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Novel Frameworks for Dark Matter and Neutrino Masses

The established light neutrino masses and the Dark Matter of the Universe both require physics

beyond the Standard Model for their theoretical explanation. Models that provide a common

framework for these two issues are very attractive. In particular, radiative mechanisms naturally

yield light neutrino masses due to loop suppression factors. These corrections can comprise a

link to the physics of Dark Matter. In most considerations, the Dark Matter relic density is

produced by freeze-out. This thesis contributes to the fields of radiative neutrino masses and

frozen-out Dark Matter. In detail, it is shown that in the Ma-model, right-handed neutrino Dark

Matter can be directly detected by photon exchange at one-loop level. The Zee–Babu-model

is extended such that it enjoys a global symmetry based on baryon and lepton number. This

symmetry generates light neutrino masses and a mass for a stable Dark Matter particle by its

spontaneous breaking. Moreover, this thesis provides a new production mechanism for keV

sterile neutrino Dark Mattetr, which is based on the freeze-in scenario. In particular, keV

sterile neutrino Dark Matter produced by the decay of a frozen-in scalar is investigated.

Neue Erklärungsrahmen für Dunkle Materie und Neutrinomassen

Die festgestellten leichten Neutrinomassen und die Dunkle Materie im Universum erfordern

Physik jenseits des Standardmodells für eine theoretische Erklärung. Modelle, die einen

gemeinsamen Erklärungsrahmen für diese zwei Probleme bereitstellen, sind besonders attraktiv.

Insbesondere liefern Mechanismen mit Korrekturen höherer Ordnung leichte Neutrinomassen

bedingt durch Korrekturfaktoren, die Neutrinomassen auf natürliche Weise unterdrücken.

Diese Korrekturen können eine Verbindung zur Physik der Dunklen Materie darstellen. In

den meisten Betrachtungen wird die Restdichte der Dunklen Materie durch Ausfrieren von

Teilchenreaktionen erzeugt. Diese Doktorarbeit leistet einen Beitrag zu Neutrinomassen, die

über Korrekturen höherer Ordnung erzeugt werden, und zu Dunkler Materie, die ausfriert. Im

Einzelnen wird gezeigt, dass im Ma-Model ein rechtshändiges Neutrino als Dunkle Materie

in direkten Nachweisexperimenten durch Photonenaustausch in erster Strahlungskorrektur

nachgewiesen werden kann. Das Zee–Babu-Model wird mit einer globalen Symmetrie erweitert,

die auf Baryon- und Leptonzahl basiert. Spontane Brechung dieser Symmetrie erzeugt leichte

Neutrinomassen und eine Masse für stabile Dunkle Materie Teilchen. Darüber hinaus stellt diese

Doktorarbeit einen neuen Produktionsmechanismus bereit, der keV sterile Neutrinos erzeugt.

Dieser Mechanismus basiert auf Erzeugungs-und Vernichtungsreaktionen eines Teilchens, die mit

Reaktionen anderer Teilchen einfrieren. Insbesondere werden keV sterile Neutrinos untersucht,

die durch den Zerfall eines skalaren Teilchens entstehen, das eingefroren ist.
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1. Introduction

Then I felt like some watcher of the skies/ When a new planet swims into his ken; [1]

With these lines the English poet John Keats referred to the discovery of Uranus in 1781

by Sir William Herschel. What have a watcher of the skies and a new planet that swims

into his ken in common with Dark Matter (DM) and neutrinos? A lot!

Going back into 1821, the French astronomer M. A. Bouvard had published astronomical

tables for Jupiter, Saturn and Uranus predicting their future positions by using celestial

mechanics based on Newton’s gravitational law [2]: whereas the predicted positions

of Jupiter and Saturn were confirmed, the prediction for Uranus was wrong. The

irregularities in the orbit of Uranus could have been explained by the assumptions that

Newton’s gravitational law had to be changed or that there was an additional source of

gravitation perturbing the orbit of Uranus. With the first observation of Neptune by the

German astronomer J. G. Galle in 1846, the irregularities in the orbit of Uranus were

explained by the assumption of an additional source of gravity in form of a new planet.

Another irregularity was found studying the planet Mercury. The observed perihelion

precession of Mercury equals 5599.74±0.41 arcs per Julian century of 36,525 mean solar

days. However, using Newton’s law of gravity and taking into account all the effects from

the other planets, the predicted perihelion precession of Mercury equals 5557.18±0.85 arcs

per Julian century [3]. To explain this discrepancy, one can look for an additional planet

or use a modification to Newton’s law of gravity. So far, an additional planet inside

the orbit of Mercury has not been found, however, using Einstein’s theory of general

relativity instead of Newton’s law of gravity, a shift of 42.98±0.0023 arcs per Julian

century results [4], which added to the predicted perihelion precession yields the observed

value.

The discovery of Neptune and the advance of the perihelion of Mercury illustrate the

possible solutions to verify observations based on gravitational effects; either there is an

additional source of gravity, such as Neptune leading to the observed irregularities in

the orbit of Uranus, or the gravitational law has to be changed, as done for the correct

description of the perihelion precession of Mercury.

By today, we still watch the sky. Besides many new extrasolar planets, we have

discovered an additional source of gravity that leads to the observed large scale structure

of the Universe. The impact of the baryonic matter alone, which makes up only 4.9%

of the energy density of the Universe, cannot explain the structures of the Universe

formed under the influence of gravity. The main part of the matter in the Universe,

1



2 1. Introduction

which in the framework of Einstein’s theory of general relativity makes up 26.8% of the

energy density of the Universe as revealed by the Planck satellite [5], does not interact

electromagnetically and is called Dark Matter (DM). Since a candidate for a particle-like

DM has not been discovered yet, the question arises whether this DM, being the main

ingredient to explain the observed structure of the Universe, is Neptune-like, i.e., whether

it is an additional kind of matter constituted of particles, or it is Mercury-like, i.e., it

needs the framework of Einstein’s theory of general relativity to be changed.

Already in 1932, the investigation of the force exerted by the stellar system in the

direction perpendicular to the galactic plane led the Dutch astronomer J. H. Oort to the

conclusion that it would appear from the comparison that the dark mass must be relatively

more frequent near the galactic plane than far from it, but the data are too uncertain

to derive numerical results. [6] Based on the measured dispersion of the velocities of

individual galaxies in the Coma Cluster, and applying the virial theorem, the Swiss

astronomer F. Zwicky [7] discovered in 1933 that the mean matter density of the Coma

Cluster has to be at least 400 times larger than the mass derived from the observed

luminous matter. Zwicky conjectured that non-luminous matter, i.e., DM, must exist in

the Universe in an amount much larger than that of luminous matter. On the scale of

an individual galaxy, V. C. Rubin and W. K. Ford Jr. determined in 1970 the circular

velocities vc of several emitting regions inside the Andromeda nebula from 3-24 kpc

distance r to the core of the galaxy. In an equilibrium between the centripetal and

Newtonian gravitational forces, one expects that vc should decrease as 1/√r with increasing

distance to the center. However, a more or less constant circular velocity profile was

found [8]. Rubin’s and Ford’s conclusion was that the best-fit value of the the mean

matter density of the Andromeda nebula, which can be inferred from the circular velocity

profile, has to be twelve times larger than the one resulting from the observed luminous

matter. These first observations, ranging from the small scales of a galaxy to the large

scales of a galaxy cluster, show that, in the framework of Einstein’s theory of general

relativity, there must be an additional matter component added to the gravitational

potential.

Contrary to these observations, the Israeli physicist M. Milgrom proposed in 1983 a

modified Newtonian dynamics MOND, which equals Newtonian dynamics for gravita-

tional acceleration a � a0 = 1.2 × 0−8 cm2s−1, and for a � a0, Newtonian dynamics

with gravitational acceleration
√
aa0 [9]. This theory, in its original formulation, is a

fundamentally non-covariant theory, but it could be formulated as a relativistic covariant

theory in the framework of a tensor-vector-scalar model [10]. Although the embedding

of MOND into a relativistically covariant theory is able to solve the structure problem

of the Universe without particle-like DM, it cannot describe the shape of the matter

power spectrum 1 [11]. The motivation for MOND was to find an explanation for the

1The matter power spectrum is the power spectrum, i.e., the Fourier transformation, of the averaged
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observed constant circular velocity profile without introducing a DM particle. Indeed,

MOND can correctly describe the observed small scale effects without particle-like DM,

however, only on really small scales. For example, MOND predicts an r independent

circular velocity profile, which is more or less true for r . 20 kpc. But for distances in

the range 50 kpc . r . 500 kpc, the velocity declines excluding constant velocity profiles

at a 10σ level, as the observation of 9500 satellite galaxies within a projected distance of

r < 1000 kpc within a number of 215000 observed galaxies in total revealed [12]. Given

these problems, which MOND and more elaborated modifications to the gravitational

law, like tensor-vector-scalar models, fail to solve, we must abandon the idea of changing

the gravitational law and thus do not follow a Mercury-like DM. What we will do in the

following is to start from a Neptune-like DM, i.e., DM made up of some type of particle.

The Standard Model (SM) of Particle Physics, which describes very well the baryonic

matter and whose long-missing Higgs boson has been confidently found at the Large

Hadron Collider (LHC) by the ATLAS [13] and CMS [14] collaborations, has no viable DM

candidate particle: the electromagnetically neutral particles of the SM are the neutrinos,

the Higgs boson and the Z gauge boson. The SM neutrinos are hot at freeze-out, which

would lead to inconsistent structure formation if they would be the DM. Also, the coupling

of the SM neutrinos to the Z gauge boson is too large: neutrino annihilations into Z

bosons would yield a DM relic density much smaller than the observed one. In analogy,

the weak interactions of the Z boson and the Yukawa interactions of the Higgs boson

are too strong to produce the correct DM relic density. In addition, due to t-channel

Z boson exchange, SM neutrinos as DM particles would have been already detected in

direct detection experiments. As we will point out, there are three possibilities to detect

interactions of a DM particle: either indirectly, directly or by collider production. We

will pay special attention to direct detection experiments that probe non-gravitational,

i.e., direct interactions, of a possible DM particle. They have already set stringent upper

limits on the interaction strength of DM, and are currently advancing to even lower

upper limits, such that a positive signal may be announced very soon.

The neutrino is another object we can learn about when we watch the sky with

appropriate instruments. In the SM, the neutrino has left-handed chirality. There is

neither a right-handed counter part that could generate a Dirac mass nor a Majorana mass

term; the latter would break the global lepton number symmetry of the SM Lagrangian.

However, observing in particular the neutrino flux coming from the Sun, we have learned

that neutrinos oscillate between different flavor states. Our knowledge on neutrino

oscillations has been considerably improved by the latest measurement of a non-zero

leptonic mixing angle θ13, e.g., by the Double Chooz [15] experiment. The neutrino

oscillation experiments proved that neutrinos are indeed massive. So, in addition to the

mysterious DM, the neutrino mass, which can also be inferred from watching the sky, is

matter density fluctuations.



4 1. Introduction

a fact that cannot be explained with the ken of the SM.

Given the experimental state of the art and its developments, it is very interesting

to study particle DM and neutrino physics at the same time. Our aim is to connect

descriptions for particle DM with neutrino mass generation mechanisms to finally host

particle DM and massive neutrinos in one unified framework.

To achieve our aim, we build on the idea of right-handed neutrinos. Right-handed

neutrinos could be a possible DM particle and at the same time help to explain light

neutrino masses. One of the pioneering questions asked in this field concerns the

realization of light neutrino masses by right-handed neutrinos and the characteristics

and production of right-handed neutrinos as particulate DM.

With this thesis, we aim to broaden our ken about DM and neutrinos. To do so, we

first illustrate the importance of neutrinos and DM in chapter 2. We already distinguish

between freeze-out production of DM, which is the relevant mechanism in part I of

this thesis, and freeze-in production, which is the relevant mechanism in part II. We

proceed with studying a radiative seesaw mechanisms in which a right-handed neutrino is

linked in a specific way to the loop processes involved. In detail, we investigate radiative

neutrino mass generation at one-loop level in section 3.1. The right-handed neutrino runs

inside the loop giving mass to the light neutrinos, and simultaneously acts as the DM

particle. We focus on the possible direct detection of that DM particle by an effective

three-point interaction with a photon. In section 3.4, we increase the number of loops

involved in the neutrino mass generation and discuss a B −L symmetric two-loop model.

The masses of the right-handed neutrino DM and of the light neutrinos are linked by

spontaneous symmetry breaking. Chapter 4 presents a new production mechanism for

keV right-handed neutrinos. A scalar particle freezes-in and produces by its decays

keV right-handed neutrinos. The freeze-in production opens up a new and previously

unknown region in the allowed parameter space. For specific masses of the scalar and of

the keV right-handed neutrinos, the latter can act as warm DM. Warm DM is believed

to describe structure formation on small scales even better than the cold DM discussed

so far.



2. Importance of Neutrinos and

Illuminating Dark Matter

Before starting the discussion of DM and radiative neutrino masses in part I and of keV

sterile neutrino DM produced by freeze-in in part II, we emphasize the importance of

neutrinos and DM in this chapter. We shortly review the SM in section 2.1, from which

we build on neutrino physics in section 2.2. Having discussed the particle physics part,

we proceed with the cosmological part in section 2.3, which will lead to DM physics in

section 2.4. Throughout this thesis, we use the units } = c = 1 and Heaviside-Lorentz

units for electromagnetism, i.e., we write the fine structure constant αEM as αEM = e2/4π.

In section 2.5, the production of the DM relic density is paid special attention to: the

concepts of the freeze-out and freeze-in mechanisms are explained. We also review the

experimental situation concerning the evidences for neutrino masses and DM, and in

particular, the possibilities for the detection of a DM particle in section 2.6.

2.1. Prelude I: The Glashow–Weinberg–Salam

Theory of Weak Interactions

Back in 1960, S. L. Glashow studied the parallels between electromagnetic effects and

phenomena associated with weak interactions. His remarkable result was that both

interactions are unified supposing the existence of unstable bosons that would mediate

the weak interactions [16]. In a three-page note published in 1967, S. Weinberg imagined

that the symmetries, which relate the electromagnetic and the weak interactions, are

exact symmetries of the Lagrangian but broken by the vacuum. The corresponding

massless Goldstone bosons are avoided by introducing intermediate boson fields as gauge

fields [17]. The idea of broken symmetries was already discussed in the paper [18], of

which Weinberg and A. Salam are co-authors. Salam also dreamed of the synthesis

between the electromagnetic and weak interactions and worked on an SU(2) × U(1)

transformation. Besides the weak interaction gauge fields W+ and W−, he introduced in

1964 a neutral gauge field X0. He assumed that this boson has a mass in order to be

different from the photon [19]. For these and other 1960’s papers, the Nobel Prize in

Physics 1979 was awarded jointly to S. L. Glashow, S. Weinberg and A. Salam for their

5



6 2. Importance of Neutrinos and Illuminating Dark Matter

contributions to the theory of the unified weak and electromagnetic interaction between

elementary particles, including, inter alia, the prediction of the weak neutral current.1

Today, the SU(2)L×U(1)Y theory 2 is confirmed as the SM of electroweak interactions.

It is a relativistic quantum field theory that characterizes leptons and quarks as the

fundamental building blocks of ordinary matter. Their non-gravitational interactions are

described through the exchange of gauge bosons. The chiral fermions of the theory are

arranged into left-handed SU(2)L doublets and right-handed SU(2)L singlets. There are

three (α = e, µ, τ) flavor copies of the SU(2)L doublet and singlet representations. In

each representation, the flavor copies have the same charges.

The generation of masses in the SM for charged leptons, quarks and gauge bosons is

based on spontaneous symmetry breaking of SU(2)L × U(1)Y to U(1)EM described by

the already in 1964 proposed Higgs [20]–Englert–Brout [21]–Guralnik–Hagen–Kibble [22]

mechanism, in the following called Higgs-mechanism for shorthand. The key ingredient

for that mechanism to work is a complex scalar SU(2)L doublet field:

H(x) =

(
H+(x)

H0(x)

)
, (2.1.1)

called the Higgs SU(2)L doublet in the following, where each component is a complex

field by itself. The Higgs potential, which drives spontaneous symmetry breaking, is the

following:

V [(H(x))] = µ2
HH(x)†H(x) + λH

(
H(x)†H(x)

)2
(2.1.2)

In the SM, µ2
H is the only dimensionful coupling.

After the spontaneous breaking of the electroweak theory, we parametrize the Higgs

double in the unitary gauge as:

H(x) =
1√
2

(
0

v + h(x)

)
. (2.1.3)

We use a linear representation, where h(x) is the real Higgs boson. The vacuum

expectation value v, VEV for shorthand, equals v = 246 GeV. It is the global minimum

of the potential (2.1.2). The minimum condition sets:

µ2
H = −λHv2 . (2.1.4)

Equation (2.1.4) shows that µ2
H is given by the VEV of the Higgs SU(2)L doublet. Thus

the only physical scale in the SM is the scale of spontaneous breaking of the electroweak

symmetry.

1http://www.nobelprize.org/nobel_prizes/physics/laureates/1979/
2Including strong interactions, the full gauge group is SU(3)C × SU(2)L × U(1)Y .

http://www.nobelprize.org/nobel_prizes/physics/laureates/1979/
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The leptons in the SM consist of the left-handed SU(2)L doublets L(α) with hypercharge

qY = −1/2 and the right-handed SU(2)L singlets e(α) with hypercharge qY = −1:

L(e) =

(
νe
e−

)
L

, L(µ) =

(
νµ
µ−

)
L

, L(τ) =

(
ντ
τ−

)
L

(2.1.5)

e(α) = eR, µR, τR . (2.1.6)

We denote the chirality as L = LL = PLL and e = eR = PRe, where PL and PR are the

left- and right-handed projection operators. Here and in the following description we have

omitted the flavor indices. The charge conjugation operator C acts as (LL)C = (LC)R.

The bar notation for the SU(2)L doublets is L = (ν, e)L. For a single component u, the

bar acts as u = u†γ0. It follows that (LL)C = LCPL and (eR)C = eCPR.

Accordingly, the quarks consist of the left-handed SU(2)L doublets Q(α) with hyper-

charge qY = 1/6 and the right-handed SU(2)L singlets u(α) and d(α) with hypercharges

qY,u = 2/3 and qY,d = −1/3, respectively:

Q(u) =

(
u

d′

)
L

, Q(c) =

(
c

s′

)
L

, Q(t) =

(
t

b′

)
L

, (2.1.7)

u(α) = uR, cR, tR (2.1.8)

d(α) = dR, sR, bR . (2.1.9)

The SU(2)L gauge bosons are W 1
µ , W 2

µ , W 3
µ with coupling constant g and the U(1)Y

gauge boson is Bµ with coupling constant g′. The field strength tensors are:

F1,µν = ∂µBν − ∂νBµ , (2.1.10)

F a
2,µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν . (2.1.11)

The dual tensor is given by:

F̃µν =
1

2
εµνρσF

ρσ , (2.1.12)

which is used in equation (3.4.17). The SM gauge terms involving the field strength

tensors read:

Lgauge = −1

4
F1,µνF

µν
1 −

1

4
F a

2,µνF
a,µν
2 . (2.1.13)

The masses of the charged leptons and quarks, respectively, arise from the following

Yukawa interactions:

Ly = −yLL(α)He(α) − ydQ(α)Hd(α) − yuQ(α)H̃u(α) + h.c. , (2.1.14)
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with dimensionless Yukawa coupling constants yi and H̃ = iσ2H
∗. When the Higgs

SU(2)L doublet H obtains its VEV, the Yukawa interactions induce mass terms for the

corresponding fields. The masses are hence proportional to yi and v

For quarks, there are two types of Yukawa terms: yu, which forms a mass term for the

upper component of the SU(2)L doublets, and yd, which forms a mass term for the lower

component. Thus there are two corresponding mass matrices, however, they can not be

diagonalized at the same time. In general, each type mixes the flavors of the SU(2)L
doublets and the singlets. We conventionally choose the basis in such a way that the

upper components are the mass eigenstates. Then the lower components are a linear

combination of lower SU(2)L doublet flavor fields, indicated by a prime: d′

s′

b′

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d

s

b

 ≡ V

 d

s

b

 . (2.1.15)

This means that in the quark sector, there is a flavor mixing expressed by the 3 × 3

unitary Cabibbo [23]-Kobayashi-Maskawa-matrix [24] V.

The masses for the gauge bosons arise from their covariant derivative terms, which

couple them to the Higgs SU(2)L doublet. After spontaneous symmetry breaking, we

can write the gauge bosons and their corresponding masses as:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
; mW±µ

=
1

2
gv (2.1.16)

Zµ = − sin ΘWBµ + cos ΘWW
3
µ ; mZµ =

1

2

√
g2 + g′2v (2.1.17)

Aµ = cos ΘWBµ + sin ΘWW
3
µ ; mAµ = 0 . (2.1.18)

In the expressions above, cos ΘW ≡ g/
√
g2+g′2 and sin ΘW ≡ g′/

√
g2+g′2, where the angle

ΘW that expresses the weak-mixing is called the Weinberg angle. The photon Aµ is

massless because after spontaneous symmetry breaking, U(1)EM is preserved.

Clearly, for leptons, the above Yukawa interactions generate only a mass term for the

lower component of the SU(2)L doublets because right-handed neutrinos are absent in

the SM. In that sense, neutrinos are special in the framework of the SM. We will look at

the peculiarities of neutrinos in the next section.

2.2. Neutrinos

To save the law of conservation of energy in β decay processes, the Austrian physicist

W. Pauli hit upon the desperate remedy to postulate in 1930 the existence of electrically

neutral particles that have spin 1/2 and obey the exclusion principle. [25] These neutral

particles are known as neutrinos by today. Neutrinos are special compared to the other
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fermions of the SM. The particle spectrum of the SM does not contain a right-handed

neutrino. So there is no Dirac mass mD for neutrinos. A Majorana mass MM , in turn,

would violate the global accidental U(1)B−L symmetry of the SM by two units. Therefore,

in the framework of the SM, the left-handed neutrinos, which take part in the weak

interactions, are massless.

2.2.1. Flavor Oscillations

It is by now a fact that the neutrino weak interaction states perform flavor oscillations,

e.g., an electron neutrino can oscillate into an muon neutrino, thus violating lepton flavor

conservation. Flavor oscillations rely on the fact that neutrinos are massive and mix with

each other. Studying neutrino flavor oscillations, one can learn about the differences of

the squared mass eigenvalues and about the mixing angles that parametrize neutrino

mixing. We focus on three environments where neutrino flavor oscillations are manifest:

the Sun, the atmosphere of the Earth and terrestrial nuclear reactors. Inside the Sun,

boron-8 is produced. According to the standard solar model, the production reactions

are:

3
2He + 4

2He −→ 7
4Be + γ , (2.2.1)

7
4Be + p −→ 8

5B + γ . (2.2.2)

With a half-life time of 770 ms, boron-8 decays into electron neutrinos:

8
5B −→ 8

4Be + e+νe . (2.2.3)

The first calculation of the expected electron neutrino flux from boron-8 decays resulted

in 3.6 × 107 cm−2s−1 [26]. As current theoretically calculated value, we take 5.05 ×
106 cm−2s−1 [27] .

The first experiment measuring the neutrino flux from the Sun has used the following

detection reaction:

37
17Cl + νe −→ 37

18Ar + e− . (2.2.4)

The measured value for the neutrino flux from boron-8 decays was 1.3× 107 cm−2s−1 [28],

in disagreement with the theoretical calculation at that time. The current measured

value of the neutrino flux from boron-8 decays is 2.35± 0.02± 0.08× 106 cm−2s−1 [29],

in disagreement with the theoretical calculation.

In the atmosphere of the Earth, cosmic rays create showers of particles of which many

are unstable and decay into neutrinos. For example, due to the interactions of cosmic

rays in the atmosphere of the Earth, pions are produced. With a branching ratio of

almost 100%, the negative charged pions decay into muons and anti-muon neutrinos. The
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muons produced by the decay of the pions decay with a branching ratio of almost 100%

into electrons, anti-electron neutrinos muon neutrinos, such that finally, two different

neutrino flavors result from the pion decays:

π− −→ µ− + νµ −→ e− + νe + νµ + νµ . (2.2.5)

The first measurement studying the atmospheric neutrino spectrum from muon decays

counted 85 muon-like events, whereas 144 events were expected [30]. At that time,

the collaboration was unable to explain the data as the result of systematic detector

effects or uncertainties in the atmospheric neutrino flux. Neutrino oscillations between

muon-neutrino and νx or between electron-neutrinos and muon-neutrinos might be one

of the possibilities that could explain the data. [30]

In terrestrial nuclear reactors, anti-electron neutrinos are produced. For example, the

Double Chooz experiment [31] observed an electron antineutrino disappearance in the

following reaction:

νe + p −→ e+ + n . (2.2.6)

The experimental discoveries listed above led to the concept of neutrino flavor oscillations.

The observed and measured oscillations are driven by neutrino mixing. The neutrino weak

interaction states νe, νµ, ντ are linear superpositions of the neutrino mass eigenstates

ν1, ν2, ν3. As eigenstate of a mass operator with a mass eigenvalue different from zero, a

neutrino mass eigenstate is a stationary state, i.e., its time evolution depends only on its

energy. Thus, the time evolution of a given neutrino weak interaction state depends on

the time evolution of its comprising neutrino mass eigenstates. Different mass eigenstates

evolve differently in time due to their different masses according to:

|νi(t)〉 = e−
√
p2
i+m

2
i t|νi〉 . (2.2.7)

Taking massive neutrinos with different masses as a fact, neutrino flavor oscillations

are then simply given by the time evolution of the mass eigenstates. The neutrino weak

interaction states νe, νµ, ντ as superpositions of mass eigenstates ν1, ν2, ν3 can be written

as follows:  νe
νµ
ντ

 = U

 ν1

ν2

ν3

 , (2.2.8)

where U is a 3 × 3 unitary matrix. For two neutrino flavor states, this matrix was

introduced by the Japanese physicists Z. Maki, M. Nakagawa and S. Sakata. They

assumed that some orthogonal transformation applied to the representation of weak

neutrinos, which enter into leptonic currents, defines the true neutrinos [32]. However,
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Maki–Nakagawa–Sakata did not consider neutrino flavor oscillation. It was B. Pontecorvo

who opened the field of neutrino flavor oscillations by studying particle ↔ antiparticle

transitions [33]. To pay tribute to the pioneering works of all of these authors, the matrix

U is called the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)-matrix. The independent

parameters of U are three mixing angle θ12, θ23 and θ13 and one CP violating phase

δCP . Taking the three mixing angles as Euler angles of a rotation in three dimensional

Euclidean space, U can be written as:

U =

 1 0 0

0 c23 s23

0 −s23 c23


︸ ︷︷ ︸

atmospheric

·

 c13 0 s13e
−iδCP

0 1 0

−s13e
−iδCP 0 c13


︸ ︷︷ ︸

reactor

·

 c12 s12 0

−s12 c12 0

0 0 1


︸ ︷︷ ︸

solar

·

 ei
α1
2 0 0

0 ei
α2
2 0

0 0 1


︸ ︷︷ ︸

Majorana phases

, (2.2.9)

where cij =̂ cos θij and sij =̂ sin θij . The Majorana phases α1 and α2 take into account the

nature of a Majorana spinor with a mass term being not invariant under a U(1) symmetry.

