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Abstract. We present a series of numerically tabulated atom-centered orbital
(NAO) basis sets with valence-correlation consistency (VCC), termed NAO-
VCC-nZ. Here the index ‘nZ’ refers to the number of basis functions used for
the valence shell with n = 2, 3, 4, 5. These basis sets are constructed analogous
to Dunning’s cc-pVnZ, but utilize the more flexible shape of NAOs. Moreover,
an additional group of (sp) basis functions, called enhanced minimal basis, is
established in NAO-VCC-nZ, increasing the contribution of the s and p functions
to achieve the valence-correlation consistency. NAO-VCC-nZ basis sets are
generated by minimizing frozen-core random-phase approximation (RPA) total
energies of individual atoms from H to Ar. We demonstrate that NAO-VCC-
nZ basis sets are suitable for converging electronic total-energy calculations
based on valence-only (frozen-core) correlation methods which contain explicit
sums over unoccupied states (e.g. the RPA or second-order Møller–Plesset
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perturbation theory). The basis set incompleteness error, including the basis set
superposition error, can be gradually reduced with the increase of the index ‘n’,
and can be removed using two-point extrapolation schemes.

S Online supplementary data available from stacks.iop.org/NJP/15/123033/
mmedia
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1. Introduction

Density-functional theory (DFT) is currently the most widely used method for first-principles
electronic-structure calculations. The random-phase approximation (RPA) [1–5] and methods
related to it [1, 6–15] are state-of-the-art density-functional approximations (DFAs) that address
some notorious deficiencies of conventional DFAs in, for example, describing non-covalent
interactions [11, 13, 14, 16, 17], reaction barrier heights, [11, 13, 18], surface adsorbates [4, 19]
and the f-electron metal cerium [20].

Within the adiabatic-connection fluctuation–dissipation theorem, the RPA correlation
energy ERPA

c is expressed as [11]

ERPA
c =

∫
∞

0

du

2π
Tr[ln(1 − χ0(iu)v) + χ0(iu)v]. (1)

Here v = 1/|r − r ′
| is the bare Coulomb interaction kernel. χ0(r, r′

; iu) is the Kohn–Sham (KS)
independent-particle density response in imaginary frequency

χ0(r, r′
; iu) =

∑
σ

∑
n,m

(
fn,σ − fm,σ

)
εn,σ − εm,σ − iu

φ∗

n,σ (r)φ∗

m,σ (r′)φm,σ (r)φn,σ (r′), (2)

where φn,σ and εn,σ are the KS eigenfunctions and eigenenergies with Fermi occupation
numbers fn,σ . Unfortunately, the RPA suffers heavily from its well-known slow convergence
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with basis set size [7, 12, 21–23], a trait which is common to all explicit-correlation methods
(e.g. second-order Møller–Plesset perturbation theory (MP2), or the coupled-cluster methods).
In physical terms, this slow convergence is due to the difficulty of using smooth orbital product
expansions to describe the electron–electron Coulomb cusps in real space [24, 25]. In this
work, we assess the performance of different types of atom-centered-orbital basis sets in RPA
calculations, which include the widely used analytical Gaussian-type orbital (GTO) and the
flexible numeric atom-centered orbital (NAO) basis functions.

Over the years, several methods have been pursued that aim to address the slow
convergence of the correlation energy, including:

• Explicitly correlated wave function methods (i.e. R12 and F12) [24, 26–28], the
transcorrelated method [29, 30], diffusion quantum Monte Carlo [31–33], density
functional perturbation theory together with plane-wave basis sets [34, 35] and Nakatsuji’s
local Schrödinger equation method [36]. All these methods attempt to accelerate the
convergence behavior directly by addressing the electron–electron cusp.

• Complete-basis-set (CBS) extrapolation schemes, which are currently the most popular
method to eliminate the basis set incompleteness error in quantum chemistry. These CBS
extrapolation schemes are based on standardized basis sets. These basis sets provide a
step-wise systematic convergence of the basis set incompleteness error, which enables an
analytic extrapolation to the CBS limit particularly for the terms containing unoccupied-
state sums [6, 7, 21, 22, 37–41].

• CBS extrapolation in plane-wave basis sets. Plan-wave basis sets are another popular
choice for electronic-structure calculations, because they provide an intrinsically and
systematically improvable resolution of v in real or reciprocal space by increasing the
momentum cutoff parameters. Plane waves are particularly suitable when combined with
‘pseudoization’ strategies that remove the atomic nuclei and core electrons from the
explicit parts of the calculation. The plane-wave basis set error convergence of the RPA
correlation energy has been investigated by Harl et al [16] and Björkman et al [42].
A recent development by Shepherd et al [40] suggests that, by introducing a new kind
of energy cutoff based on the momentum transfer vector, it is possible to obtain accurate
extrapolated correlation energies with lower computational cost. In the closely related GW
method [43–46] the completeness relation is used to collapse the sum over unoccupied
states [47, 48].

The most widely used basis sets in quantum chemistry for CBS extrapolations are Dunning’s
(augmented) polarized valence-correlation consistent GTO basis sets (aug)-cc-pVnZ [49–51],
with n = 2, 3, 4, 5 and higher. In early 2001, Furche investigated the basis set dependence of the
frozen-core RPA method for the atomization energy of N2 using the cc-pVnZ basis sets [22].
Comprehensive studies were carried out in recent years by Eshuis et al [21], reporting accurate
benchmark data of the frozen-core RPA method, including various covalent and non-covalent
interactions using the two-point extrapolation scheme from quadruple-ζ (4Z) and quintuple-
ζ (5Z) together with Dunning’s (aug)-cc-pVnZ basis sets. Fabiano et al [37] investigated
the basis set convergence behavior of all-electron RPA calculations together with Dunning’s
correlation consistent GTO basis sets augmented with core and core–valence basis functions
(VnZcv with n = 4, 5, 6 and 7) for H, C, N, O, F and Ne. It was found that the all-electron
RPA method suffers from serious basis set incompleteness errors. Neither the extrapolation
from 4Z and 5Z nor bare septuple-ζ (7Z) calculations without extrapolations suffice to provide
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converged results for the all-electron RPA method. It was suggested that accurate results can
be achieved by extrapolating from 5Z and sextuple-ζ (6Z), if globally optimized two-point
extrapolation schemes are employed. These observations reveal that the valence and core
correlation contributions converge differently in RPA calculations, indicating that the basis set
parts accounting for core and valence correlation can be constructed separately [52, 53].

We here explore the use of NAO basis functions of the form

ϕi(r) =
ui(r)

r
Ylm(�) (3)

as a recipe to obtain an efficient, systematic ‘correlation consistent’ convergence of the
unoccupied-state sums in equation (2) for RPA, MP2 and related explicitly correlated
approaches. Here, ui(r) is a radial function and Ylm(�) denotes the real parts (m = 0, . . . , l) and
imaginary parts (m = −l, . . . ,−1) of complex spherical harmonics. Analytic prescriptions such
as Slater-type orbitals (STOs) [54, 55] or GTOs (including the Dunning basis sets) [49–51, 53]
are obviously consistent with this shape, but the radial function ui(r) may also be chosen
independently of any analytical restriction [56–62].

Previous investigations [57, 58] have shown that CBS total energies can be obtained with
NAO basis sets for conventional DFAs and HF. For instance, efficient, hierarchical basis sets for
DFT calculations for elements 1–102 were developed in 2009 within the Fritz Haber Institute
‘ab initio molecular simulations’ (FHI-aims) electronic-structure package [57], FHI-aims-2009
for short. The radial functions of these basis sets are organized in groups (so-called ‘tiers’) of
functions in addition to a minimal basis of the occupied orbitals (core and valence) of spherically
symmetric free atoms. The additional ‘tiers’ (n = 1–4) were found by a step-wise minimization
of the LDA total energies of symmetric dimers for all elements from light to heavy. The FHI-
aims-2009 basis sets were found to be accurate and transferable for the total energies of all
local, semilocal and hybrid DFAs and the HF method [57, 63].

However, the unoccupied state sums of equation (2) present a different problem: Obtaining
systematic convergence for a spectrum of unoccupied states, the number of which is not
bounded by the number of electrons in the system but rather by the spatial resolution needed to
approximate the effect of the electron–electron cusp in a systematic way. Ren et al [63] have
investigated the convergence properties of the FHI-aims-2009 basis sets for explicit-correlation
methods such as RPA and MP2. In essence, the convergence of energy differences (e.g. binding
energies) is satisfactory, but only if a counterpoise (CP) correction scheme is applied.

In this paper, we develop a new sequence of NAO basis sets with valence-correlation
consistency for light elements (H–Ar), in order to extend the reach of this prescription to
absolute total energies for explicitly correlated methods and to CBS extrapolation schemes
for cases where a direct CP correction is not practical (e.g., energy differences between very
different conformations of a single molecule). As outlined below and in the appendix, using
NAOs for this purpose offers both physical and numerical advantages in (i) the radial function
shape near the nucleus, (ii) their tails toward large distances and (iii) the fact that their spatial
extent can be controlled by a single criterion (smooth cutoff distance, which can be large) in
a practical calculation. We stress the fact that these new NAO basis sets are not intended to
supersede the FHI-aims-2009 basis sets, but instead serve as an independent complement for
methods which require a direct treatment of the electron–electron cusp by way of unoccupied-
state sums.

Dunning analyzed the contribution of basis functions to the correlation energy on the
theoretical level of the frozen-core configuration interaction method with single and double
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excitations (CISD) [49]. He found that the first d-type GTO function has the largest effect on
the correlation energy, but the second d-type GTO function has approximately the same effect as
adding the first f-type GTO function. Likewise, the third d-type, second f-type and first g-type
GTO function compose the third grouping. Based on these observations, Dunning generated
a series of basis sets by introducing batches of basis functions that give a (approximately)
consistent amount of correlation energy from large to small. These GTO basis sets are called
‘correlation consistent’. In this work, we are interested in whether this strategy also works for
the NAO basis functions.

