (6.3)

Taking the negative gradient in order to find the forces acting between atoms one
arrives at

[0S el

Fo, = — > {AVa U+ (1= M) Vo, UL + Vo, U™ + Vo Mo (U — U9}

(6.4)

B,B#c JjeB
+FI — UM = US9] VoA
(6.5)
where Fi‘?ﬁj is the force exerted by atom j of molecule 8 on atom i of molecule «,

and Fgﬁ"ﬁ is the CG force of molecule 8 on atom «;. The CG force is redistributed
according the center of mass, as in AdResS eq.

The weighting function A(R,,) can be chosen according to the desired geometry,
where A = 1 marks the all atom and A = 0 the CG region. It is important to stress
one conceptual difference compared to AdResS, which is that in principle, the
atoms receive hybrid forces even in the CG zone. This is because the pairwise
force is given by the average of the molecular weights (instead of the product).
Thus the atomistic interaction can be non-zero if one of the two molecules is in
the hybrid region. In practice the extend of this effect is limited by the interaction
cut-off if no long-range method (e.g. Ewald summation, also see section [ZT.4)
is used. The presence of hybrid interactions requires that the internal degrees of
freedom are present and integrated also in the CG region (as was done for technical
reasons in the previous AdresS implementations). In the CG region however, they
are uncoupled from the neighboring molecules since the all-atom contribution is
zero if both molecules are in the CG region.

The forces originating from the ansatz above have three contributions:

e The first term (curly brackets of eq. [6.0) contains the weighted sum of pair-
wise forces and is anti-symmetric under exchange of particle labels and hence
respects Newtons third law.

e The second term is due to intra-molecular forces, which do not contribute to
forces between molecules.
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Figure 6.2: (top) Normalized density profile in the H-AdResS simulation of the tetrahedral
model. (bottom) atomistic (blue) and center of mass (red) RDF calculated in the all-atom region
(134 < x < 23.40) for a pure all-atom simulation (solid lines) and in the H-AdResS simulation

e The third term can be interpreted as an external field acting only in the
hybrid zone. The integral of this term can be related to the difference of free
energy between the AA and CG model.

How the third term (drift term) affects the simulation will be clarified in the fol-
lowing section. Here it is just important to note that the ansatz of a well-defined
Hamiltionan is made, which can be used to generate a microcanonical trajectory
of the adaptive resolution system.

6.2 Numerical validation

The H-AdresS approach was tested using a modified version of GROMACS. The
drift term (eq. [6.0) requires the storage of the per-atom potential energy, which
slightly increases the implementational effort. After the calculation of all non-
bonded forces, the drift force is added to the force on each atom according to
eq.

In order to compare the results to the original AdResS implementation, the
same system as in as in @] was simulated. This system consists of a fluid of
tetrahedral molecules, depicted in fig. In the following, reduced units, i.e.
m = kg = € = 0 = 1 are used since this is more convenient in the tetrahedral
model. The tetrahedral molecule consists of 4 identical atoms connected by an-
harmonic bonds. The intra-molecular part is given by a quartic bond potential:

. 1
U (i) = (1 = 1) (6.6)
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Figure 6.3: Total energy drift during a microcanonical NVE H-AdResS simulation for different
timesteps At. AA stands for the pure all-atom and H for the H-AdResS hybrid simulation.

with 7, = |re; — 1], (& = B) denoting the intra-molecular distance. For this
interaction b = 1o and k = 7500¢/0? were used. The non-bonded interaction
employed here is a Weeks Chandler Andersen [@] (WCA) potential

()= () +1 .y /64
UA(T):{é [(5)" = (2)° +1] .rizl/% (6.7)

where r = |r,; — rgj|, (o # () denotes the inter-atom distance.

The simulation was prepared to contain 798 tetrahedral molecules in a box of
dimensions 36.8450 x 150 x 150, corresponding to a molecular density of p = 0.0962.
To equilibrate the system, all-atom simulations using a Langevin thermostat with
71, = 27 were carried out, where the Temperature was set to T = 1. The atomistic
pressure was measured to be psa = 0.35503 /e.

For the CG interaction U“, 240 steps of IBI where carried out, with the range
of the effective potential being 4.5¢0. No pressure correction was used, since the
CG pressure pog = 0.38503 /¢ was sufficiently close to the all-atom pressure.

The density and pairwise structure measured from H-AdResS simulations are
plotted in fig. The density profile shows a depletion in the hybrid region, but no
overall shift of densities between the AA and CG region. This profile is qualitatively
comparable to the profile observed in chapter [3] obtained in the AdResS simulation
using the pressure-corrected water model (however, no asymmetry in the density
profile is observed which is due to the CG model of the tetrahedral molecule being
a well-behaved test case, where both pressure and compressibility are close).