For three flavors, there are two squared mass differences ∆m2
21 and ∆m2

32, referred to as

the solar and atmospheric neutrino mass splittings. The experimental measurements of

neutrino fluxes from the Sun, the atmosphere of the Earth and terrestrial nuclear reactors

can be understood in the framework of oscillations of three active neutrino flavors.3

The present day neutrino oscillation data are given in table 2.1, which is taken from [37].

In the SM, the manifest neutrino masses cannot be explained at a renormalizable level.

The importance of neutrinos is thus that, by their flavor oscillations and therefore mass

terms, the existence of and the need for physics beyond the SM becomes inevitable.

2.2.2. Mass Generation

One can introduce a higher dimensional operator that generates neutrino masses. At

dimension five, there is the operator:

LCaiLbjHcHdεacεbd . (2.2.10)

This operator was first discussed by Weinberg, who conjectured that the resulting pro-

duced neutrino mass might perhaps be observable in neutrino oscillation experiments [38].

3In the measured neutrino fluxes, anomalies have been discovered, e.g., [34] and [35] report an excess

in the νµ → νe transition, and [36] discusses an anomaly in reactor antineutrinos. An investigation

of these anomalies is beyond the scope of this thesis.
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Free Fluxes + RSBL

Best fit ±1σ 3σ range

sin2 θ12 0.302+0.013
−0.012 0.267→ 0.344

θ12/
◦ 33.36+0.81

−0.78 31.09→ 35.89

sin2 θ23 0.413+0.037
−0.025 ⊕ 0.594+0.021

−0.022 0.342→ 0.667

θ23/
◦ 40.0+2.1

−1.5 ⊕ 50.4+1.3
−1.3 35.8→ 54.8

sin2 θ13 0.0227+0.0023
−0.0024 0.0156→ 0.0299

θ13/
◦ 8.66+0.44

−0.46 7.19→ 9.96

δCP/
◦ 300+66

−138 0→ 360

∆m2
21

10−5 eV2 7.50+0.18
−0.19 7.00→ 8.09

∆m2
31

10−3 eV2 (N) +2.473+0.070
−0.067 +2.276→ +2.695

∆m2
32

10−3 eV2 (I) −2.427+0.042
−0.065 −2.649→ −2.242

Table 2.1.: Three-flavor oscillation parameters to global data after the Neutrino 2012

conference. The “Free Fluxes + RSBL” reactor fluxes have been left free in

the fit and short baseline reactor data (RSBL) with an oscillation length of

L . 100 m are included.
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With this operator, which is obviously gauge invariant because the tensor product of

four SU(2)L doublets contains a SU(2)L singlet representation, the theory is predictive

only below the scale that suppresses the dimension five. To ensure a predictive theory

at all scales, this operator as any higher dimensional operator has to be viewed as an

effective operator at low energies; it is realized at higher energies through renormalizable

interactions. It turns out that there are three and only three realizations of the Weinberg

operator at tree-level [39], which are known as seesaw type-I [40], type-II [41] and type-

III [42]. In type-I seesaw, the Weinberg operator is generated after integrating out three

fermion singlets, in type-II seesaw a scalar triplet is integrated out and in type-III seesaw

a fermion triplet is integrated out. The type-I seesaw mass matrix is:

mν = −mDM
−1
M mT

D . (2.2.11)

In the type-I seesaw framework, the light neutrino masses are proportional to the product

of the corresponding Yukawa couplings yαi squared times the vacuum expectation value v

of the SM Higgs SU(2)L doublet squared divided by the mass Mi of the fermion singlet.

Mi is the scale of new physics generating the effective low energy theory for neutrino

masses, see equation (2.2.12).

A simple estimate shows that, taking yαi ∼ 1 and v ∼ 100 GeV, the scale Mi of new

physics has to be as high as Mi ∼ 1014 GeV in order to generate a light neutrino mass

scale of 0.1 eV, as is suggested by the upper limit on the summed neutrino masses obtained

by Planck in 2013 [5]. To have the scale of new physics in the TeV range as desired

for LHC, i.e., Mi ∼ 1 TeV, the Yukawa couplings yαi have to be as tiny as yαi ∼ 10−6.

There is nothing wrong about such a tiny Yukawa, given that the Yukawa coupling

of the electron is also of order O(10−6). However, apart from tree level realizations,

the Weinberg operator can also be generated at loop level. If there are no tree level

contributions to light neutrino masses at all, i.e., neutrinos are massless at tree level,

the light neutrino masses are naturally explained by loop-suppressions, which naturally

decrease the scale of new physics compared to tree level realizations due to loop factors

of 1/16π2 per loop and additional coupling constants involved in the loops.

We will study neutrino mass generation at loop level. In chapter 3, we make contribu-

tions to two well-known radiative neutrino mass models, i.e., the one-loop model proposed

by E. Ma and the two-loop model named after A. Zee and K. S. Babu. Before we put

these loop models up for discussion, we first concentrate on the mixing between SM

neutrinos and right-handed neutrinos, which are sterile under the SM gauge interactions.

Sterile neutrinos are then further studied in part II of this thesis.

2.2.3. Sterile Neutrinos

As we have outlined, the SM particle spectrum does not contain right-handed neutrinos.
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In the models we have built and will discuss, including the freeze-in production

mechanism in chapter 4, right-handed neutrinos are included in the particle spectrum.

They are neutral fermion SU(2)L singlets under the gauge group of the SM. If there

existed such a fermion singlet, light neutrino masses could be generated already in the

framework of the type-I seesaw, as pointed out above. A singlet does not take part in

weak interactions. It is almost completely blind to the SM weak interactions, or in other

words, sterile.

We have put emphasize on almost blind. Their mass eigenstates do mix with the SM

left-handed neutrinos, which are called active neutrinos in this context.

Following the argumentation of [43], the relevant interactions for left- and right-handed

neutrinos are:

L = yαi LαH Ni +
1

2
yi S NC

i Ni + h.c. (2.2.12)

Ni are right-handed neutrinos (i = 1, 2, 3) and S is a complex scalar singlet.

The Majorana and Dirac masses are, respectively:

[MM ]ij = Miδij = yi〈S〉δij , (2.2.13)

[mD]αi = yαi〈H〉 . (2.2.14)

In the basis (νe, νµ, ντ , N1, N2, N3)T , the 6× 6 symmetric mass matrix reads:

m̂ =

(
0 mD

mT
D MM .

)
(2.2.15)

The PMNS matrix U diagonalizing the seesaw mass matrix mν = −mDM
−1
M mT

D, see equa-

tion (2.2.11):

U†mνU
∗ = diag (m1,m2,m3) . (2.2.16)

The corresponding mass eigenstates are again denoted as ν1, ν2, ν3. The PMNS matrix

as a product of three Euler rotations is written in equation (2.2.8). It has the standard

form:

U =

 c12c13 s12c13 s13e
−iδ

−c23s12 − s23c12s13e
iδ c23c12 − s23s12s13e

iδ s23c13

s23s12 − c23c12s13e
iδ −s23c12 − c23s12s13e

iδ c23c13

 , (2.2.17)

where the Majorana phase is neglected.

For three generations of neutrinos, there are two differences of squared light neutrino

mass eigenvalues. There are three neutrino flavor states and three neutrino mass

eigenstates, i.e., six neutrino states. This gives five relative phases between the six neutrino
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N1 ΝΑ

Γ

l-l-

W+

Figure 2.1.: Decay of a sterile neutrino into an active neutrino and a photon. A similar

diagram exists in which the lepton line and the W boson line are interchanged

such that the photon couples to the W boson.

states. Conventionally, these phases are chosen such that from the nine parameters of

U, four parameters remain as free parameters. The free parameters can be counted as

(3− 1)2 = 1/2 · 3 (3− 1) + 1/2 · (3− 1) · (3− 2). The first summand gives the three weak

mixing angles θij, the second summand gives the CP violating phase δ.

The neutrino flavor states that enter the weak interaction are then equal:

νLα = Uαiνi + ΘαiÑi
C
, (2.2.18)

with Ñi the mass eigenstates of the right-handed neutrinos Ni. The active-sterile mixing

Θαi is given by:

Θαi =
|mD|αi
Mi

=
yαi〈H〉
yi〈S〉

. (2.2.19)

For convenience, we define:

Θ2
i =

∑
α=e,µ,τ

|Θαi|2 . (2.2.20)

Because the active-sterile mixing angle is non-zero, N1 can decay into an active neutrino

and a photon at one-loop level with a W boson and a charged lepton running in the loop,

see figure 2.1. The total decay width of this channel is the sum over all contributing

lepton flavors, and it is given by:

ΓN1→νLαγ =
9αG2

F

1024π2
sin2(2Θ1)M5

1 . (2.2.21)
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Using the numerical values for the electromagnetic fine-structure constant, i.e., αEM =
1/137, the Fermi coupling constant GF = 1.166× 10−5 GeV−2 and the Taylor expansion

sin2 2Θ1 = 4Θ2
1 +O[Θ1]3, we find:

ΓN1→νLαγ ≈ 8.954× 10−174Θ2
1

(
M1

keV

)5

× 1.519× 10−6 s−1 (2.2.22)

≈ 5.440× 10−22Θ2
1

(
M1

keV

)5

s−1 . (2.2.23)

If there is such a decay, the photon leaves its mark in the diffuse photon background

radiation at the energy Eγ = M1/2.

To be short, the flux of photons resulting from this decay of N1 is calculable. It is

inversely proportional to the lifetime of N1 for that decay channel, which is given by the

decay width. The flux F depends on the sterile neutrino mass M1 and the mixing angle

Θ1 as F ∼ Θ2
1M

5
1 [44]. The upper limit on the flux finally translates into an upper limit

on Θ2
1:

Θ2
1 . 1.8× 10−5

(
keV

M1

)5

. (2.2.24)

The bound on the active-sterile mixing angle is used to obtain an upper bound for the

mass of the sterile neutrino. In section 4.4, this bound then constrains the relic density

of a keV sterile neutrino as DM particle.

In the following section, we will provide a basis for DM physics.

2.3. Prelude II: Cosmological Equations

In section 2.1, we briefly described the fundamental concepts of the SM of particle physics

before we proceeded with a discussion of neutrinos. Before we move on to a general

discussion of DM, we begin with a short presentation of the fundamental principles of

the standard model of Cosmology.

The basic equations of the standard model of Cosmology [45] rely on Einstein’s equations

of General Relativity, which we take as granted as mentioned in the introduction. These

equations are differential equations for a metric tensor gµν , which characterizes the

geometry of space time. They can be derived from the principle of least action. The

geometry of four-dimensional space time is encoded in the Riemann curvature tensor

Rµνρσ, which is a unique expression derived from combinations of the metric tensor gµν .

Since an action S is given by integrating over a scalar, we have to construct a scalar

from the Riemann curvature tensor to obtain a candidate action for gravity. This is done

by first contracting the indices of the Riemann curvature tensor with the metric tensor



2.3. Prelude II: Cosmological Equations 17

gµν yielding the Ricci tensor Rµρ ≡ Rµνρσ · gνσ = Rµνρ
ν . In a second step we calculate

the trace of the Ricci tensor resulting in the curvature scalar R = Rµν · gµν = Rµ
µ.

The action S for General Relativity has to lead to the same physics after transforming

the coordinates through a diffeomorphism. The rule for integration by substitution

assigns the following diffeomorphism-invariant integral for any integrable function f(x):∫
d4x
√
−g f(x) , (2.3.1)

with g ≡ det (gµν). The minus sign arises because, locally, gµν must be equal to the

Minkowski metric gµν = diag(−,+,+,+), for which g = −1. The action S for General

Relativity is:

S =

∫
d4x
√
−g

(
1

2
√

8πGN

· R+ Lmatter

)
. (2.3.2)

Lmatter contains the energy momentum tensor Tµν and the cosmological constant Λ.

Applying the principle of least action [46], the outcome are Einstein’s equations of

General Relativity :

Rµν −
1

2
gµνR = 8πGNTµν + Λgµν . (2.3.3)

On scales larger than 108 pc, cosmological observations suggest that the Universe is

homogeneous and isotropic (compare [47]), i.e., characterized by translational and rota-

tional invariance. The only time-dependent four-dimensional space-time that preserves

homogeneity and isotropy of space is the Robertson–Walker metric, i.e.:

ds2 = xµxνgµν = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.3.4)

with comoving radial coordinate r. The scale factor a(t) expresses the physical distance

x(t) as:

x(t) = a(t) · r . (2.3.5)

The curvature constant k ∈ {+1,−1, 0} corresponds to closed k = +1, open k = −1 or

spatially flat k = 0 geometries.

The energy momentum tensor Tµν has to be diagonal in a homogeneous universe and

its spatial components have to be equal due to isotropy. If we assume that the matter

content of the Universe behaves like a perfect fluid with energy density ρ and pressure p,

then:

Tµν = diag(ρ, p, p, p). (2.3.6)
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With equation (2.3.4) and equation (2.3.6), the (00) component of equation (2.3.3) is

evaluated to

H2(t) ≡
(
ȧ(t)

a(t)

)2

=
8πGNρ(t)

3
− k

a(t)2
+

Λ

3
. (2.3.7)

Dividing by the present day Hubble expansion rate H0 = H(t = t0) and introducing the

critical energy density

ρc ≡
3H2

0

8πGN

, (2.3.8)

equation (2.3.7) is equivalent to

ρ(t)

ρc
− k

H2
0a(t)2

+
Λ

8πGNρc
=
H2(t)

H2
0

. (2.3.9)

The critical energy density ρc is the total energy density of a spatially flat universe. The

(ii) components of equation (2.3.3) are:(
ä(t)

a(t)

)
=

Λ

3
− 4πGN

3
(ρ(t) + 3p(t)) . (2.3.10)

Equation (2.3.7) and equation (2.3.10) are the Friedmann. From these, it follows:

ρ̇(t) = −3H(t) (ρ(t) + p(t)) (2.3.11)

To solve equation (2.3.11), we can use the general equation of state

p = ωρ . (2.3.12)

For this case, equation (2.3.11) is integrated to:

ρ(t) ∝ a−3(1+ω)(t) . (2.3.13)

Putting equation (2.3.13) into equation (2.3.7), and neglecting the curvature term, the

time dependence of the scale factor results up to an integration constant into:

a(t) ∝ t
2

3(1+ω) . (2.3.14)

The solutions of equation (2.3.13) and equation (2.3.14), respectively, are classified

according to their equation of state parameter, see table 2.2. In section 4.3.3, where we

calculate the free streaming horizon, we have to use the different time dependence of the

scale factor a(t) in each era of the Universe. We introduce the cosmological density
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ω a(t) ρ(t)

radiation-dominated 1
3

t
1
2 a−4(t)

matter-dominated 0 t
2
3 a−3(t)

Λ-dominated −1 e
√

Λ/3t const.

Table 2.2.: Time dependence of the scale factor a(t) for different eras of the Universe.

parameter:

Ωtot = Ωγ + Ωm + ΩΛ =
ρtot

ρc
, (2.3.15)

with the total energy density ρtot = ((ρ0)γ + (ρ0)m) + ρΛ = ρ+ ρΛ. Ωm contains baryonic

(b) matter and Dark Matter (DM):

Ωm = Ωb + ΩDM . (2.3.16)

The current most precise measurement of the cosmological parameters is performed by

Planck, a space observatory of the European Space Agency. We present the relevant best

fit values [5] in table 2.3.

The energy density ρ0,DM of DM today is ρ0,DM = mDMn0,DM. mDM is the mass of

the DM particle and n0,DM is its number density by today. The number density n(t)

of a particle species i with gi internal degrees of freedom results from the phase-space

integration:

n(t) =
gi

(2π3)

∫
d3p f(p, t) (2.3.17)

with f(p, t) the phase-space distribution function. The DM relic density, which can be

written as

ΩDM =
mDMn0,DM

ρc
, (2.3.18)

then follows after phase-space integration of the phase-space distribution function, once

the mass of the DM is known. The phase-space distribution function is thus the

decisive quantity that we will further discuss. By definition of the abundance Y , see

equation (D.0.6), the number density of a particle species can also be written as the

product of its abundance Y and the entropy density s. Both factors are comoving

quantities, i.e., there is no dependence on the scale factor a(t). The entropy density s of

a particle species i is defined in appendix C.0.5.

If one assumes that the expansion of the Universe is isentropic, the entropy S = sa3(t)

is conserved, where the entropy density s is given in equation (D.0.7). Conservation
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of entropy is in particular important when a particle species decouples from chemical

equilibrium, see section 2.5 for details. For example, we briefly review the decoupling of

neutrinos, which is also discussed in section 3.4.2.

The neutrino interactions are weak interaction. For temperatures T . 1 MeV, the weak

interaction rate is smaller than the Hubble expansion rate at that time, and the neutrinos

are no longer in chemical equilibrium. Shortly after the neutrinos have decoupled, but

still for temperatures above the electron mass, electrons and positrons are in chemical

equilibrium with photons. Using equation (C.0.12), where we can set TB = TF = T ,

because the masses of the electron, positron and photon are much smaller than the actual

photon temperature T , the number of degrees of freedom equals 2 + 7/8 · (2 + 2) = 11/2.

When the temperature of the photons has fallen below the mass of the electron, the

number of degrees of freedom decreases to 2, only including photons. Due to entropy

conservation, the product (a(tafter)Tγ(tafter))
3 must therefore be larger than the product

(a(tbefore)Tγ(tbefore))
3: at the time tafter, when the electrons and positrons have left the

thermal bath, the number of degrees of freedom is by a factor of 4/11 smaller than the

number of degrees of freedom at the time tbefore just before electron-positron decoupling.

These electron-positron annihilations transfer entropy to the photons, but not to the

neutrinos, which have already left chemical equilibrium. Therefore the temperature Tγ of

photons is increased by the entropy transfer relative to the temperature Tν of neutrinos.

For the present day time t0, the metric scale factor a(t0) equals one and the ratio of Tν
and Tγ follows to be:

Tν(t0)

Tγ(t0)
=

(
2
11
2

) 1
3

=

(
4

11

) 1
3

. (2.3.19)

The present day entropy density s0 can be expressed in terms of the photon temperature

Tγ as s0 = 2969.5 (Tγ/2.75)3 cm−3. We take Tγ = 2.7255 K. We can therefore write

ρ0,DM = mDMs0Y0. The relic density of DM in comoving quantities then follows to:

ΩDM =
s0

ρc
mDMY0 . (2.3.20)

Inserting the relevant Planck 2013 data [5] yields:

ΩDMh
2 = 2.717× 108mDM[GeV]Y0 . (2.3.21)

In chapter 4, we explicitly use equation (2.3.21) to find the mass of our DM particle that

leads to the correct relic density. The best fit values in table 2.3 suggest that 84.50% of

the matter content of the Universe is DM.

In the following section, we briefly emphasize the importance of DM on the structure

formation of the Universe.
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Cosmological parameters and Neff

Best fit 68% limits

H0 67.11 67.4± 1.4

ΩΛ 0.6825 0.686± 0.020

Ωm 0.3175 0.314± 0.020

Ωbh
2 0.022068 0.02207± 0.00033

ΩDMh
2 0.12029 0.1196± 0.0031

Neff 3.36+0.68
−0.64 ← 95 % limit

Table 2.3.: Cosmological parameter values and the effective neutrino number.

2.4. Dark Matter in the Universe

Observations of individual galaxies and superclusters of galaxies reveal that individual

galaxies tend to be older than superclusters [48]. We thus conclude that structures of

the Universe observed today formed in a bottom-up approach.

In the common understanding of the Universe, its structure originates from gravita-

tional perturbations in the metric as an aftermath of the Big Bang. The gravitational

perturbations are present in the energy and matter densities. It is believed that the time

evolution of these perturbations have formed the structures of the Universe as observed

today.

The characteristic scale to explore the time evolution of perturbations is the Jeans scale

kJ named after the British physicist J. H. Jeans. The matter energy density ρ = ρ0 + ρp
has to satisfy the equation of an expanding universe governed by general relativity, see

equation (2.3.7). ρ0 is a static contribution, and ρp is the perturbation. The solution for

ρp can be Fourier expanded with wavenumber k and frequency ω. The frequency ω can

be expressed by the wavenumber k and the static solution ρ0 via a dispersion relation.

The Jeans scale kJ is the wavenumber for which ω = 0 [45]. If k < kJ , the perturbation

related to k is exponential growing, if k > kJ , the perturbation oscillates. The mass inside

a sphere of radius rJ = π/kJ is called the Jeans mass. Masses smaller than the Jeans

mass are stable against gravitational perturbations, i.e., there is no gravitational collapse,

whereas masses larger than the Jeans mass must undergo a gravitational collapse.

In the early Universe, the coupling of the radiation fluid to electrons can be approx-

imated by Thomson scattering because the energy of the electrons with a rest mass

of 511 keV is larger than the energy of the massless photons. Due to Coulomb scat-

tering, electrons couple to protons, such that there is the photon-baryon fluid. The
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photon-baryon fluid, the DM fluid and the neutrino fluid all interact with each other

gravitationally. In the radiation dominated era, the Jeans mass of baryons is larger than

the mass of baryons within the sphere of radius rJ , i.e., the gravitational perturbations in

the photon-baryon fluid are stable and do not grow: the radiation pressure counteracts

the gravitational contraction, and the baryon acoustic oscillations starts.

At matter-radiation equality, the matter content starts to dominate over the radiation

content. Cold DM is pressure-less and if cold DM dominates in the matter dominated

era, there is no pressure left that could counteract the gravitational contraction, such

that the baryon acoustic oscillations stop. Gravitational perturbations grow in the DM,

and small and large scales clump together.

When the baryons have decoupled from the photons, the Jeans mass of baryons

decreases and gravitational perturbations start growing in the baryon fluid. Small scale

clumps in the baryons fall into the gravitational potentials generated by the DM. Existing

scale clumps attract further small scale clumps. This is the evolution of individual

galaxies attracting more and more galaxies, resulting in the formation of galaxy clusters.

The Millenium Simulation [49], which assumed DM to be cold and collision-free,

numerically describes how the structures of the Universe evolve from perturbations, and

it shows that the resulting large scale structures match the ones observed.

If the DM was hot, i.e.,, if it would have behaved as a radiation fluid, this evolution

would have been completely different. The structures would have formed in a top-down

manner, which does not agree with observations. DM can therefore not be hot. However,

between hot and cold there is warm. On large scales warm DM works as well as cold DM.

On small scales, cold DM models seem to over-predict the number of satellite galaxies,

as already pointed out in [50]. However, warm DM erases small scale structures relative

to cold DM. Therefore, warm DM describes even better the structure formation of the

Universe on large and on small scales compared to cold DM. The specifications hot,

warm and cold refer to the distribution function of the DM particle in velocity space [51].

For a fermionic DM particle X with mass mDM, the distribution function fX(v) can be

parametrized as

fX(v) =
β

e
p

αTγ + 1
. (2.4.1)

Here, Tγ is the temperature of photons, and the velocity v equals v = p/
√
p2+m2

DM. The

expected mean velocity is:

E[v] =

∫ ∞
0

dv vfX(v) , (2.4.2)

where we consider only one dimension for simplicity. The velocity dispersion σ that is

important for structure formation then follows to:

σ =
√
E[v2]− (E[v])2 . (2.4.3)
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The distribution function in momentum space of hot DM in the form of SM neutrinos

equals:

fν(p) =
1

e
p
Tν + 1

, (2.4.4)

where we have used entropy conversation, Tν/Tγ = (4/11)1/3, i.e., β = 1 and α = (4/11)1/3,

see equation (2.3.19). Since the phase-space distribution function determines the relic den-

sity as discussed below equation (2.3.17), the phase-space integration of equation (2.4.4)

then yields:

Ωνh
2 =

mν

93 eV
, (2.4.5)

see [45] and references therein. With the upper limit [5] on the neutrino mass of∑
mν < 0.23 eV , (2.4.6)

Ωνh
2 ≈ 0.002, which is thus by a factor of 60 too small to solely account for the DM relic

density.

For a particle X that decouples when it is still relativistic, entropy conversation yields:

TX
Tγ

=

(
4

11

) 1
3
(

10.75

g(TD)

) 1
3

, (2.4.7)

where TD is the temperature at the time the particle X decouples, TX is the temperature

of the particle X and the decoupling happens before the neutrino decoupling. The

earlier the particle X decouples, the higher the number g(TD) of relativistic degrees of

freedom is and, therefore, the lower the temperature of the particle X will be. Since

the particle X is still relativistic when it decouples, its number density scales like T 3
X

and thus also decreases for increasing TD. For a fixed relic density, which is basically

the product of the number density and the mass, this implies a higher mass for the

particle X, which decouples earlier than the SM neutrinos. A higher mass results in a

lower velocity dispersion σ. In that sense, hot DM has a large velocity dispersion at the

time of matter-radiation equality when gravitational perturbations start to grow in the

DM, whereas cold DM, which is already non-relativistic at the time of decoupling, has a

negligible velocity dispersion. Warm DM has a velocity dispersion that is much smaller

than that for hot DM, but non-negligible at the time of matter-radiation equality.

Warm DM suppresses small scale power due to free streaming rFS resulting from

its non-negligible velocity dispersion, and thus it can explain the observed small scale

structures even better than cold DM. A freely propagating particle with velocity v

propagates on a geodesic satisfying v(t)dt = a(t)dr. The comoving distance that a freely
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Freeze-Out Freeze-In

interactions in thermal equilibrium not in thermal equilibrium

initial abundance thermal abundance negligible

evolution out of equilibrium increasing abundance

representative WIMP FIMP

Y0 ∝ 1/λ2 ∝ λ2

Table 2.4.: Freeze-out versus freeze-in.

moving particle propagates between a time tin and t0 follows to:

rFS =

∫ t0

tin

dt
v(t)

a(t)
. (2.4.8)

It is called the free streaming horizon and is used to distinguish between hot, warm and

cold DM. Generically, hot DM has rFS > 0.1 Mpc and warm DM rFS < 0.1 Mpc, see the

discussion of equation (4.3.31). For cold DM, rFS is one order of magnitude smaller.4

The free streaming horizon is discussed in detail in equation (4.3.20) and following.

In chapter 3, we investigate cold DM models with radiative neutrino mass generation

at one and at two loop level. In chapter 4, we focus on warm DM and introduce a new

production mechanism for keV sterile neutrinos as DM particles. Next, we explain the

freeze-out and freeze-in mechanisms.

2.5. The Relic Density of Dark Matter: Freeze-Out

vs. Freeze-In

Now that we have shown the importance of DM on the structure formation of the

Universe, we move on to production mechanism for particle DM, which is one of the

main topics of this thesis.