Correlation consistent basis sets can provide energies and other ground-state and excited-
state properties that converge smoothly toward the CBS limit, especially for explicit-correlation
methods, such as RPA, MP2 and CCSD(T). This observation has resulted in many empirical
extrapolation formulae that can be used to estimate the CBS limit [64–66]. Using the He ground
state energy, Hill [67] found that the energy increments due to partial waves of a given angular
momentum number l in a CI calculation are proportional to (l + 1

2)
−4, which immediately yields

an inverse relation between the correlation energy and the highest angular momentum lmax in a
specific basis set [68–70]:

E cor
lmax

= E cor
∞

+ A/(lmax + 1)3 + O
[
(lmax + 1)−4

]
. (4)

This relation can be used to extrapolate the energy for atoms, but can only be used approximately
for molecules. More importantly, Klopper et al [70] argued that this relation is not fulfilled
until the function spaces with lower l than lmax are saturated. Dunning’s ‘correlation consistent’
strategy introduces a group of s and p basis functions on top of the minimal basis (named the (sp)
correlation set) to facilitate the convergence of the valence correlation energy. Generally, these
basis functions mainly affect the description of the valence electrons, and are used to define the
index ‘n’ of Dunning’s basis sets, i.e. the cc-pVnZ basis sets contain n s (and n p) basis functions
for the valence shell (1 from the minimal basis, and n − 1 from the (sp) correlation set). The s
and p function spaces in cc-pVnZ basis sets have been saturated further in several subsequent
studies [50, 52, 53, 71]. Core-correlation consistency requires augmented basis functions with
much more compact radial shape, as, e.g. in cc-pCVnZ [53] or cc-pwCVnZ [52]. The calculation
of electronic affinities and other properties associated with anions requires augmented diffuse
basis functions, i.e. aug-cc-pVnZ [50]. Ahlrichs and co-workers proposed a family of def2
basis sets [71], that have become one of the default choices in the TURBOMOLE program
(see footnote 7) [71, 72]. For the first- and second-row elements, the def2 basis sets use the
same polarization sets as Dunning’s cc-pVnZ basis sets, but the former generally contains more
s and p functions than the latter. These s and p functions were determined by minimizing the HF
energies of each element. Distinct from these works, in this paper we investigate the influence of
saturating s and p function spaces for valence-correlation consistency. We propose an additional
group of sp functions, named enhanced minimal basis, which greatly improves the valence
correlation convergence (VCC) behavior of our ‘correlation consistent’ basis sets (see section 3
for details).

Dunning’s ‘correlation consistent’ GTO basis sets can be incorporated into the NAO
framework of FHI-aims [57] and other NAO codes without any additional implementation
effort. However, our investigations show that these GTO basis sets require more expensive
real-space integration grids to achieve a numerical integration accuracy that is comparable to
that of the NAO functions in FHI-aims. As shown in the appendix, this is in fact not only just a
numerical but also a physical problem of any contracted GTO function with very high exponents
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near the nucleus. Regardless of the integration method used, the actual integrand in expressions
such as ∫

d3rϕi(r)Ĥscfϕi(r) (5)

(Ĥscf denotes the self-consistent field Hamiltonian of standard or generalized Kohn–Sham
theory and ϕi denotes a basis function) may become unphysical very close to the nucleus due
to the inclusion of very sharp primitive GTOs. In contrast, NAO basis functions do not have
this problem as one can use the exact occupied orbitals of free atoms as the minimal basis.
Similar numerical integration difficulties also occur for GTOs far from the nucleus, where
the analytical tails of diffuse GTOs decay slower than those of the NAO functions. Here, it
proves extremely convenient that NAO functions can be rigorously localized by a confining
potential [57]. Even if the confinement radius is large, the relevant integration volume is still
under direct and unambiguous control (see the appendix for a detailed discussion).

In this work, we demonstrate the advantage of NAO functions for compact basis sets
with valence-correlation consistency. As a first step, we focus on the valence electrons and
ground-state total energies only. The description of core and core–valence correlation requires
significantly different shapes of basis functions [52, 53] and will be discussed in future
work.

2. Basis set extrapolation

As mentioned above, the slow convergence behavior of RPA, MP2 and CCSD(T) total energies
with basis set size is often addressed by basis set extrapolation schemes [64–66]. Since we
face the same underlying problem (the two-electron cusp), we show below that our valence-
correlation consistent NAO total energies can be successfully extrapolated as well. Therefore,
we first introduce the two extrapolation strategies to be used in this work.

The first one is the simplest but popular two-point extrapolation scheme [69]

E[n] = E[∞] + A/n3,

E[∞] =
E[n1]n3

1 − E[n2]n3
2

n3
1 − n3

2

,
(6)

where ‘n1’ and ‘n2’ are the indices of the valence-correlation consistent basis sets. This 1/n3

formula was originally proposed for the correlation energy [68, 69] but was also used directly
for the total energy [38, 73]. Taking frozen-core CCSD(T) atomization energies of 51 small
molecules, Feller et al [38] suggested that it is not necessary to extrapolate the correlation
energies separately, because the error in the rest is significantly smaller than the error in the
correlation component. Considering that the converged total energies can be easily obtained
with NAO basis sets for conventional DFAs and HF [57], this two-point extrapolation is used
only for total energies. We denote this scheme CBS-TE. Eshuis and Furche [21] stated that they
use this two-point formula to extrapolate frozen-core RPA correlation energies. However, they
did not say explicitly how to determine the CBS limit of the remaining components. With the
same (aug)-cc-pVnZ basis sets, we can reproduce their results using the CBS-TE scheme.

In order to fully exploit the power of correlation consistent basis sets for frozen-core RPA
calculations, we also consider another popular two-point extrapolation scheme with two global
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optimized parameters α and d, [68, 69] denoted CBS-OPT:

E[n] = E[∞] + A/(n + d)α,

E[∞] =
E[n1](n1 + d)α

− E[n2](n2 + d)α

(n1 + d)α − (n2 + d)α
.

(7)

In previous investigations [37, 38, 41, 68, 69], the parameters α and d were separately optimized
for n1 = 2, n2 = 3 (CBS-OPT[23]), n1 = 3, n2 = 4 (CBS-OPT[34]) and n1 = 4, n2 = 5 (CBS-
OPT[45]). However, in this work, we prefer to use the same global parameters for each level
of extrapolation, since a sequence of correlation consistent basis sets should provide consistent
convergence for the basis set incompleteness error. We will determine the global parameters for
(aug)-cc-pVnZ and our new NAO basis set in section 4.1.

3. Numerical basis set with valence-correlation consistency

3.1. Construction

The sequence of basis sets, constructed in this work, are composed of a varying number of
primitive NAO basis functions {ϕi(r)} in the form of equation (3). These functions with spherical
harmonics include the radial terms {ui(r)} generated by the exact solutions of radial Schrödinger
equations for different radial potentials {vi(r)} within a confining potential vcut(r):[

−
1

2

d2

dr 2
+

l(l + 1)

r 2
+ vi(r) + vcut(r)

]
ui(r) = εi ui(r), (8)

where l denotes the angular momentum quantum number related to the spherical harmonics
Ylm(�). In this work, we choose the default vcut(r) used in FHI-aims [57] to confine the radial
extent, which is turned on smoothly at a distance from the nucleus (called the onset radius ronset),
and reaches infinity at ronset + w (w = 2.0 Å throughout this work). While the confining potential
vcut(r) could also be used to provide extra basis flexibility at a given basis size [59, 74, 75], we
use it as a purely technical quantity, which should not impact any physical results. Because we
only focus on the 18 light elements from H to Ar, our experience in this work (see section 3.4
below) suggests that ronset = 4 Å suffices to provide well-converged results for most of these
elements. However, the basis set optimization for the metal elements (Li, Na, Mg and Al) is apt
to include more diffuse basis functions, which exhibit a slower convergence with respect to the
confining potential. Therefore, a slightly larger value (ronset = 5 Å) is required for these metal
elements.

The FHI-aims-2009 basis sets take the self-consistent free-atom radial potential vi(r) ≡

vfree atom(r) as default to generate the radial functions {ui(r)} used in the minimal basis, which
consists of the occupied orbitals from a non-spinpolarized, spherically symmetric free atom
calculation. This minimal basis naturally captures the wave function oscillations near the
nucleus not only in bare atoms but also in bonded structures [57] (because the nuclear Coulomb
singularity here dominates the potential). We therefore select this minimal basis as the starting
point of our new basis set. As mentioned above, this minimal basis is less demanding on the
radial grids than the GTO minimal basis of Dunning’s correlation consistent basis set (see also
the appendix).

In addition to the minimal basis, our new basis sets include three other subsets named
polarization set, (sp) correlation set and (sp) enhanced minimal basis, where (sp) indicates that
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Table 1. The character of the radial functions included in the NAO-VCC-nZ
(n = 2, 3, 4, 5) basis sets for the first-row elements. In brackets: number of
radial functions of each angular momentum channel. In addition, each basis
set includes the minimal basis set of numerically computed radial functions of
occupied free atoms.