The pairwise atomistic structure was calculated locally by considering only the
atoms in the AA region and atoms up to a distance r in the hybrid region, which
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is defined as

g(r)aa = P 1( <NAA S ar—ry > ; (6.8)

lEVAA J#i

where hy(r) &~ 4mpr?dr is the (unnormalized) RDF of an ideal gas at the same
density, Naa(t) is the number of atoms in the AA region at a time t and Viu
the volume of the all-atom region. When considering V44 = V the conventional
definition of the RDF is recovered (see section

The RDF's were calculated in this way for atoms and the centers of mass of the
molecules (fig. 621 bottom). In both cases, the local RDFs in the AA match the
all atom reference RDFs. Thus it can be concluded that H-AdResS preserves the
local structure at least in the all-atom region.

In order to show the energy conservation H-AdResS, NVE simulations starting
from the equilibrated configuration were performed. The energy, monitored for
different time-steps At is shown in fig. €3 Within 107 (corresponding to 2000
integration steps) the relative drift in energy is less then 4 x 1075. Compared
to an all-atom simulation, the error at the same At is slightly higher. However,
the relative drift further decreases if the timestep is reduced, indicating that it is
simply due to the discretization of the equations of motion. Thus, the H-AdResS
approach conserves the energy in an NVE simulation.

6.3 Helmholtz compensation

Now it will be demonstrated how the drift term (third term of eq. [E5) can be
associated with the free energy difference between the AA and the CG model. The
connection is made through the long known technique of thermodynamic integra-
tion, also known as Kirkwood integration M] Within this approach, free energy
differences of two model Hamiltonians H, and Hpg can be computed.
In Kirkwood integration, an interpolation between potential energies is made
by defining
UN=XUa+(1-NUg, (6.9)

where X is a coupling parameter that takes values between 0 and 1. The kinetic
energy does not appear in this expression since no change in degrees of freedom
is performed, and thus the contributions to the free energy difference cancel. The
free energy difference between the two systems is then calculated in the canonical
ensemble as:

F(\) =ksTIn Z(A) | (6.10)

oF 10Z JoU\  /oU*—UP)
o Tz on <a> - <—m > ' (6-11)

and
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The eq. [6.11] can be integrated with respect to A to yield the free energy difference
between model A and B

1
Fy—Fg=AF = / N (Ut -U"),, (6.12)
0

where the bracket (),, denotes the canonical average at a particular \'. In practice,
the free energy difference is thus calculated by performing a series of simulations
at constant \' and integrating numerically according to eq. 612 Alternatively
it is also possible to define A as a function of time and switch from 0 to 1 in a
dynamical sense, a method sometimes referred to as “slow growth method” ﬂ@]
If the switching is performed slowly enough, the average taken over small time
windows will be close to canonical average at fixed \.

The connection to the drift term in H-AdResS is apparent when considering a
A which further depends on the position of a molecule A(R,). The free energy per
molecule would then give rise to a force

- AF(\) 1 0AF

“VeTN TN ax
which has the same form as the drift term in H-AdResS (third term in eq. [6.3)
averaged over time and all molecules, if the model A is associated with the all-atom
(AA) and B with the CG model. This implies that, any free energy difference of
the two models creates a drift force acting only in the hybrid region. The direction
of the force is towards the region of the lowest free energy.

This effect is not desired for most applications as one would like a coarse-
grained model where the free energy matches the atomistic reference. Since this
is not always possible, one way to overcome this is to add the known free energy
difference as a compensation term to the H-AdresS Hamiltonian, as to cancel the
drift force on average. Therby, an approximation can be made by calculating
AF(A) from bulk simulations (making use of eq. 6.12) at constant A throughout.
The total Hamiltonian then reads

(U1 -U?)

VaARa) = ———

Vo lRy),  (6.13)

Har - - 37 AFOR)) 614

Since this compensation only acts like a position dependent external field, the
forces are still conservative and the scheme conserves the total energy.

6.4 Gibbs compensation

The compensation introduced in the previous section removes the effect of the
free energy difference, but as in AdResS also pressure differences can occur. In
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analogy to the reasoning made in chapter Bl the chemical potentials u of the two
subsystems have to match. As before, the grand canonical ensemble is appropriate
since the two subregions can exchange particles. In the grand-canonical ensemble
the chemical potential is:

uN =G =F +pV | (6.15)

where F is the (Helmholtz) free energy, G the Gibbs energy, V the volume and p
the pressure. This suggest a compensation according to
AG(N)  AF(N) N Ap(N)

1
N N > (6.16)

where p is the all-atom reference density. The pressure difference Ap(\) = p(A)—pa
can be computed in the Kirkwood integration. The total Hamiltonian employing
this compensation is then

HM;:H—ZW. (6.17)

In the following, AF(A) will be referred to as “Helmholtz-" while AG()A) will be
called “Gibbs” compensation. The role of the Gibbs compensation is similar to
the thermodynamic force introduced before in the AdResS approach. The aim
is to cancel drift forces which arise from the difference in chemical potential. In
contrast to the thermodynamic force however, the compensation is calculated from
Kirkwood integration where the whole system interacts at a constant \. This rep-
resent an approximation, which can be expected to be reasonable if A only changes
little on the length-scale of the correlations between molecules. In the following,
the features of the compensations and the differences to the thermodynamic force
will be discussed further based on numerical examples. The effect of the different
compensation terms is shown in figure fig.