Throughout this work we hold the view that the DM particle is stable and is connected

to an initial thermal equilibrium.

There are two opposite production mechanisms, freeze-out and freeze-in, see [45]

and references therein. In the freeze-out scenario, the initial abundance of DM is the

equilibrium abundance. For a given temperature, the DM interactions leave thermal

equilibrium and the DM abundance remains constant. In the freeze-in scenario, the

initial DM abundance is almost zero, and it later freezes in to its final abundance.

4The free streaming horizon gives only a hint on the kind of DM. To clearly determine whether a DM

particle is hot, cold or warm, one has to consider its velocity dispersion and judge from the resulting

power spectrum the nature of DM, which is out of focus for this work.
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In the freeze-out scenario, concentrated studies on DM particles falling into the class

of weakly interacting massive particles (WIMPs) are conducted. With equation (2.5.9),

the relic density in equation (2.3.21) of a frozen out DM particle can be written as:

ΩDMh
2 ≈ 3× 10−27 cm3s−1

〈σvr〉
. (2.5.1)

To obtain the measured DM relic density ΩDMh
2 ∼ O(10−1), the thermal average

of the annihilation cross section times relative velocity has to be of order 〈σvr〉 =

3× 10−26 cm3s−1 = 1 pb, which is the scale of weak interaction strengths. In that sense,

the term weakly interacting refers to the fact that a stable particle associated with new

physics at the electroweak scale can contribute the necessary DM relic density. In the

freeze-in scenario, the class of feebly interacting massive particles (FIMPs) is commonly

investigated.

In two of the three models we analyze, the DM particle has a Yukawa interaction to a

scalar singlet particle S beyond the particle content of the SM. When S obtains a vacuum

expectation value, the renormalizable interaction λ(S∗S)(H†H), which is invariant under

SM gauge transformations, becomes a portal, called Higgs portal, for DM annihilations

into SM particles through the mixing of the mass eigenstates of S and the SM Higgs

SU(2)L doublet H. 5 In the model presented in section 3.1, there is no s-channel Higgs

portal. In that case, DM annihilations can proceed via t-channel exchange of an inert

Higgs SU(2)L doublet. But the DM relic density is still achieved by thermal freeze-out.

In addition to DM annihilations, co-annihilations are important in that model. We briefly

discuss co-annihilations in the following.

In general, the thermally averaged annihilation cross section times relative velocity, i.e.,

〈σvr〉, for DM annihilations through the Higgs portal are proportional to λ2m2
SM/(4m2

DM−m
2
H)2.

5One should remark that, for the number density n of the DM particle, annihilation and creation

processes driven by SM particles are relevant. For example, in SUSY theories, given that R-parity is

an exact symmetry, all SUSY partners decay into the LSP, which is natural DM particle, if electrically

neutral. Therefore, the number density n of the LSP is the sum of the number densities n of all

heavier SUSY particles.

For this number density being the sum of the number densities n of all heavier SUSY particles,

the thermal average of the total annihilation cross section of the LSP equals the thermal average of

the sum of the annihilation cross sections of the heavier SUSY particles into SM particles. Through

scattering processes with SM particles, the SUSY particles are kept in kinetic equilibrium. However,

when the temperature T falls below the mass of the heavier SUSY particles due to the expansion of

the Universe, the heavier SUSY particles become non-relativistic. Their number densities n become

Boltzmann suppressed. The number densities n of the SM particles, which, in kinetic equilibrium,

follow a T 3 power law as long as the particles are relativistic, are therefore larger. This means that,

for LSP DM, the scattering processes with SM particles are much more frequent that with heavier

SUSY particles and the SM particles ensure that the LSP remains in kinetic equilibrium. Also for

other theories beyond the SM in which the DM particle is the lightest particle of the new particle

sector, the SM particles ensure the kinetic equilibrium for the DM particle.
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In the freeze-out scenario, the number density n of the DM particle at a high temperature

T traces the equilibrium distribution, which is proportional to T 3. For a temperature

at which the interaction rate n〈σvr〉 of the DM particle is smaller than the Hubble

expansion rate H, the DM particle leaves the chemical equilibrium, and its number

density n0 observed today is inversely proportional to the thermally averaged annihilation

cross section times relative velocity, i.e., n0 ∝ 1/λ2 · (4m2
DM−m

2
H)2/m2

SM. Thus, the larger the

coupling constant λ, i.e., the larger the interaction strength, the smaller the number

density n0 observed today is in the freeze-out scenario. Since experiments have measured

the DM relic density, which is essentially its number density observed today, the coupling

constant λ is constrained to be of order O(10−1) far from Higgs resonances. Note that in

the vicinity of a Higgs resonance, which is at mDM = 1/2 ·mH , the coupling constant λ

has to smaller than O(10−1) to compensate for the pole in the scalar propagator [52].

The numerical treatment of freeze-out was already developed in [53].

In the freeze-in scenario, the number density n of the DM particle at a high temperature

T is assumed to be negligible small in contrast to the T 3 dependence in the freeze-out

scenario. In that case, the DM particle is never in chemical equilibrium, which is satisfied

if n〈σvr〉 < H, even at high temperatures. The condition n〈σvr〉 < H translates into

an upper bound for the coupling λ if the Higgs portal is the dominant communication

channel between the DM particle and the particles in chemical equilibrium, which is

λ . 10−6. For such a small coupling constant, the DM particle is only feebly coupled

to the particles in chemical equilibrium, from which it is only gradually being produced

by annihilations or decays as the temperature of the Universe decreases. When the

temperature of the particles in chemical equilibrium falls below the mass of the DM

particle, the production of the DM particle from the particles in chemical equilibrium

becomes kinematically forbidden and the number density n of the DM particle freezes in

to a constant value. So the general evolution of the DM number density in the freeze-in

scenario is characterized by an initial negligible number density. This then increases

by the production channels of the particles in chemical equilibrium until the freeze-in

temperature. For smaller temperatures the number density remains constant. The larger

the coupling constant λ, the larger the number density n0 observed today will be in

the freeze-in scenario, which is opposite to the behavior for the freeze-out case. The

idea to generate a particle abundance with an initial abundance equal to zero via the

Higgs portal with a very tiny coupling constant was expressed in [54]. It was then

summarized and systematized in [55]. We provide an overview about freeze-out and

freeze-in in table 2.4. Although we do not know the particle nature of DM neither its

non-gravitational interactions, we know the present day amount of DM expressed in

terms of the relic density ΩDM.The key quantity, which, apart from the mass of the

DM particle, determines its relic density, is the present day abundance Y0. Y0 depends

on the expansion history of the Universe and on the interactions of the particle under

consideration with other particles in the thermal bath. The interactions with other
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thermal bath particles produce the present day DM abundance, which depends on the

two scenarios freeze-in and freeze-out. In general, one has to start with a Boltzmann

equation, which is a rate equation describing the evolution of a phase-space distribution

function fi(E, t) for a particle species i due to the expansion of the Universe and due to

interaction processes:

L[f ] = C[f ] . (2.5.2)

Here, L is the Liouville operator and C is the collision operator.

Applying L in the Robertson–Walker metric on the number density n as defined in

equation (2.3.17), i.e., the outcome is:

L[n] = ṅ(t) + 3Hn(t) . (2.5.3)

To write this in comoving quantities, one has to use that ṡ = −3Hs, which results in

ṅ(t) + 3Hn(t) = sẎ . The collision operator takes into account the interactions of the

particle with particles of the thermal bath. For the case of annihilations of a particle-

antiparticle pair 1 and 2 into a particle pair 3 and 4 with |M1+2→3+4|2 being the squared

matrix element for the forward reaction and |M3+4→1+2|2 for the backward reaction the

collision operator is the following phase space integral:

−
∫

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

(2π)4 δ(4) (p1 + p2 − p3 − p4)

·
(
f1f2(1± f3)(1± f4)|M1+2→3+4|2 − f3f4(1± f1)(1± f2)|M3+4→1+2|2

)
. (2.5.4)

Under CPT invariance we have |M1+2→3+4|2 = |M3+4→1+2|2 ≡ |M|2. We further ap-

proximate the Pauli blocking and enhancing factors to one; the error of this approximation

is negligibly small. Thus we can write:

−
∫

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

(2π)4 δ(4) (p1 + p2 − p3 − p4)

· (f1f2 − f3f4) |M|2 . (2.5.5)

Note that we have taken into account the backward reactions, which is only relevant

if the particles 3 and 4 produced in the forward reaction have already a non-negligible

abundance compared to the chemical equilibrium abundance. This is the case in the

freeze-out, however, in the freeze-in scenario, one could in principle neglect the backward

reactions if the particles 3 and 4 have an negligible abundance.

2.5.1. Freeze-Out

In fact, if the particles 3 and 4 are in chemical equilibrium and if they are lighter than

the particles 1 and 2, 3 and 4 will stay in chemical equilibrium even after particles 1 and
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Figure 2.2.: Evolution of the abundance in the freeze-out scenario of a possible neutral

lepton for the lepton masses mL=0.5 GeV, 1 GeV, 2 GeV, 5 GeV and 10 GeV.

NF is the effective number of degrees of freedom and NA is the number of

annihilation channels.

2 have left it. In the determination of the final abundance of the particles 1 and 2 we

can therefore use the equilibrium phase-space distribution functions for the particles 3

and 4, which we approximate as Maxwell–Boltzmann distributions. Energy momentum

conservation leads to f eq
3 f

eq
4 = f eq

1 f
eq
2 such that the collision operator becomes

−
∫

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

(2π)4 δ(4) (p1 + p2 − p3 − p4)

· (f1f2 − f eq
1 f

eq
2 ) |M|2 . (2.5.6)

Using n1 = n2 for the particle-antiparticle pair 1 and 2, the resulting Boltzmann equation

finally simplifies to:

ṅ1 = −3Hn1 − 〈σvr〉(n2
1 − n2

1,eq) . (2.5.7)

Here, vr is the relative velocity and neq is the chemical equilibrium number density, see

appendix D for details. Equation (2.5.7) was already used in [58]. Exemplary solutions

to equation (2.5.7) are shown in figure 2.2, which is taken from [58].

〈σvr〉 is the thermal average of the annihilation cross section σ times relative velocity

vr:

〈σvr〉 =
1

8m4TK2
2

(
m
T

) ∫ ∞
4m2

ds σ
(
s− 4m2

)√
sK1

(√
s

T

)
. (2.5.8)
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In terms of the abundance Y , equation (2.5.7) reads:

Ẏ = −s〈σvr〉(Y 2 − Y 2
eq) . (2.5.9)

In the most general case, the annihilation cross section for a 2 → 2 process depends

on the Mandelstam variables s, t and u. Since u can be written as
∑i=4

i=1m
2
i − s − t,

where the sum runs over all external particles, it is sufficient to expand s and t in terms

of the center of mass velocity vcm, which than results in a vcm expansion for the whole

annihilation cross section times vcm. Due to the definitions of s and t, the expansion of

s only involves even powers of vcm, whereas the expansion of t involves even and odd

powers of vcm with the odd powers of vcm having the cosine of the center of mass system

angle θ as a common factor in linear power. The only θ dependence in the expansion

of the squared amplitude for the annihilation cross section times vcm in the variables s

and t is manifest in the t derivative terms, which are multiplied by powers of t. The

integration of odd powers of cos θ yields zero. Since cos θ enters only linear into the vcm

expansion of t as factor of the odd powers in vcm, the annihilation cross section finally

does not depend on odd powers of vcm and can be expressed as σvcm = a+ bv2
cm +O(v4

cm).

The coefficients a, b and c follow from the square amplitude [59]. A detailed discussion

of the expansion of σvcm in terms of vcm is provided in appendix A.

In the radiation dominated era, the expansion time t in a flat universe equals 1/2H, where

the Hubble expansion rate H is proportional to the temperature T squared. Introducing

the variable x = m/T , the derivative with respect to t can be translated into a derivative

with respect to T . At very early times, the freezing-out particle is in chemical equilibrium

with all the other bath particles, i.e., its number density n is equal to the equilibrium

number density, which is proportional to T 3. The entropy density is also proportional to

T 3. Therefore, at very early times, the abundance Y is independent of T . The Boltzmann

equation then forces Y 2 = Y 2
eq, or, in other words, in the freeze-out scenario, the initial

abundance of the freezing-out particle is independent of T and follows the equilibrium

abundance, as already noted.

Co-Annihilations

So far, we have considered annihilations of a particle-antiparticle pair 1 and 2, meaning

that particle 2 is the antiparticle of particle. Therefore, in the cases of scalar or Majorana

particles, only annihilations of one and the same particle are considered. As already

noted, in section 3.1 we consider also co-annihilations, which we briefly discuss in this

section. We rely on [60].

Suppose in a model beyond the SM there exist particles Xi that are charged under

a discrete symmetry such that they are not allowed to decay into SM particles. Let

the lightest of them be the DM particle X1. The particles Xi are assumed to be

degenerated in mass. If the mass difference δm ≡ m − m1 to X1 does not exceed
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the temperature at freeze-out of X1, then the additional particles Xi are thermally

accessible and have to be included into the freeze-out calculation; not only the annihilation

reactions X1X1 → SM SM ′ contribute to the total 〈σvr〉, where SM and SM ′ denote

SM particles; also the annihilation reaction X1Xi 6=1 → SM SM ′, which is called co-

annihilation reaction, has to be included. If the cross sections of these individual reactions

are similar, then the effect of co-annihilations is not significant. However, if the cross

sections of the individual reactions are different, than co-annihilations can significantly

increase the total 〈σvr〉 and therefore decrease the relic density of the DM particle X1 in

the freeze-out scenario.

This effect of co-annihilations is in particular important in models where DM annihila-

tions are driven by Yukawa couplings, which by themselves are constrained by lepton

flavor violation (LFV) processes. Such models have in general the problem that the

relevant Yukawa coupling constants have to be tiny in order not to violate constraints

from LFV processes. On the other hand, in the freeze-out scenario, tiny Yukawa coupling

constants relevant for DM annihilations yield a DM relic density that is above the current

bound. DM co-annihilations can then simultaneously satisfy the constraints from LFV

processes and DM relic density.

In section 3.1, we will exploit from the co-annihilations N1N2 and N1 η; the first one

contribute to s-wave annihilations for which the cross sections are relatively large because

they are not suppressed by vr, the second one has a completely different cross section.

2.5.2. Freeze-In

To obtain the final abundance in the freeze-in scenario, one again has to start with a

Boltzmann equation. The Liouville term is the same as in the freeze-out scenario, however,

the collision term is different in the freeze-in scenario. It depends on the production

process of the frozen-in particle; in the literature, the most frequently studied processes

are those in which the frozen-in particle can be produced by decays of heavier particles

that are in chemical equilibrium, by inverse decays or by scattering processes [55].

To illustrate the general behavior of the freeze-in scenario, we consider the freeze-in of

a real scalar singlet by annihilations mediated by the Higgs portal. The Lagrangian is

that of [61] and [62]:

L =
1

2
(∂µS) (∂µS)− m2

0

2
S2 − 1

4
λSS

4

+ (DµH)† (DµH)− λH(H†H)2 − λS2H†H . (2.5.10)

The relic density of the real scalar singlet S in the freeze-in regime was determined in [56].
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Figure 2.3.: Evolution of the abundance in the freeze-in scenario of a real scalar particle

for different scalar masses. The Higgs portal coupling is set to λ = 10−11

and the mass of the SM Higgs SU(2)L doublet is set to mH = 120 GeV.

The collision term of the Boltzmann equation is:

−
∫

d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

(2π)4 δ(4) (p1 + p2 − p3 − p4)

· (f1f2 − f3f4) |M|2 . (2.5.11)

Contrary to the freeze-out process, the initial abundance of the scalar singlet, which

corresponds to the particles 1 and 2 in the above expression, is always much smaller

than the equilibrium abundance. At very early times, we can therefore approximate

f1 = f2 ≈ 0 yielding:∫
d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

(2π)4 δ(4) (p1 + p2 − p3 − p4)

· f3f4|M|2 . (2.5.12)

Again we can use the Maxwell–Boltzmann distributions for the bath particles 3 and 4 at

very early times and by using energy conservation, we have:

f eq
3 f

eq
4 = e−

E3+E4
T = e−

E1+E2
T = f eq

1 f
eq
2 . (2.5.13)



32 2. Importance of Neutrinos and Illuminating Dark Matter

The outcome is:∫
d3p1

(2π)3 2E1

d3p2

(2π)3 2E2

d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

(2π)4 δ(4) (p1 + p2 − p3 − p4)

· f eq
1 f

eq
2 |M|2 . (2.5.14)

Observe that the equilibrium distributions for particles 1 and 2 enter only by using

energy momentum conservation in the equilibrium distributions of the particles 3 and 4,

however, the scalar singlet is never in thermal equilibrium.

The Boltzmann equation reads:

Ẏ = s〈σvr〉Y 2
eq , (2.5.15)

compare to equation (2.5.9).

We have implemented the model of the freeze-in of a scalar singlet into LanHEP [63].

The thermal average of the annihilation cross section times relative velocity has then

been calculated numerically using the micrOMEGAs package [64]. We have developed

a procedure in the computer algebra system Mathematica to solve the differential

equation (2.5.15). The result we obtain for the evolution of the abundance in the freeze-

in scenario of a real scalar particle is shown in figure 2.3, which is obviously different

from the freeze-out scenario displayed in figure 2.2: Initially, Yeq is constant, such that in

the freeze-in scenario the abundance Y increases. After the temperature T of the thermal

bath has fallen below the mass of the real singlet scalar, the production channels for the

real scalar singlet particle close due to the kinematics. From then on, the abundance

Y of the singlet scalar reaches a plateau and remains constant. It is frozen-in. Our

result is in accordance with [56]. Comparing our figure 2.3 with figure 1 of [56], our

implementation and numerical treatment of the freeze-in scenario appears to be quite

accurate. As figure 2.3 shows, the abundance Y reaches a plateau at a temperature

T ∼ mS. For temperatures T > 1 TeV the singlet scalar particle is relativistic for all the

different cases. Therefore, 〈σvr〉 ∼ T 2 in equation (2.5.15). The equilibrium abundance

Yeq is independent of T for high temperatures, as explained above. From equation (2.5.15)

it follows that Y ∝ 1/T , as shown in the logarithmic plot of figure 2.3. For both singlet

masses mS = 10 GeV and mS = 1 GeV, the plateau is reached at T ∼ 10 GeV, which is

well below 100 GeV. At temperatures T ∼ 100 GeV, 〈σvr〉 has a resonance for the fixed

Higgs mass mH = 120 GeV. We keep the value for the Higgs mass as given in [56]. The

resonance increases 〈σvr〉, which is the reason why for the singlet masses mS = 10 GeV

and mS = 1 GeV, the abundance Y increases around T ∼ 100 GeV, as already pointed

out in [56]. For mS = 1 GeV, the abundance does not increase until 1 GeV. The reason

for this behavior is related to the dominant production channel of the singlet scalar,

which is W+W− annihilation. W+W−, however, are not anymore in chemical equilibrium

for temperatures well above 1 GeV, which is also pointed out in [56]. We build on our
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Figure 2.4.: Illuminating DM: Indirect detection experiments probe final SM products

through DM s-channel annihilation. Direct detection experiments aim to

observe the t-channel scattering of DM off SM nuclei. At colliders, DM could

be produced through s-channel annihilation of SM particles.

numerics in chapter 4, where we study the production of keV sterile neutrinos by the

decays of a frozen-in scalar.

In the model we consider, the abundance of a scalar singlet σ is produced by freeze-in

mediated by the Higgs portal. When the singlet scalar is frozen in, it can in principle

still scatter off particles that are in the thermal heat bath.

2.6. Detection of Dark Matter

We know that DM constitutes the major part of the matter of the Universe, however, we

have not yet detected a DM particle. If one assumes that there is an interaction besides

gravity between a DM particle and SM particles, then this interaction, whatever its

underlying nature is, can be represented by a Feynman diagram that has as external legs

the DM particle on the one side and SM particles on the other side, which are connected

by a yet unknown interaction vertex. Depending on in which direction this representative

diagram is read, one can distinguish between three possible methods of how to detect a

DM particle if the interaction strength is strong enough, see figure 2.4. The s-channel

read out represents annihilation of DM into SM particles. Through this channel, DM

may be indirectly detected as an excess signal in cosmic rays. A possible DM signal in

cosmic rays could also be expected from a decaying DM particle.

The difficulty off indirect DM searches is the lack of a complete understanding of the

astrophysical sources for the production of cosmic rays. In that sense, a not completely

understood or even an unknown astrophysical source could mimic a possible signal
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expected from DM annihilations and/or decays. For example, the AMS-02 experiment

precisely measured the positron fraction in primary cosmic rays in the energy interval

[0.5; 350]GeV based on 6.8×106 positron and electron events [65]. The overall cosmic

ray flux decreases with increasing particle energy. If all of the positrons observed in

cosmic rays have the same origin as all of the other particles in cosmic rays, then the

flux of the positron fraction should also decrease with increasing energy of the positrons.

Instead, the AMS-02 experiment determined a steady increase of the positron fraction

from 10 GeV to ∼ 250 GeV. This and other observations show the existence of new

physical phenomena, whether from a particle physics, e.g., DM annihilation or decay, or

an astrophysical origin [65]. Apart from that, if the DM annihilation or decay products

are charged particles, they will be deflected in intergalactic magnetic fields, and thus the

information about their production position will be lost.

The situation is better if DM dominantly annihilates or decays into photons, which do

not experience any deflection in magnetic fields and can thus provide local information

about the galactic DM distribution for which only fit-models exist. For a DM particle

with a mass larger than 1 GeV, the produced photons contribute to gamma ray emission.

The background for indirect DM searches in galactic gamma rays is the diffuse galactic

gamma ray emission [66]. Known sources are cosmic ray nucleons interacting with the

interstellar gas, Bremsstrahlung by cosmic ray electrons, inverse Compton scattering of

cosmic ray electrons with low energy interstellar photons, π0 decays into two photons

and point sources like pulsars, which are also a source of high energetic electrons and

positrons. However, there might be additional unknown sources.

Nevertheless, given DM particles were responsible for excesses in the energy spectra of

gamma rays, the energy at which such an excess would be observed is directly correlated

to the mass of the DM particle: for DM annihilations or direct decays into photons, the

photons are monochromatic such that there will be the clear spectral signature of a line.

If the DM particle decays into a photon γ and a particle X, the energy Eγ of the photon

in the rest frame of the DM particle equals Eγ = m2
DM−m

2
X/2mDM = 1/2 ·mDM (1− m2

X/m2
DM).

For the DM annihilation process, one has to replace mDM → 2mDM, i.e.,

Eγ = mDM

(
1− m2

X

4m2
DM

)
. (2.6.1)

The t-channel read out makes the direct detection of DM possible if the interaction

is strong enough. For example, a feebly interacting DM particle will probably not be

detected directly.

The concept for direct detection of DM, which was already formed in 1985 by M.

W. Goodman and E. Witten [67], is that a DM particle can scatter off a nucleus. The

scattering process can be elastic or inelastic. Furthermore, the scattering can be spin-

dependent or spin-independent, depending on whether the target nucleus has a net spin

or not.
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In spin-independent interactions, the mediated interaction particle between the DM

and the nucleus interacts coherently with all the nucleons inside the nucleus. Hence, the

cross section is enhanced by the squared mass number A2 of the nucleus and thus the

detection rate is larger for heavier nuclei.

For spin-dependent interactions, it has to be taken into account that the spins of the

nucleons occupying the inner shells cancel in pairs.

If a DM particle of mass mDM and velocity v0 elastically scatters of a nucleus of mass

mA at rest, conservation of momentum yields a recoil velocity vR for the nucleus given

by vR = 2mDM·v0/(mDM+mA), and hence a recoil energy of:

ER =
2µ2

DM

mA

v2
0 , (2.6.2)

with the reduced mass µDM = mDM·mA/mDM+mA.

But, as in the indirect searches, a not well understood or not even known background

can mimick a possible DM signal. For direct DM searches, the backgrounds can be better

controlled than for indirect searches.

For mDM = mA ∼ 100 GeV and v0 = 10−3 c, ER ∼ 50 keV. The nuclear recoil energy

does depend by definition on the velocity of the colliding DM particle. The above

expression fixes the minimal velocity vmin of a DM particle needed to reveal a nuclear

recoil energy with an amount of ER in an elastic scattering process:

vmin =
1√

2mAER

(
mAER
µDM

)
. (2.6.3)

In an inelastic scattering process, the initial state DM particle is different from the final

state DM particle. If the mass difference between the initial and the final state DM

particle is δ, than the minimal velocity vmin of a DM particle needed to reveal a nuclear

recoil energy with an amount of ER equals:

vmin =
1√

2mAER

(
mAER
µDM

+ δ

)
. (2.6.4)

General inelastic scattering of DM has been discussed in [68], and inelastic scattering

due to the magnetic moment interactions in ref. [69].

For our discussion, the relevant facts about inelastic DM scattering follow directly

from equation (2.6.4): the higher the level of inelasticity δ in a scattering process is, the

larger the minimal velocity becomes. For fixed δ, mDM and ER, the minimal velocity

decreases for increasing nuclear masses up to 126 GeV, which is the mass of 136
54Xe, see

figure 2.5. The decisive point in DM direct detection experiments is that the velocity

of the DM particles is distributed. To predict an event rate for a DM direct detection

experiment, that is the number of counted signals in a given recoil energy interval, it
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Figure 2.5.: Minimal velocity for a given DM mass of mDM = 100 GeV and a recoil energy

of ER = 50 keV as a function of the nuclear mass mN . Three different choices

for the level of inelasticity δ are shown.

is therefore necessarily to assume a velocity distribution for the DM particles. With a

given velocity distribution of DM particles, the measurable recoil energy of a nucleus

with a specific mass then determines the mass of the DM particle.

All direct detection experiments are designed for measuring this nuclear recoil energy.

The various experiments distinguish in the read out of the nuclear recoil energy. Current

techniques are based on the read out of phonons in crystals excited by the recoil energy

like the CRESST I experiment [70], of light like the DAMA/LIBRA experiment [71] and

of charges using p-type point contact Germanium detectors like CoGeNT [72]. Beyond

that, several experiments combine two of these read out techniques. For example, the

XENON100 experiment [73] and the KIMS experiment [74] use the read out of light and

charges. The CDMS experiment [75] reads out phonons and charges.

In this thesis, we compare the predictions of our models for DM direct detection with

data from the experiments DAMA, KIMS and XENON100 in section 3.2, and CDMS

and XENON100 in section 3.4.5. These experiments are described in dedicated sections.

