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Constant pH simulations with the coarse-grained MARTINI
model — Application to oleic acid aggregates
W.F. Drew Bennett, Alexander W. Chen, Serena Donnini, Gerrit Groenhof, and D. Peter Tieleman

Abstract: Long chain fatty acids are biologically important molecules with complex and pH sensitive aggregation behavior.
The carboxylic head group of oleic acid is ionizable, with the pKa shifting to larger values, even above a value of 7, in certain
aggregate states. While experiments have determined the macroscopic phase behavior, we have yet to understand the
molecular level details for this complex behavior. This level of detail is likely required to fully appreciate the role of fatty
acids in biology and for nanoscale biotechnological and industrial applications. Here, we introduce the use of constant pH
molecular dynamics (MD) simulations with the coarse-grained MARTINI model and apply the method to oleic acid aggre-
gates and a model lipid bilayer. By running simulations at different constant pH values, we determined titration curves and
the resulting pKa for oleic acid in different environments. The coarse-grained model predicts positive pKa shifts, with a shift
from 4.8 in water to 6.5 in a small micelle, and 6.6 in a dioleoylphosphatidylcholine (DOPC) bilayer, similar to experimental
estimates. The size of the micelles increased as the pH increased, and correlated with the fraction of deprotonated oleic
acid. We show this combination of constant pH MD and the coarse-grained MARTINI model can be used to model pH-
dependent surfactant phase behavior. This suggests a large number of potential new applications of large-scale MARTINI
simulations in other biological systems with ionizable molecules.

Key words: constant pH molecular dynamics, fatty acids, oleic acid, MARTINI model, coarse-grained model.

Résumé : Les acides gras à longue chaine sont des molécules importantes sur le plan biologique, dont le comportement
d’agrégation est complexe et sensible au pH. Le groupe carboxyle de tête de l’acide oléique est ionisable, le pKa évoluant
vers des valeurs plus élevées, même supérieures à 7, dans certains états agrégés. Si des expériences ont permis de
déterminer le comportement dans la phase macroscopique, on n’a pas encore élucidé les détails de niveau moléculaire de
ce comportement complexe. Ce niveau de détail est vraisemblablement nécessaire pour apprécier pleinement le rôle des
acides gras en biologie, ainsi que pour les applications biothechnologiques et industrielles nanoscopiques. Ici, nous
présentons l’utilisation de simulations de dynamique moléculaire à pH constant à l’aide du modèle gros-grain MARTINI et
nous appliquons la méthode aux agrégats d’acide oléique et à un modèle de bicouche lipidique. En exécutant les simula-
tions à différents pH, nous déterminons les courbes de titrage et le pKa résultant de l’acide oléique dans diverses conditions.
Le modèle gros-grain prédit des changements positifs de pKa, lequel passe de 4,8 dans l’eau à 6,5 dans une petite micelle,
et à 6,6 dans une bicouche de DOPC, qui sont similaires aux estimations expérimentales. La taille des micelles s’accroît
quand le pH augmente et corrèle avec la fraction d’acide oléique déprotoné. Nous montrons que l’on peut se servir de cette
combinaison de dynamique moléculaire à pH constant et du modèle de simulation gros-grain MARTINI pour modéliser le
comportement variant avec le pH dans la phase tensioactive. Cela suggère un grand nombre de nouvelles applications
possibles de simulations MARTINI à grande échelle pour d’autres systèmes biologiques comprenant des molécules ioni-
sables. [Traduit par la Rédaction]

Mots-clés : dynamique moléculaire à pH constant, acides gras, acide oléique, modèle Martini, modèle gros-grain.

Introduction
Surfactants are crucial chemicals in our daily lives, from soaps

and detergents to food processing and biotechnology. Fatty acid
aggregation is important for a wide range of applications. Fatty
acids form vesicles that are capable of self-replication,1 are in-
volved in creating andmaintaining a pH gradient during growth,2

and are involved in the disruption of the mitochondrial proton
gradient during nonshivering thermogenesis.3 Fatty acids com-
bined with relatively large cationic penetrating amphiphiles are
able to dissipate the pH gradient across a vesicle.4 Lauric acid was
recently used to coat the surface of iron nanoparticles for im-
proved dispersibility.5 Lauric acid and other short and medium

chain fatty acids have been shown to have antimicrobial activity.6

Given their simple chemical structure, fatty acids provide a
valuable model system for simulations and experiments, with a
large number of possible applications. In particular, they can
be thought of as a model system for physiologically important
ionizable lipids such as phosphatidylserine and phosphatidic
acid lipids.