6.4.1 Numerical tests

The IBI-based CG model (discussed in section [6.2)) was found to have almost the
same pressure without any pressure correction term. To have a CG model which
behaves similar to CG models of more realistic liquids (with a pressure higher then
the reference), a modified WCA interaction was used for Ugg. To thisend o’ = 1.70
was used and the potential shifted to the right by ' = r — 0.050. This yields a
pressure in the pure CG simulation pcg = 0.4380°3 /¢ which is slightly higher then
the atomistic value. Note that this CG interaction was not parametrized with any
of the standard coarse-graining methods and consequently the pairwise structure
is not expected to be reproduced.

The different compensation terms were then calculated in a “slow-growth” sim-
ulation @] in a cubic box of side length 150 at the reference all-atom density.
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Figure 6.4: Cartoon illustrating the role of the different compensation terms by their effect on
the state point of the atomistic (AA) and CG subsystems. The circles represent the state points
of atomistic and coarse-grained sub-systems on the respective isotherms. In the system with-
out compensation (green curve), both subsystems are at different pressure and density. The
Helmholtz compensation (blue) removes the free energy component and the subsystems there-
fore are on horizontal equal pressure lines. The Gibbs compensation also removes the pressure
difference and therefore the subsystems reside on a vertical, constant reference density (p*) line.

The simulation was run for a total length of 10° steps, the coupling parameter \
was decreased at a rate of —107%/step from 1 to 0. Prior to starting the growth, the
system was equilibrated at constant A = 0. The different compensations obtained
in this way are shown as a function of X in fig. (top panel).

Then, H-AdResS simulations were run employing the different comensation terms.
As is visible from fig. (middle), the density profile without any compensation
shows a depletion in the CG region and an increased density in the AA region. This
is due to the different pressure and different free energies in the CG and AA model.
The hybrid region acts as an “active membrane” pushing molecules into the AA
region according to the free energy and pressure gradients. Adding the Helmholtz
compensation slightly improves the imbalance by removing the drift coming from
the Helmholtz free energy difference. The Gibbs compensation, on the other hand,
removes almost completely the overall shift in density between AA and CG region
and a flat density profile is reached. In the hybrid region there are however fluc-
tuations on the order of 5%. A possible explanation for this is as follows: In the
derivation of the compensation term it was assumed that all molecules interact
at the same constant A. In the H-AdResS setup however, a molecule in the hy-
brid region is surrounded by molecules with different A values. The compensation
does not take account of this and thus the drift forces are not exactly canceled,
resulting in a small local variation in the density is produced. A possible way to
overcome this would be computing the drift term and pressure locally during the
H-AdResS simulation and deduce a compensation from it or alternatively use the
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Figure 6.5: (top) Components of the Gibbs compensation term calculated by Kirkwood integra-
tion. (middle) Density profiles in an H-AdresS simulation employing the different compensation
terms. (bottom) Local pairwise pressure as a function of the box x-coordinate.
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thermodynamic force iteration introduced in chapter B to refine the compensation
term.

Another interesting property is the local pairwise pressure in the simulation.
This quantity is calculated locally in slabs as explained in appendix[A.Tl Note that
only internal forces (and not the compensation forces) are taken into account. The
resulting local pressure profile is shown in fig. (bottom). In the uncorrected
simulation, the pressure in the AA region was found to be larger compared to
the CG region. The reason is that in equilibrium, the density adjusts until the
forces coming from both free energy and pressure differences are canceled. The
Helmholtz compensation shows a flat local pairwise pressure profile throughout
the entire simulation volume, the value of which lies between the pure AA and
CG pressures. This can be explained considering that Helmholtz construction was
designed to cancel the drift term. Thus, on average no net force is acting on the
system, and consequently the density adjusts such that the local pairwise pressures
are equal. In the case of the Gibbs compensation, the local pairwise pressure are
close to the respective pure reference values. The hybrid region in between shows
an approximately linear interpolation between the two pressures. This is to be
understood as follows: The Gibbs compensation is constructed to remove both the
differences from the free energy and pressure gradients. Since the density profile is
very well restored to the original density in the whole box, the pairwise molecular
pressures returns to the reference bulk values for AA and CG.