Reading the s-channel in figure 2.4 from the opposite direction leads to the possible

creation of DM at colliders, where the DM particle may show up as missing transverse

energy. From the reconstructed missing energy, the mass of a DM particle, if it is the

particle that produces the missing energy, can be determined. Again, the difficulty is

that one wants to detect something, here a weakly interacting DM particle, which does

not leave its tracks directly in the detectors. In indirect DM searches, final state products

in cosmic rays are the judges over the nature of DM, although other astrophysical

sources could generate the detectable final products as well. In the DM direct detection

experiments, it is the read out of nuclear recoil energy that might be produced by the

DM particle and then used to pin down a DM particle, although backgrounds or other
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sources could produce the same amount of nuclear recoil energy. In a collider experiment,

there could be other particles than DM be produced beyond the SM particles, which

would also only show up as missing energy.

To really claim the detection of a DM particle, the three possible methods have to be

combined. If the mass inferred from the energy spectrum of cosmic rays in DM indirect

detection experiments, the mass inferred from the nuclear recoil energy in DM direct

detection experiments and the mass inferred from the missing energy at DM creation

experiments all agree with each other, then the particle produced at a collider might be

indeed the particle that makes up the DM of the Universe, see, e.g., [76].

The three possible detection methods are directly related to each other in models with

a Higgs portal. The portal coupling constant λ controls the s-channel annihilation of DM

particles and thus is responsible for a possible signal in indirect detection experiments.

Besides, the Higgs portal in the t-channel realizes spin-independent nuclear scattering

cross sections and it can therefore give a signal in direct detection experiments. In

addition, at colliders, the Higgs portal in the s-channel can create DM particles.

In the following subsections we will address each of the three detection possibilities. All

of these detection possibilities rely on the fact that there is a distribution of DM particles

in our Galaxy. Therefore, before addressing each of the three detection possibilities in the

following subsection, one first has to specify the actual distribution of DM particles. To

do so, the Universe is simulated as an ΛCDM Universe. In that framework, large N -body

simulations produce DM halos of galaxies that depend on the DM density profiles ρ(r).

Simulating several systems ranging from dwarf galaxies to galaxy clusters, J. F. Navarro,

C. S. Frenk and S. D. M. White (NFW) obtained the following fit to the DM density

profile [77]:

ρ(r)

ρc
=

δc

r
rs

(
1 + r

rs

)2 , (2.6.5)

where ρc is the critical density of the Universe, see equation (2.3.8), δc is a dimensionless

parameter characterizing the overdensity of the halo and rs is the scale radius of the

halo, which for our Galaxy equals rs = 20 kpc.

The NFW profile leads to a smooth distribution of DM particles in the simulated

halos. The quantity ρcritδc is determined by fixing the DM density ρ(r�) at the Solar

distance r� = 8.4 kpc from the Galactic center. For the NFW profile, a determination

yields ρ(r�) = 0.389± 0.025 GeVcm−3 [78], whereas a model independent analysis yields

ρ(r�) = 0.430± 0.113± 0.096 GeVcm−3 [79].

2.6.1. Indirect Detection

The best chance to detect DM particles indirectly in cosmic rays is the annihilation of

DM particles into a photon γ and a particle X. The final state photons would show up
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as a monochromatic line signature above the diffuse gamma ray background.

The photon flux Φγ per photon energy Eγ is written as [80]

dΦγ

dEγ
=

1

8π

〈σv〉
m2
DM

dNγ

dEγ
r�ρ(r�)2J . (2.6.6)

〈σv〉 is the partial cross section for the annihilation of a DM particle, m2
DM is the mass

of the DM particle, dNγ/dEγ is the photon energy spectrum, ρ(r�) is the DM density at

the Solar distance r� = 8.4 kpc from the Galactic center and J is the integral over the

region of interest expressed in galactic coordinates:

J =

∫
db

∫
dl

∫
ds

r�
cos b

(
ρ(r)

ρ�

)2

. (2.6.7)

Here, b is the Galactic latitude, l is the Galactic longitude, s is the line of sight and r is

the distance from the Galactic center, which equals r2 = r2
� + s2 − 2r2

�s cos b cos l.

The dependence of the photon flux on the DM density to the power of two is charac-

teristic for DM annihilations, because two DM particles are in the initial state. For DM

decay, only one DM particle is in the initial state and the photon flux depends linearly

on the DM density.

The photon energy spectrum follows to be:

dNγ

dEγ
= Nγδ

(
Eγ −mDM

(
1− m2

X

4m2
DM

))
, (2.6.8)

with Nγ = 2 (1) if X = γ (X 6= γ).

In its 3.7 years of data taking the Fermi Large Area Telescope did not find any

globally significant lines in their search regions, which translates into limits for the DM

annihilation cross section into photons. The limits for the DM annihilation cross section

into two photons times velocity are in the range (10−29 − 10−27) cm3s−1, depending on

the DM mass and on the DM density profile assumed for the Milky Way [81] and thus

by a factor of approximately 5–5000 smaller than the thermal average of the annihilation

cross section times velocity needed to produce the correct amount of DM relic density

by freeze-out, which equals 3× 10−26 cm3s−1. In particular, with a global significance of

only 1.6 σ for a line-like feature at a DM mass of 133 GeV, recent claims of a line-like

feature at a DM mass near 130 GeV [82,83] seem to be killed.

Given the above arguments, in particular possible and yet unknown astrophysical

sources, we do not discuss the prospects for indirect detection of DM annihilations in the

course of this thesis, but we do discuss direct detection.
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2.6.2. Direct Detection

The event rate is written as:
dR

dER
=
∑
nuclei

ρ�
mDM

1

Mdet

∫
v>vmin

dσ

dER
vf⊕(v)d3v , (2.6.9)

where ρ� ' 0.3 GeVcm−3 is the local DM density, taken as the mean density of elementary

particles trapped in the galactic gravitational field at the position of the Sun, Mdet is the

mass of target material. vmin is the minimum velocity required for DM to scatter off a

nucleus with recoil energy ER and f⊕(v) is the local DM velocity distribution function

in the rest frame of the Earth.

The matrix element of the DM-nucleus scattering cross section σ involves the expecta-

tion values 〈n|qΓq|n〉 of quark bilinear operators qΓq inside a nucleon n. Under Lorentz

transformation, these operators transform as scalar qq, pseudo-scalar qγ5q, vector qγµq,

axial-vector qγ5γµq and tensor qσµνq. Under charge conjugation, these operators are

even, even, odd, even and odd, respectively. Note that, for a Majorana field that is

even under charge conjugation, the odd operators vanish. As noted above, the present

velocity v0 of a DM particle is about three orders of magnitude smaller than the speed c

of light, which justifies a non-relativistic approximation. In the non-relativistic limit, the

vector operator transforms as a scalar and the tensor operator as an axial vector. In that

limit, the remaining interactions are the scalar and the axial vector interactions. It is the

axial vector interaction that contains the spin operator ξ†σiξ with ξ the two-component

spinors and σi the Pauli matrices. We discuss effective scalar interactions in the model

of section 3.4, and effective vector and tensor interactions, respectively, in the model of

section 3.1. Therefore, in section 3.4, spin-independent interactions lead to DM direct

detections, whereas in section 3.1, spin-independent and spin-dependent interactions

contribute.

In [84], the effective DM direct detection cross sections resulting from scalar and axial

vector interactions are calculated. For the scalar interaction, the matrix element of the

operator qq, where the light quarks q = u, d, s enter with masses mq, in a nucleon n with

mass mn is written as:

〈n|mqqq|n〉 = mnf
(n)
q . (2.6.10)

The nucleon parameters f
(n)
q are associated with hadronic uncertainties in the computation

of the pion-nucleon-sigma term σπn, that is σπn = 1/2 (mu +md) 〈n|uu + dd|n〉, and of

the quantity σ0 = 1/2 · (mu +md) 〈n|uu+ dd− 2ss|n〉, see [84] and [85]. In section 3.4, we

use the values from table 2.5, which follow from σπn = 55 MeV and σ0 = 35 MeV. The

contribution of the heavy quarks Q = c, b, t is obtained in the heavy quark expansion:

〈n|mQQQ|n〉 =
2

27
mn

(
1−

∑
q=u,d,s

f (n)
q

)
. (2.6.11)
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neutron(n) proton(n)

fu 0.018 0.023

fd 0.042 0.033

fs 0.26 0.26

Table 2.5.: Nucleon Parameters.

Equations (2.6.10) and (2.6.11) yield the effective scalar coupling gS(n) for DM spin-

independent scattering on a nucleon n:

gS(n) =
mn

v

[ ∑
q=u,d,s

f (n)
q +

2

27
mn

(
1−

∑
q=u,d,s

f (n)
q

)]
, (2.6.12)

see equation (3.4.67).

For the axial vector interaction, the matrix element of the operator qγµγ5 in a nucleon n

is proportional to the spin of the nucleon. The differential cross section for spin-dependent

DM scattering is proportional to [84]:

dσ

dER
∝ (ap〈Sp〉+ an〈Sn〉)2 J + 1

J
F 2(ER) . (2.6.13)

In equation (2.6.13), J is the total angular momentum of the nucleus. 〈Sp〉 = 〈N |Sp|N〉
is the expectation value of the spin content of the proton group inside a nucleus N , and

in analogy, 〈Sn〉 is the expectation value of the spin content of the neutron group. ap and

an are parametrization factors. The term in brackets in equation (2.6.13) corresponds

to equation (3.2.11), where we also take the orbital angular momentum into account.

F 2(ER) is a form factor. Form factors are discussed in detail in section 3.2.1.

In the rest frame of the Galaxy, the local DM velocity distribution follows from the

DM density distribution and its phase-space density, which both depend on the Galactic

gravitational potential. Taking the standard DM halo model in which the DM density

distribution is an isotropic isothermal sphere and assuming that the Galactic gravitational

potential is spherically symmetric, the local DM velocity distribution is the Maxwell–

Boltzmann distribution [86] for velocities v < vesc and zero for velocities v = vesc with

the local escape velocity vesc. vesc is related to the local gravitational potential and set

to vesc = 544 kms−1. The Maxwell–Boltzmann distribution is normalized if the local

velocity dispersion,

σ2
v(r�) =

∫
d3v |v|2fr�(v) , (2.6.14)

equals σv =
√

3/2v0, where v0 = 220 kms−1 is the circular velocity at the position of the

Sun assuming that the rotation curve of the Galaxy is flat down to the position of the

Sun.
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The velocities involved are smaller than the speed of light by a factor 10−3, and

therefore a coordinate transformation is well approximated by a non-relativistic Galilean

transformation, which has to be applied from the DM velocity in the Galactic rest

frame into the rest frame ⊕ of the Earth where the detector of a DM direct detection

experiment is located. The underlying transformation reads: f⊕(v, ve) = f(v+ve), where

ve is the velocity of the detector relative to the Galaxy taking into account the galactic

rotation v0, the mean velocity of the Sun relative to nearby stars, which we set equal to

12 kms−1, and the orbital velocity vorb = 30 kms−1 of the Earth relative to the Sun [87]:

ve = v0+12 kms−1+vorb cos γ cos [2π(t− t0)/year] with cos γ = 0.51 and t0 = June 2nd.

The measurable quantity depends on the product of the differential cross section, the

DM velocity and the DM velocity distribution.

Since we will investigate differential cross sections that are independent of v and

proportional to 1/v2, respectively, we must evaluate the following velocity integrals to

predict the event rate:

ζ1(vmin, ve) =

∫ ∞
vmin

d3v
f(v + ve)

v
, (2.6.15)

ζ2(vmin, ve) =

∫ ∞
vmin

d3v vf(v + ve). (2.6.16)

The analytic formulas for the DM velocity integrals given in refs. [88, 89] are used.

The total predicted event rate in the DM direct detection experiments is obtained

by integrating the differential event rate with respect to an appropriate recoil energy

range. However, due to energy losses in the detection material, the nuclei in the detection

materials do not transfer the total recoil energies into the measurable energies, i.e., the

actual measured energies are only fractions of the incident transferred energies by the

scattering process. These fractions are known as nuclear quenching factors, which were

already discussed in [90].

In section 3.2, we compare the event rates predicted in a specific model with the data

from the XENON100, DAMA, and KIMS direct detection experiments. The energy

range and the quenching factors are taken from [74,91,92] and shown in Tab. 2.6. For

XENON100 we use the same light-yield function Leff as in ref. [91] that corresponds to

an effective quenching factor.

DAMA

The DAMA experiment has 25 sodium-iodine crystals doped with thallium as detector

material. They are arranged in five rows by five columns. Each crystal has a mass of

9.70 kg and a volume of 10.2× 10.2× 25.4 cm3. Each detector has two photomultiplier

tubes at opposite sides [71].
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A possible DM-NaI(TI)-scattering process can induce light emission after recoil of the

nuclei of the crystals. Due to the photoelectric effect, photoelectrons are ejected. The

photomultipliers measure the resulting electric charge, which is proportional to the recoil

energy.

To obtain a model-independent result on the mass of the DM particle, the DAMA

collaboration measures an annual modulation signal [93]. In fact, since the Earth orbits

around the Sun and the Sun itself moves relative to the center of the Galactic rest frame,

once a year on June 2nd, the orbital velocity of the Earth is parallel to the velocity of

the Sun around the Galactic center. Then the flux of DM particles crossing the Earth

should have a maximum. Hence, the event rate measured in the NaI(Tl) crystals should

have a maximum. The DAMA collaboration claims to have measured such an annual

modulation signal.

In the energy interval [2; 6]keV, the modulation amplitude is measured with an event

rate of 0.0166 ± 0.0013 at a confidence level of 8.9σ [93]. Having investigated several

sources that could also generate an annual modulation signal, the DAMA collaboration

claims to have evidence for DM particles in our Galactic halo at 8.9σ confidence level.

KIMS

The KIMS experiment consists of an array of 3× 4 cesium-iodine crystals that are doped

with thallium. The crystals have a mass of 8.6 kg each and a volume of 8×8×30 cm3. To

each crystal, two photomultiplier tubes are attached at opposite sides. Having also iodine

as target material, the KIMS measurement is competitive to the DAMA measurement.

In the energy interval [3.6; 5.8]keV, the KIMS collaboration obtains an event rate for

nuclear recoil events of 0.0098 counts day−1 kg−1 keV−1 at 90% confidence level [74].

CDMS

The CDMS experiment has 19 germanium and 11 silicon detectors. Each germanium

detector has a mass of approximately 230 g, and each silicon detector has a mass of

approximately 100 g [75]. The detectors are cooled to temperatures below 50 mK. On top

of each detector, phonon sensors measure the recoil energy and position of a possible DM

scattering event. In addition, the phonon sensors are used as reference for the ionization

measurement.
28
14Si is lighter than 72

32Ge; therefore the spin-independent scattering cross section, which

is proportional to the squared mass number A2 of the nucleus, is enhanced for germanium

relative to silicon.

In section 3.4.5 we use the data detected by 14 germanium detectors with a total

exposure of 612 kg-days, which set the upper limit on the DM-nucleon elastic-scattering

spin-independent cross section of 7.0 × 10−44 cm2 for a DM mass of 70 GeV at 90%
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Energy range Quenching factor

XENON100 8.4− 44.6 keV Leff

KIMS 3.6− 5.8 keV 0.1 (Cs), 0.1 (I)

DAMA 2− 8 keV 0.3 (Na), 0.09 (I)

Table 2.6.: The energy range and the quenching factor for the experiments XENON100,

KIMS and DAMA.
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Figure 2.6.: Limit on the spin-independent WIMP-nucleon scattering cross section from

XENON100. The green and yellow bands show the expected sensitivity at

1σ and 2σ, respectively. The resulting exclusion limit at 90% confidence

level is shown in blue. Other experimental limits are shown for comparison.

confidence level.

XENON100

The XENON experiment is a two phase time projection chamber, which is almost

cylindrical with a height of 30.5 cm and a radius of 15.3 cm. The time projection chamber

contains 62 kg of liquid xenon. On the bottom, the time projection chamber is closed by

a cathode below which an array of photomultiplier tubes is installed. On top of the time

projection chamber, there is a gate grid. Cathode and gate grid generate an electric drift

field. Above the gate grid, there is a liquid gas interface followed by a gaseous phase of

xenon. An anode with a stronger electric field than the gate grid is placed a few mm

above the liquid gas interface. At the top end cap of the chamber, xenon is present in the

gaseous phase. The top end of the whole detector is closed by an array of photomultiplier

tubes. The coordinate system to locate the interaction point has its z-axis aligned along

the electric drift field. The brief description of the geometry of the XENON detector as
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well as the following details on the signal read-out are taken from [73].

The melting point of xenon is −111.7 ◦C and its boiling point is −108.12 ◦C, both

referring to a pressure of 1.01325 bar. With an atomic mass number of 54 and a density

of 3 gcm−3, liquid xenon is very efficient in stopping radiation. Being liquid, it is not

an expensive task to stop radiation in a large and homogeneous volume of liquid xenon.

Experiments based on crystals like sodium-iodine or semiconductors such as germanium

have to face engineering and economic problems when operating on relatively large and

homogeneous volumes. Compared to other liquid rare gases, liquid xenon has the highest

ionization and scintillation yield.

It is a unique feature of liquid rare noble gases to produce both charged particles and

scintillation photons in response to radiation. In liquid xenon, the scintillation photons

have a wavelength centered around 177.6 nm. These photons are emitted when the

excited dimer Xe∗2 decays into the ground state:

Xe∗2 −→ 2 Xe + γ . (2.6.17)

Xe∗2 is created directly through excitation of atoms and indirectly through electron-ion

recombination.

In liquid xenon, isotopes with an even number of neutrons can be found, i.e., 124
54Xe,

126
54Xe, 128

54Xe, 130
54Xe, 132

54Xe, 134
54Xe and 136

54Xe, as well as isotopes with an odd number of

neutrons, i.e., 129
54Xe and 131

54Xe. Therefore, liquid xenon can probe spin-dependent and

spin-independent interactions. The listed features of liquid xenon are extracted from [94].

Typically, when a possible weakly interacting massive particle scatters off a xenon

nucleus from the liquid xenon inside the time projection chamber, a prompt scintillation

signal S1 is generated during the nuclear recoil when a xenon atom is excited to the dimer

Xe∗2. S1 is detected by the photomultiplier tubes at the bottom of the time projection

chamber. In the scattering process, xenon atoms are also ionized. The resulting free

electrons drift through the liquid xenon to the gate grid. The anode above the gate grid

with its stronger electric field extracts the electrons into the gaseous phase where the

proportional light signal S2 is generated. S2 is detected in the top array of photomultiplier

tubes. Knowing the drift velocity of the electrons, the time between the detection of S1

and S2 yields the z-coordinate of the interaction point. The x- and y-coordinates can be

inferred from the single photomultiplier tubes in the array that detected a light signal

for the scattering process under consideration.

The current analysis is based on a data set corresponding to 224.6 live days×34 kg

exposure [95] . There are no evidences on DM interactions. The exclusion limit on the

spin-independent DM-nucleon scattering cross section is taken from [95] and shown in

figure 2.6. The limit on the spin-independent DM-nucleon scattering cross section is

2× 10−45 cm2 for a DM mass of 55 GeV at 90% confidence level. At the time when we

made predictions on the DM direct detection possibilities in the models we present in

chapter 3, we had to rely and on data sets with less exposure time. In section 3.1 we use



2.7. Neutrinos Have Mass and the Universe Has Dark Matter 45

the data set corresponding to 100.9 live days×48 kg exposure [91]. At that time, the

limit on the spin-independent DM-nucleon scattering cross section was 7× 10−45 cm2 for

a DM mass of 50 GeV at 90% confidence level. We account for the increase of sensitivity

in direct detection by presenting the planned sensitivity of XENON1T [96], see figure 3.9.

In section 3.4 we use the data set corresponding to 11.17 live days×40 kg exposure [97].

At that time, the limit on the spin-independent DM-nucleon scattering cross section

was 3.4× 10−44 cm2 for a DM mass of 55 GeV at 90% confidence level. We can simply

make a prediction on the cross section without being in conflict with the present bounds,

because we can always make the relevant mixing angle small, see figure 3.11.

2.6.3. Collider Production

Although DM particles could be directly pair created in proton-proton collisions, they are

invisible to the detectors, which only measure electromagnetic and hadronic interactions.

Nevertheless, events in which DM particles are pair produced could be detected if there

is an additional SM particle emerging from initial-state radiation. For example, in the

collision of an up quark with an anti-down quark, a pair of DM particles could be

produced that will not be directly detectable in the detectors. However, if the initial up

quark or the anti-down quark radiates off a W+ gauge boson, than the calorimeters could

measure the energy of the W+ decay products. The missing transverse momentum from

the not directly detected DM particles can then be reconstructed from the center-of-mass

energy and the measured energies of the W+ decay products. The search for DM pair

production in events with a hadronically decaying W or Z boson and missing transverse

momentum in proton-proton collisions is reviewed in [98]. The data analysis is based on

data recorded with the ATLAS detector corresponding to 20.3 fb−1 at
√
s = 8 TeV. The

data very well agree with the estimated backgrounds and are thus consistent with the

SM expectations.

2.7. Neutrinos Have Mass and the Universe Has

Dark Matter

As outlined above, neutrino masses and DM in the Universe in form of a new particle

are two very interesting but yet unresolved problems in particle physics.

Experiments have proven their existence and thus have directly born the younger

generation of particle physicist into the doorway of physics beyond the SM. Precision

measurements in the neutrino and in the DM sectors have already led to the discoveries

of their main characteristics, respectively, and therefore we already have entered into the

realm of non-standard physics.
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Believing in the present and future experimental development, it is thus very well

motivated to study further neutrino masses and DM. The investigations in this thesis

combine neutrino masses and DM, providing a common framework.



Part I.

Radiative Neutrino Masses and

Frozen-Out Dark Matter

47





3. Neutrino Masses at Loop-Level

Connected to Dark Matter

In section 2.2, we have advertised neutrino mass generation at the loop level. If one

assumes that the Yukawa coupling constants yαi of the terms

yαi LαH Ni + h.c. (3.0.1)

in equation (2.2.12) are of order one, then the Majorana mass scale MM in leading order

type-I seesaw has to be as large as MM ∼ 1014 GeV. Such a high scale is needed to

generate light neutrino masses of order 0.1 eV according to the seesaw mass matrix

mν = −mDM
−1
M mT

D , (3.0.2)

see equation (2.2.11) for further discussion.

In terrestrial experiments, energies of the order of 104 GeV are accessible. To probe

nevertheless directly the scale needed for neutrino masses, one could force the relevant

Yukawa couplings to be as tiny as 10−6, which would decrease MM to an accessible order

of MM ∼ 103 GeV. However, one may wonder about the origin of such tiny Yukawa

couplings.

A way out of correctly matching a Yukawa coupling constant and Majorana mass in

type-I seesaw mechanism could be to think about neutrinos being massless at tree level.

The light mass scale could then be explained by loop effects. In addition, loops can

naturally combine the light neutrino mass generation with DM physics.

In this chapter, we study frameworks that simultaneously explain light neutrino masses

by radiative mass mechanisms and DM by freeze-out of a stable particle. We consider

models at the one-loop and two-loop level. Even at three-loop level, there is an available

model discussed by Krauss et al. [99] and by Aoki et al. [100], which, however, is beyond

the scope of this thesis.

We start in section 3.1 by reviewing the Ma-model [101], which generates light neutrino

masses at the one-loop level. Despite the leptophilic nature of the DM with no direct

couplings to quarks and gluons, scattering with nuclei is induced at the one-loop level

through photon exchange, for which we explore for the first time in literature the expected

event rate in DM direct detection experiments.

49
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This section is the result of the work based on collaboration with Thomas Schwetz and

Takashi Toma. The subsequent publication is [102], of which the author of the present

thesis is a co-author. The author of the present thesis contributed to the calculation of

the DM relic density, the DM direct detection, effects of θ13 and was partly involved in

the loop integration.

Next we review the Zee–Babu-model [103], which generates light neutrino masses at

two-loop level. Although the scale of new physics is at the accessible TeV range due

to two loop suppression factors and relative small coupling constants in the loops, the

drawback of this model is the introduction of a lepton number violating trilinear scalar

term by hand with a dimensionful coupling constant µ, see equation (3.4.5). In the SM,

the dimensionful coupling constant µ2
H is fixed by spontaneous symmetry breaking such

that the symmetry breaking scale is the remaining physical scale, see equation (2.1.4).

Motivated by the demand that any new physical scale beyond the SM should arise

dynamically from the general concept of spontaneous symmetry breaking, the original

Zee–Babu-model is augmented by a scalar SU(2)L singlet in section 3.4.1 such that

the potential enjoys a global U(1)B−L symmetry. It is then the spontaneous symmetry

breaking of the global symmetry that generates dynamically the trilinear term needed for

neutrino masses. In order to obtain a DM particle we introduce two SM fermion SU(2)L
singlets. Neutrino masses and DM are then related by the global U(1)B−L symmetry;

most noticeably, a remnant Z2 symmetry automatically guarantees the stability of the

DM particle. The DM phenomenology of the model is discussed and similar models

based on a gauged U(1)B−L symmetry are commented on.

The work done in collaboration with Manfred Lindner and Thomas Schwetz added up

to this section. The subsequent publication is [104], of which the author of the present

thesis is the corresponding author. The author of the present thesis determined the mass

spectrum of the model, calculated the annihilation cross sections and direct detection

cross section.

3.1. One-Loop Example: The Ma-Model

3.1.1. Neutrino Masses and Mixing

At one-loop level, a very well studied model to generate neutrino masses radiatively is

the model proposed by E. Ma in 2006 [101]. It represents a mechanism to realize the

dimension-five Weinberg operator at one-loop level.

The particles beyond the particle content of the SM are three right-handed neutrinos

Ni (i = 1, 2, 3) and one scalar SU(2)L doublet η. In addition to the SM gauge group

there is a Z2 symmetry under which the new particles change sign and the SM particles

transform trivially. The Z2 charges are assigned such that the right-handed neutrinos Ni
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only have Yukawa couplings with the scalar SU(2)L doublet η. Yukawa couplings of η to

SM fermions are forbidden, thus η is called an inert SU(2)L doublet.

The new invariant Lagrangian expressed in Dirac spinors is:

LN = Nii∂/PRNi + (Dµη)† (Dµη)− 1

2
MiNi

cPRNi + hαiLαη̃PRNi + h.c. , (3.1.1)

and the scalar potential Vscalar is:

Vscalar =m2
HH

†H +m2
ηη
†η +

1

2
λ1

(
H†H

)2
+

1

2
λ2

(
η†η
)2

+ λ3

(
H†H

) (
η†η
)

+ λ4

(
H†η

) (
η†H

)
+

1

2
λ5

((
H†η

)2
+ h.c.

)
, (3.1.2)

where H is the SM Higgs SU(2)L doublet and η̃ = iσ2η
∗. This is the most general

SU(2)L×U(1)Y gauge invariant renormalizable scalar potential for two SU(2)L doublets

that also enjoys the discrete Z2 symmetry introduced above.

The symmetry breaking pattern of this potential with all of the possible combinations

of the two vacuum expectation values being zero or different from zero, respectively, was

analyzed in [105].

In the following, the vacuum expectation value 〈η〉 of η is assumed to be zero, so that

the discrete Z2 symmetry is an unbroken symmetry of the vacuum state.