Oleic acid (OA) is a long chain fatty acid with an 18-carbon tail
with one double bond and a carboxylic head group. The phase
behavior of oleic acid has been studied extensively.7,8 At low pH
(<7), OA is mostly protonated and an oil phase is observed; at
intermediate pHs (7–9), bilayers and vesicles are observed; at high
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pHs (>9), OA is mostly ionized, and micelles and other structures
are observed.7 The pKa of oleic acid as a monomer in bulk water is
difficult to measure due to its low solubility and tendency to
aggregate. The pKa values of several shorter chain fatty acids are
near 4.8.9

There have been a number of molecular dynamics (MD) simu-
lations studying oleic acid and other long chain fatty acids.10–14

Oleic acid has been simulated in a dipalmitoylphosphatidylcho-
line (DPPC) bilayer using coarse-grained MD simulations.10 Partial
phase diagrams for mixtures of sodium laurate and oleate were
studied using atomistic simulations, reproducing the experimen-
tally observedmicellar, hexagonal, and lamellar phases.12 A single
lauric acid was recently simulated in ionic and nonionic micelles
using atomistic constant pH MD simulations.15 A subsequent
study investigated the aggregation of 20-mers of lauric acid using
constant pH simulations.16 In both micelle environments, lauric
acid exhibited positive pKa shifts compared to in water.

Modeling the effect of pH on aggregation is challenging because
on the one hand the timescale precludes the use of quantum
chemical approaches, while on the other hand the chemical na-
ture of proton transfer precludes the use of classical molecular
dynamics. To overcome this problem, approaches have been
developed that allow the protonation state of ionizable groups
to change dynamically during molecular dynamics simula-
tions.17–21 These changes are driven by interactions with the
local environment and pH of the solution, which is now a pa-
rameter in the simulation.

Coarse-grained (CG)molecular dynamics simulations have been
used extensively to model surfactant systems.22–26 CG systems
allow much larger systems to be simulated for longer timescales.
For long timescale processes such as vesicle fusion, aggregation,
and lipid domain formation that are beyond the capacity of cur-
rent atomistic simulations, CG models can be used. In MARTINI,
on average four nonhydrogen atoms are combined into a single
interaction site, while attempting to maintain a reasonable de-
gree of chemical specificity. Here, we use MARTINI to model OA
surfactants and dioleoylphosphatidylcholine (DOPC) lipids. To the
best of our knowledge, this is the first time that constant pH MD
has been used with a coarse-grained model. OA was chosen as it
has a simple chemical structure, has complex pH-dependent
phase behavior, and is important in a wide range of applications.
Due to computational constraints, we simulated small aggregates
of OA, a 20-mer and a 30-mer, and therefore cannot directly com-
pare our results with experimental phase behavior. We also sim-
ulated OA in a DOPC bilayer using constant pH MD simulations.

Methods

CG simulations
We ran simulations of oleic acid aggregates using the standard

MARTINI model27 and the MARTINI polarizable water model.28 In
the original MARTINI model, four waters were modeled with a
single Lennard-Jones particle. PolarizableMARTINI water also rep-
resents four waters, but with three particles, a positive and nega-
tive partial charge bonded to a central Lennard-Jones particle.28

Oleic acid is modeled with five hydrophobic beads, and a single
hydrophilic bead for the head group. The head group bead is
negatively charged for oleate and neutral for oleic acid, and they
have different Lennard-Jones interactions. These parameters were
adapted from aspartate and aspartic acid from the MARTINI 2.1
amino acid force field.27

Standard MARTINI molecular dynamics run parameters were
used for the simulations,27 with the additional parameters for
constant pH simulations discussed below. We used a 20 fs time
step, updating the neighbor list every 10 steps. For the Lennard-
Jones interactions, a switch potential was employed from 0.9 to
1.2 nm. Electrostatic interactions were determined with Coulomb’s
equation with a 1.2 nm cutoff and a shifted potential from 0 to

1.2 nm. A dielectric constant of 2.5 was used for screening of charged
interactions consistent with theMARTINI parameterization. Simula-
tions were run at 330 K using the Berendsen weak-couplingmethod
and a coupling constant of 1 ps.29 For the micelle systems, isotropic
pressure coupling, with a pressure of 1 bar (1 bar = 100 kPa) and a 1 ps
coupling constant, was used with the Berendsen weak-coupling
method.29 We used semi-isotropic coupling for the DOPC bilayer
system with pressures of 1 bar and 1 ps coupling constants, both
lateral and normal to the plane of the bilayer.

