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Abstract

In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in
game outcomes translate into small fitness differences. Many results have been derived using weak selection
approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results
derived under weak selection are also qualitatively valid for intermediate and strong selection. By ‘‘qualitatively valid’’ we
mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection
increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to
higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous
examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In
particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant
for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even
when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate
intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player
games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number
of strategies n. In particular, rank changes are almost certain for n§8, which jeopardizes the predictive power of results
derived for weak selection.
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Introduction

In evolutionary theory, weak selection means that differences in

reproductive success are small. If fitness differences are close

enough to zero, perturbation analysis allows to derive analytical

results in models of population dynamics. This approach has a

long standing history in population genetics, where selection is

typically frequency independent [1–4]. More recently, weak

selection has been introduced into evolutionary game theory [5].

If selection is weak, the outcomes of the game have only a small

impact on fitness. Possible interpretations of this assumption

include that the effects of the game under consideration are small

or that it represents only one of many factors influencing

reproductive success. A number of important analytical results

have been derived using weak selection as well as rare mutations in

finite populations [6–8].

In infinitely large populations, the intensity of selection merely

results in a rescaling of time, but does not affect the outcome of the

evolutionary dynamics [9,10]. This means that long-term results

under weak selection equally hold for arbitrary intensities of

selection, provided the population is infinitely large. For finite

populations it has been suggested that results obtained under weak

selection may remain valid when the selection intensity is no

longer weak [6,8]. Here, we show that in general this is not the

case. If population size is finite, the intensity of selection plays a

decisive role and can qualitatively change the outcome.

Let us illustrate this idea with an example. Consider the public

goods game discussed in [11]. Therein, d individuals are chosen

from a population of size N to play a public goods game.

Individuals choose whether to contribute a fixed amount to a

common pool at a cost c. The amount in the common pool is

multiplied by a positive factor r (1vrvd ) and distributed amongst

all participants. The game considers three strategies: Cooperators,

who contribute a fixed amount c to a common pool, defectors,

who do not contribute but benefit from the contributions of others,

and punishers, who contribute c and pay a cost c to impose a fine a
upon defectors. The game is devised to inspect the emergence of

altruistic punishment, a behavior commonly found in human

subjects [12]. The model assumes a standard Moran process [5],

in which one individual is chosen proportional to fitness f to

reproduce and its offspring replaces a randomly chosen individual.

Fitness is an increasing function of the payoff p from the game,

f ~f (bp), where b is the intensity of selection [13]. In addition,

there is a small rate of mutations, such that a new mutant either

goes extinct or reaches fixation before the next one occurs [14,15].

This allows to approximate the dynamics by an embedded

Markov chain on the monomorphic states, with fixation proba-

bilities describing the transitions between those monomorphic

states. The stationary distribution of this Markov chain allows to

infer the relative abundance of different strategies. This approach

is used frequently to describe evolutionary games in finite

populations with more than two strategies [11,16–19]. Figure 1
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shows the strategy abundance in an imitation process for this

public goods game with punishment. Panel A illustrates the

outcome when payoffs are mapped onto fitness with an

exponential function, f ~exp(bp), where b is the intensity of

selection [20]. For weak selection altruistic punishment is the

strategy most favored by selection, but this is not true for stronger

selection. Moderate intensities of selection change the picture in

favor of defection. This also holds when payoffs are mapped into

fitness with the linear function f ~1{bzbp [5], as shown in

Panel B. Changes in the ranking of strategies also occur for larger

strategy sets [11,17–19] but for a concise illustration of our point

three strategies are sufficient.