The combination 〈H〉 = 1/
√

2 · v 6= 0 and 〈η〉 = 0 is one of the four combinations

analyzed in [105]. Because 〈η〉 = 0, Dirac neutrino masses are not generated through the

Yukawa couplings in equation (3.1.1), and neutrinos remain massless at tree level.

We parametrize the SM Higgs SU(2)L doublet H and the inert SU(2)L doublet η in

the unitary gauge as:

H =

(
0

1√
2

(v + h)

)
, η =

(
η+

η0
R + iη0

I

)
, (3.1.3)

see equation (2.1.3). The mass eigenvalues of the potential are then:

m2 (h) =
1

4
λ1v

2 , (3.1.4)

m2
(
η±
)

= m2
η +

1

2
λ3v

2 , (3.1.5)

m2
(
η0

R

)
= m2

η +
1

2
(λ3 + λ4 + λ5) v2 , (3.1.6)

m2
(
η0

I

)
= m2

η +
1

2
(λ3 + λ4 − λ5) v2 . (3.1.7)

The addition of three right-handed neutrinos Ni (i = 1, 2, 3) to [105] then allows for

radiative neutrino masses, see figure 3.1. The relevant couplings that enter into the
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neutrino mass generation are the Yukawa couplings hαi of the inert Higgs SU(2)L doublet

η and the scalar coupling λ5.

The amplitude for the diagram in figure 3.1 equals:

iM = hαih
†
βi

∫
ddk

(2π)d
PR

p/+ k/+Mi

(p+ k)2 −M2
i

PR
i

k2 −m2(η0)
. (3.1.8)

Here and in the following a summation over the index i is implied.

m2(η0) represents the mass eigenvalue of either the real or the imaginary part of η0.

We will point out the distinction between m2(η0
R) and m2(η0

I ) where needed.

With the projection operator PR of the right-handed Majorana neutrino Ni involved

in the loop integral in equation (3.1.8), one sees that only the mass Mi in the numerator

contributes because PR(p/+ k/)PR = (p/+ k/)PLPR = 0.

We obtain the denominator of the one-loop integral in Feynman parametrization:

1

{x[(p+ k)2 −M2
i ] + (1− x)(k2 −m2(η0))}2

. (3.1.9)

We define k′ ≡ k+ xp and Λi = (M2
i −m2(η0))x+m2(η0). We neglect the light neutrino

mass p2 in equation (3.1.9) as well as in the numerator of the one-loop integral. The

one-loop integral in d = 4 dimensions can now be calculated:∫ 1

0

dx

∫
ddk′

(2π)d
Mi

(k′2 − Λi)2
(3.1.10)

= − Mi

16π2

∫ 1

0

dx log
Λi

M2
i

(3.1.11)

= − Mi

16π2

∫ 1

0

dx log[(1− ai)x+ ai] ; ai ≡
m2(η0)

M2
i

. (3.1.12)

The exchange of the real part of η in the loop gives:

Mi

16π2

(
1 +

m2(η0
R)

M2
i −m2(η0

R)
log

m2(η0
R)

M2
i

)
. (3.1.13)

The exchange of the imaginary part of η in the loop gives:

− Mi

16π2

(
1 +

m2(η0
I )

M2
i −m2(η0

I )
log

m2(η0
I )

M2
i

)
. (3.1.14)

Both contributions yield

iM = PR(mν)αβ (3.1.15)
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ΝΑ ΝΒ

Η0Η0

<H> <H>

Ni

hΑi hΒi

†

Figure 3.1.: Radiative neutrino mass generation at one-loop level.

with the effective neutrino mass:

(mν)αβ = hαih
†
βi

Mi

16π2

(
m2(η0

R)

M2
i −m2(η0

R)
log

m2(η0
R)

M2
i

− m2(η0
I )

M2
i −m2(η0

I )
log

m2(η0
I )

M2
i

)
.

(3.1.16)

Since m2(η0
R) − m2(η0

I ) = λ5v
2 and assuming λ5v

2 � m0 ≡ m2(η0
R)+m2(η0

I )/2, the final

result for the radiatively generated neutrino mass is:

(mν)αβ =
λ5v

2

8π2
hαih

†
βi

Mi

m2
0 −M2

i

(
1− M2

i

m2
0 −M2

i

log
m2

0

M2
i

)
. (3.1.17)

For convenience, we define:

Λi ≡
2λ5v

2

(4π)2Mi

(
1− M2

i

m2
0 −M2

i

log
m2

0

M2
i

)
, (3.1.18)

which allows us to write:

(mν)αβ = hαih
†
βi

M2
i

m2
0 −M2

i

Λi . (3.1.19)

The assumption of a small coupling λ5 is reasonable [106], since in the limit of λ5 −→ 0,

the symmetry of the model would increase; the model would enjoy a U(1) symmetry.

If one assumes the tri-bimaximal structure of the PMNS matrix at leading order, i.e.,

θ12 = sin−1 (1/
√

3), θ23 = 45◦, θ13 = 0◦ and δ = 0, equation (2.2.17) simplifies to:

Utri =

 c12 s12 0

− s12√
2

c12√
2

1√
2

s12√
2
− c12√

2
1√
2

 . (3.1.20)
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We diagonalize the effective neutrino mass matrix (mν)αβ with Utri , i.e.:

diag (m1,m2,m3) = U†tri(mν)αβU
∗
tri . (3.1.21)

The Yukawa couplings are written as: hαi = |hαi|eiϕi , with ϕi the phases, α the flavor

(α = e, µ, τ ) and i the right-handed neutrinos (i = 1, 2, 3). The following conditions [107]

result from equation (3.1.21):

3∑
i=1

(2h2
ei sin 2θ12 + 2

√
2hei(hµi − hτi) cos 2θ12

− (hτi − hµi)2 sin 2θ12) = 0 (3.1.22)
3∑
i=1

hei(hµi + hτi) = 0 (3.1.23)

3∑
i=1

(hµi − hτi)(hµi + hτi) = 0 .. (3.1.24)

We realize these conditions by choosing hαi equal to:

hαi =

 0 0 h′3
h1 h2 h3

h1 h2 −h3

 (3.1.25)

implying that tan θ12 = 1/
√

2·h′3/h3. In a section below, we analyze the effects of the recently

confirmed measurement of sin θ13 6= 0. We take sin θ13 = 0 at leading order. In our

analysis, we use the fit value sin2 θ12 = 0.312+0.017
−0.015 [108]. It then follows h′3/h3 ≈ 0.95+0.038

−0.033.

Using the global fit value for sin2 θ12 given table 2.1, we obtain h′3/h3 ≈ 0.93+0.029
−0.026, i.e.,

within the error bars there is no significant change in the value for h′3/h3. The special form

for the Yukawa couplings is discussed in [107]. It leads to one vanishing neutrino mass

eigenvalue. Therefore, the measured differences of squared neutrino mass eigenvalues

directly corresponds to the actual neutrino mass eigenvalues.

Neutrino masses are given in terms of the model parameters as follows:

|(h2
1 + h2

2)Λ1| '
√

∆m2
atm

2
(3.1.26)

|h2
3Λ3| '

√
∆m2

sol

3
, (3.1.27)

where use ∆m2
atm = 2.50× 10−3 eV2 and ∆m2

sol = 7.59× 10−5 eV2 for the differences of

squared neutrino mass eigenvalues.

Again, the differences relative to the values given in table 2.1 are not severe. The mass

difference of N1 and N2 is neglected.
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From equations (3.1.18), (3.1.26) and (3.1.27), we can estimate the required sizes for

the couplings hi and λ5. Assuming (1− M2
i/m2

0−M2
i · logm2

0/M2
i ) ∼ 1 and h1 ∼ h2 ∼ h3 ≡ hi,

and taking into account that v ∼ 0.05 eV × 2× 1012, we obtain:

λ5 h
2
i

10−11
∼ Mi

v

(√
∆m2

atm

0.05 eV

)
. (3.1.28)

Since hi controls the DM relic density, and can therefore not be too small, λ5 has to be

tiny in order to obtain correct neutrino masses.

As will be discussed later, we impose the perturbativity condition |hi| < 1.5 for the

Yukawa couplings.

3.1.2. Lepton Flavor Violation

The Yukawa coupling

hαiLαη
†PRNi + h.c. (3.1.29)

induces LFV decays at one loop level. Limits on lepton flavor violating decays then

impose further constraints on the model parameters.

The branching ratios (BR) for lepton flavor violating processes Lα −→ Lβγ equal:

BR(Lα −→ Lβγ) ≡ Γ(Lα −→ Lβγ)

Γtot
(3.1.30)

=
Γ(Lα −→ Lβγ)

Γ(Lα −→ Lβνανβ)

Γ(Lα −→ Lβνανβ)

Γtot
(3.1.31)

=
Γ(Lα −→ Lβγ)

Γ(Lα −→ Lβνανβ)
BR(Lα −→ Lβνανβ) . (3.1.32)

The decay Lα −→ Lβνανβ is a SM process involving the exchange of a W− gauge boson,

which gives the Fermi constant GF as an factor in the effective Fermi theory. The

loop-mediated decay is possible inside the SM with a W boson and left-handed neutrinos

νL in the loop, but it is negligible small due to the fact that mW ∼ 1012 mνL .

In the model considered here, Lα −→ Lβγ can also be realized with right-handed

neutrinos and the charged component η+ of the inert SU(2)L doublet η running in the

loop. This loop-realization of the decay Lα −→ Lβγ yields sizeable branching ratios for

lepton flavor violating decays:

BR(Lα −→ Lβγ) =
3αEM

64πG2
Fm

4
0

∣∣∣∣∣
3∑
i=1

h∗αihβiF2

(
M2

i

m2
0

)∣∣∣∣∣
2

BR (Lα −→ Lβνανβ) , (3.1.33)
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Figure 3.2.: Lepton flavor violating decay.

where αEM = e2/4π is the electromagnetic fine structure constant and Mη is the mass of

η+, which we assume to be degenerate with η0 for simplicity.

The loop involves a Dirac propagator and two scalar propagators connected through

the interaction vertex with a photon, see figure 3.2. The loop function F2(x) is given by:

F2(x) =
1− 6x+ 3x2 + 2x3 − 6x2 log x

6(1− x)4
, (3.1.34)

see appendix B for a detailed calculation.

With the given structure for the Yukawa couplings hαi in equation (3.1.25), the h3

and h′3 elements contribute to µ −→ eγ. The branching ratio for the decay µ −→ eνµνe
is BR(µ −→ eνµνe) ≈ 1. Since h′3 =

√
2h3 tan θ12, µ −→ eγ only depends on |h3|

and M3. The lepton flavor violating process τ −→ µγ depends on h1, h2 and the

DM mass M1. Given the current experimental situation, i.e., BR(µ+ −→ e+γ) <

5.7×10−13 [109] and BR(τ− −→ µ−γ) < 4.4×10−8 [110], the most stringent constraint on

the model parameters comes from the current non-observation of µ+ −→ e+γ. Contours

of BR(µ −→ eγ) = 5.7 × 10−13 are shown for several |h3| values in figure 3.3. We

take M3 = 6000 GeV and |h3| = 0.3 as a benchmark point in the following discussion.

As it is clear from the figure, for this choice all values of m0 are allowed, and for

m0 ∼ O(100) GeV, we predict µ −→ eγ close to the present bound; equation (3.1.28)

then implies λ5 ∼ 10−9. With the chosen flavor structure of the Yukawa couplings hαi, we

are able to relate model parameters to neutrino oscillation data. Together with the upper

bounds from the LVF process, there are additional constraints on the model parameters,

leaving only four independent parameters left which can be chosen as follows:

m0, M1, δ ≡M2 −M1, ξ ≡ Im(h∗2h1) , (3.1.35)
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Figure 3.3.: Contours of BR(µ −→ eγ) = 5.7× 10−13 in the (M3, m0) plane for various

choices of |h3|. The region to the left of each contour is excluded by µ −→ eγ

due to the behavior of F2(x). The inset zooms into the contour for |h3| = 0.3.

with δ �M1. M1 and δ immediately fix M2.

Since we fix h3 to the benchmark given point above in order to satisfy µ −→ eγ,

equation (3.1.27) determines Λ3. Putting Λ3 and the the benchmark value for M3

into equation (3.1.18) fixes λ5 for a given m0. The λ5 in turn determines Λ1 via

equation (3.1.18). Once Λ1 is known, the absolute values |h1| and |h2| follow from

equation (3.1.26). The still undetermined relative phase between h1 and h2 is defined by

the parameter ξ, which will play an important role for the production of the DM relic

density, which will be discussed in the following.

3.1.3. Dark Matter Relic Density

With the given Z2 charge assignment, DM particles in this model are, in principle,

the neutral component η0 of the inert Higgs SU(2)L doublet η and the lightest of the

right-handed neutrinos Ni. We assume a mass spectrum in which N1 is the lightest

Z2-odd particle and hence the DM particle. It is further assumed that N1 is almost

degenerated with the second lightest right-handed neutrino N2.

Because 〈η0〉 6= 0, the λ3 coupling in the potential does not provide a Higgs portal,

which would mediate s-channel annihilations for N1 into SM particles. The Ni couple to

the SM only via Yukawa interactions with the lepton SU(2)L doublets Lα, and therefore
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our DM is leptophilic. The corresponding annihilation channels NiNj → LαLβ are

t-channels mediated by the inert SU(2)L doublet η.

The relic density and indirect detection of DM in the model have been investigated

with the flavor structure of equation (3.1.25) in [107]. Here, we investigate the prospects

for direct detection of DM in this setup for the first time in literature.

For the thermal production of DM in this model, co-annihilations between N1 and N2

have to be considered, since they are assumed to be degenerated. Co-annihilations are

discussed in section 2.5.1. In addition to the annihilation of two N1, the annihilation of

N1 and N2 have also to be considered leading to an enhanced effective annihilation cross

section.

The effective annihilation cross section is written as [59]:

σeffvr = aeff + beffv
2
r +O(v4

r) , (3.1.36)

see also appendix A. The DM relic density depends on the thermal average 〈σeffvr〉 of

the annihilation cross section σeff times relative velocity vr. If vr follows a Maxwell–

Boltzmann distribution, then the most probable speed v is proportional to
√

T/m =
√

1/x.

It then follows:

〈σeffvr〉 = aeff +
beff

x
+ +O(v4) . (3.1.37)

The approximate analytic solution of the Boltzmann equation, which describes the

evolution of the DM density, is given by

Ωh2 ' 1.07× 109xf√
geff(Tf )mpl

(
aeff + 3 beff

xf

) GeV−1 , with xf =
M1

Tf
, (3.1.38)

where geff(Tf ) is the number of relativistic degrees of freedom at the time of freeze-out,

see appendix C, and mpl = 1.2× 1019 GeV is the Planck mass. In our analysis, we take

Ωh2 = 0.11260± 0.0036 [111].

Given the almost degenerate masses of N1 and N2, annihilations of N1 and N2 as

well as co-annihilations between N1 and N2 have to be considered, which are realized

by t-channel exchange of η+ and η0. With the structure of the Yukawa couplings hαi in

equation (3.1.25), the allowed final states are µ, τ , νµ, ντ , and their antiparticles. It is

assumed that δ = M2 −M1 is negligible small.

For the co-annihilation process, the squared amplitude |M|2 is proportional to:

|M|2 ∝ s(s− 4M2
l )

(t−m2
0)2

(
h1h

†
2 − h

†
1h2

)2

= 4
s2 − 4M2

l s

(t−m2
0)2

ξ2 . (3.1.39)

For the annihilation processes of N1 and N2, the squared amplitude |M|2 is proportional

to:

|M|2 ∝ (s− 4M2
1 )(s− 4M2

l )

(t−m2
0)2

|h2
1 + h2

2|2 . (3.1.40)
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The cross section can be calculated according to:

dσ

dt
=

1

64πs

1

|pN1,cm|2
|M|2 . (3.1.41)

|pN1,cm| is the absolute value of the three momentum of the particle N1 in the center of

mass system: |pN1,cm| = 1/2
√
svcm ∝

√
s− 4M2

1 . The cross section for the co-annihilation

process is then proportional to s−4M2
l/(s−4M2

1 )(t−m2
0)2 times phase space factors, whereas

for the annihilation processes the cross section is proportional to s−4M2
l/s(t−m2

0)2 times

phase space factors.

The phase-space factors are the result of the t-integration of 1/(t−m2
0)2, and they are

equal to: √
s(s− 4M2

1 )

M4
1 +m2

0(s− 2M2
1 +m2

0)
. (3.1.42)

Writing s = 4M2
1/1−v2

cm and expanding σvcm in the the center of mass system velocity

velocity vcm, it is already clear that for the co-annihilation process, σvcm has a velocity in-

dependent term, whereas the for the annihilation process, the leading term is proportional

to v2
cm; this corresponds to the helicity suppression for Majorana fermions.

Taking into account co-annihilations of N1 and N2 and neglecting the lepton masses,

the coefficients aeff and beff in the effective annihilation cross section follow from the

squared amplitude for the given processes, see appendix A, and are equal to:

aeff =
ξ2

2π

M2
1

(m2
0 +M2

1 )
2 , (3.1.43)

beff =
|h2

1 + h2
2|2

24π

M2
1 (m4

0 +M4
1 )

(m2
0 +M2

1 )
4 +

ξ2

2π

M2
1 (m4

0 − 3m2
0M

2
1 −M4

1 )

(m2
0 +M2

1 )
4 . (3.1.44)

The terms proportional to ξ2 come from the co-annihilation process N1N2 −→ LαLβ,

whereas the N1N1 and N2N2 annihilations lead to the terms proportional to h2
1 and h2

2,

respectively.

We observe from Eq. (3.1.43) and (3.1.44) that the s-wave resulting from the aeff-

term is only present due to co-annihilations. If there is no phase difference between h1

and h2, the combination of the neutrino Yukawa couplings ξ vanishes and only p-wave

annihilation remains. Thus, co-annihilations and a non-zero phase difference play an

important role in obtaining the correct DM relic density. For the following results, we

use the micrOMEGAs package [64] to calculate numerically the relic abundance of DM.

In addition to N1 −N2 co-annihilations, also co-annihilations with η are important, if

m0 becomes close to M1.

The allowed parameter region in the plane of DM mass and the Yukawa coupling ξ,

which is consistent with neutrino masses and mixing, LFV, and DM relic density, is
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Figure 3.4.: Region in the space of DM mass M1 and ξ = |h1h2| sin(ϕ1 − ϕ2) consistent

with neutrino masses and mixing, LFV, perturbativity, and the relic density

of DM. The regions with different color shadings denoted by A, B, C, D,

correspond to different assumptions on m0, with A: 2.0 < m0/M1 < 9.8, B:

1.2 < m0/M1 < 2.0, C: 1.05 < m0/M1 < 1.20, D: 1.0 < m0/M1 < 1.05. The

curves show the upper bound on sin θ13 from µ −→ eγ, see equation (3.1.52),

with the Yukawa matrix from equation (3.1.49).

shown in figure 3.4. The allowed region is colored and divided into four regions A, B, C,

D, corresponding to different assumptions on the ratio m0/M1. The upper bound on ξ

is imposed by requiring perturbativity of the Yukawa couplings. The lower bound on

M1 in regions A and B is determined by the limit on τ −→ µγ together with the relic

abundance requirement. There is no allowed parameter region if m0/M1 & 9.8, because

taking into account perturbativity, as well as τ −→ µγ, the annihilation cross section is

suppressed by m4
0. If m0/M1 comes close to 9.8, we are driven to the left-upper corner of

the allowed region in figure 3.4. In the parameter region C and D, we have m0/M1 < 1.2,

and co-annihilations with η become important. Without co-annihilations with η, the

parameter space C and D would not appear, and we would obtain a lower bound on |ξ|.
However, if N1− η co-annihilations are relevant, the correct relic density can be obtained

even for vanishing ξ. In all cases we can conclude that the correct relic density is always

obtained thanks to co-annihilations with either N2 or η.

The charges component η+ of the inert SU(2)L doublet η can decay into charged

leptons. The allowed decays are η+ −→ N1,2µ
+ and η+ −→ N1,2τ

+. Given that these

decays are the only possible ones for η+ in this model, one may worry about a too long

lifetime for η+ being in conflict with light element abundances predicted by Big Bang

Nucleosynthesis (BBN). Namely, η+ can inject energy into charged leptons, which may

change the predictions of BBN [112].
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In the rest frame of the decaying particle η+, the decay rate for the above listed decays

is:

Γ
(
η+ −→ N1,2µ

+(τ+)
)

=
|h1|2 + |h1|2

8π

(
1− M2

1

m2
0

)2

m0 . (3.1.45)

Defining x ≡ m0M1, the lifetime τη for η+ follows to:

τη =
8π

|h1|2 + |h1|2

(
x2

x2 − 1

)2
1

m0

. (3.1.46)

We have checked that for the parameter ranges of interest, η decays much faster than

0.01 s, unless it is degenerate with N1 at the level of 10−10, and hence the parameter

region D is not in conflict with BBN.

The Yukawa couplings hαi are chosen such that the neutrino mass matrix of the model

is diagonalized by the PMNS mixing matrix with sin θ13 = 0. However, the Double Chooz

experiment measured a non-zero value for sin2 θ13: sin2 θ13 = 0.0227+0.0023
−0.0024, see table 2.1.

Therefore, deviations from the flavor structure assumed in equation (3.1.25) have to

be considered. Defining the PMNS mixing angles as cij = cos θij and sij = sin θij for

i, j = 1, 2, 3, the following perturbations for the PMNS matrix are introduced:

s13 = ε3, c13 = 1 +O(ε23), (3.1.47)

s23 =
1√
2

+ ε4, c23 =
1√
2
− ε4 . (3.1.48)

The perturbed Yukawa coupling matrix at linear order is written as:

hαi =

 ε1 ε2 h′3
h1 h2 h3

h1 h2 −h3

+O(ε2) , (3.1.49)

with |εi| � |hj|.
Diagonalizing the neutrino mass matrix in equation (3.1.19) according to equa-

tion (3.1.21) at linear order, setting Λ1 ≈ Λ2 ≡ Λ for the degenerated case M1 ≈ M2,

and using h′3 =
√

2 tan θ12h3, the terms ε1h1 + ε2h2 and ε4 depend on ε3:

ε1h1 + ε2h2 =
√

2
(
h2

1 + h2
2

) (h2
1 + h2

2) Λ1 − sec2 θ12h
2
3Λ3

(h2
1 + h2

2) Λ1 − h2
3Λ3

ε3 ≡ Pε3 , (3.1.50)

ε4 =
1√
2

tan θ12h
2
3Λ3

(h2
1 + h2

2) Λ1 − h2
3Λ3

ε3 . (3.1.51)

The branching ratio µ −→ eγ depends on ε1h1 + ε2h2. If we assume that ε1, ε2 and ε3
are real, we obtain from equation (3.1.33) the following expression for:

BR (µ −→ eγ) =
3αEM

64πG2
Fm

4
0

∣∣∣∣Pε3F2

(
M2

1

m2
0

)
+
√

2 tan θ12|h3|2F2

(
M2

3

m2
0

)∣∣∣∣2 . (3.1.52)
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Thus the non-zero θ13 directly gives a contribution to µ −→ eγ and ε3 = sin θ13 is

constrained by the limit on this process. Using (h2
1 + h2

2) Λ1 ≈ 2.5× 10−2 < 2.9× 10−3 ≈
|h2

3Λ3| from equations (3.1.26) and (3.1.27), the parameter P is approximately obtained

as P ≈
√

2 (h2
1 + h2

2), and an upper bound on ε3 from µ −→ eγ at each point in figure 3.4

results.1

Contours of the upper bound on sin θ13 are shown in figure 3.4. The upper bound

becomes severe for small DM mass. According to figure 3.4 this requires DM masses

around the TeV scale with ξ ∼ O(0.1− 1).

3.2. Direct Detection of Leptophilic Dark Matter in

the Ma-Model

The Ma-model has been intensively studied in the literature. In the case that the lightest

right-handed neutrino N1 is the DM particle, however, detailed calculations concerning

the prospects for the direct detection of N1 have been lacking until recently. In this

section, the direct detection of the leptophilic DM in the Ma-model is studied. The

Majorana nature of N1 will turn out to be crucial for the scattering process used in direct

detection experiments.

3.2.1. Inelastic Scattering Cross Section

The DM particle N1 is a Majorana fermion field defined by the property that it is even

under the charge conjugation operation C. Hence, in the model presented here, there are

neither vector current interactions N1γ
µN1 nor tensor interactions N1σ

µνN1. Axial-vector

current interactions can be mediated by Z boson exchange, but they are suppressed by

the mass of the Z boson relative to possible interactions mediated by a photon Aµ. This

means that elastic scattering is suppressed.

However, for two different Majorana fields N1 and N2, vector and tensor interactions

are possible. Inelastic scattering of N1 off nuclei is realized at one-loop level, where

the lepton Lα and the inert scalar SU(2)L doublet η from equation (3.1.1) run in the

loops. Since there are electric charged particles in the loops in each case, a photon

Aµ can couple to the loops. Thus, the effective three particle vertex N2 − N1 − Aµ is

possible, see figure 3.5. The kinetic term of η couples η to a photon Aµ through its

covariant derivative. In the loop in which Aµ couples to η, the relevant vertex expression

is therefore −ie(p1 + p2)µ. Here and in the following, p1 and p2 are the four momenta of

the external right-handed neutrinos and kµ is the four-momentum of the photon. Adding

1In general, the phase of P depends on the phases of the Yukawa couplings h1 and h2, i.e., ϕ1 and ϕ2,

not only the phase difference ϕ1 − ϕ2. For simplicity we set the overall phase of P to zero. This

phase might play a role if the two terms in equation (3.1.52) are of comparable size.
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the two diagrams shown in figure 3.5, the resulting matrix element M, which we show

for completeness, has the structure:2

M = u(p2)γδ(1− γ5)u(p1)

[
k2

(
1

2
+

2

3
log

m2
α

m2
0

)
gµδ − i(p1 + p2)αkβε

αµβδ

]
ε∗µ(k) .

(3.2.1)

We proceed in the effective field theory approach and write the effective interactions as:

Leff = ia12N2γ
µN1∂

νFµν + i
(µ12

2

)
N2σ

µνN1Fµν + ic12N2γ
µN1Aµ, (3.2.2)

where the factor i is a conventional factor to obtain real couplings a12, c12 and µ12.

Applying the Gordon identity to the term proportional to (p1 + p2)αkβε
αµβδ in equa-

tion (3.2.1), a term proportional to M1σ
µνFµν and a term proportional to k2Aµ results,

see [113]. The first of these terms is written as the transition magnetic moment µ12 in

equation (3.2.2) , the second one corresponds to the term proportional to c12. The model

considered here is a specific realization of flavored DM discussed in [113], where similar

diagrams to the ones from figure 3.5 have been considered.