(sp) Set

Enhanceda Correlation Polarization setb

NAO-VCC-2Z (2s 1p) (1s 1p) (1d)
NAO-VCC-3Z (2s 1p) (2s 2p) (2d 1f)
NAO-VCC-4Z (2s 1p) (3s 3p) (3d 2f 1g)
NAO-VCC-5Z (2s 1p) (4s 4p) (4d 3f 2g 1h)

a Enhanced minimal basis: (1s) for H and He, (2s1p) for Li–Ne and (3s2p) for Na–Ar.
b Second-row elements have the same polarization set. However, for H and He, one polarization
function is removed in each polarization group for each l, i.e. none for 2Z, (1d) for 3Z, (2d 1f)
for 4Z, and (3d 2f 1g) for 5Z.

only s and p type orbitals are used. We will establish them in the following paragraphs. All these
subsets employ only radial functions ui(r) constructed from hydrogen-like atoms. We use the
notation ‘H(l,zi )’ to define each of these hydrogen (‘H’)-like functions unambiguously in the
context of equation (8). Here, l is the chosen angular momentum channel. The radial functions
are generated by hydrogen-like radial potentials vi(r) = zi/r (see equation (8)). For a unique
definition of ui(r), it remains to specify the principal quantum number n. n is always chosen
to be the minimal one, n = l + 1, leading to nodeless radial functions similar to Slater-type
orbitals [54, 55]. Each radial function thus defined leads to 2l+1 basis functions via equation (3).
zi acts as an a priori free parameter that controls the extent of the resulting radial functions ui(r),
analogous to the role of the exponent in a GTO. By a suitable choice of zi for individual subsets
of radial functions {H(l,zi )}, we can emulate the even-tempered relation [76]

zi = αβ i−1 i = 1, . . . , Norb (9)

to expand the nuclear charges {zi} of hydrogen-like orbitals which belong to the same subset
of Norb individual radial functions. (α, β) are the optimization parameters used to expand the
zi within individual subsets {H(l,zi )}. The number of such optimization parameters increases
when new basis functions with new l are introduced in each subset.

Table 1 summarizes which subsets of radial functions and how many individual radial
functions per angular momentum channel l are used to define our new series of basis sets. We
follow the concept of valence-correlation consistency proposed by Dunning [49] to construct
the polarization set by adding numeric hydrogen-like orbitals with increasing l as the basis
set quality increases. We call our NAO basis sets with valence-correlation consistency ‘NAO-
VCC-nZ’ (n = 2, 3, 4, 5). The index ‘n’ equals the highest angular momentum number lmax in
the specific basis sets for the first- and second-row elements. Taking the first-row elements, the
last column in table 1 (‘polarization set’) lists the polarization functions for each index of the
basis set. NAO-VCC-2Z utilizes only one d-type hydrogen-like orbital H(d,zi ) in its polarization
set, labeled as (1d) (i.e. Norb = 1, l = 2 in this case). However, the size of the polarization set
increases quickly. At the highest quality level (NAO-VCC-5Z), we then have 4 H(d,zi ), 3 H(f,zi ),
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2 H(g,zi ) and 1 H(h,zi ) hydrogen-like orbitals (4d 3f 2g 1h). We note here that the second-row
elements share the form of the polarization set with the first-row elements. However, for H and
He, the index ‘n’ is not lmax but lmax − 1, which again emphasizes the empirical nature of the
extrapolation schemes used for the CBS limit.

In order to guarantee VCC, the continued saturation in (sp) basis function space is equally
important. According to Dunning’s strategy, we therefore also build (sp) correlation sets of
increasing size. As discussed in the introduction, the index ‘n’ of Dunning’s (aug)-cc-pVnZ sets
was defined as the basis functions used for the valence shell, counted by the ‘n − 1’ s (or p)
functions in the (sp) correlation sets plus the other one from the minimal basis. This definition
of ‘n’ is also valid for our new NAO-VCC-nZ basis sets. Like in the polarization set, we group
basis functions with the same angular momentum l in the (sp) correlation set, e.g. (4s) or (4p)
in NAO-VCC-5Z, following the even-tempered relation. The parameters (α, β) are different for
each element, and optimized separately for double-ζ (2Z) to quintuple-ζ (5Z), respectively.

Further investigation in this work reveals that it is beneficial to introduce additional
s- and p-type basis functions on top of the (sp) correlation set. We address this point in more
detail in the next subsection, observing that these (sp) type functions are especially important
to guarantee VCC in small basis sets. The result is that our basis sets generally include what
we call a ‘(sp) enhanced part’ of the basis set (see table 1), containing 1 H(s,zi ) for H and He
(1s); 2 H(s,zi ) and 1 H(p,zi ) for the first-row elements (2s1p); and 3 H(s,zi ) and 2 H(p,zi ) for
the second-row elements (3s2p). Because the basis sizes are the same as those of the minimal
basis, we also call this (sp) enhanced set ‘enhanced minimal basis’. We again employ the
even-tempered relation to expand the basis functions with the same angular momentum for
the enhanced minimal basis. The corresponding parameters are optimized for each level of
our basis sets. Concerning the optimization procedure, we first introduce and optimize the (sp)
correlation set based on the minimal basis. Then we add the (sp) enhanced set and optimize
parameters (α,β) for that, and finally the same for the polarization set.

Regarding the optimization target, we select the total energies of spherically symmetric
free atoms from H to Ar in the frozen-core RPA based on the orbitals from a self-consistent
Perdew–Burke–Ernzerhof [77] (PBE) DFT calculation. At the DFT-PBE level, all orbitals (core
and valence) are self-consistently determined. Frozen-core RPA here implies that the index
i in equation (2) only runs over occupied valence orbitals. We denote this RPA procedure
RPA@PBE in the following. Unless otherwise stated, frozen-core RPA@PBE calculations are
carried out for the rest of the discussion.

The parameters (α,β) are optimized to minimize the RPA@PBE total energies for each
element. The optimization is carried out with a Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [78] based on three-point fitted numerical gradients. The corresponding iterations are
terminated if the energy deviation in each BFGS step falls below 10−6 eV. In order to reach the
global minimum as best as we can, a set of initial guesses is generated globally in well-chosen
parameter windows with tabulated grids, i.e. 0.0 < α < 50.0 and 1.0 < β < 3.0.

As an illustration, table 2 reports the optimized parameters for the carbon atom. In the
development of correlation consistent GTO basis sets [49], it was found that the minimal
exponent of GTOs with the same angular momentum in the polarization set decreases.
Meanwhile, the maximal exponents increase with increasing index. The equivalent parameter
in hydrogen-like orbitals is the nuclear charge {zi}. The aforementioned observation also
partially holds for the NAO basis sets, where the maximal nuclear charges zmax for the same
angular momentum always grow monotonically from NAO-VCC-2Z to 5Z. Taking H(d, zmax)
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Table 2. Optimized parameters (α, β) and expanded nuclear charges of
hydrogen-like orbitals for the (sp) correlation set, the polarization set, and the
enhanced minimal basis in the NAO-VCC-nZ (X = 2, 3, 4, 5) basis sets for the
carbon atom. The NAO-VCC-nZ basis sets employ the same minimal basis for
all indices ‘n’. The minimal basis is not shown in the table.

NAO-VCC-2Z NAO-VCC-3Z

(sp) Correlation (α,β) {zi} (sp) Correlation (α,β) {zi}
(1s) (1.827,1.000) 1.827 (2s) (1.807,1.804) 1.807,3.260
(1p) (2.322,1.000) 2.322 (2p) (1.974,1.604) 1.974,3.166

Polarization Polarization
(1d) (5.952,1.000) 5.952 (2d) (5.891,1.134) 5.891,6.677

(1f) (10.150,1.000) 10.150
(sp) Enhanced (sp) Enhanced

(2s) (2.354,1.177) 2.354,2.986 (2s) (6.773,2.046) 6.773,13.859
(1p) (3.188,1.000) 3.188 (1p) (3.647,1.000) 3.647

NAO-VCC-4Z NAO-VCC-5Z
(sp) Correlation (α,β) {zi} (sp) Correlation (α,β) {zi}

(3s) (1.596,2.024) 1.567,3.230,6.538 (4s) (1.623,1.989) 1.623,3.227,6.419,12.768
(3p) (1.887,2.416) 1.887,4.558,11.011 (4p) (2.417,1.698) 2.417,4.104,6.969,11.834

Polarization Polarization
(3d) (5.231,1.463) 5.231,7.652,11.196 (4d) (5.111,1.343) 5.111,6.861,9.211,12.366
(2f) (10.645,1.015) 10.645,10.800 (3f) (10.518,1.094) 10.518,11.504,12.583
(1g) (15.741,1.000) 15.741 (2g) (16.246,1.034) 16.246,16.792

(1g) (22.554,1.000) 22.554
(sp) Enhanced (sp) Enhanced

(2s) (13.753,1.880) 13.753,25.858 (2s) (15.611,1.900) 15.611,29.662
(1p) (10.266,1.000) 10.266 (1p) (10.714,1.000) 10.714

for example, zmax increases from 5.952 (NAO-VCC-2Z), 6.677 (3Z), 11.196 (4Z), to 12.366
(5Z). While the minimal nuclear charges zmin are going down simultaneously for H(d, zmin), this
trend is not completely fulfilled for H(f, zmin) and H(g, zmin).

The enhanced minimal basis in this work is originally designed to saturate the (sp) basis
functions on top of the (sp) correlation set. Table 2 indicates that the optimization is generally
apt to produce more compact basis functions with larger nuclear charges, which demonstrates
the importance of saturating the (sp) inner space for describing valence correlation. For the
other elements up to the second row, the NAO-VCC-nZ basis sets are listed in the supporting
information5.