In the example above, focusing only on the weak selection leads

to results that do not even qualitatively hold for higher intensities

of selection. The change in the order of strategies shows that, in

this case, the predictive power of weak selection to higher

intensities of selection is limited. However, many results on the

selection of strategies are based on weak selection [8,21]. In

particular, in the context of the evolution of cooperation, simple

analytical results derived under weak selection are popular

[6,7,22–25]. However, based on the above example a number of

questions arise: Are changes in the ranking of the frequencies of

strategies a common occurrence as selection increases? What

facilitates the change of ranks? The number of players? Or the

number of strategies? Or does it depend on specific assumptions

on the evolutionary dynamics? To answer these questions, we

formally study imitation processes in symmetric games. Our results

show that for games with two strategies, the ranking in strategy

abundance can change with the intensity of selection, provided the

number of players is more than two. Moreover, rank changes also

arise in pairwise games with more than two strategies, and it is

even highly likely in games with many strategies.

Results

We study imitation dynamics in finite populations using pure

strategies. While we could work with the Moran process discussed

above, we choose for convenience a slightly different process,

which is based on the pairwise comparison of two individuals. In

this case, only payoff differences matter. Thus the effective

parameter number is smaller (in a 2|2 game, only two

parameters are necessary and not four). This facilitates the

analysis (see Lemma 3 in SI). Even for a Moran process with any

payoff-to-fitness mapping [13], it is possible to establish payoff

matrices that lead to rank changes. In this case, the same outline of

proof applies, but involves a complicated multivariable analysis.

For a pairwise comparison rule, a randomly chosen individual a
reassesses its strategy by a probabilistic comparison of its payoff pa

to that of a randomly selected model member b with payoff pb.

With a probability given by the imitation function g(x) the focal

individual adopts the model’s strategy based on the payoff

difference between the focal individual and the model,

x~b(pb{pa), where bw0 is the selection intensity. We assume

that g(x) is a well defined probability for all real values of x. We

further use the popular assumption that mutations are rare

[11,17,26–29], such that populations are almost always mono-

morphous [14,15]. We follow the traditional convention that

mutants are restricted to a known finite set of strategies (similar to

the finite allele model in population genetics). The stochastic

dynamics is approximated by an embedded Markov chain with as

many states as strategies in the game (see Methods). The stationary

distribution of the associated Markov chain is a function of the

intensity of selection, b, and yields a ranking of strategies such that

the most abundant strategy is ranked first, the second most

abundant strategy is ranked second, and so on. In the limit of

vanishing selection, b?0, the payoff from the game does not

matter and all strategies have equal abundances. Increasing

intensity of selection makes some strategies more successful than

Figure 1. Average strategy abundance in compulsory public goods games with punishment [11], where d~5, r~3, c~1, a~1 and
c~0:3. The game has three strategies: cooperators contribute to the common pool, defectors exploit cooperators, and altruistic punishers contribute
to the common pool and punish defectors. The evolutionary dynamics are based on the Moran process in a population of size 100, where an
individual is chosen for reproduction with a probability proportional to its fitness f , which is an increasing function of its payoff p. Weak selection
implies that large payoff differences result in small fitness differences: A exponential payoff-to-fitness mapping, f ~exp(zbp) [20,50] and B linear
payoff-to-fitness mapping, f ~1{bzbp [11]. The dashed lines represents weak selection approximations. Vertical lines indicate the two selection
intensities where the ranking of strategies changes. In both cases, most favored strategy changes at moderate intensities of selection. Thus,
predictions based on weak selection results do not carry over to higher intensities of selection.
doi:10.1371/journal.pcbi.1003381.g001

Author Summary

In evolutionary game dynamics in finite populations,
selection intensity plays a key role in determining the
impact of the game on reproductive success. Weak
selection is often employed to obtain analytical results in
evolutionary game theory. We investigate the validity of
weak selection predictions for stronger intensities of
selection. We prove that in general qualitative results
obtained under weak selection fail to extend even to
moderate selection strengths for games with either more
than two strategies or more than two players. In particular,
we find that even in pairwise interactions qualitative
changes with changing selection intensity arise almost
certainly in the case of a large number of strategies.