In the model considered here, the coefficients a12, c12 and µ12 are calculated as:

a12 = −
∑
α

Im (h∗α2hα1) e

2(4π)2m2
0

Ia

(
M2

1

m2
0

,
m2
α

m2
0

)
, (3.2.3)

µ12 = −
∑
α

Im (h∗α2hα1) e

2(4π)2m2
0

2M1Im

(
M2

1

m2
0

,
m2
α

m2
0

)
, (3.2.4)

c12 =
∑
α

Im (h∗α2hα1) e

2(4π)2m2
0

q2Ic

(
M2

1

m2
0

,
m2
α

m2
0

)
, (3.2.5)

where q2 is the momentum transfer.

The explicit forms of the function Ia(x, y), Im(x, y) and Ic(x, y), which come from the

loop integrals, are given in appendix B. All of the coefficients of the effective interactions

are proportional to Im (h∗α2hα1), which is equal to ξ according to Eq. (3.1.25). The

parameter ξ is hence responsible for N1 − N2 co-annihilations and in addition for the

effective interactions of DM with nuclei. From the effective interactions in equation (3.2.2),

we obtain three types of differential scattering cross sections with a nucleus that has

atomic number Z, mass number A, mass mA, spin JA and magnetic moment µA, see

2I thank Takashi Toma for providing me with the matrix element M.
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Figure 3.5.: Inelastic scattering of N1 off a nucleus with mass number A.

e.g., [69, 113]:

dσCC

dER
=
Z2b2

12mA

2πv2
F 2(ER), (3.2.6)

dσDC

dER
=
Z2αEMµ

2
12

ER

·
[
1− ER

v2

(
1

2mA

+
1

M1

)
− δ

v2

1

µDM

− δ2

v2

1

2mAER

]
F 2(ER), (3.2.7)

dσDD

dER
=
µ2
Aµ

2
12mA

πv2

(
JA + 1

3JA

)
F 2
D(ER), (3.2.8)

with the coefficient

b12 =

(
a12 +

c12

q2

)
e . (3.2.9)

The three effective cross sections are called charge-charge (CC), dipole-charge (DC), and

dipole-dipole (DD) coupling, respectively. Here, ER is the recoil energy and µDM is the

DM–nucleus reduced mass, i.e., µDM = mDMmA/mDM+mA.

Magnetic moments of several nuclei are shown in Tab. 3.1, where the nuclear magneton

is taken from [114].

F (ER), the so called nuclear electric form factor, is the Fourier transform of the electric

charge distribution of a nucleus in the Born approximation. Parametrizing the nuclear

charge distribution as ρ(r) =
∫
d3r′ ρ0(r′)ρ1(r− r′) [115], the nuclear form factor is:

F (ER) =
3 [sin(κr)− κr cos(κr)]

(κr)3
e−κ

2s2/2, (3.2.10)

with κ =
√

2mAER, r =
√
R2 − 5s2, R ' 1.2A1/3 fm and s ' 1 fm [116].

In addition to the electric charge, a nucleus can also possess a magnetic moment.

Again, the Fourier transform of the distribution of the magnetic charge of a nucleus in
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19
9F

23
11Na 73

32Ge 127
53I

131
54Xe 133

55Cs 183
74W

JA 1/2 3/2 9/2 5/2 3/2 7/2 1/2

µA/µN 2.629 2.218 −0.879 2.813 0.692 2.582 0.118

Table 3.1.: Magnetic moments for several nuclei in units of µN , where µN = e/2mp is the

nuclear magneton.

the Born approximation is called the nuclear magnetic form factor FD(ER). It takes into

account proton orbital angular momentum as well as proton and neutron spin:

µA = gsp 〈Sp〉+ gsn 〈Sn〉+ glp 〈Lp〉+ gln 〈Ln〉 , (3.2.11)

see equation 2.6.13 for details.

The free particle g-factors in nuclear magnetons are given in [117]: gsp = 5.586,

gsn = −3.826, glp = 1 and gln = 0. FD(ER) highly depends on the nuclear shell. It is

not well-known, see e.g., the discussion in ref. [69], which justifies an approximated

treatment of FD(ER): we approximate the magnetic form factor by neglecting the orbital

momentum contribution.

For xenon-131, the Bonn-A calculation [117] gives 〈Sp〉 = −0.009, 〈Sn〉 = −0.227,

〈Lp〉 = 0.165 and 〈Ln〉 = 1.572. The ratio of spin and orbital contributions to the

magnetic moment of 131
54Xe follows to 0.818/0.165, which shows that the approximation is

appropriate for xenon-131.

For sodium and iodine, which are also used in direct detection experiments, this

approximation introduces an error of about a factor of 2, and therefore the limits derived

from KIMS and DAMA should be considered accordingly.

With this approximation, the nuclear magnetic form factor can be expressed in terms

of the spin form factors:

FD(ER) ≈
gspSp(q

2) + gsnSn(q2)

gspSp(0) + gsnSn(0)
. (3.2.12)

In addition to the CC, DC and DD interactions, also a charge-dipole coupling exists.

However there is an additional suppression factor of q2 compared to the other couplings,

thus it can be neglected. The DC coupling is singular at ER = 0. Therefore the predicted

event rate of the DC coupling is enhanced at low recoil energies due to the singularity,

and we cannot define a total cross section at the zero momentum transfer limit σ0
DC.

This situation is the same as in Coulomb scattering.
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Figure 3.6.: Relative contributions of the charge-charge (CC), dipole-charge (DC),

and dipole-dipole (DD) interactions to the total predicted event rate in

XENON100, KIMS, and DAMA. The left panel shows the contribution from

CC relative to the sum of DC and DD, the right panel shows the ratio of

the DC and DD contributions. We assume m0/M1 and δ = 0.

3.2.2. Comparison of the Predicted Event Rates with

Experiments

In equation (2.6.9), we present the general expression for the event rates at DM direct

detection experiments. Here, we compare the event rates calculated from the three

effective cross sections CC (3.2.6), DC (3.2.7) and DD (3.2.8) with XENON100 [91],

KIMS [74] and DAMA [92] data. The DD coupling might be important for KIMS or

DAMA, since in these experiments, the target nuclei are iodine and cesium for KIMS, and

iodine and sodium for DAMA. These nuclei have a large nuclear magnetic moment [69]

as can be seen in table 3.1. In figure 3.6, we illustrate the relative importance of the

the CC, DC and DD interactions for the XENON100, KIMS, and DAMA experiments

by calculating the total event rate induced from each of the three interaction types

separately.

We observe from the left panel that typically CC interactions are more important for

small masses M1, which follows from the different dependence on the DM mass of b12 and

µ12. The magnetic transition moment µ12 that generates the DC and DD interactions is

proportional to the DM mass M1, and thus subdominant for small values of M1. The

value M1, where CC becomes subdominant, depends on the ratio m0/M1 that enters into

the loop functions.

The right panel of figure 3.6 shows that for XENON100, the DC coupling is more

important, whereas for KIMS and DAMA DD dominates. The reason for this behavior

are the large magnetic moments of iodine and sodium. The features of the DAMA curves

around M1 ' 20 GeV in both panels are a consequence of the presence of the two elements
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Figure 3.7.: Bounds from XENON100, KIMS and allowed regions for DAMA in the

(M1, |b12|) plane, i.e., charge-charge interaction. The mass difference δ is

taken as 0 (the left top panel), 40 keV (the right top panel), 80 keV (the left

bottom panel) and 120 keV (the right bottom panel). The shaded regions

correspond to the values of b12 predicted in the allowed parameter space of

the model, as shown in figure 3.4, with the same color shading for different

values of the ratio m0/M1.

iodine and sodium with rather different masses. In general, the relative importance of

CC, DC and DD depends on the ratio m0/M1 entering into the loop functions, and to a

lesser extent on δ.

The main conclusion is that depending on the region in the parameter space, and

depending on the considered experiment, any of the three interaction types can be

important, and all of them have to be taken into account. In order to derive constraints

on the model, we calculate the total event rate for XENON100 and KIMS in the energy

range given in table 2.6 and require that the predicted rate is less than 0.0017 counts

day−1 kg−1 for XENON100 and 0.0098 counts day−1 kg−1 KIMS. The upper bounds are

obtained from the observed 3 events with 3σ of the statistical error in the 48 kg fiducial

volume during 100.9 live days exposure in the signal region for XENON100 [91], and

from [74] for KIMS.
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Figure 3.8.: Bounds from XENON100, KIMS and allowed regions for DAMA in the

(M1, |µ12|) plane (dipole-charge and dipole-dipole interaction). The mass

difference δ is taken as 0 (the left top panel), 40 keV (the right top panel),

80 keV (the left bottom panel) and 120 keV (the right bottom panel). The

shaded regions correspond to the values of µ12 predicted in the allowed

parameter space of the model, as shown in figure 3.4, with the same color

shading for different values of the ratio m0/M1.
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For DAMA, we perform a χ2 fit to the modulation amplitude in bins of observed

scintillation energy between 2 keV and 8 keV. The DAMA collaboration presents the result

on the direct detection of DM as an energy distribution of the modulation amplitude

Aobs
i with error σi. Aobs

i is the signal, the index i refers to the 36 energy bins from

E−i = 2 keV to E+
i = 8 keV. The question is how one can extract the DM mass and the

DM scattering cross section σp on a proton from the energy distribution of the signal.

The answer is a χ2 fit; it works as follows: First of all, one can define a differential

event rate R(ER) in counts per unit mass of a given nucleus per unit exposure time and

per unit energy as a two parametric function of the recoil energy ER. The parameters

are the DM mass mξ and the cross section σp. Because the recoiling nucleus loses its

energy by electromagnetic and nuclear interactions, however, the detectors measure only

electromagnetic interactions, the event energy E is not equal to the recoil energy ER,

what is taken into account by a quenching factor q: E = q × ER, see section 2.6.2.

Integrating R(ER) over E, one obtains the predicted modulation amplitude Apred
i (mξ, σp).

A χ2 function can then be constructed as

χ2 (mξ, σp) =
36∑
i=1

(
Apred
i (mξ, σp)− Aobs

i

σi

)2

. (3.2.13)

For 36 data points and 2 parameters, we have 36− 2 = 34 degrees of freedom.

In figure 3.7 and figure 3.8, we show the bounds from XENON100, KIMS and allowed

regions from DAMA for the coefficients b12 and µ12 resulting from the CC and DC

interactions. These bounds are compared to the regions as predicted in the model

according to equations (3.2.9), (3.2.3) and (3.2.5) for b12 and equation (3.2.4) for µ12.

The colored regions correspond to the regions shown in figure 3.4, satisfying constraints

from neutrino masses and mixing, charged LFV, the relic DM density, and perturbativity.

The ratio m0/M1 is taken in the range 1 ≤ m0/M1 ≤ 9.8, with the same color shading as in

figure 3.4.

There is no allowed parameter space for m0/M1 & 9.8, as discussed earlier.

We observe that the values of |b12| and |µ12| obtained in this model are too small to

account for the signal in DAMA.

For very small mass splitting δ between N1 and N2, some regions of the parameter

space are excluded by XENON100 data. The constraints become weaker for larger δ. A

larger value for δ increases the minimal velocity needed for a given nuclear recoil energy,

see equation (2.6.4), which in turn decreases the scattering event rate. Relatively large

values of |b12| are obtained for close to degenerate N1 and η, i.e., m0/M1 . 1.05, see the

dark-red region, because of the behavior of the function Ia(x, y) near x = 1: Ia(x, y) ∼ y−1

and y = m2
α/m2

0 is small. The region excluded by XENON100 for M1 ' m0 ∼ 2 TeV

becomes allowed for δ & 120 keV, see bottom-right panel.

By comparing the figures 3.7 and 3.8, we observe that the model predicts values of

|µ12| too small to be tested by current direct detection data. The enhancement for the
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transition magnetic moment |µ12| for m0/M1 . 1.05 is less than for |b12| due to a different

behavior of the loop functions Ia(x, y) and Im(x, y).

We conclude that current data from XENON100 start to exclude some parameter

space of the model, in case of degenerate configurations M1 'M2 ' m0 of the order of a

few TeV.

In figure 3.9, we show the regions excluded from XENON100 overlayed to the globally

allowed regions from figure 3.4 as dark blue, by translating the |b12| constraint into a

bound on ξ. Furthermore, we show in figure 3.9 the estimated sensitivity for XENON1T.

Using the sensitivity for the elastic WIMP-nucleon scattering cross section from ref. [96],

we estimate that XENON1T will constrain the event rate to be less than 1.59×10−5 counts

day−1 kg−1. We assume the same nuclear recoil energy range as for XENON100, see

table 2.6. Then we compare this number to the event rate induced in the model assuming

several values for the mass splitting δ. From figure 3.9 we find that for δ . 40 keV, future

data from the XENON1T experiment [96] will dig deeply into the allowed parameter

region of the model. For 40 keV . δ . 120 keV, the degenerate region M1 'M2 ' m0 of

the order of a few TeV will be tested.

We note, however, that no signal is guaranteed for direct detection. In the N1 − η
co-annihilation regions, which are the dark- and light-red regions, where m0/M1 < 1.2, no

lower bound on the parameter |ξ| is obtained, leading to arbitrarily small values of |b12|
and |µ12|, which implies a vanishing signal in direct detection experiments.

3.3. Summary: Inelastic Dark Matter in the

Ma-Model

The Ma-model [101], which we discussed in the previous section, is a well-known model

for neutrino mass generation at one-loop level. In addition to giving masses to neutrinos,

it contains candidates for a DM particle and thus combines already in its original version

neutrino and DM physics.

The SM is extended by three right-handed neutrinos Ni and an inert scalar SU(2)L
doublet η. The new particles transform odd under an imposed Z2 symmetry. Thus, the

lightest of them, in our case N1, is the DM particle. The relic density of N1 is achieved

by thermal freeze-out.

In our analysis, we take neutrino masses and mixing, LFV constraints and perturbativity

into account for the DM relic density. In particular, we obtain the correct relic density

without contradicting the LFV constraints due to co-annihilations.

N1 has no direct couplings to quarks and gluons. Nevertheless, N1 can be directly

detected in inelastic scattering off nuclei, realized at one-loop level by photon exchange,

which yields CC, DC and DD interactions between the DM particle N1 and nuclei. To

the best of our knowledge, these effective DM interactions in the Ma-model have not
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Figure 3.9.: Same as figure 3.4 with constraints from XENON100 (blue) and sensitivity

from XENON1T (gray) overlayed. We assume δ =0 (left top), 40 keV (right

top), 80 keV (left bottom), 120 keV (right bottom).

been considered previously. The XENON1T experiment may probe a significant part

of the parameter space, given that the mass difference δ between N1 and N2 is small

enough. A small δ is consistent with the need for co-annihilations to obtain the correct

DM relic density. In the words of a famous rascals history, This was the model builder’s

first trick, But the second follows quick.3

In the next section, we increase the number of loops and study the Zee–Babu-model.

There, the trick to combine neutrino and DM physics is the spontaneous breaking of a

global symmetry, as we discuss in the following.

3.4. Two-Loop Example: The Zee–Babu-Model

A very predictive model to generate light neutrino masses radiatively at two loop level is

the Zee–Babu-model. The particle content is that of the SM extended by two complex

SU(2)L singlet scalars: a singly-charged scalar h+ and a doubly-charged scalar k++. No

3Max and Moritz, a rascals history in seven tricks by W. Busch.
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right-handed neutrinos added, so neutrinos can only have Majorana masses.

Phenomenological consequences of singly- and doubly-charged scalars, especially con-

cerning muon neutrino scattering on electrons, were first investigated by Zee [118]: the

SM gauge-invariant antisymmetric Yukawa coupling of a singly-charged scalar SU(2)L
singlet h to SM lepton SU(2)L doublets, i.e.,

fαβ L
T
αC−1 iσ2 Lβh

+ + h.c. , (3.4.1)

makes resonant muon production possible in s-channel exchange of h:

νµe
− → ντµ

− . (3.4.2)

This process is a forbidden in the SM. In addition, Zee already considered the gauge-

invariant Yukawa coupling of a doubly-charged scalar SU(2)L singlet k to SM lepton

SU(2)L singlets, i.e.,

gαβ e
T
αC−1eβ k

++ + h.c. . (3.4.3)

He also noted that the lepton number violating trilinear scalar term Mk++h−h− is allowed

by gauge symmetry, but he did not take it into account for neutrino mass generation.

The possibility to generate neutrino masses with these scalar particles was first seen by

Babu [103]: Zee’s Yukawa couplings of singly- and doubly-charged scalars together with

the trilinear scalar coupling allow for neutrino mass generation at two-loop level. Due to

the contribution of both authors, the model is referred to as the Zee–Babu-model.

Being SU(2)L singlet scalars, the electric charges of h+ and k++ equal their hyper-

charges, respectively. Gauge invariance then allows only couplings of the scalars to

leptons: h+ couples to left-handed lepton SU(2)L doublets L(i) and k++ couples to

right-handed leptons l(R,i). The leptonic contribution to the Lagrangian is:

Llept = fαβ L
T
αC−1 iσ2 Lβh

+ + gαβ e
T
αC−1eβ k

++ + h.c. , (3.4.4)

where C is the charge conjugation matrix, α, β label flavor indices, and the Yukawa cou-

plings f and g are antisymmetric and symmetric, respectively. We have omitted SU(2)L
gauge indices , which enter through σ2 in equation 3.4.4 and lead to the antisymmetric

Yukawa couplings f . Yukawa couplings to quarks, which have hypercharges different

from |1/2| and |1|, are forbidden by gauge-invariance.

If both, h+ and k++, are assigned lepton number −2, lepton number is conserved

by these interactions, and therefore the theory respects a global U(1) symmetry. To

generate Majorana neutrino masses, lepton number has to be broken by two units. In the

Zee–Babu-model, lepton number is explicitly broken in the scalar sector by the trilinear

term

µk++h−h− + h.c. , (3.4.5)
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with µ a mass parameter. The µ coupling must be introduced by hands to generate

Majorana neutrino masses at two-loop level. The relevant two-loop diagram is finite,

which is the reason why Babu called his paper model of calculable Majorana neutrino

masses [103]. The scalar potential is:

Vscalar =µ2
HH

†H + µ2
kk

++k−− + µ2
hh

+h−

+ µk++h−h− + h.c.

+ λH(H†H)2 + λk(k
++k−−)2 + λh(h

+h−)2

+ λ3(H†H)(k++k−−) + λ4(H†H)(h+h−) + λ5(k++k−−)(h+h−) . (3.4.6)

H is the SM Higgs SU(2)L doublet. In the unitary gauge, we keep the parametrization:

H =

(
0

1√
2

(v + h)

)
. (3.4.7)

At tree level, neutrinos are massless in the Zee–Babu-model. Due to the new particles

and their interactions, neutrino masses are generated at two-loop level. The effective

Majorana neutrino mass, i.e.,

Lν =
1

2
νCLmννL + h.c. , (3.4.8)

can be expressed as [119]:

(mν)ab = 16µfacmcg
∗
cdIcdmdfbd . (3.4.9)

where mc are charged lepton masses and Icd is the two-loop integral:

Icd =

∫
d4k

(2π)4

d4q

(2π)4

1

(k2 −m2
c)

1

(k2 −m2
h)

1

(q2 −m2
d)

1

(q2 −m2
h)

1

((k − q)2 −m2
k

. (3.4.10)

The analytic calculation of the integral in equation (3.4.10) is performed in [120].

We take an approximation for the two-loop integral into consideration, which relies on

the fact that the masses of the charged leptons are much lighter than the existing lower

limits on the masses of charged scalars: searches for a singly-charged particle in proton-

proton (pp) collisions require a minimum reconstructed scalar mass of 120 GeV for a

Drell-Yan-like production [121]. The search for a doubly-charged Higgs boson in like-sign

dilepton final states are even more constraining due to the expected lower SM background.

Assuming that the doubly-charged scalar decays with a branching ratio of 100% into

e±e±, the expected lower mass limit at 95% confidence level is mk±± > 329 GeV [122].

Given that the heaviest charged SM lepton is the tau τ with a mass of mτ = 1.78 GeV,

we can neglect the masses of charged leptons compared to the masses of charged scalars.

In this case, one finds:

Icd ≈ I =
1

(16π2)2

1

M2

π2

3
Ĩ

(
m2
k

m2
h

)
, (3.4.11)
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where M = max(mk,mh) and Ĩ(r) is a dimensionless function of order unity [119]. The

light neutrino mass matrix then takes the form:

mν '
1

48π2

µ

M2
Ĩ fD`g

†D`f
T , (3.4.12)

with the matrix Dl = diag(me,mµ,mτ ) containing the charged-lepton masses. Due to

the antisymmetry of f , we have detmν = 0, so one of the neutrinos is massless as long as

higher-order corrections are not considered. Thus, the measured differences of squared

neutrino mass eigenvalues directly corresponds to squared neutrino mass eigenvalues, i.e.,

in normal hierarchy: m2 =
√

∆m2
21 and m3 =

√
∆m2

31.

The neutrino masses are suppressed by the heavy scalar masses, and they are pro-

portional to the scale of lepton-number violation µ. Assuming µ ∼ M ∼ Λ, we see

from (3.4.12) that for mν ∼ 0.1 eV, the scale Λ of new physics has to be of order 1 TeV,

if we demand that f ∼ g ∼ 0.05. This scale Λ for generating neutrino masses is much

below the scale of seesaw models due to the two loop suppression factor 1/(16π2)2 ∼ 10−4

and the amount of coupling constants involved in the loops. Hence, Λ is in the range of

the LHC, and may thus be probed soon. The neutrino phenomenology, as well as other

signatures of the model, have been studied, e.g., in [119].

As already mentioned, the charged scalars h+ and k++ induce charged LFV processes.

At tree level, the doubly-charged scalar k−− mediates the decays e−α −→ e+
β e
−
γ e
−
δ . At

one-loop level, both of the charged scalars contribute to the decays Lα −→ Lβ + γ

and eα −→ eβ + γ, respectively. The constraints given in [119] for the lepton number

and lepton flavor violating processes are outdated. In particular, the sensitivity for the

branching ratio of the decay µ −→ e + γ increased from 1.2 × 10−11 to 5.7 × 10−13 at

90% confidence level [109]. For the decay µ+ −→ e−e+e+, sensitivity to a branching

fraction of BR > 10−16 at the 90% confidence level is planned [123]. Besides lepton

flavor violating decays the charged scalars also induce µ− e conversion in nuclei at the

one-loop level similar to figure 3.5, where the coupling to the quarks is mediated by a

photon. The upper limit on the µ−e conversion in aluminium will improve from currently

7× 10−13 [124] to 2× 10−17 [125], which will further constrain the Yukawa couplings of

the Zee–Babu scalars. Given the current and future experimental development, we find

it necessary to provide an update of the experimental constraints in table 3.2 and to

discuss the resulting consequences for the charged scalars. The prospects for discovering

the charged scalars of the Zee–Babu-model at the LHC have been discussed in detail

in [119]. Since each doubly-charged scalar k∓∓ can decay into a pair e∓α e
∓
α of like-sign

leptons, the pair production of the doubly-charged scalar in Drell-Yan-like processes will

have four like-sign leptons e∓α e
∓
α e
±
β e
±
β in the final state. The number N of events with

four like-sign leptons in the final state depends on the production cross section σk±± for

the doubly-charged scalar, its branching ratio BR(k∓∓ −→ e∓α e
∓
α ) into like-sign leptons
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Constraint Ref. Bound (90% C.L.)∑
q=d,s,b |Vuq|

2 0.99990± 0.0006 [126] |feµ|2 < 0.014
(
mh
TeV

)2

µ− e universality
Gτ→µ
Gτ→e

= 1.0001± 0.0020 [126]
∣∣∣∣∣fµτ ∣∣2 − |feτ |2∣∣∣ < 0.05

(
mh
TeV

)2

µ− τ universality Gτ→e
Gµ→e

= 1.0004± 0.0022 [126]
∣∣∣|feτ |2 − ∣∣feµ∣∣2∣∣∣ < 0.06

(
mh
TeV

)2

e− τ universality
Gτ→µ
Gµ→e

= 1.0004± 0.0023 [126]
∣∣∣∣∣fµτ ∣∣2 − ∣∣feµ∣∣2∣∣∣ < 0.06

(
mh
TeV

)2

δaµ (28.7± 80)× 10−10 [126,127] r(|feµ|2 + |fµτ |2) + 4(|geµ|2 + |gµµ|2 + |gµτ |2) < 3.4
(
mk
TeV

)2

µ− → e+e−e− BR< 1.0× 10−12 [128] |geµg∗ee| < 2.3× 10−5
(
mk
TeV

)2

τ− → e+e−e− BR< 2.7× 10−8 [129] |geτg∗ee| < 0.009
(
mk
TeV

)2

τ− → e+e−µ− BR< 1.8× 10−8 [129] |geτg∗eµ| < 0.005
(
mk
TeV

)2

τ− → e+µ−µ− BR< 1.7× 10−8 [129] |geτg∗µµ| < 0.007
(
mk
TeV

)2

τ− → µ+e−e− BR< 1.5× 10−8 [129] |gµτg∗ee| < 0.007
(
mk
TeV

)2

τ− → µ+e−µ− BR< 2.7× 10−8 [129] |gµτg∗eµ| < 0.006
(
mk
TeV

)2

τ− → µ+µ−µ− BR< 2.1× 10−8 [129] |gµτg∗µµ| < 0.008
(
mk
TeV

)2

µ→ eγ BR< 5.7× 10−13 [109] r2|f∗eτfµτ |
2 + 16|g∗eαgαµ|

2 < 1.6× 10−6
(
mk
TeV

)4

τ → eγ BR< 3.3× 10−8 [110] r2|f∗eµfµτ |
2 + 16|g∗eαgατ |

2 < 0.52
(
mk
TeV

)4

τ → µγ BR< 4.5× 10−8 [110] r2|f∗eµfeτ |
2 + 16|g∗µαgατ |

2 < 0.71
(
mk
TeV

)4

µ+e− → µ−e+ GMM̄ < 3× 10−3GF [126] |geeg∗µµ| < 0.2
(
mk
TeV

)2

Table 3.2.: Summary of experimental constraints and the corresponding bounds on the

Yukawa couplings. Here r = m2
k/m2

h, and in g∗eαgαµ, α is a summation index

over the flavor states.

and the integrated luminosity l as:

N = 2σk∓∓BR(k∓∓ −→ e∓α e
∓
α )l . (3.4.13)

For mk = 400 GeV (mk = 1500 GeV), the production cross section at
√
s = 14 TeV is

approximately σk = 9.5 fb (σk = 0.003 fb) [119]. Assuming that all produced doubly-

charged scalar decay solemnly into like-sign leptons, i.e., BR(k∓∓ −→ e∓α e
∓
α ) = 1 and an

integrated luminosity of l = 300 fb−1, one would expect 2850 events (0.9 events). These

numbers actually will turn out smaller because the doubly-charged scalar will have other

decay channels than like-sign leptons.