Figure 1 plots the averaged basis sizes of (aug)-cc-pVnZ, NAO-VCC-nZ and FHI-aims-
2009. For most of these basis sets, the average counts 18 elements from H to Ar. However,
the averaged basis size of aug–cc–pV5Z only covers 14 elements, because the basis sets are
unavailable for the four metal elements (Li, Be, Na and Mg). In FHI-aims-2009, no tier-4 basis
set was optimized for H, He, Li, Ne and Ar, because the tier-3 basis sets are sufficient to provide

5 The supplementary information lists the NAO-VCC-nZ basis sets for all elements of the periodic table up to the
second row (see the supplementary data, available from stacks.iop.org/NJP/15/123033/mmedia).
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Figure 1. The averaged basis sizes of four atom-centered orbital basis sets from
H to Ar. Tier-n denotes different tiers of the FHI-aims-2009 basis sets. On the
x-axis, n = 2, 3, 4, 5 we list the indices of (aug)-cc-pVnZ and NAO-VCC-nZ,
while the number n = 1, 2, 3, 4 given in parentheses are those of FHI-aims-2009
tier-n.

converged LDA total energies for symmetric dimers of these five elements. The averaged basis
size of tier-4, therefore, takes the remaining 13 elements into account. Unless otherwise stated,
the smaller basis sets will be used automatically if ‘(aug)-cc-pV5Z’ and ‘tier-4’ are unavailable.
As shown in figure 1, the basis sizes of NAO-VCC-nZ are slightly larger than those of cc-pVnZ
due to the (sp) enhanced minimal basis. Both are significantly more compact than the aug-cc-
pVnZ sequence, which augments cc-pVnZ with a set of diffuse functions. The basis size of
tier-3 is still similar to that of NAO-VCC-4Z and cc-pV4Z, but one level up tier-4 becomes the
smallest among the four atom-centered orbital basis sets.

With the aid of the resolution-of-identity (RI) technique, the most expensive step of
the RPA method is the construction of the independent-particle response function. The
number of required operations is proportional to N 2

aux Nocc Nvir, where Naux corresponds to the
number of auxiliary basis functions used to expand the response function, and (Nocc and
Nvir) are the numbers of the occupied and virtual single-particle states, respectively. The
memory scaling is dominated by the storage of three-center integrals, which is proportional
to Naux N 2

bs, where Nbs is the basis size of a specific basis set (see [11, 12] for a detailed
discussion). For a given system, for which Nocc is then a constant, both Nvir = Nbs −

Nocc and Naux � Nocc(Nbs − Nocc) are proportional to the basis size Nbs, resulting in a
cubic scaling of the RPA method in terms of Nbs (O(N 3

bs)) for both time and memory.
Our discussion of figure 1 demonstrates that our new NAO-VCC-nZ basis sets are more
compact (i.e. smaller) than the Gaussian orbital aug-cc-pVnZ sequence while retaining the
accuracy of aug-cc-pVnZ (see section 4). The NAO-VCC sets therefore facilitate a significant
computational speed-up that is comparable to the one of switching from aug-cc-pVnZ to
cc-pVnZ.
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Table 3. RPA@PBE absolute energies of the carbon atom calculated with various
basis sets (in eV).

Carbon 2Z 3Z 4Z 5Z 6Z CBS-TE[45]a CBS-TE[56]b

NCCc
−1029.5673 −1030.1646 −1030.4294 −1030.5685 −1030.7145

ACCc
−1029.2036 −1030.1261 −1030.4769 −1030.6031 −1030.6527 −1030.7355 −1030.7208

CCc
−1029.0505 −1030.0515 −1030.4373 −1030.5780 −1030.6387 −1030.7255 −1030.7221

a Two-point total-energy extrapolation (1/n3) from quadrapole-ζ (4Z) to quintuple-ζ (5Z) basis sets.
b Two-point total-energy extrapolation (1/n3) from quintuple-ζ (5Z) to sextuple-ζ (6Z) basis sets.
c NCC is the abbreviation for NAO-VCC-nZ, ACC for aug-cc-pVnZ and CC for cc-pVnZ.

3.2. Basis set convergence for total energy

As a particular example, we first examine the performance of NAO-VCC-nZ for the carbon atom
shown in table 3. The calculated RPA@PBE total energies become lower monotonically for all
three sequences of basis sets with valence-correlation consistency. However, comparing to the
extrapolated values, the basis set incompleteness errors in quintuple-ζ (5Z) are still larger than
120 meV. Table 3 reveals that, while diffuse functions help to notably lower the total energies for
finite basis sizes, the contribution seems to be negligible when extrapolating to the CBS limit.
The CBS value extrapolated from NAO-VCC-4Z and 5Z (CBS-TE[45]) is −1030.7145 eV,
which is about 21 meV higher than the extrapolated value from aug-cc-pV4Z and 5Z. However,
the discrepancy reduces to only 6 meV by taking the extrapolated value from aug-cc-pV5Z and
6Z (CBS-TE[56]) as the reference, validating the power of NAO-VCC-nZ basis sets to describe
valence correlation for explicit-correlation methods.

We further show the convergence behavior of four types of atom-centered orbital basis
sets for several first- and second-row elements. In figure 2, the basis set errors of RPA@PBE
ground-state total energies are plotted for increasing basis size. Figure 3 presents the same data
logarithmically to better illustrate the convergence behavior. The cc-pVnZ basis sets show a
consistent convergence for all elements examined here. Adding a set of diffuse functions to
cc-pVnZ does not change the convergence behavior considerably for aug-cc-pVnZ.

The FHI-aims-2009 basis sets were established using the ground-state LDA total energy
of symmetric dimers. The minimal basis of the NAO basis sets is by construction exact for
a spherically symmetric, non-spin polarized free atom and a given DFT functional [57]. Thus,
total energies for free atoms of any kind are already very close to converged when using the same
DFT functional. Beyond the minimal basis, the ‘tiers’ in FHI-aims-2009 were by construction
optimized to capture the DFT total energy contributions arising from the bonding environment.
However, in RPA, the absolute energies of free atoms are not yet converged (unlike in the
DFT case). As a result, NAO basis sets constructed based on semilocal or hybrid DFT do not
necessarily provide the flexibility to converge atomic total energies in RPA, and this is exactly
what is shown in figures 2 and 3.

The NAO-VCC-nZ basis sets provide a consistent convergence behavior for these elements.
As shown in the lower right panel in both figures 2 and 3, the convergence curves almost sit on
top of each other for the elements in the same periodic table groups, which have significantly
different total and RPA correlation energies. For example, the total and the RPA correlation
energies calculated with NAO-VCC-5Z are −2004.204 and −8.427 eV for the oxygen atom,
but −10 824.019 and −7.331 eV for the sulfur atom, respectively. Reviewing the performance
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Figure 2. Basis set errors of RPA@PBE total energies for several first- and
second-row atoms. As references, we take the complete-basis-set (CBS) values,
extrapolated from quintuple-ζ (5Z) and sextuple-ζ (6Z) in the sequence of aug-
cc-pVnZ, CBS-TE[56]/aug-cc-pVnZ. Tier-n denotes different tiers of the FHI-
aims-2009 basis sets (in eV).

Figure 3. Basis set errors of figure 2, but on a logarithmic scale (in eV).

of (aug)-cc-pVnZ, the basis set convergence curves are quite close for C and Si. However
the deviation increases for the pair of N and P. And the maximum discrepancy occurs for F
and Cl. Figure 3 presents the behavior of the basis set errors of figure 2 on a logarithmic
scale. Among the cases shown, NAO-VCC-nZ exhibits excellent VCC for RPA calculations.
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Table 4. RPA@PBE total energies of cc-pV2Z and corresponding energy
lowerings of aug-cc-pV2Z and NAO-VCC-nZ for elements from C to F and from
Si to Cl. The energy lowering of a basis set is defined as difference between the
total energy of the other three basis sets and cc-pV2Z, Eother

total − E cc−pV2Z
total (in eV).

Elements cc-pV2Z aug-cc-pV2Z NAO-VCC-2Z

C −1029.0505 −0.1532 −0.5169
N −1483.8917 −0.2931 −0.9012
O −2040.3463 −0.5293 −1.5003
F −2710.4529 −0.7828 −2.2165
Si −7862.8566 −0.1418 −0.2857
P −9274.3840 −0.2382 −0.4774
S −10 820.7206 −0.3737 −0.7674
Cl −12 508.0326 −0.4940 −1.0936

The NAO-VCC-nZ basis sets extend the ‘valence-correlation consistency’ strategy upon
including the enhanced minimal basis. Considering that the only difference of the elements
in the same periodic table groups comes from the core shells, the equally good convergence
behavior of NAO-VCC-nZ for these elements confirms the importance of saturating s and p
functions for valence-correlation consistency.

The quality of NAO-VCC-nZ is further demonstrated in table 4, which lists the absolute
RPA total energies of cc-pV2Z, and the corresponding energy lowerings of aug-cc-pV2Z, NAO-
VCC-nZ for elements from C to F, and Si to Cl. Comparing to the RPA total energies of
cc-pV2Z, consistent energy lowerings can be achieved by introducing a set of diffuse basis
functions, (one s, p and d primitive GTO each for first- and second-row elements). The aug-
cc-pV2Z basis sets aim to saturate the basis set in the outer space. In contrast, the enhanced
minimal basis sets within NAO-VCC-nZ are designed to saturate the (sp) basis functions in the
inner space. Table 4 shows that dramatically larger energy lowerings can be gained by NAO-
VCC-2Z, indicating that a large contribution to the error of double-ζ basis sets can be removed
by saturating the inner (sp) basis function space. More importantly, these errors are not simply
a function of the number of valence electrons. For example, the energy lowering of NAO-VCC-
2Z for F is −2.2165 eV, which is more than double that of Cl. The elimination of these errors is
the key to the excellent performance of NAO-VCC-nZ in figures 2 and 3, where we only focus
on the issue of valence correlation.