As a consequence, it might be advantageous to use either compensation depend-
ing on the purpose of the adaptive simulation. Through the Gibbs compensation
the density profile is flat while through the Helmholtz compensation the pairwise
pressure profile remains flat. For applications where hydrodynamic properties are
investigated, it could be more favorable to work at constant molecular pressure.
When structural properties are of interest, most likely the Gibbs compensation will
be favored.

6.5 Comparison to AdResS thermodynamic force

To compare the compensation terms directly to the thermodynamic force approach
presented in chapter 3 the SPC/E water coupled to the non-pressure corrected CG
model studied in section B.4 was simulated again with the H-AdResS approach. For
the sake of being comparable, these simulations were done in the NVT ensemble
with identical parameters.

The compensation terms were computed using the slow growth method, where
A\ was decreased linearly from 1 to 0 within 10> MD steps. The contributions to
the compensation terms Ap(A\) and AF(\) are shown in fig. (top).

From the density profile it is visible that H-AdResS produces a larger imbalance
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Figure 6.6: (top) Different contributions to the compensation term calculated from slow growth
simulations in the SPC/E water system. For comparison, the thermodynamic force in the AdResS
approach is shown for the same system. (bottom) Density profile along the axis of resolution
change in simulations (H-AdResS and AdResS) employing the different compensations.
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in the density compared to AdResS if no compensation is applied. This is expected,
since H-AdResS includes the contribution of the drift term, and no equivalent term
is present in AdResS. As a consequence, in H-AdresS, the difference in free energy
drives an increased density imbalance. If the effect of the drift term is removed,
as it is done within the Helmholtz compensation, the H-AdResS system shows
a density profile which is very similar to the uncorrected AdResS profile. This
implies that the only remaining force driving the imbalance is due to the difference
in pressure. Indeed this is further verified as including the pressure compensation
in H-AdResS the system relaxes to an almost perfectly flat density profile.

The comparison of the thermodynamic force (corresponding potential Uy, (x))
with the pressure compensation term Ap()\)/p reveals that the value at the end-
points is very similar, the shape being different. This is most likely due to the fact
that the thermodynamic force was parametrized directly in the adaptive simula-
tion, where molecules interacting at different A contribute. Conversely, the Ap(\)
was obtained from the slow-growth simulations which use a constant A. This ap-
proximation can be speculated to be the reason for the deviations from the perfectly
flat density profile which was provided by the thermodynamic force approach.

As a consequence, these findings imply that a good initial guess for the thermo-
dynamic force can be obtained in slow growth simulations. In case the reference
density needs to be matched more closely, additional iterations with the thermo-
dynamic force approach can be carried out based on this initial guess.

A potential application is the possibility to predict free energy differences of
models from the density profile calculated in H-AdResS simulations. To test this,
an H-AdResS simulation of SPC/E water coupled to a CG region employing the
pressure corrected CG water model discussed in section B.2.1] was carried out.
The density profile is shown in fig. (bottom). In contrast to the result in
chapter[3] the density in the all-atom region does not match the equilibrium density.
The reason is the drift term (eq. which is proportional to the free energy
difference of the models. Since there is no difference in pressure (at least for the
“pure” cases of A = 1 and A = 0), the density profile can be used to estimate
the free energy difference based on the thermodynamic force. To this end, the
zeroth order thermodynamic force (eq. B.9]) was calculated based on the atomistic
compressibility (kp = 5.1 x 107°Pa™!). The corresponding potential shows a
free energy difference, which is within 15% accurate compared to the result from
Kirkwood integration. The difference may be due to the fact that eq. assumes
a constant compressibility while it is known that the compressibility is significantly
increased in the CG model. Using this technique, it is therefore possible to obtain
an estimate for the free energy difference of two models by coupling them in a
H-AdResS simulation and simply calculating the density profile.
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Figure 6.7: (top) Free energy term calculated from slow growth simulations in the SPC/E water
system coupled to the pressure corrected CG model. For comparison the integrated thermo-
dynamic force Vi, () (zeroth order) calculated from H-AdResS simulations is shown. (bottom)
Density profile along the axis of resolution change in H-AdResS simulations using the CG water
model with pressure correction discussed in chapter 2.
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6.6 Summary

In this chapter, an alternative approach for adaptive simulations was presented.
It was shown that within this approach it is possible to run microcanonical sim-
ulations where the total energy of the system is conserved. Furthermore, Monte
Carlo simulations would be possible with the H-AdResS approach, overcoming a
limitation of the AdResS approach.

The forces derived from the Hamiltonian include a drift term which acts like
an external field. By introducing a compensation term, the effect of this term can
be removed on average, while instantaneously Newtons third law is not preserved.
In the Hamiltonian description, however the application of concepts from thermo-
dynamics is straightforward and thus promises a deeper conceptual understanding
of the adaptive method.