Weak Selection Predictions for Stronger Selection?
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others. This reflects appropriately in how strategies are ranked by

the stationary distribution. We assume that in the strong selection

limit, b??, even the strategy of only slightly better performing

model individuals is adopted with certainty, lim
x?z? g(x)~1 and

that, similarly, the strategy of only slightly worse performing model

indviduals is never adopted, lim
x?{? g(x)~0.

Games with two strategies
The abundance ranking of strategies is invariant under changes

of the selection intensity in 2|2 games for any imitation process

[30]. However, for the Moran process with arbitrary payoff-to-

fitness mappings, this does not necessarily hold: For example, in a

Moran process with linear payoff-to-fitness mapping, such effects

can appear in games with negative payoff entries when the

intensity of selection approaches its maximal value, as the

transition probabilities can approach zero in this case, leading to

rapid changes of the fixation probability.

Figure 2 shows that rank changes can readily arise for simple

imitation processes in games with three players, i.e., the minimal

group size of multiplayer games. In this example, the ranking

derived under weak selection carries over to any selection intensity

for the Fermi imitation function, g1(x)~1=(1zexp({x)). But for

the rescaled error function g2(x)~(1zerf(x))=2, which repre-

sents a qualitatively similar imitation function, the ranking

changes. It turns out that for any two-strategy game, the ranking

invariance holds for the imitation function g1(x), as a result of the

special property g1(x)=g1({x)~exp(x). For the imitation func-

tion g2(x), however, the criterion to determine that strategy 1 is

more abundant under weak selection differs from that under

strong selection. Section 3 of the SI shows technical details of these

results.

Why do similar functions lead to radically different results when

selection is not weak? The intuition behind is as follows: As shown

in the SI, the stationary distribution depends only on the product

PN{1
k~1

g(zbDp(k))
g({bDp(k))

. Here Dp(k) is the payoff difference between

strategy 1 and strategy 2, where k is the number of strategy 1

individuals in the population. The ranking can change when both

the product in the enumerator and the product in the denominator

converge to zero with increasing intensity of selection b. In this

case, not the imitation function, but its first derivative or

potentially its higher derivates far from zero matter, based on

L’Hopital’s rule.

In the SI, we show that even the monotonicity in the payoff

difference cannot ensure the invariance of ranking for any two-

strategy game and any imitation function (see Section 3 in SI). Yet

this monotonicity applies for all 2|2 games, where the invariance

property holds for any imitation function [30]. Therefore, we

conclude that in general, ranking invariance does not hold for two-

strategy games with arbitrary imitation processes. Since such

multiplayer games have only become popular recently [31–36],

this result may not be particularly surprising. However, in the next

Section we show that even for 3|3 games between two players,

ranking changes can occur.

Games with three strategies
For games with more than two strategies, i.e., nw2, the problem

is harder to tackle, because the stationary distribution does no

longer depend on a single ratio of fixation probabilities, but

becomes a more intricate rational function of all n(n{1) fixation

probabilities, see e.g. [11]. At first, we restrict ourselves to 3|3
games and show that weak selection results do not carry over to

stronger selection. Numerically we establish that this phenomenon

occurs very often in the case of games with randomly drawn payoff

matrices.

An example in which the ranking of strategies changes with the

intensity of selection was already provided in the introduction. To

go one step further, we provide a theorem for a more challenging

constraint in which the limits of both weak and strong selection are

identical, yet rank changes occur at intermediate selection

strengths.

Theorem 1 Consider any imitation process with a strictly increasing,

twice differentiable imitation function g(x). For a sufficiently large population

size N and any selection intensity b�(0vb�v?), there exists a 3|3
payoff matrix (aij)3|3 with the following two properties:

1. The stationary distribution is uniform for b~0 (as always) and for

b??.