Current Higgs searches in the channel Higgs to four leptons are available with a

dataset corresponding to an integrated luminosity of 20.7 fb−1 at
√
s = 8 TeV. The

estimated number of background events in the four electron channel is approximately

four [130]. A heavy doubly-charged scalar with mass mk++ = 1500 GeV can then not be

distinguished from a background signal. The LHC will therefore not be able to detect

the doubly-charged scalar of the Zee–Babu-model if its mass is well above 1 TeV.

So far, we have discussed the original version of the Zee–Babu-model. We proceed with

a dynamical generation of the trilinear µ term, which we connect to DM physics. Our

extended version is based on the spontaneous breaking of a global U(1)B−L symmetry,

which is the content of the following section.
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3.4.1. Spontaneous Breaking of B − L in the Zee–Babu-Model

In order to break lepton number and generate a Majorana mass term for neutrinos,

the trilinear µ-term in the scalar potential, µk++h−h−, which breaks lepton number

explicitly, is strictly necessary. We write down only the leptonic part of the Lagrangian

and thereby fully neglect the baryons. A complete theory has to describe leptons and

baryons, i.e., lepton number L and baryon number B have to be considered at the same

time. With respect to Noether’s theorem, L and B are the charges of Noether currents.

The Noether currents associated with L and B are, respectively:

jLµ =
∑
α

(
L(α)γµL

(α) + e(α)γµe
(α)
)

(3.4.14)

jBµ =
1

3

∑
α

(
Q(α)γµQ

(α) + u(α)γµu
(α) + d(α)γµd

(α)
)
. (3.4.15)

The factor in front of the current associated with B takes into account that each quark

comes with three colors due to SU(3)C . L and B are then given by:

L =

∫
d3x jL0 =

∫
d3x jB0 = B . (3.4.16)

In the SM, L and B are conserved at tree level, but not at loop level, where interactions

with SM electroweak gauge fields yield divergences different from zero, i.e.:

∂µjLµ = ∂µjBµ =
Nf

32π2

(
g2F a

2,µνF̃
aµν
2 − g′2F1,µνF̃

µν
1

)
, (3.4.17)

see equations (2.1.10) and (2.1.11), and the relevant discussion in [131]. Nf is the number

of fermion generations, which equals three in the SM. Thus, L and B are so-called

anomalous global symmetries. Since the divergence of jLµ equals the divergence of jBµ , the

global symmetry B − L is conserved, even by topological effects like sphalerons [132].

Motivated by this fact, we consider B−L as a global symmetry of the Zee–Babu-model.

This symmetry forbids the µ-term. Neutrino masses are then generated by breaking the

B − L symmetry. We break B − L spontaneously with a complex scalar SU(2)L singlet

ϕ,

ϕ =
1√
2

(w + σ + iρ) , (3.4.18)

where σ =
√

2Re(ϕ) and ρ =
√

2Im(ϕ) are real scalar fields. ϕ is assigned the lepton

number −2, so the VEV of ϕ, i.e., w/
√

2, breaks B − L spontaneously [133]. The scalar

potential contains a term

Vµ = λµϕk
++h−h− + h.c. , (3.4.19)
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inducing the µ-term’ once ϕ acquires its VEV, with:

µ = λµ
w√
2
, 〈ϕ〉 =

w√
2
. (3.4.20)

The full scalar potential of the model is:

Vscalar =Vµ + µ2
ϕϕ
∗ϕ+ µ2

HH
†H + µ2

kk
++k−− + µ2

hh
+h−

+ λϕ(ϕ∗ϕ)2 + λH(H†H)2 + λk(k
++k−−)2 + λh(h

+h−)2

+ λ(ϕ∗ϕ)(H†H) + λ1(ϕ∗ϕ)(k++k−−) + λ2(ϕ∗ϕ)(h+h−)

+ λ3(H†H)(k++k−−) + λ4(H†H)(h+h−)

+ λ5(k++k−−)(h+h−) , (3.4.21)

where Vµ is given in equation (3.4.19) and µi are parameters of mass dimension one, and

λi are dimensionless couplings.

The λ-coupling in the potential induces mixing between ϕ and H, and thus it opens

the Higgs portal, as introduced in section 2.5, which connects to DM physics as discussed

in section 3.4.4. Besides gauge kinetic mixing of the SM U(1)Y with an additional

local abelian gauge group, the Higgs portal represents the unique renormalizable gauge

invariant s-channel interaction between the SM sector and the DM sector [134].

There are two massive neutral scalars in the theory, with propagating mass eigenstates

denoted by H1 and H2. They are related to the real part σ of ϕ and to the real part h of

the neutral component of H by(
H1

H2

)
=

(
cosα sinα

− sinα cosα

)(
σ

h

)
, (3.4.22)

where the mixing angle α is given by:

tan 2α =
λwv

λϕw2 − λHv2
, (3.4.23)

and v denotes the VEV of the Higgs SU(2)L doublet H, see equation (2.1.3). The masses

of H1 and H2 are:

m2
H1,2

= λϕw
2 + λHv

2 ±
√

(λϕw2 − λHv2)2 + λ2w2v2 . (3.4.24)

The parameters µϕ,H in equation (3.4.21) can be eliminated with the help of the minimum

conditions for the potential. Since the true vacuum state is the global minimum of the

potential, the derivatives of the potential with respect to the vacuum expectation values

must vanish. µϕ,H thus have to be equal to:

µ2
ϕ = −

(
λϕw

2 +
1

2
λv2

)
(3.4.25)

µ2
H = −

(
λHv

2 +
1

2
λw2

)
. (3.4.26)
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With these minimization conditions, the masses for the fields σ and h can be expressed

as:

m2
σ = 2λϕw

2 (3.4.27)

m2
h = 2λHv

2 , (3.4.28)

such that the mixing angle α equals:

tan 2α =
2λwv

m2
σ −m2

h

. (3.4.29)

With the above expressions for the mass eigenvalues, we can write λ in terms of the mass

eigenvalues and the mixing angle:

λ =
1

2

(m2
H1
−m2

H2
) sin 2α

wv
. (3.4.30)

Therefore the neutral scalar phenomenology depends only on three independent param-

eters in addition to the VEVs v, w, which can be chosen to be either (λϕ, λH , λ) or

alternatively, (mH1 ,mH2 , α). We have chosen the neutral scalar mass eigenvalues and

the mixing angle as independent parameters.

The terms of the potential that are quadratic in the imaginary part ρ of the complex

SU(2)L singlet ϕ add up to 1/2 · µ2
ϕ + nicefrac12 · λϕw2 + nicefrac14 · λv2, which results

in zero due to the minimization condition for µ2
ϕ. This is Goldstone’s theorem [135], which

dictates the appearance of a massless scalar in the spectrum due to the spontaneous

breaking of the global U(1) symmetry. In our model, ρ is the Goldstone boson. In

writing ϕ in terms of its real and imaginary parts, all interactions in the Lagrangian

are renormalizable, however, in this linear parametrization, it is not obvious that the

Goldstone boson ρ decouples at low energies, which it does according to the Goldstone’s

theorem [135]. The decoupling is nevertheless guaranteed by cancellation of terms in the

scattering amplitude [136]. Alternatively, the complex valued field ϕ can be written as:

ϕ = rei
γ
w . (3.4.31)

In this parametrization, r =
√
σ2 + ρ2 and γ is the complex phase, which corresponds to

the Majoron. The two parametrizations are equivalent, as pointed out in [136]. In this

non-linear parametrization, the Majoron, for which we use again the notation ρ in the

following, has derivative couplings to other particles, which directly display the vanishing

interactions at low momenta and the non-renormalization of its interactions. Writing the

kinetic term of ϕ and the λ5 term of the potential in the non-linear parametrization, the

following terms for the Goldstone boson ρ result:

1

w2
r2∂µρ∂

µρ− λr2(H†H) . (3.4.32)
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The SM Higgs SU(2)L doublet H couples to SM fermions f . Once the SU(2)L singlet

and SU(2)L doublet vacuum expectation values are adopted, respectively, the above

interactions induce a Feynman diagram with the Goldstone bosons ρ as initial particles

and SM fermions f as final state particles. The scalar exchange of r and H then yields

the interaction:

λmf

m2
rm

2
h

ff∂µρ∂
µρ . (3.4.33)

Due to the definition of r, mr follows directly from mσ in equation (3.4.27). Since the

VEV of ϕ is responsible for lepton number breaking, and the generation of trilinear scalar

coupling inside the two-loop, which generates light Majorana neutrino masses, we call ρ

a Majoron [137], even though it does not couple directly to leptons.

Since ϕ is an SU(2)L singlet, there is no direct coupling of ρ to the Z boson like in

SU(2)L triplet Majoron models [41]. If the Majoron is a member of a scalar SU(2)L
triplet, there would be an additional invisible decay channel for the SM Z boson into the

neutral component of theSU(2)L triplet and the Majoron, given that the neutral scalar

is lighter than half of the Z mass. This additional contribution to the invisible decay

width of the Z boson would count as ∆nν = 2 extra light neutrinos, which is clearly

ruled out by the measurement of the number of light neutrinos that interact with the Z

boson yielding the SM value of three light neutrinos, see table 2.3.

The couplings of the Majoron ρ to the Higgs mass eigenstates H1 and H2 are obtained

from the λ1 and λ5 terms of the potential (3.4.21):

Lρ =
1

2w

(
m2
H1

cosαH1 −m2
H2

sinαH2

)
ρ2 . (3.4.34)

In addition to the charged scalar signatures, the presence of the Majoron will modify

Higgs physics. As pointed out in [138], an important feature of Majoron models are

invisible Higgs decays H → ρρ, which we discuss now.

In the SM, the Higgs boson dominantly decays into bottom pairs. For a Higgs mass of

125 GeV, the central values for the leading SM Higgs branching ratios are [139]:

BR(H → bb) = 5.77× 10−1 , (3.4.35)

BR(H → W+W−) = 2.15× 10−1 , (3.4.36)

BR(H → gg) = 8.57× 10−2 , (3.4.37)

BR(H → τ+τ−) = 6.32× 10−2 , (3.4.38)

BR(H → cc) = 2.91× 10−2 , (3.4.39)

BR(H → ZZ) = 2.64× 10−2 . (3.4.40)

In our model, the corresponding decay widths for the two Higgs mass eigenstates H1 and



80 3. Neutrino Masses at Loop-Level Connected to Dark Matter

H2 are weighted with the Higgs mixing angle α:

Γ
(
H1 → bb

)
=

3
√

2GFm
2
bmH1

8π

(
1− 4m2

b

m2
H1

) 3
2

sin2 α , (3.4.41)

Γ
(
H2 → bb

)
=

3
√

2GFm
2
bmH2

8π

(
1− 4m2

b

m2
H2

) 3
2

cos2 α . (3.4.42)

The invisible decay modes into the Majoron ρ are obtained from the Lagrangian in

equation (3.4.34):

Γ (H1 → ρρ) =

√
2GF

32π
m3
H1

( v
w

)2

cos2 α , (3.4.43)

Γ (H2 → ρρ) =

√
2GF

32π
m3
H2

( v
w

)2

sin2 α , (3.4.44)

and therefore [140]:

Γ (H1 → ρρ)

Γ
(
H1 → bb

) =
1

12

(
mH1

mb

)2 ( v
w

)2

cot2 α

(
1− 4m2

b

m2
H1

)− 3
2

(3.4.45)

≈ 250
(mH1

w

)2

cot2 α , (3.4.46)

Γ (H2 → ρρ)

Γ
(
H2 → bb

) =
1

12

(
mH2

mb

)2 ( v
w

)2

tan2 α

(
1− 4m2

b

m2
H2

)− 3
2

(3.4.47)

≈ 250
(mH2

w

)2

tan2 α . (3.4.48)

Invisible Higgs decays are searched for in associated ZH production among other channels.

The produced Z decays into charged leptons and the Higgs can decay into invisible

particles.

The SM contribution, which is used in the underlying analysis searches, is the decay of

the produced Higgs into two Z bosons, each of which decays into two neutrinos such that

the resulting channel is ZH → l l+ 4ν. The signal for an invisibly decaying Higgs is then

an excess of events over the SM channel ZH → l l + 4ν plus large missing transverse

energy final states.

The search [141] for invisible decays of a Higgs boson analyzed pp collision data

corresponding to 13.0 fb−1 at
√
s = 8 TeV, and 71 signals were observed at an expected

background of 78.0 ± 2 ± 6.5 signals, yielding an exclusion limit of 84% for invisible

branching fractions greater than 65%. Using the fixed values mH1 = 300 GeV, mH2 =

120 GeV, v = 246 GeV, w = 1000 GeV and sinα = 0.1, the invisible decay width in our

model result in Γ (H1 → ρρ) ≈ 0.27 GeV and Γ (H2 → ρρ) ≈ 0.17× 10−3 GeV. The total

decay widths ΓH of the Higgs boson measured in the decay into two gauge bosons are
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ΓH(mH = 300 GeV) = 8.43 GeV and ΓH(mH = 120 GeV) = 3.48 × 10−3 GeV. Hence,

for the fixed values our model yields Γ (H1 → ρρ) ≈ 3.20% ΓH(mH = 300 GeV) and

Γ (H2 → ρρ) ≈ 4.89% ΓH(mH = 120 GeV), which is not excluded by the current bounds

from associated ZH production.

In the view of additional relativistic degrees of freedom that contribute to the number

Neff of effective neutrinos, the massless Majoron is also worth to study. In the next

section, we investigate the role of Goldstone bosons in the context of relativistic degrees

of freedom.

3.4.2. The Majoron as a Fractional Cosmic Neutrino?

The massless Majoron contributes to the radiation density ρ of the Universe given by:

ρ =
π2

30
geff (T )T 4 , (3.4.49)

where T is the temperature of the thermal plasma. geff is the effective number of

relativistic degrees of freedom contributing to the energy density. In the early Universe,

when the temperature T is much larger than the masses of the particle species i in

thermal equilibrium, geft follows to:

geff =
∑
B

gB

(
TB
T

)4

+
7

8

∑
F

gF

(
TF
T

)4

, (3.4.50)

for details see equations (C.0.10) and (C.0.12).

As long as a particle is in thermal contact with the plasma, its temperature TB,F equals

the temperature T of the thermal plasma. ∆nν additional relativistic neutrinos make the

contribution of 7/8 · 2 ·∆nν to geff , because particle and antiparticle contribute. Therefore

the contribution of one thermalized scalar, i.e., ∆geff = 1, equals the contribution of

∆nν = 4/7 neutrinos. Hence, a Majoron that is in thermal equilibrium contributes with

∆nν = 4/7 ≈ 0.57 neutrinos to the effective number of relativistic degrees of freedom.

The SM neutrinos decouple from the thermal plasma at a temperature of about

1 MeV, when the weak interaction rate becomes smaller than the Hubble expansion

rate. Below this temperature, electrons and positrons have not yet decoupled from

the thermal equilibrium with photons. However, after they have finally decoupled, the

transfer entropy to the photons and not to the neutrinos, which left equilibrium earlier.

The temperature Tν of neutrinos is therefore smaller than the temperature Tγ of the

photons; the ratio of Tν and Tγ follows from entropy conservation, which relies on an

isentropic expansion of the Universe. The SM neutrino decoupling occurs just before the

temperature T drops below the mass me = 511 keV of the electron, i.e., electron-positron

annihilations are no longer in thermal equilibrium with the photons at T ≈ 1 MeV. The
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number of effective degrees of freedom decreases from 11/2, including electron, positron

and photon, to 2, only including photons. Due to entropy conservation the product

(a(tafter)Tγ(tafter))
3 must therefore be larger than the product (a(tbefore)Tν(tbefore))

3 at the

time tbefore just before electron-positron decoupling, when T ≈ 1 MeV. The outcome for

the present day time radiation density ρ reads:

ρ =

(
1 +Neff

7

8

(
4

11

) 4
3

)
ργ , (3.4.51)

see also (2.3.19). Neff = 3 + ∆nν is the effective neutrino number. In the SM with

three generations of neutrinos, Neff = 3.046, which does not equal three due to non-

instantaneous decoupling corrections. The Planck 2013 result on Neff is 3.36+0.68
−0.64 at 95%

confidence level, see also table 2.3. Hence, a Majoron that is still in thermal equilibrium

with the photons and therefore contributes with ∆nν ≈ 0.57 to Neff would be in conflict

if the central value of Neff = 3.36 measured by Planck is taken seriously. But as for the

SM neutrinos, the Majoron could go out of equilibrium earlier such that due to entropy

production one Majoron contributes with:

∆nν =
4

7

(
geff(Tafter)

geff(Tbefore)

) 4
3

<
4

7
. (3.4.52)

Recently, Weinberg suggested Goldstone bosons as fractional cosmic neutrinos.

If the Goldstone boson goes out of thermal equilibrium after the era of muon annihi-

lation, it contributes 4/7 · (43/57)4/3 ≈ 0.39 to Neff [142]. When the rate of interactions

that keep the Goldstone boson in thermal equilibrium becomes smaller than the Hubble

expansion rate H ∝ T 2/mpl, where mpl is the Planck-mass, the Goldstone boson goes out

of equilibrium.

In our model, we consider the interaction given in (3.4.33) as the relevant interaction,

which thermalizes the Goldstone boson. The derivative couplings of the Goldstone boson

are equivalent to its momentum. Being a relativistic particle, the Goldstone particle

moves with the speed of light, which equals one in natural units, i.e., its velocity v = 1

and its average momentum scales like T . The number density n of a relativistic particle

scales like T 3. The interaction rate Γint = nσv then scales like T 3(TT )2 = T 7, or more

accurately:

Γint ∝
λ2m2

f

m4
σm

4
h

T 7 . (3.4.53)

Assuming that the fermion mass mf below a temperature T scales like T , the ratio

Γint/H equals one for temperatures T equal to:

Teq =

(
m4
σm

4
h

λ2mpl

) 1
7

. (3.4.54)
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For T < Teq, the Goldstone boson goes out of thermal equilibrium. Using the relations

(3.4.27) and (3.4.30), Teq can be written as a function of the mass eigenvalues and the

scalar mixing angle.

In our model, which is acknowledged by Weinberg, the Majoron typically decouples

from the plasma at temperatures above the QCD phase transition, where the effective

number of relativistic degrees of freedom is& 60. Therefore, due to the entropy production

at the QCD phase transition, the Majoron abundance gets diluted, and during BBN, ρ

contributes only with

∆nν .
4

7

(
10.75

60

) 4
3

≈ 0.06 (3.4.55)

to the relativistic energy density, in good agreement with the above mentioned bound.

So far, we have shown the importance of the global B−L symmetry for neutrino mass

generation in the Zee–Babu-model and discussed the Goldstone boson associated with

its spontaneous breaking. In the following section, we use the global B − L symmetry to

connect to DM physics.

3.4.3. Stable Dark Matter Particle from Global B − L
Symmetry

Having a global B − L symmetry, which is motivated by neutrino masses, it is tempting

to ask if it could play also a role in stabilizing DM.

We introduce chiral fermions Ni, which are SU(2)L singlets under the SM gauge group,

but charged under U(1)B−L in such a way that the Yukawa interaction with the SM

Higgs SU(2)L doublet H, i.e.,:

L̄jH̃Ni , (3.4.56)

where H̃ ≡ iσ2H
∗, is forbidden. Hence, our Ni cannot have lepton number +1, and

therefore they are not right-handed neutrinos in the conventional sense. Still we want the

mass term for Ni to be generated by spontaneous lepton number breaking from the term:

LN =
1

2
hij ϕN

T
i C−1Nj + h.c. . (3.4.57)

This can be achieved by introducing two N fields, N1 and N2, and assigning them lepton

numbers q1 and q2, respectively, such that q1 + q2 = 2 with q1 6= q2 6= 1; for example

q1 = 1/2 and q2 = 3/2. Then no Yukawa term with the lepton SU(2)L doublets is allowed

and equation (3.4.57) leads to a mass matrix:

MN =

(
0 mχ

mχ 0

)
with mχ = λχ

w√
2
, (3.4.58)
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and λχ ≡ h12. Hence, N1 and N2 form a Dirac particle χ, with a pair of degenerate mass

eigenstates with mass mχ and opposite CP parity:

χ1 =
1√
2

(N1 +N2) , χ2 =
i√
2

(N1 −N2) . (3.4.59)

They are stable because of an accidental Z2 symmetry that emerges as an unbroken

remnant of the global U(1)B−L.4 The interaction in equation (3.4.57) becomes diagonal

in the χi fields:

LN =
1

2
λχ ϕ(χT1 C−1χ1 + χT2 C−1χ2) + h.c. . (3.4.60)

At this point, the question why one does consider a global symmetry instead of a local

symmetry demands for discussion. From a theoretical point of view, it is conjectured

that an exact quantum field theory of gravity can not have an exact global symmetry.

Instead, all symmetries must be gauge symmetries, involving discrete symmetries, which

could only be a symmetry if they are a remnant of a broken gauge symmetry [143]. If one

starts with a global symmetry, one should then take into account that higher dimensional

operators suppressed by the Planck-scale will violate the global symmetry. In our model,

breaking of the global U(1)B−L by Planck-scale suppressed operators can provide a mass

term for the Majoron [144]. In addition, if the symmetry is violated, the DM particle

may not be stable any longer. A Planck-scale suppressed operator at dimension 6 is not

problematic because the corresponding lifetime for the DM particle exceeds the age of

the Universe. The problem might be a Planck-scale suppressed operator at dimension

five, for which an estimate on the lifetime of the DM particle yields τ ∼ m2
pl/m3

χ ≈ 107 s

for mχ ∼ 100 GeV, leaving no DM left today. It is assumed that Planck-scale suppressed

operators induce DM decays only with lifetimes larger than the age of the Universe. In

this perspective, the global U(1)B−L put forward in this work is quite reasonable. On the

other hand, a gauged U(1)B−L suffers from an axial-vector-current anomaly. Summing

over all SM fermions that run in the [U(1)B−L]3 triangle diagram, the result one obtains

is 1 for each generation, instead of zero:

∑
q3
B−L = −2(−1)3 + (−1)3 + 3

[
−2

(
1

3

)3

+

(
1

3

)3

+

(
1

3

)3
]

= 1 . (3.4.61)

To make the symmetry anomaly-free in each generation, one is forced by theory to

introduce a SM fermion SU(2)L singlet in each generation with B − L charge -1, i.e.,

4Note that there are more unbroken accidental symmetries in the Lagrangian. For example there

is a Z3 symmetry N1 → ωN1, N2 → ω2N2 with ω3 = 1. Another example is an additional U(1)

symmetry with opposite charges for N1 and N2 but all other fields uncharged. Those accidental

symmetries emerge due to the B − L charge assignments of N1,2 and they ensure that no Majorana

mass term is generated for them after B − L breaking.
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three right-handed neutrinos. In the scenario with a global U(1)B−L, the neutrinos are

added by hands without theoretical motivation, except for being a candidate particle for

DM.

Obviously, the B−L charges of the right-handed neutrinos needed to make the gauged

B − L symmetry anomaly-free in each generation are fixed to -1, and they are not free

such that Yukawa couplings to the SM Higgs SU(2)L doublet emerge, which make the

right-handed neutrinos unstable and thereby exclude them to be a stable DM particle.

To forbid Yukawa couplings to SM particles and preserve one of the three right-handed

neutrinos as DM candidate, a stabilization symmetry has to be considered in addition to

the gauged U(1)B−L. This is not needed for a global U(1)B−L symmetry. In that case,

there are no gauge anomaly conditions to be fulfilled and the charges of the right-handed

neutrinos can be chosen freely. This freedom in choosing the B−L charge can be exploited

to make the right-handed neutrino stable without any further additional symmetry. The

stabilization symmetry in this case arises as a remnant of the spontaneously broken

global symmetry.

Apart from that, for a gauged U(1)B−L symmetry, there is a severe constraint from

electroweak precision observables on the ratio of the mass and the coupling constant of

the U(1)B−L gauge boson. This constraint is very restricting for the DM phenomenology

as will be discussed below. In the scenario with a spontaneously broken global U(1)B−L,

there is no gauge boson but a Goldstone boson and therefore the DM phenomenology

in this scenario is richer. Weighing up the pro and contra arguments, we investigate

the scenario of the global U(1)B−L. It is then the spontaneous breaking of the global

U(1)B−L symmetry that gives masses to neutrinos by generating the trilinear µ-term

dynamically and at the same time gives masses to and stabilizes DM.

The only particle to which χi can couple is the scalar ϕ, with the coupling λχ, which is

related to the DM mass via the VEV w, see equation (3.4.58). Furthermore, the coupling

of ϕ to the SM is provided via the Higgs portal proportional to λ5, or to the mixing

angle α. Therefore the two parameters λχ and α will play an important role for DM

phenomenology, as we are going to discuss in the following subsections.

We first point out the annihilation reactions that generate the DM relic density. All of

the annihilation channels with SM particles in the final state are driven by the Higgs

portal, which is the decisive communication portal in our model. Besides producing the

correct amount of the DM relic density, the Higgs portal also makes the direct detection

of the DM possible, which we discuss in a further subsection.

3.4.4. Relic Density of Dark Matter

The relic DM density ΩDMh
2 is determined by the thermal freeze-out of χi in the early

Universe. In the model presented here, the two DM particles χ1 and χ2 have identical

couplings to ϕ. Hence, the annihilation cross sections are the same and they will contribute
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in equal parts to the total DM density, i.e., ΩDM = Ωχ1 + Ωχ2 . The numerical calculation

of the relic density ΩDM is performed with the micrOMEGAs software package [64]. The

Higgs portal is the dominant communication channel between the SM and the DM sector.

It opens s-channel annihilations for the two DM particles χi into a quark–antiquark

pair, into SM gauge bosons, into the massive scalars H1,2, into the Zee–Babu scalars

k++, h+, as well as in the Majoron ρ. As examples, the cross sections for annihilation via

s-channel H1,2 exchange into b b, W+W− and k++k−−, as well as the t- and u-channel

annihilation into ρρ, are shown:

σb bvr ≈λ2
χ sin2 2α

y2
bv

2
r

1024πmχ

·
(m2

H1
−m2

H2
)2

(s−m2
H1

)2(s−m2
H2

)2

×
(
s− 4m2

b

)3/2
, (3.4.62)

σWWvr ≈λ2
χ sin2 2α

g4v2v2
r

2048πmχ

·
(m2

H1
−m2

H2
)2

(s−m2
H1

)2(s−m2
H2

)2

×
√

(s− 4m2
W )

[
1 +

1

2

(
s

2m2
W

− 1

)2
]
, (3.4.63)

σkkvr =λ2
1

mχv
2
r

32π

[
(s−m2

H2
) cosα− (s−m2

H1
) sinα

]2
(s−m2

H1
)2 (s−m2

H2
)2

×
√
s− 4m2

k , (3.4.64)

σρρvr =λ4
χ

v2
r

1536πm2
χ

. (3.4.65)

We expanded s = 4m2
χ/1−v2

r/4 in vr � 1 to show explicitly the velocity suppression of the

annihilation. However, we keep s in the kinematical terms, as well as in the denominators,

to show the resonant behavior of the s-channel cross section as a function of the DM mass

mχ. s-channel-annihilations into SM particles are controlled by the Higgs portal, and are

therefore proportional to the mixing parameters sin2 2α and (m2
H1
−m2

H2
)2/((s−m2

H1
)2(s−m2

H2
)2).