The new approach may also enable optimization of the coarse graining pro-
cedure itself. Since the optimal CG potential does also match the reference free
energy, it would be possible to use H-AdResS as a way to parametrize the CG
potentials. One may think of an iterative scheme, starting out with a system as
simple as an ideal gas (which should be treatable within the H-AdResS approach)
and perform iterations of H-AdResS simulations to refine the CG model. There
might even be applications where the ideal gas is sufficient as a CG model once
the proper compensation terms are included.

Another interesting extension may be the calculation of free energies without
performing Kirkwood integration. As was demonstrated in this chapter, the Gibbs
compensation (which is related to the chemical potential by y = G/N) was shown
to lead to an flat density profile between the two system. If the CG model is taken
to be the ideal gas, its absolute free energy is know analytically. This suggests
a way of calculating the free energy of any atomistic model by coupling it to an
ideal gas model and simply finding the external field which leads to a flat density
profile.
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Chapter 7

Summary & Conclusion

In this work, different approaches for performing hierarchical as well as simultane-
ous multi-scale techniques were applied. The simultaneous approaches promise to
be useful for many problems in soft-matter science where the system can be parti-
tioned in a high- and low resolution region. However, special challenges are posed
which are due to the simplifications made in the low-resolution models. Several
strategies to address these problems were discussed.

7.1 Adaptive resolution simulations

The AdResS approach was studied in chapters 2-4, where it was shown to work
for different systems. As was demonstrated in chapter [, a considerable computa-
tional speed-up of the simulation can be achieved with an efficient implementation
in the GROMACS software package. However, some effort has to be spent on
implementing the method in a manner which takes care of the inhomogeneities in
computational load in a domain-decomposition. The internal degrees of freedom
in this implementation are kept throughout the entire simulation volume and are
decoupled in the CG region. The speed-up is therefore only due to savings on the
non-bonded force calculation, which usually is the most time consuming part in
MD simulation. Future implementations could improve on this by removing inter-
nal degrees of freedom in the CG region and re-inserting them using a stochastic
scheme once a molecule diffuses into the hybrid region.

For the study of a C60 fullerene in liquid toluene (chapter M), it was found
that already a small all-atom region around the fullerene is sufficient to retain
structural and even diffusional properties. This can also be seen as a method for
investigating the influence of chemical details, which are lost in the CG model:
Since the all-atom properties could be recovered with only small all-atom regions,
the chemical details missing in the bulk can be seen as “unimportant” for the local
solvent structure around the C60.
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The force interpolation in AdResS yields a stable simulation scheme with well
defined pressure and temperature, but requires a thermostat to be used due to the
non-conservative forces in the hybrid region. An alternative approach, named H-
AdresS, was presented in chapter [l where a Hamiltonian interpolation scheme was
constructed. The gain is that standard statistical concepts can be applied straight-
forwardly and micro-canonical MD as well as Monte Carlo simulations are possible.
In comparison to the AdResS scheme, however, a few conceptual differences have
to be noted: In H-AdResS, Newton’s third law is not valid in every instance due
to the presence of a drift term in the forces. It is however possible to remove the
average effect of the drift term, hence preserving Newton’s third law on average.
Furthermore, the internal degrees of freedom in the CG region do contribute to
the non-bonded forces (at least in the range of the interaction cut-off).

7.2 Thermodynamic force

In chapter Bl it was shown (in agreement with other studies M]) that a pairwise
interacting CG model can only reproduce either pressure or compressibility. This
poses special challenges for the adaptive resolution simulations, where the mis-
match causes and non-uniform density profile.

The thermodynamic force (introduced in chapter [3) represents one method
to remove the mismatch of pressures based on the requirement that the grand
potentials of the pure systems have to be equal. To compute the thermodynamic
force, a practical iterative procedure was presented which is based on the gradient
of densities. It was shown that it is sufficient to apply the thermodynamic force in
the (ideally small) hybrid region, where it provides the amount of work necessary
to compensate the pressure gradient coming from the interpolation of different
models. Therefore also adaptive resolution simulations can be performed with a
CG model which preserves the compressibility. This scheme has already found
application in the calculation of Kirkwood-Buff integrals in mixtures M, @]

In chapter @ it was shown that this concept can also be used for a spherical
all-atom region embedded in a reservoir employing the pressure correct CG model.
The all-atom region was coupled to the center of a C60 fullerene and the near or-
dering in the surrounding toluene solvent was studied. It was found that the ther-
modynamic force is very well transferable from the bulk, i.e. when parametrized
in the bulk solvent it could also remove the density artifact in the solvation shell
of the C60. Therefore, the thermodynamic force can be seen as a property of the
all-atom and CG model alone, and does not need to be re-parametrized for each
new situation it is used in (at least for the homogeneous, one-component fluids).
However, in this case the thermodynamic force iteration needed more steps to
converge, most likely due to the complications introduced by the spherical region
and the mismatch of compressibilities of the two models (the derivation assumed
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a constant compressibility).