2. At b�, at least two strategies change their ranking.

Theorem 1 states that weak selection results cannot be

extrapolated to non-weak selection for 3|3 games (for a proof

by construction see Section 4 of the SI). This implies that the

ranking of strategies under weak selection has limited predictive

value for higher intensity of selection. The theorem also shows that

even if both weak selection and strong selection limits lead to the

same evolutionary outcome, the ranking of strategies can still

change at an intermediate selection intensity. This precludes the

robustness of conclusions based on both the weak selection

approximation and the strong selection.

In order to determine how frequent such rank changes occur or

how generic these games are, we analyze changes in the ranking of

strategies in random games [36–39]. In particular, we compute the

probability that rank changes occur and determine the number of

changes in the rank of strategies, see Figure 3. The numerical

procedure generates a random 3|3 matrix, where each entry is

drawn independently from a Gaussian distribution with zero mean

and variance one or a uniform distribution over the interval (0,1).
Strictly speaking, our numerical results are restricted to these two

sampling distributions for the payoffs. However, the results suggest

that the distribution has only a small influence on the number of

rank changes as shown in Figure 3B. We compute the strategy

abundances for an imitation process in the interval for b in (0,b̂b),

Figure 2. The rank invariance property is sensitive to the
imitation function for two-strategy multiplayer games. We
depict the average abundance of strategy 1 in a 2-strategy 3-player
game in a population of size N~100 as a function of selection intensity
b for two imitat ion funct ions, g1(x)~1=(1zexp({x)) and
g2(x)~(1zerf(x))=2, where erf(x)~(2=

ffiffiffi
p
p

)
Ð x

0 exp({t2)dt is the error
function (see inset). The game is given by the table in the figure.
Invariance of ranking holds if and only if the curves never cross the 1=2
threshold. This threshold is crossed for imitation function g2 but not for
g1 , despite their similarity, see main text for details.
doi:10.1371/journal.pcbi.1003381.g002

Weak Selection Predictions for Stronger Selection?
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where b̂b is chosen maximally while preventing numerical

overflows. We then count the number of rank changes between

all pairs of strategies. Note that the proof of Theorem 1 shows

implicitly that in random games a simultaneous rank change of all

three strategies occurs with probability measure zero. This is

because these games are located on a subspace with a lower

dimension than the space of games with intersections of pairs of

strategies (see Section 4.1 in SI).

Figure 3A shows an example where a randomly generated game

results in four rank changes. This illustrates that the ranking

obtained for weak selection cannot be used to extrapolate to non-

weak selection. The commonness of rank changes is estimated

based Monte Carlo simulations, see Figure 3B. With a probability

greater than 0:25 at least one rank change occurs but the

likelihood decreases rapidly with the number of rank changes.

The numerical approach shows that the construction provided

in Theorem 1 is relevant for a substantial fraction of random

games and does not merely represent a non-generic, special case.

It also shows that a larger number of rank changes may occur as

illustrated in Figure 3.

Games with more than three strategies
Theorem 1 states that 3|3 games exist in which the strategies

change their ranking in abundance. Naturally this also holds for

games with more strategies. To determine the probability and

numbers of such rank changes in random n|n games [36–39], we

generalize the numerical procedure described above.

Games with more than 3 strategies increase in complexity and,

as expected, increasing n leads to more rank changes. Let P(l,n) be

the probability that at least l changes in the abundance ranking

occur in random n|n games. Figure 4 shows that P(l,n) increases

rapidly with the number of strategies n if we assume that the

entries of the payoff matrix are sampled from either a uniform or a

Gaussian distribution. For n~4, the probability that the ranking

derived under weak selection is not valid for higher selection

intensity already exceeds one half. For n~8, it is almost 100%.

The numerical investigation of random games shows that with

many available strategies, the stationary distribution computed for

weak selection can be very different from the stationary

distribution obtained for larger intensities of selection. This is of

particular relevance in applications where behavioral diversity is

important [18,26].