MP2 is the simplest finite-order perturbation theory method, counting only corrections at
second-order. As a systematic extension of RPA, renormalized second-order perturbation theory
(rPT2) [12, 13] adds second-order screened exchange [6, 10, 79] and renormalized single-
excitation (rSE) corrections [14] to the standard RPA method. To demonstrate the transferability
of NAO-VCC-nZ, we also show frozen-core MP2 and rPT2@PBE results. The corresponding
basis set errors are plotted as a function of the index ‘n’ in figures 4 and 5. Since all these
methods are explicit correlation methods which share the same difficulty in approaching the
CBS limit, our basis sets also provide a performance similar to RPA for MP2 and rPT2@PBE. In
particular, NAO-VCC-nZ performs similarly well for systems with the same number of valence
electrons, highlighting once again the importance of the enhanced minimal basis to saturate the
(sp) basis function space for valence correlation.
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Figure 4. Basis set errors of MP2 total energies on a logarithmic scale for
several first- and second-row elements. As references, we take the CBS values,
extrapolated from quintuple-ζ (5Z) and sextuple-ζ (6Z) by the sequence of aug-
cc-pVnZ. Tier-n denotes different tiers of the FHI-aims-2009 basis set (in eV).

Figure 5. Basis set errors of rPT2@PBE total energies on a logarithmic scale for
several first- and second-row elements. As references, we take the CBS values,
extrapolated from quintuple-ζ (5Z) and sextuple-ζ (6Z) by the sequence of aug-
cc-pVnZ. Tier-n denotes different tiers of the FHI-aims-2009 basis sets (in eV).

3.3. Basis set convergence for energy differences

We next focus on the homonuclear diatomic molecules N2 and F2 to illustrate the performance
of NAO-VCC-nZ for covalent binding energies. In figure 6, the RPA binding energies of N2
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Figure 6. Convergence of the RPA@PBE binding energies of N2 and F2 as a
function of the index of various basis sets. n = 2, 3, 4, 5 for NAO-VCC-nZ and
(aug)-cc-pVnZ, and n = 1, 2, 3, 4 within the parentheses for tier-n in FHI-aims-
2009. The results labeled ‘45’ on the x-axis are extrapolated using the CBS-TE
scheme, CBS-TE[45]. The dotted line marks the CP-corrected CBS-TE[56]/aug-
cc-pVnZ values for N2 and F2, respectively (in eV).

and F2 with (right) and without (left) CP correction are shown. The dotted line marks the CBS
limit of CP-corrected RPA@PBE binding energies extrapolated by CBS-TE[56]/aug-cc-pVnZ
(9.670 eV for N2, and 1.318 eV for F2).

Upon increasing the basis size, the computed RPA binding energies of N2 and F2 converge
quickly to the CBS limits for the sequences of (aug)-cc-pVnZ and NAO-VCC-nZ. The CP
correction decelerates the basis set convergence. However, most importantly, the extrapolated
values (CBS-TE[45]) with or without CP correction converge to almost the same CBS limit,
demonstrating that the notorious basis set superposition error (BSSE) is eliminated naturally
without having to resort to CP corrections. This is the strategy of VCC. In fact, the maximum
deviation is only about 20 meV or 0.2% (1.5%) of the N2 (F2) binding energies, among six CP
corrected and uncorrected CBS limit values extrapolated by (aug)-cc-pVnZ and NAO-VCC-nZ
for both N2 and F2. For comparison, the FHI-aims-2009 basis sets (‘tier-n’), which were not
constructed to converge unoccupied-state sums, require a CP correction to obtain qualitatively
correct energy differences. Without such a correction, systematic error cancelation between the
unoccupied-state sums entering the energy difference would not be guaranteed.

To further inspect the basis set convergence, figure 7 plots the basis set errors of RPA
binding energies on a logarithmic scale. We take CBS-TE[56]/aug-cc-pVnZ values as the
reference. The basis set error is defined as the absolute deviation between the calculated binding
energy (BE) in a finite basis set and the reference |BE − BERef

|. The diffuse (augmentation)
functions in aug-cc-pV nZ are very helpful for the description of the chemical bond. The
sequence of aug-cc-pV nZ yields fast basis set convergence, especially for the F2 case. As
shown in figure 7, NAO-VCC-nZ also provides a very good convergence behavior. The
logarithmic scale reveals that the NAO-VCC-nZ basis set errors decrease nearly exponentially
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Figure 7. Basis set errors of RPA binding energies on a logarithmic scale for
N2 and F2 dimers. As references, we take the CBS values, extrapolated from
quintuple-ζ (5Z) and sextuple-ζ (6Z) by the sequence of aug-cc-pVnZ (in eV).

with the cardinal number, n. We argue that the (sp) enhanced minimal basis makes an essential
contribution to this excellent convergence behavior of NAO-VCC-nZ, which highlights again
the importance of saturating the (sp) basis function space for valence correlation. Figure 7
also illustrates that the CP corrections can significantly improve the convergence quality of
the sequences of (aug)-cc-pVnZ, even though they decelerate the basis set convergence.

3.4. Role of the confining potential

As discussed in the context of equation (8), the default confining potential vcut(r) is employed
with the onset radius ronset = 4 Å in the optimization of NAO-VCC-nZ basis sets for most of the
elements. For Li, Na, Mg and Al, a slightly larger value ronset = 5 Å is used. We next quantify the
influence of the onset radii on the results computed using NAO-VCC-nZ. Taking the calculated
total energies for atoms and binding energies for dimers (no CP correction applied) together
with larger onset radii (ronset = 6 Å for all elements) as reference, table 5 lists the absolute errors
computed by the default onset radii.

The NAO-VCC-nZ basis sets are optimized for the corresponding RPA@PBE total
energies of the 18 elements. Table 5 reveals that the default onset radii are a reasonable choice
for the basis set optimization. The mean absolute errors (MAE) are within 2 meV. The largest
deviations compared to ronset = 6 Å are ∼6 meV (Li) and ∼10 meV (Na). This deviation does
not change with increasing the basis size.

In table 5, we also show the influence of the onset radii on the calculation of binding
energies of 18 homonuclear diatomic molecules from H2 to Ar2. In all cases, the change in
binding energy with onset radius is of the order of a few meV only. The MAEs are also within
2 meV. The errors in the total energy calculations of Li and Na are mostly canceled out for the
binding energies. Only the case of Si2 is an exception. Here, the more confined double-ζ basis
set (NAO-VCC-2Z, ronset = 4 Å) apparently describes the dimer total energy better (lower total
energy by ≈6 meV) than the same set of radial functions with the larger confinement radius
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Table 5. Absolute errors of the default onset radii (ronset = 5 Å for metal elements
and ronset = 4 Å for the remaining 14 elements), where the reference values
are the total energies and binding energies calculated with ronset = 6 Å for all
elements (in meV).

Total energies Binding energies

NCCa 2Z 3Z 4Z 5Z 2Z 3Z 4Z 5Z

H 1 0 0 0 H2 0 1 0 0
He 0 0 0 0 He2 0 0 0 0
Li 6 5 6 6 Li2 2 2 3 4
Be 4 3 3 4 Be2 2 3 1 0
B 1 2 2 1 B2 1 1 0 1
C 5 3 3 1 C2 3 2 3 2
N 2 1 1 0 N2 1 0 0 0
O 1 0 1 0 O2 0 0 0 0
F 0 0 0 0 F2 0 1 0 0
Ne 0 0 0 0 Ne2 0 0 0 0
Na 9 9 10 10 Na2 3 2 2 3
Mg 2 1 1 1 Mg2 0 0 0 0
Al 1 0 1 0 Al2 5 2 1 1
Si 6 5 3 4 Si2 17 11 10 5
P 1 1 1 1 P2 5 5 3 3
S 1 0 1 1 S2 2 3 4 2
Cl 0 0 1 1 Cl2 1 1 2 2
Ar 0 0 0 3 Ar2 0 0 0 0
MAEb 2 2 2 2 MAEb 2 2 2 1

a NCC: the sequence of NAO-VCC-nZ basis sets.
b MAE: mean absolute errors for all cases.

(ronset = 6 Å). For an incomplete basis set, residual effects of this magnitude are possible (there
is no variational principle for a fixed basis set size and change of basis function shape with
increasing confinement radius). Importantly, the effect is small and decreases with increasing
basis set size, as it should. Thus, for the quintuple-ζ basis set (NAO-VCC-5Z), the maximum
error (MAX) amongst 18 binding energies is only about 5 meV. This observation is consistent
with the previous work by Ren et al [63] that the onset radii only affect the binding energies
for small basis sets. Since the onset radius of the cutoff is always available as an explicit
convergence parameter in a practical calculation, this issue is not particularly difficult to address.
Nevertheless, even in small basis sets, such numerical uncertainty is negligible compared to the
basis set incompleteness error for explicitly correlated methods, e.g. RPA and MP2.

4. Results and discussion

4.1. Homonuclear diatomic molecules from H2 to Ar2, HDM18

We choose homonuclear diatomic molecules from H2 to Ar2 (HDM18) as the first test set to
examine the performance of the new basis set NAO-VCC-nZ. The experimental equilibrium
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Table 6. Mean absolute errors (MAE) due to basis set incompleteness for
HDM18 in RPA@PBE for sequences of (aug)-cc-pVnZ, NAO-VCC-nZ and
tier-n in the FHI-aims-2009 basis sets. Values in parentheses are the absolute
maximum errors (MAX) for each basis set and extrapolation scheme (in meV).

aug-cc-pVnZ cc-pVnZ NAO-VCC-nZ Tier-n

CPb CPb CPb CPb

n = 2(1)a 348 (867) 476 (1193) 373 (911) 531 (1304) 327 (761) 463 (1104) 191 (774) 364 (1223)
n = 3(2)a 113 (338) 196 (535) 139 (392) 229 (603) 135 (365) 213 (549) 62 (287) 144 (339)
n = 4(3)a 51 (165) 96 (276) 64 (194) 112 (311) 60 (173) 113 (302) 80 (737) 107 (249)
n = 5(4)a 23 (63) 57 (126) 26 (78) 58 (151) 27 (86) 61 (168) 81 (710) 87 (204)
CBS-TE[23] 27 (121) 82 (263) 47 (198) 105 (308) 53 (203) 108 (326)
CBS-TE[34] 16 (45) 23 (86) 15 (50) 27 (97) 13 (43) 40 (122)
CBS-TE[45] 12 (61) 6 (31) 16 (59) 4 (16) 10 (26) 7 (28)
CBS-OPT[23] 46 (150) 35 (105) 42 (117) 36 (124) 37 (135) 35 (148)
CBS-OPT[34] 16 (57) 17 (80) 15 (53) 13 (41) 14 (51) 18 (83)
CBS-OPT[45] 14 (66) 7 (38) 19 (69) 6 (30) 14 (29) 4 (13)

a n = 2, 3, 4, 5 denote the indices of the sequences of (aug)-cc-pVnZ and NAO-VCC-nZ, while n = 1, 2, 3, 4 in
parentheses denote the ‘tier’ number of FHI-aims-2009 (tier-n).
b Values in these columns are CP corrected.

geometries of these diatomic molecules are collected from the ‘Computational Chemistry
Comparison and Benchmark DataBase’ (CCCBD) web site6. All RPA calculations are based on
self-consistent PBE ground state orbitals. The CP-corrected CBS-TE extrapolated results from
aug-cc-pV5Z and 6Z (CBS-TE[56]/aug-cc-pVnZ) are taken as the CBS reference for most of
the dimers. For Be2 and Mg2, we take CBS-TE[34]/aug-cc-pVnZ values, and for Li2 and Na2

CBS-TE[45]/cc-pVnZ, because corresponding basis sets with higher quality are not available
for these elements.