This shows that it is desirable to obtain the thermodynamic force or at least
a first guess in a more efficient way. A first step in this direction was explored
in chapter [0 within the H-AdResS approach, where different compensation terms
were studied. Also in the Hamiltonian H-AdResS approach, a non-uniform density
profile is visible. Different compensation terms were derived based on either com-
pensating the free energy or chemical potential imbalance. The chemical potential
(“Gibbs-") compensation can be seen as the analogue of the thermodynamic force.
An efficient way to obtain the compensation terms was presented which is based
on “thermodynamic integration” in the bulk system. This compensation therefore
does not rely on the relaxation of the density as the thermodynamic force approach
and is therefore cheaper to compute.

The direct comparison of compensation terms to thermodynamic force reveals
that the pressure component of the compensation term is similar to the converged
thermodynamic force. Although the compensation does not take the correlations
in the liquid into account and hence cannot achieve a fully flat density profile, it
could be used as a first estimate of the thermodynamic force and hence reduce the
number of iterations needed.

7.3 Nuclear quantum effects in water

In chapter [l a different example of scale-bridging techniques was present which
deals with the construction of a water model suitable for use with path integral
MD (PIMD) simulations of water. For this, force-matching (FM) was used to
transfer the properties from a high level (quantum, DFT) description to a lower
level (classical), where the electronic interaction is described by effective pairwise
potentials between nuclei. This classical model is able to reproduce structural
properties, such as radial distribution functions and also the vibrational density of
states within good accuracy.

Due to the light mass of hydrogen, it is of interest to include nuclear quantum
effects, even at room temperature. Using the FM model, PIMD simulations were
performed which allowed to investigate the influence of the nuclear quantum effects
while avoiding any double-counting which occurs in empirical water models. A
softening of mostly intra-molecular structures was found, but almost no effect on
the inter-molecular structures. This is in agreement with a number of studies
@, ] (and contradicting some recent study by Morrone [@] et al. which found
a considerable softening both intra- and inter-molecular structures).

In a last step, it was demonstrated that using the AdResS scheme it is possible
to set up a stable water-vacuum interface where the interfacial region is treated
with the full PIMD details and the bulk water described by a CG potential at the
level of molecules. This suggest a route of including nuclear quantum effects in
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“important” regions while treating the rest in a cheap effective manner.

7.4 Outlook

It was shown in this thesis that many of the problems occurring in the adaptive
resolution simulations can be overcome and a coupling of regions employing dif-
ferent models at the desired thermodynamic boundary conditions is possible. The
new H-AdResS scheme can be used for micro-canonical simulations and promises a
fresh look at the problems occurring in adaptive simulations due to the availability
of a Hamiltonian. This may also aid to understand coarse-grained models in gen-
eral as the adaptive setup is very sensitive to features lost in the coarse-graining
process.

The Gibbs- and Helmholtz-compensations also suggest a new way of calculating
free energy differences in hybrid H-AdResS simulations. As the density imbalance
is, in first approximation, related to the difference in chemical potential, the chem-
ical potential difference can simply be read off the density profile. For a more
accurate estimate one may use the thermodynamic force approach presented in
chapter 2, within which the external potential which yields a flat density profile
can be found. The difference between the end points of this potential then yields
the difference in chemical potential of the two models. In principle, arbitrary mod-
els can be coupled and one may even consider using and ideal gas as a CG model,
where the absolute free energy is available and therefore absolute free energies for
arbitrary atomistic models can be calculated.

An efficient implementation of the AdResS scheme is now available in GRO-
MACS release version 4.6 [1. However, the efficiency can still be improved further,
for which it is certainly favorable to design a MD code from scratch while having
the difficulties of the adaptive schemes in mind. Such a design is currently explored
for the Espresso++ software package B,

An adaptive treatment could especially be of interest for including the nuclear
quantum effects through PIMD. There, the computational speed-up can be signif-
icant due to the replacement of the imaginary time beads with a classical effective
interaction, which is typically a factor of P = 20 — 40 faster. With this it would be
possible to include the nuclear quantum effect in bio-molecular simulations, where
larger macromolecules need to be simulated. This might, for example, be relevant
for protein-ligand binding where only the binding region could be simulated with
the full PIMD details. Along the same lines, the nuclear quantum effects at the
water-vacuum interface deserve a more detailed study as well. For these applica-
tions, the development of models which do not double count the nuclear quantum
effect are of great relevance. The FM water model presented in chapter 4 fulfills

Lwww.gromacs.org
2www.espresso-pp.de
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this criterion, since it is based on a reference ab-initio simulation where the nuclei
are treated classically.
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Appendix A

Local pressure

The local pressure can be defined as the contribution to force dF across an in-
finitesimal area dA, such that ]

dF = —p dA (A1)

There is some ambiguity in the convention which defines how to count fources
“across” an area. Two different methods where considered here: The local virial
pressure (valid in equilibrium) was used for the Hamiltonian AdResS in chapter [0
while in section [3.4] was calculated using the more general “method of the planes”.