Similarly, the expected number of rank changes for random

n|n games also increases with n, see Figure 4. In particular, for

n~5, the expected number of rank changes is already more than

one. Hence, for games with many strategies it is very likely that the

stationary distribution obtained under weak selection is qualita-

tively quite different from the stationary distribution obtained for

stronger selection.

Discussion

For two-strategy multiplayer games in well-mixed populations

under small mutation rates [14,15], we have shown that the

ranking of the average strategy abundance derived for weak

selection may change when increasing selection strength. More-

over, the ranking is sensitive to the details of the evolutionary

process, such as the choice of imitation functions.

In evolutionary games in finite populations the assumption that

mutation rates are sufficiently rare to consider pairwise invasions

between strategies is popular [11,17,26–29,40] and often the only

analytically feasible approach. However, it remains challenging to

interpret the analytical results for the stationary distribution for all

selection intensities [11]. Therefore, weak selection approxima-

tions [5,22] or strong selection limits [17,19,27] are often used to

obtain simpler analytical results that are easier to interpret.

Here, we have shown that already for 3|3 games, attempts to

extrapolate results derived in one of those simplifying cases may

often fail because even the qualitative features of the stationary

distribution, i.e. the ranking of strategy abundances, may change

as a function of the selection strength. In particular, the strategy

with highest abundance may change with the intensity of selection.

In fact, even considering the two limiting cases of the selection

intensity together is not enough. Our results show that even if

weak and strong selection limits lead to the same ranking, other

rankings can still arise for intermediates selection intensities. Thus,

we conclude that even though these extreme cases are insightful,

abundances at intermediate selection intensity levels have to be

considered as well to establish the generality of the results and

robustness of the conclusions.

An intuitive reason for changes in the abundance ranking of

strategies for 3|3 games in both the weak and strong selection is

based on risk dominance. For strong selection, the pairwise

probability current always flows towards the risk dominant

strategy [14], whereas for weak selection, the average abundance

Figure 3. Number of changes in the abundance ranking of strategies in 3|3 games. A Illustration of a particular game where selection
curves intersect 4 times, giving rise to 5 different rankings (from right to left population sizes N~30 – thick lines, N~40, N~50, N~60–thinner
lines). B Statistics over the number of rank changes in games with randomly drawn payoff entries. At least one rank change is obtained in about one
quarter of random games. The frequency of k rank changes decreases approximately exponentially with k. As an imitation function, we used the
Fermi function g1(x)~1=(1zexp({x)). Parameters: Uniform distribution with payoff values in (0,1), Gaussian distribution with mean 0 and variance
1, frequencies obtained by averaging over 2|106 independent samples.
doi:10.1371/journal.pcbi.1003381.g003

Weak Selection Predictions for Stronger Selection?
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is based on the sum of the risk dominance conditions between all

different strategies [41].

We have focused solely on well-mixed populations and our

analytical considerations cannot easily be generalized to structured

populations. However, several papers on the evolution of

cooperation have shown that the ranking of the average

abundance of strategies can change in structured populations

even in 2|2 games [42–45]. Thus, this issue is also of interest in

structured populations, where the weak selection approximation is

particularly powerful [21,24,25,46], but for example fails to

predict the potential decrease of cooperation in the spatial

snowdrift game [42].

Our results have been obtained for imitation processes, i.e.

processes in which one individual probabilistically compares its

performance to another one and tends to adopt strategies of better

performing members of the population. The results derived for

three or more strategies assume rare mutations such that the

transition matrix of the embedded Markov chain M only depends

on the fixation probabilities of pairs of strategies. Therefore, all our

results immediately carry over to the Moran process with

exponential payoff-to-fitness mapping [20,47], because such a

Moran process has the same fixation probability as the imitation

process with imitation function 1=(1zexp({x)) for any intensity

of selection [20]. This fact illustrates that the existence of such rank

changes do not depend on the details of the microscopic

evolutionary process, but are a generic feature of evolutionary

games in finite populations.