Constant pH methodology
We used a recent implementation of constant pH molecular

dynamics,20 which is based on a modified version of GROMACS
3.3.3.30,31 This method allows ionizable residues to change proto-
nation state during the course of a simulation. Here, we first give
a brief general overview of the method and then provide the
details about the constant pH simulation setup used in this work.
For a more detailed presentation of the method, we refer the
reader to a previous implementation paper.20

As in more common free energy calculations, different proto-
nation states of a titrating group are coupled via a � parameter, in
such a way that the residue is protonated at � = 0 and deproto-
nated at � = 1. The energy function of the system is a linear com-
bination of the potential energy of the protonated and
deprotonated state and some additional �-dependent energy func-
tions that will be specified later:

(1) V(�) � (1 � �)Vprot � �Vdeprot � U(�)

� �ln10�pKa
ref � pH� � �G̃ref

FF (�)

where Vprot (Vdeprot) is the total potential energy function of the
system if the group is protonated (deprotonated). The reference
pKa

ref is the experimental reference pKa value of an OA in water
(4.8).9 �G̃ref

FF ��� and U(�) are a correction term and a barrier poten-
tial that are described below.

In contrast to the established thermodynamic integration ap-
proach, � is treated as a free, dynamic coordinate with mass, m�,
very much like the Cartesian coordinates of all atoms. Accord-
ingly, � is subject to a force

F� � �
�V(�)

��

To constrain the � interval, we introduce a dynamic angular
coordinate, �, and � is redefined as the projection

� � r cos(�) �
1
2

For r, we take r �
1
2

� � with an appropriate fluctuation size, �.
We use a value of � = 0.05, because with this value the average � at
the physical states was �0 (protonated state) and �1 (deproto-
nated state).20 The actual dynamics takes place in � space, and is
subject to a force

F� � �
�V(�(�))

��
� r sin(�)�V(�(�))

��

The biasing potential, U(�), is a function of � that acts as a
barrier between � 0.1 and � 0.9. In this way, it controls the fre-
quency of the transition between the protonation states and that
limits the time spent at the unphysical intermediate states:

The biasing potential is constructed by interpolating cubic
splines between seven points between � 0.1 and 0.9: (0.1, 0), (0.2,
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h/2.25), (0.3, h/1.25), (0.5, h), (0.7, h/1.25), (0.8, h/2.25), and (0.9, 0) with h
being the height of the barrier. We used a value of 10 kJ/mol for h.

To model protonation events at a given pH we included the
effect of the solution’s pH (second term in eq. (1)) and contribu-
tions to the free energy of protonation due to breaking and form-
ing chemical bonds, which are not described by the MARTINI
force field, in the potential energy function (last term in eq. (1)).
The latter term, �G̃ref

FF ���, shifts the protonation equilibrium in the
potential energy function, V(�), such that for a simulation under
the reference conditions (a single OA in water), the free energy
difference between the end states is only dependent on the exter-
nal pH. When embedded in a different environment, such as a
bilayer or micelle, the long-range interactions with that environ-
ment (first two terms in eq. (1)) can shift that equilibrium and
therefore alter the OA’s pKa value. To determine �G̃ref

FF ��� we first
computed the free energy of deprotonating a single OA in water
by means of the thermodynamic integration technique32 and fit-
ted a third order polynomial function to the derivative of the free
energy with respect to l:

dG
dl

� ��VCG(l)
�l �l

Here, VCG is the standard MARTINI coarse-grained force field
potential energy function, linearly interpolated along the cou-
pling parameter, l, between protonated and nonprotonated OA,
which should not be confused with the energy function for the �
dynamics in eq. (1).