A.1 Local virial pressure

For pairwise interactions, the virial pressure is defined as [@]

1 p;
P=v <Z . + ZFijrij> (A2)

' i#j
where V is the volume, F;; the pairwise force between atom 7 and atom j. In order
to measure this quantitiy locally, the simulation box is dived into thin slabs of
width Az along the axis of resolution change (x-axis). The pressure is the measure
for a bin centered on z as

1 p;
p <$>_3AA:¢< o, T 2 Fijr”> (A.3)

i€bin (i€bin),j
i#A]

where the sum runs over particles which are within a bin (denoted as i € bin). This
definiton of the pressure is equivalent to measureing the Irving-Kirkwood pressure
for pairwise interacting, homogeneous systems
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A.2 Method of the planes

The local virial pressure is not valid for non-pairwise interactions or non-equilibrium
situations. A more general expression for the local pressure tensor, which is also
valid for inhomogeneous, non-equilibrium systems is given by the “Method of the
planes” [E] Thereby, the cross-sectional area is perpendicular to an axis of the
simulation box.

Here, it was assumed that the pressure profile is calculated in x-direction. For
the adaptive simulation in section [3.4] the pressure profile has to be measured
based on molecular (instead of all-atom) force. This ensures that the pressure is
well defined also in the hybrid and CG regions. The local pressure tensor then
reads:

P () = AZCB < Z (Pa - €,)(Pa - éu)> + % <ZFa -&,5gn(X, - &, — x)>

aEbin =
(A.4)
where A is a cross-sectional area perpendicular to the z-direction. The first term
corresponds to the ideal gas contribution calculated in a small slab centered at x
with thickness Az, and the second represents the contribution of the forces. Both
sums run over molecules, where p,, denotes the momentum and X, is the position
of molecule a.

For the adaptive simulation, this means that the ideal gas contribution of the
center of mass is fully included in the sum regardless of the weighting function of
the molecule, since those degrees of freedom fully contribute to the average in any
representation. The internal degrees of freedom, however, were not considered.
Note that the second sum runs over all molecules, however particles far away from
the plane at x (at distances larger than the maximal cutoff of the non-bonded
interactions) do not contribute to the sum.
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GROMACS run parameters

The following section describes the AdResS implementation which was added to
the GROMAC software package and will be part of release version 4.6. Instruc-
tions on how to use the method were also added to the GROMACS manual. The
parameters relevant for AdResS are as follows:

e adress_type defines the geometry of the atomistic zone, possibilities are
sphere, Xsplit, Const or Off. sphere realizes the spherical all-atom cavity
as described in chapter @, Xsplit defines the linear resolution swith as used
in chapter Bl The type Const sets constant value of the weight specified with
adress_const_wf which can be used for debugging or calculating pure hybrid
properties.

e adress_ex width defines the width of the atomistic zone, a of eq. 2.73
e adress hy width defines the width of the hybrid zone, b — a of eq. 273l

e adress_interface correction defines the type of correction to be applied
in the hybrid zone, possibilities thermoforce and no.

e adress reference _coords a vector defining the center of the atomistic zone.

e adress_cg grp-names defines which energy group(s) should be treated as
coarse-grained. At least one CG energy group has be defined using energygrps
for the AdResS simulation.

As discussed in section 2.4 the all-atom details are kept everywhere in the simula-
tion box. Only the non-bonded interactions are interpolated. In GROMACS, the
“topology” therefore has to include both the all-atom and CG interactions (the
CG interaction as a virtual site).

Lwww.gromacs.org
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The virtual sites interact like normal atoms, but the forces are redistributed
according to a predefined rule. In most cases, it is placed in the center of mass
and therefore, the force from the CG integration is distributed onto the atoms
according to:

mi ~ca
Foip = EFQB , (B.1)
where FCC is the CG interaction force and m; the mass of atom i of molecule «,
which has the total mass M,.
This is best illustrated on the simple example of an adaptive simulation of
water, as performed in chapter Bl The topology file (.itp file) is:

[ molecule type ]

; molname nrexcl

SOL 2

[ atoms ]

; nr type resnr residue atom cgnr charge mass
1 ow 1 SOL ow 1 -0.82
2 HW 1 SOL HW1 1 0.41
3 HW 1 SOL HW2 1 0.41
4 CG 1 SOL CG 2 0

[ settles ]

; OW funct doh dhh

1 1 0.1 0.16330

[ exclusions ]