Methods

We assume a finite well-mixed population of size N. For two

player games, individuals interact in pairs according to a

symmetric game given by the n|n matrix aij where n denotes

the number of strategies. A player with strategy i playing against

strategy j gets payoff aij . Payoffs are computed for every individual

assuming everyone interacts with everyone else in the population.

Figure 4. Occurrence of rank changes in random games. In the first row, we plot the estimated probability P(l,n) of getting at least l rank
changes as a function of the number of strategies n for uniformly distributed payoffs (Panel A) and Gaussian distributed payoffs (Panel B). In the
second row, we plot the estimated probability of getting at least l changes in the most abundant strategy as a function of the number of strategies n
for uniformly distributed payoffs (Panel C) and Gaussian distributed payoffs (Panel D). Finally, on the third row we show the expected total number of
rank changes for uniformly and Gaussian distributed payoffs (Panels E and F). Here, we used a Fermi imitation function g1(x)~1=(1zexp({x)) in a
population of size 30. Simulations: For each n, (2ƒnƒ9), 2|106 random n|n matrices are sampled.
doi:10.1371/journal.pcbi.1003381.g004

Weak Selection Predictions for Stronger Selection?
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For the multiplayer case, we follow the notation from [36].

Selection acts by comparing the payoffs of two randomly chosen

individuals. Individual a with payoff pa adopts the strategy of

individual b with payoff pb with probability g(b(pb{pa)), where

g(x) is called the imitation function. In an evolutionary process

individuals must be more likely to imitate a strategy that performs

better and hence we assume that g(x) is increasing, g’(x)w0 for all

x, and for technical reasons we require that g(x) is continuously

differentiable (with the exception of the proof of Theorem 1, which

requires twice continuous differentiability). This implies that

strategies achieving higher payoffs have a higher probability of

being represented in the next generation. The intensity of selection

is b§0. If b approaches zero, payoff differences have vanishingly

small effects on selection. We also assume that lim
x?{? g(x)~0

and lim
x?z? g(x)~1, which means that for infinite intensity of

selection, only the sign of pb{pa matters.

Variation in the population is generated by mutations. That is,

the imitation step described above happens with probability 1{m.

With probability m, a mutation occurs and the focal individual

adopts a uniformly chosen strategy. Without mutations it is

possible to compute the fixation probability wij , of a mutant

playing strategy i in a population of N{1 individuals playing j [5].

For small m, the dynamics is approximated by an embedded

Markov chain [14,15] with an n|n transition matrix M that is

fully determined by the n(n{1) different fixation probabilities wij

(Section 2 SI).

In a large class of evolutionary processes (where all transitions

between states are possible), the transition matrix M has a unique

stationary distribution for every b§0. More precisely, the

stationary distribution is unique whenever the Markov chain is

irreducible and aperiodic, and characterizes the average abun-

dance of each strategy in the long run [48,49]. The evolutionary

outcome we are interested in is the ranking based on the average

abundance on the set of strategies f1,2,:::,ng. The stationary

distribution of M is the the uniform distribution (
1

n
,
1

n
, . . . ,

1

n
) for

b~0. For weak selection, we obtain the ranking over the n
strategies by ordering the derivatives of the components of the

stationary distribution at b~0.

For the computational results, we determine the strategy

abundances for a random game as a function of the selection

strength, b, over the interval 0vbvb̂b, where b̂b is dynamically

adjusted to avoid arithmetic overflow. We then count the number

of rank changes between any pair of strategies, i.e. changes in their

relative abundance for b in (0,b̂b). Random games are constructed

by sampling payoffs from an independent identical distribution,

which is either uniform or Gaussian. Averages are taken over

2|106 samples in all cases.

Our source code in Python is publicly available on figshare

(http://dx.doi.org/10.6084/m9.figshare.814470).

Supporting Information

Text S1 Supplementary Information: Extrapolating weak selec-

tion in evolutionary games.

(PDF)
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