The MAEs and unsigned MAX of the basis set incompleteness error in the RPA@PBE
binding energies for HDM18 are listed in table 6. Confirming the above observation, both
MAEs and MAXs present a systematic convergence with increasing basis size for the (aug)-cc-
pVnZ and NAO-VCC-nZ sequences. For the FHI-aims-2009 tier-n sequence, the MAX values
show that energy differences without a CP corrections should not be used. However, with CP
correction, a gradual decrease of the basis set incompleteness error is found also for tier-n.

To converge their RPA calculations, the authors of [22] and [21] extrapolated correlation
consistent basis sets. As shown in table 6, when extrapolating from 4Z and 5Z (45), the CBS-
TE scheme yields the CBS limit in good agreement with other sequences of basis sets. The
statistical uncertainty is within 16 meV.

As observed in section 3.3, the CP correction can improve the regularity of the basis set
convergence for RPA energy differences. One would therefore expect that better extrapolated
values from 2Z and 3Z should be obtained using the CP correction. Unfortunately, the
performance of the CBS-TE scheme from 2Z and 3Z becomes dramatically worse when
doing CP corrections. A possible remedy is the more sophisticated extrapolation scheme,

6 2011 Computational Chemistry Comparison and Benchmark Database (cccbd), http://cccbdb.nist.gov/default.
htm.
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Table 7. The global parameters α, d in the CBS–OPT extrapolation scheme,
A/(n + d)α, for (aug)-cc-pVnZ and NAO-VCC-nZ. These parameters are used
for each level of extrapolation.

NCCa ACCa CCa

α 4.49 4.47 4.51
d 2.85 2.39 2.65

a CC, NCC and ACC are the abbreviations of cc-pVnZ, aug-cc-pVnZ and NAO-VCC-nZ,
respectively.

CBS-OPT, that has two global parameters α and d (see equation (7)) [68, 69]. We optimized
the parameters by minimizing the CP-corrected MAEs of CBS-OPT[23] in table 6. The same
parameters are then applied to CBS-OPT[34] and CBS-OPT[45] without any reoptimization.
The optimized α, d for (aug)-cc-pVnZ and NAO-VCC-nZ are listed in table 7, and the
corresponding performance in table 6.

We see that the CBS-OPT[23] scheme performs well for the three correlation consistent
basis set prescriptions if CP corrections are applied. The MAEs of CBS-OPT[23] are around
35 meV, comparable to those of the bare 5Z basis sets. While the parameters α, d are only
determined in CBS-OPT[23], they are also suitable for high levels of the extrapolation. A
substantial improvement can be found for CBS-OPT[34], and the performance of CBS-OPT[45]
is comparable to the corresponding CBS-TE[45]. Inspecting table 6 also reveals that this CBS-
OPT scheme optimized with CP corrections works for the calculations without CP corrections.
For NAO-VCC-nZ, the non-CP corrected MAE obtained with the CBS-OPT[23] scheme is
about 37 meV. In particular, a small MAE combined with a small MAX shows that both CBS-
TE[45]/NAO-VCC-nZ and CBS-OPT[45]/NAO-VCC-nZ are accurate and robust methods to
approach the CBS limit of RPA binding energies.

4.2. Reaction energies, G2RC

The so-called G2RC test set consists of 25 reactions of small organic molecules, one of which
includes the element Li. Because the basis sets of (aug)-cc-pV6Z are unavailable for Li, we
examine the basis sets using the remaining 24 reactions in this work. Figure 8 presents the mean
error (ME), MAE and MAX in RPA@PBE reaction energies of the G2RC set. In this case, the
reference reaction energies and geometries are the experimental(!) values taken from [80]. Thus,
the errors do not go to zero: we are simultaneously exploring the basis set incompleteness error
and the error of the chosen approximation to the calculated energy, RPA@PBE. A key message
from figure 8 is that the basis set incompleteness error can be eliminated systematically using
the NAO valence-correlation consistent NAO-VCC-nZ sequence. The three overall measures of
the reaction energy error examined here exhibit a systematic convergence behavior toward the
values that represent the intrinsic errors of the RPA@PBE method itself.

The MAE is an important criterion to judge the performance of a specific method.
As shown in the upper right panel of figure 8, the MAE value given by cc-pV2Z—the
smallest one in the cc-pVnZ sequence—suffers from a large basis set incompleteness error.
This error dies away quickly with increasing basis size, and the corresponding MAEs
approach the converged value. With a similar basis size, NAO-VCC-nZ basis sets provide a
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Figure 8. Basis set convergence of ME (upper left), mean absolute errors (MAE,
upper right), and unsigned MAX (lower left) in RPA@PBE reaction energies of
the G2RC test set compared to experimental(!) reference data. On the x-axis,
n = 2, 3, 4, 5 we list the indices of (aug)-cc-pVnZ and NAO-VCC-nZ, while the
number n = 1, 2, 3, 4 given in parentheses are those of FHI-aims-2009 tier-n.
The lower right panel presents the MAEs according to different extrapolation
schemes for the sequences of (aug)-cc-pVnZ and NAO-VCC-nZ. The dotted
line in this panel marks the MAE of the CBS-TE[56]/aug-cc-pVnZ scheme as
110 meV. The ME is the averaged deviation of RERPA-RERef, where RERef is the
experimental reference reaction energy (RE) taken from [80] (in meV).

better convergence behavior for this test set, and achieve convergence comparable to that of
aug-cc-pVnZ basis sets.

The lower right panel of figure 8 shows the MAE values for two kinds of extrapolation
schemes for the (aug)-cc-pVnZ and NAO-VCC-nZ sequences. As the benchmark reference,
the dotted line marks the MAE of the CBS-TE[56]/aug-cc-pVnZ, which is 110 meV. The six
CBS-limits are in good agreement with this reference. In particular, the NAO-VCC-nZ basis
sets provide almost the same MAE as the reference (111 meV) for both CBS-TE[45] and CBS-
OPT[45]. Therefore, we report an intrinsic MAE of 120 meV in RPA@PBE reaction energies
of the whole G2RC set (including 25 reactions). This MAE is obtained by CBS-TE[45]/NAO-
VCC-nZ.

Our results confirm the conclusion of Eshuis and Furche [21] that the reaction energies are
converged well at the basis set level of aug-cc-pV4Z (MAE = 119 meV). While the MAE of the
cc-pV4Z basis set is 143 meV, NAO-VCC-4Z gives a better performance (MAE = 115 meV)
albeit at the size of cc-pV4Z. The basis set incompleteness contribution to the MAE is
about 40 meV for NAO-VCC-3Z and aug-cc-pV3Z. Our results suggest that this triple-ζ
error can be reduced efficiently to less than 20 meV using an extrapolation from 2Z and 3Z
(both CBS-TE[23] and CBS-OPT[23]) without a substantial increase of computational cost,
especially for the NAO-VCC-nZ sequence shown in the lower right panel of figure 8.
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Table 8. Basis set convergence of the RPA@PBE ME, mean absolute errors
(MAE) and unsigned MAX for the ISO34 set using four sequences of basis sets.
ME are computed as the averaged deviation of ERPA

− ERef, where ERef is the
experimental reference taken from [81](in meV).

CBS–TE CBS–OPT

na
= 2(1) 3(2) 4(3) 5(4) 23 34 45 23 34 45

ME
CCb

−44 −31 −21 −20 −26 −13 −18 −22 −12 −18
ACCb

−22 −26 −20 −20 −27 −15 −19 −28 −15 −19
NCCb

−21 −20 −18 −19 −20 −16 −20 −20 −15 −20
Tier-n −33 −26 −26 −24

MAE
CCb 87 50 42 42 45 40 44 47 40 44
ACCb 76 51 43 43 47 41 43 47 41 43
NCCb 61 45 44 44 43 44 44 45 45 44
Tier-n 78 56 47 44

MAX
CCb 399 215 150 154 146 133 158 162 129 159
ACCb 311 213 167 164 189 137 160 199 139 160
NCCb 220 151 153 162 136 154 171 136 154 173
Tier-n 293 197 178 152

a n = 2, 3, 4, 5 are the indices of the sequences of (aug)-cc-pV nZ and NAO-VCC-nZ, while
n = 1, 2, 3, 4 within the parentheses denote the ‘tier’ number of FHI-aims-2009 (tier-n).
b CC, ACC and NCC are abbreviations of cc-pVnZ, aug-cc-pV nZ, and NAO-VCC-nZ, respec-
tively.