1 2 3

2 1 3

3 1 2

[ virtual_sites3 ]

; Site from funct a d
4 1 2 3 1 0.05595E+00 0.05595E+00

The water molecule therefore is technically made up of oxygen, hydrogens and
the virtual site of type ‘CG’ (with zero mass). The virtual site (atom nr 4) is
constructed such that is placed in the center of mass. Here the special form for 3-
particles was used ‘virtual sites3’, in general (as for the toluene molecule in chapter
M), ‘virtual sitesn’ can be used. The interactions for hydrogen and oxygen are taken
from standard force-fields, but the CG model is a custom interaction and therefore
needs to be defined. This is done in another topology (.top) file, for example:

#include "ffgmx.itp"
[ atomtypes ]

;name mass charge ptype C6 C12

CG 0.00000 0.0000 Y 0.000000E+00  1.000000E+00
#include "hybrid_spc.itp"

[ system ]
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Adaptive water
[ molecules ]
SOL 8507

This defines an atomtype CG, where only the C12 coefficient (see eq. 222) is
set to 1. The functional form of the C12 interaction is the read from a table (as
explained in detail in the GROMACS manual).

The run parameter file (.mdp) then needs to define all relevant parameters for
the AdResS simulation:

...

; AdResS relevant options
energygrps = CG
energygrp_table = CG CG

; Method for doing Van der Waals

vdw-type = user
adress = yes
adress_type = xsplit
adress_ex_width =1.5
adress_hy_width = 1.5
adress_interface_correction = off
adress_reference_coords = 8 0 0O

adress_cg_grp_names = CG

The energy groups are used for several technical reasons (all these procedures
happen internally, without need for the user to interfere): First, it is required
to define an energy group for each tabulated interaction potential (which is not
the default one in table.xvg) in GROMACS. Secondly, also the neighbor-search
(verlet list) is performed for each energy group separately. Then, for calculating
the interactions different kernels (i.e. functions containing the loops over all pairs)
can be called. This is of great advantage as therefore the distinction between all-
atom and CG interaction can be made outside of the inner loop (and hence no
if clause is necessary for each pair. Finally, the AdResS implementation uses the
energy groups to disable interactions between the CG and all-atom interactions.
For this, the energy groups representing each coarse-grained interaction need to be
listed in adress_cg_grp_names.

For providing a thermodynamic force, all that needs to be done is to enable the
corresponding option

adress_interface_correction=thermoforce

Then, GROMACS expects an input table file (default name ‘tabletf.xvg’),
which contains three columns:
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1. rin nm
2. Vip(r) in kJ/ mol
3. —Fu(r) in kJ/(mol nm)

the variable r is thereby defined as the distance to the center of the all-atom zone
(specified by ‘adress_reference_coords’). In the simulation, the force is the applied
to the virtual sites (and therefore to the entire molecule). The direction is given by
the geometry chosen, where the unit vector in x-direction (adress_type=xsplit)
or the radial vector for spherical (adress_type=sphere) geometry is used.

B.1 Thermodynamic force iteration

The thermodynamic force iteration (as described in section B3]) was implemented
in the VOTCAH software package (version 1.2), which can be used as a scripting
engine to run a series of GROMACS (adaptive) simulations. The parameters are
specified a .xml file, where first the thermodynamic force has to be selected as a
method:

<method>tf</method>

For each interaction, the the geometry parameters are defined in the non-bonded
section.

<non-bonded>
<name>S0L</name>
<min>1.4</min>
<max>3.1</max>
<step>0.01</step>
<tf>
<spline_start>0.9</spline_start>
<spline_end>3.6</spline_end>
<spline_step>0.4</spline_step>
<molname>S0L</molname>
<prefactor>0.01382</prefactor>
</tf>
<inverse>
<target>dens.SOL.xvg</target>
(...)
</inverse>
</non-bonded>

2www.votca.org
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The min and max properties control the range in which the gradient of the density
profile is computed. The step variable defines the bin width of the thermodynamic
force. For sake of stability, it has been proven useful to smooth the density pro-
file with a spline interpolation. The parameters spline start,spline end and
spline_step control the range of the spline and the width of the grid used for a
spline fit (i.e. a least-squares procedure for finding the spline coefficients which de-
scribe the data best). The prefactor variable is the constant factor ﬁ appearing
in eq. 313, which contains the compressibility. The variable target contains the
file name used for the density profile. The number of iterations is the specified (as
for the IBI method) as

<iterations_max>60</iterations_max>

and many of the remaining options (GROMACS run input parameters) apply
in the same way as for standard iterative Boltzmann inversion of VOTCA. For
more detailed instructions see the VOTCA manuall. A tutorial demonstrating the
thermodynamic force iteration is provided with the VOTCA software package.

3www.votca.org
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