The reference deprotonation free energies were obtained as
follows: A single OA was placed in a cubic box filled with
1020 water beads. The reference free energy simulations consisted
of 11 separate 100 nsMD,with the coupling parameter, l, increased
from 0 to 1 with a 0.1 spacing, thus deprotonating the OA. Figure 1
shows the profile obtained for the change of protonated oleic acid
(OAOH) in water to negatively charged deprotonated oleate (OA1−).
The size and shape of the box in the reference and the monomer
constant pH simulations were identical.

In the constant pH simulations, a stochastic Andersen thermo-
stat was used to maintain the temperature of the � subsystem at
320 K with a coupling time of 0.02 ps. This coupling time in
combination with a mass, m�, of 20 amu and barrier height of
10 kJ/mol yields a small ratio between transition time and resi-
dence time.

Finally, we remark that during the simulation, the total charge
is allowed to fluctuate. Although this can lead to artifacts if Ewald
summation techniqueswere used, it is of no concern here because
we using a shifted cutoff scheme for which the MARTINI force
field has been parameterized.27,28

Systems
Figure 2 shows the systems we have simulated: OA as a mono-

mer in bulk water, in micelles with 20 and 30 OA molecules,
and in a DOPC bilayer. For the micelles, OAs were initially
randomly dispersed in a box of water and aggregated into a
stable micelle rapidly. We used a preformed DOPC bilayer and
inserted a single OA. We ran the monomer constant pH simu-
lations for 1 	s, 100 ns for the 20-mer, 50 ns for the 30-mer, and
100 ns for the DOPC bilayer. The constant-pH algorithm scales
linearly with the number of titratable groups, limiting the total
number of ionizable residues we are able to simulate in a single
simulation.

Titration curves
To determine titration curves, we ran constant pH simulations

at a range of pH values, with each fatty acid treated as ionizable.
For each monomer, we determined the fraction of time spent
deprotonated (� > 0.9). Each monomer is then treated as an inde-

pendent sample, from which we determined the mean and stan-
dard error of themean for the fraction of deprotonated OA at each
pH. These were then fit with the Hill equation:

S(deprot) �
1

10n(pKa�pH) � 1

Here, S is the fraction of charged OA. From the fits we obtain
estimates for the bulk pKa of OA in different aggregation states.
The Hill coefficient, n, gives the degree of cooperativity (n > 1) or
anticooperativity (n < 1). When n is equal to 1, Henderson–
Hasselbalch behavior is observed.

Results

Titration as a monomer
To first test whether the MARTINI model was suited for con-

stant pH MD, we determined the titration curve for a single oleic
acid in bulk water. We ran a series of constant pH simulations at
different pH conditions, and determined the fraction of time the
titratable groups are deprotonated. Figure 3A shows how the titra-
tion state changes between � values of −0.05 and 1.05 during sim-
ulations at pH values below, near, and above the pKa. At pH
conditions well above or below the pKa the OA stays close to either
0 or 1, but attempts to cross are observed. Near the pKa there are
many crossings between 0 and 1 or protonated and deprotonated,
respectively. Figure 3B shows the titration curve we obtain with
the MARTINI model of OA. We fit the curve to the Hill equation
(red line), with a pKa of 4.8 and a Hill coefficient of 0.91. This is the

Fig. 1. Monomer free energy calculation. (A) Schematic showing the
CG model of OAOH and OA1−. (B) Results from a thermodynamic
integration calculation of a single OA in a box of water. The fit is a
third-order polynomial (y = −1.0268x3 − 19.673x2 − 70.567x − 2.4709).
Please view the article online for the colour version.
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pKa we used as the reference state of water, suggesting that con-
stant pH MD and MARTINI model are technically compatible and
can thus be combined.

Titration in micelles
We ran simulations of 20 and 30 OAs aggregated into micelles.

Due to the low solubility of OA all the monomers were part of the
preformed aggregate for all of the simulations and all pH condi-
tions. The titration curves for the 20-mer and 30-mer are shown in
Fig. 4. The curves are very similar for both the 20- and 30-mer
micelles. Compared to the monomer, we observed substantially
shifted titration curves, with a less steep slope, and larger pKa
values. From the fit to the Hill equation, we find that for a 20-mer
the pKa is 6.3 with a Hill coefficient of 0.51. For the 30-mer, we
estimate OA to have a pKa of 6.5 and a Hill coefficient of 0.49. As
the aggregate becomes larger, the pKa further increases.