4.3. Isomerization energies, ISO34

Isomerization is a well-defined reaction process in organic chemistry, and isomerization
energies have been used to validate the performance of theoretical methods [81–83]. Table 8
presents the basis set convergence of RPA@PBE results for 34 isomerization energies of small
organic molecules of the ISO34 set [81]. Recently, Eshuis and Furche [21] reported ME,
MAE and MAX, of RPA@PBE isomerization energies for Dunning’s (aug)-cc-pVnZ (n = 3,
4, 5) using a development version of the TURBOMOLE program package7. In this work,
we reproduce these values with a discrepancy of less than 1 meV using our own numerical
framework (FHI-aims) [12, 57].

We again extrapolate the isomerization energies using CBS-TE[45] and CBS-OPT[45]
with the (aug)-cc-pVnZ and NAO-VCC-nZ sequences. The converged MAE of RPA@PBE has
an uncertainty of 1 meV and is reported in table 8. The MAX error is more sensitive to the
basis set incompleteness error than ME and MAE. Even from the ‘34’ to the ‘45’ extrapolation
levels, the investigated correlation consistent basis set types still show a change of 20–30 meV.
In short, the convergence of the MAX error is comparatively poor, leaving an uncertainty of
the order of 10 meV or more for all basis sets and extrapolation schemes shown in table 8.

7 2011 Turbomole v6.3, Turbomole GmbH, Karlsruhe (www.turbomole.com).
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Figure 9. Left panels: basis set convergence of the RPA@PBE binding energies
for NH3 · · · NH3, C6H6 · · · CH4, and C6H6 · · · H2O. Right panel: basis set
convergence of the ME in RPA@PBE interaction energies of the S22 set with and
without CP corrections. On the x-axis, n = 2, 3, 4, 5 list the indices of (aug)-cc-
pVnZ and NAO-VCC-nZ, while the number n = 1, 2, 3, 4 given in parentheses
are those of FHI-aims-2009 tier-n. The CBS-TE[45] extrapolated values are
labeled ‘45’. Geometries are taken from [84]. The ME is the averaged deviation
of BERPA–BERef, where BERef is the CCSD(T) reference binding energy (BE)
taken from [85]. Negative MEs imply systematic underbinding. The dotted line
marks the CP-corrected CBS-TE[45]/aug-cc-pVnZ extrapolated data (in meV).

Nevertheless, our results demonstrate that for these isomerization energies, the quadruple-ζ
basis sets will generally suffice, not only for Dunning’s (aug)-cc-pVnZ sequences, but also
for the numeric NAO-VCC-nZ basis sets developed in this work. The bare tier-n basis sets of
FHI-aims-2009 perform similarly well for the isomerization case, indicating that some of the
basis set incompleteness error cancels here.

4.4. Non-covalent interactions, S22

The S22 set is the most widely used benchmark database for non-covalent interactions [84].
It includes 22 binding energies of seven hydrogen bonds, eight dispersion bonds and seven
weak bonds with mixed bonding character. Molecular geometries in the S22 set are taken
from [84], and the reference binding energies are CCSD(T) values in the CBS limit taken
from [85]. The right panel of figure 9 shows the ME in RPA@PBE binding energies of the
S22 test set using different sequences of basis sets. BSSE has the effect to overestimate the
non-covalent interactions systematically. The CP correction removes the BSSE. The remaining
basis set convergence error (BSCE) now underestimates the non-covalent interactions [86, 87].
For three kinds of valence-correlation consistent basis sets, the non-CP and CP corrected MEs
converge to the CBS limit from opposite directions. In the CBS-TE[45] extrapolation scheme,
the extrapolated MEs with (without) CP correction are −31 meV(−33 meV) for NAO-VCC-
nZ, −32 meV(−36 meV) for cc-pVnZ, and −34 meV(−33 meV) for aug-cc-pVnZ respectively.
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A negative value implies an underestimation of non-covalent bonds. Because the RPA@PBE
method consistently underestimates all interactions in the S22 set, the extrapolated MAEs are
simply the absolute values of the MEs.

For non-covalently bonded systems, even quintuple-ζ basis sets are not converged to better
than 10 meV, regardless of whether CP corrections are applied or not. The non-CP corrected
MEs are −21 meV (NAO-VCC-5Z), −25 meV (cc-pV5Z) and −21 meV (aug-cc-pV5Z), and
the CP-corrected MEs are −45 meV, −46 meV and −39 meV, respectively. Furthermore, it is
also insufficient to extrapolate from the smaller 2Z and 3Z basis sets (extrapolation not shown),
even though a considerable improvement is found. The extrapolation from 3Z and 4Z is enough
to produce converged MEs and MAEs (CBS-TE[34] values) for the aug-cc-pVnZ sequence, but
not for cc-pVnZ and NAO-VCC-nZ. Therefore, we report the intrinsic RPA@PBE errors for
the S22 set as CBS-TE[45]/aug-cc-pVnZ extrapolated ME and MAE of −33 meV and 33 meV
with an uncertainty of ±2 meV.

Our results confirm the observation of Blum et al [57] and Ren et al [11] that CP corrections
are always necessary for the FHI-aims-2009 basis sets in RPA or MP2 calculations. The CP-
corrected ME of tier-4 is −47 meV, similar to that of cc-pV5Z and NAO-VCC-5Z. Upon adding
a set of diffuse functions obtained from aug-cc-pV5Z, the CP-corrected ME of ‘tier-4+a5Z-d’
is −39 meV reported by Ren et al [11], which is equal to that of aug-cc-pV5Z.

In the left panels of figure 9, we chose the interactions of NH3 · · · NH3, C6H6 · · · CH4,
and C6H6 · · · H2O as illustrations for hydrogen bonding, dispersion bonding and mixed
bonding. Dunning’s aug-cc-pVnZ sequence performs well for the three types of non-covalent
interactions. Especially, the CP-corrected values of aug-cc-pVnZ present the fastest convergence
for the three valence-correlation consistent basis sets. However, without the CP correction,
the best performance is given by the NAO-VCC-nZ basis sets. For the NH3 · · · NH3 case,
the converged values are approached quickly by NAO-VCC-4Z. We also find a similar
behavior for the C6H6 · · · H2O case. Taking the CP-corrected CBS-TE[45]/aug-cc-pVnZ values
as reference, the extrapolated NAO-VCC-nZ values have a tendency (within 4 meV or 3%
of the binding energy) to overestimate mixed bonds. For NH3 · · · NH3 and C6H6 · · · CH4,
the deviations between the extrapolated values of NAO-VCC-nZ and aug-cc-pVnZ are less
than 1 meV. In comparison, we can see that the CBS-TE[45]/cc-pVnZ scheme without CP
corrections underestimates hydrogen bonds (8 meV for NH3 · · · NH3) and mixed bonds (3 meV
for C6H6 · · · H2O).

5. Conclusions and outlook

In this work, we introduce a sequence of numeric atom-centered basis sets with valence-
correlation consistency, called NAO-VCC-nZ (n = 2, 3, 4, 5), for the elements from H to Ar. We
demonstrate that NAO-VCC-nZ basis sets are suitable for explicit correlation methods, e.g. RPA
or MP2. The basis set incompleteness error, including the notorious BSSE, is reduced gradually
by increasing the index ‘n’, and can be removed directly using two-point extrapolation schemes
for the total energy. Generally, the NAO-VCC-4Z basis sets are sufficient to produce satisfactory
results for covalent bonds and isomerization energies. However, for non-covalent bonds, it is
always necessary to extrapolate the NAO-VCC-nZ sequence from 4Z and 5Z.

The NAO-VCC-nZ basis sets developed here are only designed for valence correlation. We
expect them to fail for core correlation and extended cases, like anions. Core and core–valence
correlation effects generally become important when relatively small errors in energetics or

New Journal of Physics 15 (2013) 123033 (http://www.njp.org/)

http://www.njp.org/


25

spectroscopic constants are required [88–90]. Also, more diffuse functions might be required
for the calculation of electronic affinities and other properties associated with anions [50, 51].
These aspects were not the target of our present work, but it is clear that suitable core or diffuse
functions could be added to NAO-VCC-nZ if needed. Furthermore, at present the NAO-VCC-
nZ basis sets only provide access to the elements from H to Ar. In fact, so far there is no
valence-correlation consistent basis set that covers all elements of the periodic table [90]. Now
that we have established a solid basis with NAO-VCC-nZ, work to address these remaining
shortcomings is ongoing in our group.

Appendix. Accuracy of numerical integrations

In FHI-aims, there is a hierarchy of numerical integration settings ‘light’, ‘tight’ and ‘really
tight’, catering to various numerical precision requirements. These settings simultaneously
increase the accuracy of the following aspects of the code: (i) number of radial functions;
(ii) confinement radius; (iii) Hartree potential expansion; and (iv) the grids used for three-
dimensional integrations. The technical aspects behind these choices are described in [57]. What
is important for the present development, however, is that the appropriate choice of integration
grid can of course depend on the choice of basis set. Here, we encounter a substantial difference
between standard quantum-chemical GTO basis sets, and NAO basis sets. Specifically, our
experience suggests that Dunning’s (aug)-cc-pVnZ basis sets demand denser radial grids near
the nucleus and denser angular grids on faraway shells than would be required for NAOs.

In FHI-aims, spherical shells of integration grid points (‘radial grid shells’) are positioned
around each atom. In practice, these shells are determined as follows:

1. A basic radial grid is determined as proposed by Baker and co-workers [91]

r(s) = router
log{1 − [s/(Nr + 1)]2

}

log{1 − [Nr/(Nr + 1)]2
}

(A.1)

and s = 1, ..., Nr . Note that the hypothetical shell indices s = 0 and Nr + 1 correspond to
r = 0 and ∞, respectively. Typical values for the parameters are router = 7 Å (FHI-aims
‘tight’ and ‘really tight’ species defaults) and Nr = 1.2 × 14 × (atomic number + 2)1/3,
again according to Baker et al [91]. In practice, this leads to between 24 (hydrogen) and
approx. 80 grid shells, but in principle, any other combination (router,Nr ) is possible.