Snapshots of the aggregates at the different pH values are
shown in Fig. 5 with the protonation state of each monomer rep-
resented by its color. These are static snapshots, but the dynamic
nature of these systems must be stressed.

Figure 6 shows the radius of gyration for the micelles as a func-
tion of the pH. We find a curve similar in shape to the titration
curves, shown in Fig. 6C for comparison. At lower pH values the
OAOH predominates, and the micelle has a lower radius of gyra-

tion, while at higher pH values the OA1− forms the majority, and
the micelle has a larger radius of gyration.

Titration in a DOPC bilayer
We simulated one oleic acid molecule in a DOPC bilayer using

constant pH MD simulations. The fatty acid sits in the membrane
with the head group near the glycerol backbone, and the long tail
in the hydrophobic bilayer as seen in Fig. 2.

Figure 7 shows the titration curve for a single OA in a DOPC
bilayer. From the fit, a Hill coefficient of 0.96 and a pKa of 6.6 were
determined for OA in a DOPC bilayer. Figure 8 shows the partial
density profile for the DOPC bilayer, at low pH (2) when the head
group is protonated and able to cross the bilayer, and at high pH
(15) when it is charged and stays on one side of the bilayer for the
entire 100 ns simulation. When the head group is deprotonated
and charged, the density is further out from the bilayer center, to
interact with the charged DOPC head groups.

Discussion

pKa shifts
For the OA monomer, we found a titration curve that was close

to the expected Henderson–Hasselbalch equation, with a Hill co-
efficient of 0.91. The titration curves for OA in different aggregate

Fig. 2. OA systems used in this work. Water is shown as orange sticks, OA in grey with a red sphere for the carboxylic head group, and DOPC
in grey with grey spheres for the phosphate and choline beads. Please view the article online for the colour version.
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states were both shifted to larger values, and the curves were less
steep. This large increase in pKa means that asmonomers in water
at pH 7, there would be practically no protonated OAOH. A consid-
erable fraction of OA would be protonated in the micelles and in
a DOPC bilayer at neutral pH conditions. This drastic shift in
ionization state would have a large effect on the properties and
physicochemical behavior of OA.

The positive shifts in pKa match the expected trend from exper-
imental phase diagrams of OA.7 We cannot directly compare our
current simulations of OA with experiment due to finite system
sizes and our choice of 20- and 30-mers, which may in fact not be
stable thermodynamic states. Future work on larger systems will
be needed to directly compare to experimental results, where
lamellar structures are observed for oleic acid.

The reasons for the positive shift in pKa are likely complex, and
will require future work to fully understand. Electrostatic repul-
sion between the OA1−’s in the aggregates might be used to ex-
plain the pKa shifts. In an aggregate, having one deprotonated and
negatively charged OA will reduce the probability that neighbor-
ing OA’s will also be deprotonated. Our results predicting a posi-

tive shift in pKa match previous constant pH MD simulations
using an atomistic model of lauric acid.16

The amount of water interacting with the OA could also ex-
plain the shifts in pKa. When there is more water to interact
with, the titration behavior would be more similar to a mono-
mer OA. In aggregates, the OA head group “experiences” a
different and heterogeneous chemical environment, with less
exposure to water, compared to a monomer in water. Taking
this reasoning to the extreme, without any water the pKa would
shift to extremely high values, as having a desolvated nega-
tively charged OA exposed to bulk hydrocarbon would be too
energetically expensive. Indeed, we previously observed shifts
in pKa of aspartate and glutamate to �16 at the center of a DOPC
bilayer using atomistic simulations.33

Besides a positive shift in pKa, for the micelles we also observed
a large degree of anticooperativity in the titration curves, with
Hill coefficients near 0.5. This behavior might again be explained
using the electrostatic repulsion arguments mentioned previ-
ously. The multibody interactions between individuals in the ag-
gregate could also explain this trend. As individual molecules
change from protonated to deprotonated, the size of the aggre-
gate changes, as illustrated by the similarity between the radius of
gyration curves and the titration curves (Fig. 6). The protonated
OAOH prefers the largermostly deprotonated aggregate, while the
OA1− prefers the smallermostly protonated aggregate. This behavior
would result in anticooperativity; both species have more favorable
interactions with molecules of the opposite protonation state.