2. A simple way to increase the radial grid density uniformly is to place additional grid
shells according to equation (A.1) at fractional values s, e.g, s = 1/2, 3/2,. . . , (Nr + 1)/2.
The grid is thus extended both toward r = 0 and ∞. The fractional spacing is called
radial multiplier; in the example, radial multiplier=2, which is employed in standard
FHI-aims ‘tight’ settings. Examples of the location of grid shells for the C atom and
radial multiplier=2, 4 and 6 are shown in the topmost panel of figure A.1.

For each radial grid shell, the angular integration points are distributed based on so-called
Lebedev grids [91–97]. These grids are tabulated to integrate successively higher angular
momentum orders around a center exactly on the unit sphere. In FHI-aims, the number of
angular grid points increases from the innermost to the outermost grid shells. The number of
angular grid points on faraway shells is 434 in the ‘tight’ settings and 590 in the ‘really tight’
settings. We denote this maximum number of angular grid points by ‘outer grid’ in the
following.
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Figure A.1. The radial shapes u(r) of some basis functions for carbon. Upper
panel: the 1s contracted GTO in the minimal basis of cc-pV5Z and 1s orbital
in the minimal basis of NAO-VCC-nZ. The sharpest primitive GTO in the
1s contracted GTO is also plotted. Grid shell locations for three radial grids
with increasing radial multiplier are shown in the topmost part of this panel.
Lower panel: the radial tails of the most diffuse s-type GTO in cc-pV5Z and
s-type hydrogen-like NAO in NAO-VCC-5Z. Three radial grids with increasing
accuracy are shown above this panel.

The minimal basis of Dunning’s ‘correlation consistent’ basis sets is composed of
combinations of primitive GTOs. These combinations are called the contracted GTOs. Using
the 1s orbital of carbon as an illustration, the contracted GTO in Dunning’s cc-pV5Z consists of
ten primitive GTOs. The exponential factors (EFs) from maximum to minimum are 96 770.0000,
14 500.0000, 3300.0000, 935.8000, 306.2000, 111.3000, 43.9000, 18.4000, 8.0540 and 3.6370.
Figure A.1 shows the radial shapes of the 1s contracted GTO of cc-pV5Z, and the sharpest
primitive GTO (E F = 96 770) in this contracted GTO on a logarithmic scale. The contracted
GTOs in cc-pVnZ are constructed to approximate the exact solutions of the free atoms. In
contrast, accurate numerical versions of the free-atom solutions are used as the minimal basis
in NAO-VCC-nZ. In figure A.1, the 1s orbital from NAO minimal basis for the PBE functional
is also plotted for comparison.

Table A.1 lists the numerical error in the DFT-PBE and RPA@PBE total energies of the
carbon dimer. Using the default ‘tight’ setting with radial multiplier=2, the numerical error
of cc-pV5Z is more than 300 meV for both DFT-PBE and RPA@PBE. The magnitude of this
error is surprising, all the more since already radial multiplier=4 (i.e. doubling the grid density)
reduces this error to below 1 meV.

In figure A.2, we trace the origin of the discrepancy to the 1s function of the minimal basis
of Dunning’s cc-pV5Z GTO basis set. In fact, practically the entire error can be traced to the
1s Kohn–Sham eigenvalue already in DFT-PBE. At a first glance, the GTO 1s function and the
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Table A.1. Numerical error in DFT–PBE and RPA@PBE total energies of the
carbon dimer for three levels of radial integration grids. The total energies
calculated with very dense radial grids, ‘radial multiplier=8’, are taken as
the reference E8

total. The columns show the energy deviations En
total − E8

total for
radial multiplier values n = 2, 4, 6 (in meV).

radial multipliera 2 4 6

cc-pV5Z
PBE 324.485 −0.833 −0.068

RPA@PBE 320.473 −0.826 −0.067

cc-pV5Z but using the NAO minimal basis
PBE 0.090 −0.001 0.002

RPA@PBE 0.036 −0.004 0.001

a ‘Tight’ grids and the default numerical thresholds are used, except for radial multiplier. The
default radial multiplier is 2 in ‘tight’.

Figure A.2. Integrand f (r) as defined in equation (A.3) for a GTO 1s radial
function of the cc-pV5Z basis set (left panel), a NAO 1s radial function of the
spherically symmetric, non-spinpolarized C atom (right panel), in either case
evaluated for the potential of the spherically symmetric, non-spinpolarized C
atom. The black lines are the continuous integrands f (r) for GTO and NAO
1s orbitals. The red dash lines are the corresponding tabulated grids with the
standard ‘tight’ setting for radial multiplier=2 as described in the text.

DFT-PBE NAO 1s function look very similar in figure A.1. The difference can be understood
by analyzing the actual radial integrand f (r) in the expression (assuming a spherical potential)∫

d3rϕ1s(r)Ĥϕ1s(r) =

∫
dr [ f (r)] . (A.2)

In the non-relativistic case, the integrand then reads

f (r) = u(r)

[
−

1

2
u′′(r) +

1

2

l(l + 1)

r 2
u(r) + v(r)u(r)

]
. (A.3)
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Table A.2. Influence of successively denser angular grids on the non-covalent
interaction energy of the phenol dimer (C6H5OH)2, calculated by the PBE,
HF@PBE and RPA@PBE methods. (in meV).

Outer grida 434 590 770 974 1202

PBE 176 176 176 176 176
5Zb HFc 43 43 44 44 44

RPAc 393 280 276 276 276
PBE 170 170 171 171 171

A5Zb HFc 41 41 41 41 41
RPAc 4574 332 327 281 280
PBE 171 171 172 172 172

N5Zb HFc 42 42 43 43 43
RPAc 318 281 280 280 280

a ‘Tight’ grids and the default numerical thresholds are used, except for radial multiplier and
outer grid. For (aug)-cc-pV5Z, radial multiplier=6, but for NAO-VCC-5Z, radial multiplier=2.
The number of angular grid points on faraway radial shells, outer grid, changes from 434 to
1202. The default outer grid is 434 in ‘tight’, and 590 in ‘really tight’.
b 5Z stands for cc-pV5Z, A5Z for aug-cc-pV5Z, and N5Z for NAO-VCC-5Z.
c HF@PBE and RPA@PBE are abbreviated as HF and RPA in the table. They denote
Hartree–Fock-like total energies and RPA total energies, each evaluated for the same self-
consistent KS orbitals of DFT–PBE.

In figure A.2, the integrand f (r) is plotted as a function of r for the Kohn–Sham Hamiltonian
Ĥ of a spherically symmetric, non-spinpolarized free C atom. The top panel shows the result
for the minimal-basis 1s function from cc-pV5Z. The lower panel shows the same integrand,
but for the accurate NAO solution of the problem. In each case, the black line is f (r), while the
red dots denote the a standard radial integration grid for radial multiplier= 2.

In short, the near-nuclear integration is simple for the NAO, whereas f (r) for the
contracted GTO presents a significant problem. Obviously, for the specific shape of GTOs,
the integration difficulty itself could easily be circumvented by textbook analytical expressions
for the kinetic energy part and the nuclear Coulomb singularity in the Hamiltonian. However,
the integrand itself is also not ‘physical’ in the sense that the correct behavior of an actual
Kohn–Sham eigenfunction near the nucleus is not built in. For an all-electron framework, the
fact that the NAO-VCC-nZ allow one to work with physically well behaved near-nuclear radial
functions is a significant advantage.

Figure A.1 also plots the most diffuse s-type GTO in cc-pV5Z and s-type hydrogen-
like NAO in NAO-VCC-5Z for carbon on a logarithmic scale. Formally speaking, the GTOs
decay more quickly than the hydrogen-like functions, but the crossover point occurs around
7.6 Å in this case. More importantly, the flexibility of NAO allows us to control the shape of
the radial tails explicitly using the confining potential vcut(r) (see equation (8)). We also plot
the corresponding confined s-type hydrogen-like NAOs with the onset radius ronset = 4 and 6 Å.
The former is the default setting for carbon in NAO-VCC-nZ. Figure A.1 shows that both of
them tend to zero rigorously before the crossover point.

It is easy to understand that the unconfined GTO tails require tighter numerical grids for
both radial and angular integrations on faraway shells. Taking the binding energy of the phenol
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dimer as example, table A.2 presents the sensitivity of DFT-PBE, HF@PBE, and RPA@PBE to
outer grid. Three quintuple-ζ (5Z) basis sets are examined here. Since increasing the angular
grids in the near-nuclear shells has no effect on the accuracy, calculations are performed with
the ‘tight’ grids and the default numerical thresholds in FHI-aims.

For the first- and second-row elements, outer grid is set to 434 in ‘tight’. We can see
that RPA@PBE gives a nonsensical binding energy of 4.574 eV for the default tight setting
and the most diffuse aug-cc-pV5Z set investigated in this work. For cc-pV5Z and NAO-VCC-
5Z, the default ‘tight’ setting offers plausible results, but still deviate by 117 and 38 meV,
respectively. Such errors in cc-pV5Z can be reduced to about 4 meV with tighter grid setting of
outer grid=590 with which a numerically converged result (error within ±1 meV) is achieved
for NAO-VCC-5Z. outer grid=770 is a safe setting for cc-pV5Z, and outer grid=974 for aug-
cc-pV5Z. The tier-n basis sets behave similar to NAO-VCC-nZ.

Consistent with previous work [11, 57], these results demonstrate that the default
‘outer grid=434’ is good enough for conventional DFAs and HF. The PBE and HF@PBE values
do not change (uncertainty within ±1 meV) by increasing the angular grids on faraway shells.
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(erratum)
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