Fig. 3. Monomer titration. (A) The fluctuation of OA’s protonation
state for the final 50 ns of the simulation. (B) Titration curve for OA
and the fit with the Hill equation. Please view the article online for
the colour version.

Fig. 4. Titration curves for oleic acid aggregates. (A) Titration
of a 20-mer aggregate of OA with the titration points of the the
20 individual OA monomers shown as points. The mean and standard
error of the mean for all 20 OAs is shown, along with a fit to the Hill
equation. The titration curve for a monomer in bulk water is shown
for comparison. (B) The same as (A), but for a 30-mer aggregate. The
points for all 30 OAs are brown squares. Please view the article
online for the colour version.
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For OA in a DOPC bilayer, the MARTINI model predicts a pKa of
6.6. This compares reasonably well to the value of 7.2–7.4 for
stearic acid in an egg phosphatidylcholine (PC) bilayer34 and
7.5 for oleic in an egg PC bilayer.35 Electrostatic repulsion may
also be used to explain the titration curve shifts in themicelles, in
the bilayer, where the OA1− head group is near the negatively
charged phosphates of DOPC.

Model
By using the MARTINI model we can run longer timescale sim-

ulations of the constant pH approach, bringing biologically inter-
esting questions within reach of simulations. The agreement
between the CG model and experiment for the pKa of OA in a PC
bilayer is very good, but coarse-grainedmodels have limitations in
the accuracy and detail of their representation of the system of
interest. In one example, we previously showed that the MARTINI
model did not accurately reproduce the formation of pores in PC
bilayers compared to atomistic results.36 Understanding the lim-
itations of a model is important for future use and refinement.

It will be important to study these aggregates using an atomistic
model, and combining methods, where the aggregates from the
CG simulations could be converted to atomistic representation,
and vice versa. We previously determined the change in pKa for
the titratable amino acids from water through a DOPC bilayer,
which could be used for parameterization.33 Qualitatively our
results of the positive shift in pKa of long chain fatty acids in
micelle states compare well to other recent atomistic simula-
tions of lauric acid micelles with constant pH MD.16 It will be

Fig. 5. Snapshots of the micelles during the constant pH simulations. The OA tails are grey lines, and the head groups of OAs are spheres,
colored by their respective ionization state, with red OA1− and blue OAOH. Please view the article online for the colour version.

Fig. 6. (A) and (B) Radius of gyration for the micelles at different pH
conditions. The radius of gyration was determined using the
program g_gyrate from GROMACS. (C) Titration curves for the
micelles for reference. Please view the article online for the colour
version.

Fig. 7. OA titration curve in a DOPC bilayer. The curve is fitted to
the Hill equation. The monomer titration curve in water is shown
for reference. Please view the article online for the colour version.
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interesting to try the new parameters we recently developed
for aspartate for the MARTINI 2.2 amino acid force field37 with
constant pH MD simulations. These parameters were shown to
better reproduce the side chain partitioning in a DOPC bilayer
than MARTINI 2.1.

The broad distribution of individual monomers for the 20- and
30-mer in Fig. 4 (grey and brown symbols) illustrates incomplete
sampling. Because each OA is an independent sample, over a long
enough timescale the time averaged mean protonation state for
each monomer should be equal to the mean for the aggregate.
This is a stark reminder of the sampling required for surfactant
systems, where 100 ns is insufficient for a small 20-mer.

Future directions
We show this is as a promising new method for studying

coarse-grained systems of aggregating amphiphiles, and likely
for many protein and lipid bilayer systems. Further testing
and refinement may be needed, such as the effect of counter
charges, salt concentration, box size, and long-range electro-
statics. There are many interesting avenues for future research
given the importance of pH and the ability to model aggrega-
tion of small molecules.

Conclusions
We have combined MARTINI coarse-grained simulations and

constant pH MD to study the titration behavior of small aggre-
gates of oleic acid and oleic acid in a DOPC bilayer. The titration
behavior of oleic acid is shown to depend on the local chemical
environment. In small micelles, the pKa of oleic acid increases
and we observe a large degree of anticooperativity. The agree-
ment between experiment and CG simulations for the pKa of
oleic acid in PC bilayers is a good validation for the model. We
anticipate future work into this combination of CG models
with constant pH simulations.
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