For simplicity, we also neglect here the width of the resonances, which are however

included in the numerical calculations presented below. In equation (3.4.62), yb and

mb are the b-quark Yukawa coupling and mass, respectively. The annihilation cross

section of DM into a ZZ pair can be obtained from equation (3.4.63) by replacing

g → g′ = g/
√

2 cos θW and mW → mZ . The annihilation cross section into h+h− can be

obtained from equation (3.4.64) by replacing λ1 → λ2 and mk++ → mh+ .

The full annihilation cross section χχ −→ ρρ receives also contributions from an s-

channel diagram, whereas equation (3.4.65) shows only the t-and u-channel contribution

for simplicity. This is the only case without the suppression by the Higgs masses mH1,2 .

Annihilations into the Majoron and the Zee–Babu scalars survive even in the case

of no mixing (sin 2α = 0, or λ = 0). Hence, these annihilation channels still provide a
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mechanism to generate the correct relic abundance at the electroweak scale for sin 2α = 0,

despite of χi’s being completely decoupled from the SM.

All annihilation cross sections are proportional to the coupling λχ, because the only

particle χ can directly couple to is the scalar SU(2)L singlet ϕ for which the corresponding

coupling constant is λχ. In equation (3.4.64), λχ would appear together with the VEV

w; it has been absorbed into the DM mass via equation (3.4.58). For a given set of

parameters, the left column of plots in figure 3.10 shows the relative contribution of

the various annihilation channels to the relic abundance. The middle and the right

panels of the figure show the coupling λχ and the SU(2)L singlet VEV w that are

needed to obtain the correct relic abundance. Note that for a given DM mass mχ, λχ
and w are simply related by equation (3.4.58). We have chosen representative values

for the two scalar masses mH1 = 300 GeV and mH2 = 120 GeV, but we have verified

that our conclusions do not depend on this specific choice and hold within the full

range of reasonable values for the Higgs masses. Taking the SM Higgs mass value of

mH2 = 125.5± 0.2 (stat.)+0.5
−0.6 (sys) GeV [145], the first resonant peak in the middle and

the right panels in figure 3.10 simply shift from the current position at mχ = 60 GeV to

the new position at mχ = 62.75 GeV. The couplings λµ, λk,h,1,2,3,4,5 have been set to one.

Again we have checked that random values in the range from 0.1 to 1 give qualitative

similar results.

The upper two rows of plots in figure 3.10 correspond to a relatively large Higgs mixing

angle of α = π/4. For this value of the mixing angle, cosα = sinα. Therefore, the σ

and h contribute with an equal amount to the propagating mass eigenstates H1 and H2,

which makes two resonances at mχ ' mH1,2/2 clearly visible. Depending on the DM mass

various annihilation channels are important.

In the lower two rows we use the same parameters, but a small Higgs mixing: sinα =

0.01, for which cosα ≈ 1. In this case, the mass eigenstate H1 practically coincides with

the SU(2)L singlet ϕ, and therefore only the resonance corresponding to H1 exchange

occurs. Furthermore, the coupling to SM particles is suppressed and the relic density is

provided only by annihilations into the massless Majoron or, if kinematically accessible,

into H1 and the Zee–Babu scalars k±±, h±.

In figure 3.10, we compare also two assumptions on the masses of the Zee–Babu scalars.

For masses larger than the Higgs masses, annihilations into k±± and h± are subdominant,

but if one of the charged scalars is lighter than one of the neutral scalars, they can

dominate DM annihilations, as visible in rows b) and d).

Note also the modified shape of the curves close to the resonance if the dominant

annihilation channel is into charged scalars. Whenever a pair of SM particles is in the

final state, the annihilation must proceed via scalar mixing because χ only couples to ϕ,

which is a SU(2)L singlet and has thus to mix with the SM Higgs SU(2)L doublet H

in order to have a s-channel portal to SM particles. However, the annihilation channel

with the pair k++k−− of doubly-charged scalars in the final state does not need a scalar
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Figure 3.10.: Left: Relative contribution of annihilation channels to the relic DM abun-

dance. Shown are annihilations into H1 and H2 (H), quarks (q), W

and Z bosons (W/Z), Majorons (ρ) and Zee–Babu scalars (h/k). Mid-

dle and right columns show the DM scalar coupling λχ and SU(2)L singlet

VEV, respectively, which lead to the correct relic DM density. We assume

mH1 = 300 GeV, mH2 = 120 GeV, and all Zee–Babu scalar couplings are

set to unity. Rows a) and b) are for a Higgs mixing angle sinα = 0.7, rows

c) and d) for sinα = 0.01. Rows a) and c) are for Zee–Babu scalar masses

mh+ = 300 GeV, mk++ = 800 GeV, rows b) and d) for mh+ = 120 GeV,

mk++ = 400 GeV.
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mixing, it is also possible if sinα = 0, in which case only the Higgs mass eigenstate H2

is exchanged in the s-channel without mixing. While the shape of the resonance of the

cross section itself remains the same, the different shape for λχ, which gives the correct

relic abundance, follows from a different dependence of the annihilation cross section on

λχ and mχ. The amplitude of the annihilation channel χχ −→ k++k−− is proportional

to λχw = mχ/
√

2. Taking the square of the amplitude and respecting phase-space factors,

the corresponding annihilation cross section is proportional to mχ. In contrast, the cross

sections for annihilation into SM particles are proportional to λ2
χ/mχ.

The middle and right columns of plots in figure 3.10 show that away from the resonances

the correct relic abundance is obtained for couplings in the perturbative range, 0.5 .
λχ . 1, and VEVs between 200 GeV and 500 GeV. Close to the resonances, the s-channel

propagator develops its maximum. In order to obtain the correct relic density, the increase

of the s-channel propagator has to be compensated by a small λχ. Since the product of

λχ and the VEV w determines the Dark Matter mass mχ, a small λχ corresponds to a

large VEV for fixed mχ, which is visible in the middle and right panel of figure 3.10.

If the symmetry of the model was gauged, there would be a Z ′ gauge boson with a

mass set by w. Since Z ′ searches require the mass of such a new gauge boson to be above

few TeV, e.g. [146], gauged versions of this model would be confined to the resonance

regions, see ref. [147] for an example of such a model.

It is therefore an advantage of the global symmetry considered here, that the breaking

scale can be lower, and therefore this model does not suffer from the need of tuning the

DM mass close to half of the mass of one of the Higgs mass states, i.e., a broader range

in the parameter space becomes suitable.

Once the correct DM relic density is produced, the question about the detection of the

DM particle arises. In the next section, we therefore comment on the direct detection of

the DM particles χi.

3.4.5. Direct Detection of Dark Matter

The Higgs portal, which contributes to the correct DM relic density as discussed in the

previous section, also mediates DM scattering on nuclei relevant for direct detection

via t-channel exchange of the Higgs mass eigenstates H1 and H2. Hence, scattering is

spin-independent. The elastic scattering cross section σp of χ off a proton p is obtained

as:

σp =
λ2
χ sin2 2α

4π
m2

red

(
1

m2
H1

− 1

m2
H2

)2

g2
Hp , (3.4.66)
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Figure 3.11.: Elastic scattering cross section σp of χ off a proton p for mH1 = 300 GeV

and mH2 = 120 GeV and mixing angles sinα = 0.7, 0.2, 0.05, according to

the label. The SU(2)L singlet VEV w has been chosen in order to obtain the

correct relic DM abundance. The left (right) panel corresponds to masses

of the Zee–Babu scalars of k++ = 800(400) GeV and h+ = 300(120) GeV.

Also shown are the CDMS and XENON100 exclusion limits, see text for

further information.

where mred = mpmχ/(mp +mχ) is the reduced mass of the DM–proton system and

gHp =
mp

v

[ ∑
q=u,d,s

f (p)
q +

2

27

(
1−

∑
q=u,d,s

f (p)
q

)]
, (3.4.67)

see equation (2.6.12) for details and table 2.5 for the values of f (p).

We observe from equation (3.4.66) that the cross section is proportional to the Higgs

mixing, since for α = 0, the DM particle is decoupled from the SM and therefore the

scattering cross section will vanish. Figure 3.11 shows the DM cross section on a proton

obtained with micrOMEGAs [64], where for given mH1,2 , α and mχ, the coupling λχ,or

equivalently the VEV w, has been chosen such that the correct relic abundance is obtained.

Therefore the resonances in the annihilation cross section appear also in the scattering

cross section. Although the Zee–Babu scalars k++ and h+ do not contribute directly to

the scattering cross section, they affect the annihilation cross section relevant for the

relic abundance, and therefore also DM–nucleus scattering depends indirectly on their

masses, compare left and right panel of figure 3.11.

A part of the parameter space for large values of sinα has already been excluded by

previous bounds [75, 97]. But the cross section can always be suppressed by making

α small. Therefore, we can make a prediction on the cross section without being in

conflict with the present bounds, e.g., [95], see section 2.6.2 for further discussion. Since

generically mixing should be sizable, one may expect observable signals in direct detection

searches from this model, although they are not guaranteed.
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3.5. Summary: B − L Symmetric Zee–Babu-Model

The Zee–Babu-model [103,118] generates neutrino masses at two loop level. A singly-

charged scalar h+ and a doubly-charged scalar k++ run in the loops. The loops are only

closed if a lepton number violating trilinear scalar interaction µk++h−h− is introduced

by hands. In its original version, the Zee–Babu-model does not contain a DM particle.

We generate the lepton number violating µ-term by spontaneous breaking of a global

U(1)B−L symmetry. To realize a B − L symmetric model, we extend the Zee–Babu-

model by a complex scalar SU(2)L singlet φ, which replaces the trilinear µ-term by

λµφk
++h−h−. We further introduce two SM SU(2)L singlet neutrinos Ni that couple

to φ and get massive when φ obtains its VEV. At the same time, a remnant discrete

symmetry stabilizes the neutrinos Ni, which are the DM particles in our model. The

correct relic density is achieved by freeze-out through a Higgs portal λ(φ∗φ)(H†H), with

H the SM Higgs SU(2)L doublet. It is therefore the spontaneous breaking of the global

U(1)B−L symmetry that combines neutrino and DM physics.

Due to the spontaneous breaking of a global symmetry, a Goldstone boson appears.

We show that the contribution of this Goldstone boson to the relativistic degrees of

freedom is negligible small.

Our extended Zee–Babu-model and the Ma-model discussed in section 3.1 explain the

DM relic density in the freeze-out mechanism. In the following part of this thesis, the

freeze-in mechanism is studied to obtain the correct DM relic density.
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keV Sterile Neutrino Dark Matter

Produced by Freeze-In

93





4. New Production Mechanism for

keV Sterile Neutrino DM

In the previous chapter, we provided two exemplary models, which at the same time

explain neutrino masses and the DM relic density. The neutrino mass generation has

been accomplished at one and two loop level. If not directly the DM particle itself, then

at least DM related couplings have been involved in the loops. In each of the models, the

corresponding DM particle has been a cold DM particle whose present relic density is

achieved by the freeze-out mechanism. As the identity of the DM is still a mystery and

as long as they are not verified or refused, models can only describe the possible behavior

of nature, other candidates than the extensively studied weakly interacting massive cold

DM particle have also to be admitted consideration on their merits.

One particularly interesting candidate particle that in most settings turns out to be

warm DM is a sterile, i.e., mainly SM singlet neutrino with a mass of a few keV, as the

title of this chapter already suggests. If such a particle exists, in addition to two heavier,

i.e., GeV, neutrinos which are nearly degenerate in mass, the resulting setting, called the

νMSM [148], can indeed simultaneously accommodate neutrino masses and DM. This

thesis is aimed at a common framework for neutrino masses and DM. It is therefore

interesting and well motivated to study keV sterile neutrino DM.

A frequent problem with non-standard DM candidates such as keV sterile neutrinos is

that they cannot be produced easily via the generic process of thermal freeze-out. This is

simple to understand, since this mechanism requires particles to be in thermal equilibrium

with the plasma in the early Universe, which does not work for sterile neutrinos as their

interactions are too weak.

We therefore start with a review of mechanisms for keV sterile neutrinos. As it will

turn out, a very practical production mechanism is the non-thermal production of DM

and, in particular, keV sterile neutrinos by the decays of particles, such as singlet scalars.

This production mechanism already exists for a scalar in equilibrium with the thermal

plasma, which undergoes an early or late freeze-out. However, there is an alternative

way to produce the scalar particle from the thermal plasma, the so-called freeze-in

mechanism [55]. The scenario in which a scalar singlet freezes-in and then decays into

sterile neutrinos has to the best of our knowledge not been discussed in the literature

before and thus provides a new production mechanism for keV sterile neutrino DM.

We proceed with a general description of the basic underlying idea and then move on
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to the technical details.

This chapter emanates from work done in collaboration with Alexander Merle and

Viviana Niro. It is based on the preprint [149] that has been submitted to JCAP and of

which the author of the present thesis is the corresponding author. The author of the

present thesis was mainly involved in the numerical analysis.

4.1. Known Production Mechanisms for keV Sterile

Neutrino DM

Light neutrinos appear as left-handed fields in the SM lepton doublets, see section 2.1.

Right-handed singlet neutrinos, which are discussed in section 2.2 and play the role of a

DM particle candidate in chapter 3, are absent in the particle spectrum of the SM.

The question as to why all of the charged fermions of the SM except of neutral

neutrinos appear in left-handed doublets and right-handed singlets under SU(2) arises

very naturally. Without going into the details, we simply assume the existence of three

right-handed neutrinos Ni (i = 1, 2, 3) in this section. If there are no further symmetries,

then the coupling of a SM left-handed neutrino, the SM Higgs doublet H and one

right-handed neutrino, i.e.:

−yαiDLαH̃Ni + h.c. (4.1.1)

is unavoidable. Again, H̃ = iσ2H
∗.

As soon as the SM Higgs doublet H obtains its VEV, this coupling induces mixing

between the left-handed neutrinos, which are active, and the right-handed neutrinos,

which are sterile under the SM gauge group; see section 2.2.3.

Another sector where one could search for physics beyond the SM is the scalar sector.

The very recently observed and established Higgs boson may not be the only neutral

scalar particle. In the previous part, we studied scalar sectors with an inert scalar SU(2)L
doublet, singly-and doubly charged scalar SU(2)L singlets and a complex scalar SU(2)L
singlet with lepton number -2. Here, we focus on an additional real scalar SU(2)L singlet

S. The right-handed neutrinos could then also have the coupling:

−yi
2
S NC

i Ni + h.c. (4.1.2)

Given that the scalar is heavier than half of the mass of the right-handed neutrinos, it

can produce right-handed neutrinos by the decay S −→ NiNi.

If S obtains a VEV, a Higgs portal to the SM, i.e.,

2λ(H†H)S2 (4.1.3)
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is created. Moreover, when S obtains a VEV, a Majorana mass term for the right-handed

neutrino is generated dynamically rather than being set by hand.

In this section, the implications of active-sterile neutrino mixing for DM and decays of

a real scalar singlet into sterile neutrinos are reviewed.

We do not extend the gauge group of the SM. Thus, we do not consider the possibility

that a right-handed neutrino is only sterile under the SM gauge group but charged under

an extended gauge group. If so, the right-handed neutrinos could be produced thermally,

e.g., [150]. We restrict the discussion to non-thermal production mechanisms.

4.1.1. Active-Sterile Neutrino Mixing

S. Dodelson and L. M. Widrow found that the mixing between active and sterile neutrinos

can generate an appropriate value for the relic density of a sterile neutrino NR with mass

M , which is a warm DM candidate particle. From the Yukawa interaction between a SM

left-handed neutrino νL, the SM Higgs doublet H and the right-handed neutrino NR, i.e.,

µ

(
H

〈H〉

)
νLNR , (4.1.4)

the probability of observing NR after a time t, given that there are only active neutrinos

with an energy E, is sin2 2Θ sin2 vt/L, with active-sterile mixing angle Θ and oscillation

length L. Replacing yαi in equation (2.2.19) by µ/〈H〉 as well as yi〈S〉 by M , the active-

sterile mixing angle equals Θ = µ/M. The oscillation length follows to L = 4E/M2−µ2.

In the thermal plasma of the early Universe, the high temperatures yield a relatively

large interaction time for the active neutrinos compared to the oscillation time. Therefore,

sin2 vtL is replaced by its average value, which is 1/2.

Following the discussion of equation (2.5.2), the Boltzmann equation describing the

active-sterile neutrino mixing can be written as [151]:(
∂

∂t
−HE ∂

∂E

)
fS(E, t) =

[
1

2
sin2(2Θ(E, t)Γ(E, t))

]
fA(E, t) , (4.1.5)

with fS and fA the distribution functions of sterile and active neutrinos, respectively,

and Γ(E, t) the interaction rate for the active neutrinos. We consider temperatures that

are larger than 1 MeV, i.e, the active neutrinos are in thermal equilibrium, see, e.g., the

discussion of equation (2.3.19). Therefore fA equals the equilibrium distribution, see

equation (2.4.4).

The right-handed neutrinos do not achieve thermal equilibrium with the other parti-

cles present in the thermal bath because the relevant interaction strengths are always

suppressed by the mixing angle. In that sense, the Dodelson-Widrow (DW) framework is

a non-thermal production mechanism for keV sterile neutrino DM.
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In [151], it is shown that the ratio of the number of sterile neutrinos and the number

of active neutrinos has a maximum at the temperature Tmax that equals:

Tmax ' 133

(
M

keV

) 1
3

MeV . (4.1.6)

For T � Tmax, this ratio has a T 3-behavior, and for T � Tmax it behaves like T−9.

Thus for temperatures roughly above 100 MeV the production of keV sterile neutrinos

is strongly suppressed. For temperatures T � Tmax, the distribution function fS of the

sterile neutrinos can be expressed as:

fS =
6.0√
heff

( µ

eV

)2
(

keV

M

)
fA . (4.1.7)

The ratio of the relic density of the sterile neutrinos and the relic density of the active

neutrinos is written as [151]:

ΩS

Ων

=
M

mν

fS
fA

. (4.1.8)

Ων is given by equation (2.4.5), i.e., Ων = mν/92h2 eV, such that:

ΩS =
6.0√
heff

( µ

eV

)2 keV

92h2 eV
, (4.1.9)

which is independent of the mass scale M of right-handed neutrinos. In the derivation of

this result, the number heff of relativistic degrees of freedom contributing to the entropy

density is assumed to be constant: the particles that contribute tot the number of

relativistic degrees of freedom are the photon, the three active neutrinos and the electron,

i.e.,heff = 10.75. The assumption of constant heff is motivated by the fact that below

the temperature of the QCD phase transition, which is at T = 200 MeV, there is no

abrupt change in heff . Since the maximum production of sterile neutrinos happens at

Tmax, the mass scale M for the right-handed neutrinos is constrained to be M . keV via

equation (4.1.6), otherwise the assumption of constant heff is not valid.

Through mixing with the active neutrinos, the sterile neutrinos take part in the weak

interactions. In particular, a sterile neutrino, which is a linear superposition of a left-

handed mass eigenstate and a right-handed mass eigenstate, can decay at one-loop level

into an active neutrino and a photon, where a charged W boson and a lepton run inside

the loop, see figure 2.1. The decay rate depends on the mixing angle. The photon flux

from the decay depends on Θ2M5, see equation (2.2.22). Since for each value of the

mass the mixing angle is fixed by the demand for the correct relic density, the measured

photon gives an upper bound on the mass. In the DW framework, the bound from decay

NR −→ νLγ reads [44]:

M . 4 keV . (4.1.10)
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As already mentioned in section 2.4, warm DM suppresses small scale structures due

to free streaming. The warmer the DM is, the larger its free streaming scale and the

less structure is left on small scales. When the right-handed neutrinos are produced

at Tmax ∼ 100 MeV, their mass is therefore much smaller than the temperature of the

photons; they are relativistic and stream out, thereby erasing density fluctuations at

scales below the free streaming scale [152].

Above the free streaming scale, structure formation is similar to cold DM models,

however, below the free streaming scale, structure formation changes. The Lyman-alpha

forest is a suitable cosmological observable. Lyman series are transitions in hydrogen

atoms from electron energy levels of n & 2 to n = 1; the Lyman-alpha line results from

the transition n = 2 → n = 1 and has a wavelength of λS = 1216 angstrom. After

reionization, a small fraction of hydrogen atoms are still present in neutral hydrogen

clouds in the intergalactic medium at different redshifts z. Hence, the light emitted by

a source is redshifted when hitting a hydrogen atom in a hydrogen cloud at a specific

redshift. If the amount of redshift is such that the wavelength at the hydrogen atom

equals λS = 1216 angstrom, then the emitted light is absorbed and an observer on

the Earth sees a peak in the absorption spectrum corresponding to the redshift of that

hydrogen cloud. Since the absorption can take place at different redshifts, depending

on the specific wavelength of the emitter, the observer sees several absorption lines at

different redshifts. Therefore, when observing the absorption spectrum of a specific

source on Earth, there is a forest of Lyman alpha lines λO(z) due to the redshift:

λOLya(zi) = (1 + zi)λLya . (4.1.11)

At redshifts z = 2− 6 there is the right amount of neutral hydrogen among the mostly

ionized hydrogen to observe Lyman-alpha absorption lines. For higher redshifts, the

reionization has not yet happened and all of the hydrogen is neutral hydrogen, thus all

the light emitted by an object at z & 6 is absorbed by the neutral hydrogen in the line

of sight; the object remains dark and is not suited for spectroscopy [153].

The observation of the Lyman alpha forest proves the existence of small scales in

the form of hydrogen clouds and therefore puts a lower limit on the mass of the right-

handed neutrino, which is the DM particle. In the DW framework, the bound from the

Lyman-alpha forest reads [44]:

M > 8 keV . (4.1.12)

Comparison of the X-ray bound in equation (4.1.10) and the Lyman-alpha constraint

in equation (4.1.12) obviously excludes the DW framework as an explanation for keV

sterile neutrino DM via mixing.

X. Shi and G.M. Fuller studied resonant active-sterile neutrino transformations where

the resonance originates from a pre-existing lepton number asymmetry L ≡ 2Lνα +
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a)

b)

Figure 4.1.: a): Formation of the Lyman-alpha forest. b): Lyman-alpha absorption

spectrum. b) is taken from http://www.ast.cam.ac.uk/%7Erfc/zevol6e.

jpg

http://www.ast.cam.ac.uk/%7Erfc/zevol6e.jpg
http://www.ast.cam.ac.uk/%7Erfc/zevol6e.jpg
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∑
α 6=β Lνβ in the range 10−3 < L < 10−1, where Lνα = #να −#να. The Shi-Fuller (SF)

framework is also a non-thermal production mechanism. A resonance in the να ↔ Ni

oscillations is then present at a temperature Tres due to the non-zero value of L [154]:

Tres ≈ 9

(
M

100eV

) 1
2
(
L

0.1

)− 1
4
(
T

E

) 1
4

, (4.1.13)

where E is the neutrino energy.

The oscillations να ↔ Ni are not resonantly enhanced and are therefore suppressed

compared to the να ↔ Ni oscillations. The result is that the pre-existing lepton number

asymmetry L is destroyed and L → 0. As the E−1/4 dependence of the temperature Tres

on the neutrino energy shows, the low energy neutrinos are resonantly produced before

the high energy neutrinos. The high energy neutrinos reach the resonance condition

when those να ↔ Ni oscillations for low energy neutrinos that have been resonant have

already reduced the lepton number asymmetry L. Thus, the να ↔ Na oscillations for high

energy neutrinos are not significant. The outcome is a sterile neutrino spectrum which

is centered around low neutrino energies. It is cooler than the corresponding spectrum

obtained in the DW framework, which has no pre-existing lepton number asymmetry.

For the SF framework, the X-ray bound is:

M < 50 keV , (4.1.14)

and the Lyman alpha bound is:

M > 2 keV ; (4.1.15)

the latter depending on L. Both of the two constraints can be satisfied at the same time,

showing that the SF framework is a valid mechanism to explain sterile neutrino DM by

active-sterile neutrino mixing.

4.1.2. Decay of a Real Scalar Singlet

With a scalar singlet, a Majorana mass term for right-handed neutrinos can be generated

dynamically by spontaneous symmetry breaking, in analogy to the Dirac mass terms of

the SM. Once it is produced, the scalar singlet may decay into two sterile neutrinos if

kinematically allowed. Such decays produce sterile neutrinos in addition to the active-

sterile neutrino mixing, and they can allow extra setups which would not be allowed for

the mixing alone. Production by decay is a non-thermal production mechanism, because

there is no thermal distribution of the decay products in the thermal plasma. If the

coupling constant with which the sterile neutrinos couple to the scalar singlet is small

enough, the sterile neutrinos are out of equilibrium. Since the decay of the singlet scalar
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into sterile neutrinos is fixed by kinematics, the decisive point for us concerning the

sterile neutrino DM is how the singlet scalar is produced.

In the picture of thermal freeze out, two scenarios have been studied in the literature,

namely decay of the scalar singlet into sterile neutrinos at relative high temperatures

when the scalar singlet is still in thermal equilibrium and has not yet frozen-out [155]

and out of equilibrium decay of the scalar singlet into sterile neutrinos at relative low

temperatures after freeze-out [156].

The two scenarios differ by the quantity 〈p〉/T , with 〈p〉 the average momentum of the

sterile neutrino and T the temperature. The mass M of the sterile neutrino and its

average momentum 〈p〉/T divided by the temperature, the latter depending on the specific

production mechanism, determine the free streaming horizon. Structure formation, as

observed in Lyman-alpha forest surveys, constrains the free streaming horizon and thus

the production mechanism for sterile neutrinos.

In a dedicated section, we calculate the free streaming horizon for our proposed novel

production mechanism. At first, we present the average momentum for the known sterile

neutrino production mechanism. In general, the average momentum 〈p〉 of a particle is

given by:

〈p(t)〉 =

∫
d3p pf(p, t)∫
d3p f(p, t)

, (4.1.16)

with the phase-space distribution function f(p, t). Phase-space distribution functions

are also discussed in section (2.4). For a fermion in kinetic equilibrium, the phase-space

distribution function is the Fermi–Dirac distribution, i.e.:

f(p, t) =
1

e
E−µ
T + 1

, (4.1.17)

where the time dependence is hidden in the temperature T and µ is the chemical potential

of the particle. For a nondegenerate, i.e., µ � T , relativistic, i.e., T � M , species of

fermions in kinetic equilibrium, the average momentum per particle is [45]:

〈p〉
T

=
〈E〉
T

=
7π4

180ζ(3)
' 3.15 , (4.1.18)

where the Riemann zeta function ζ(3) of 3 arises from phase-space integration of the

Fermi–Dirac distribution function.

In the two above mentioned scenarios for sterile neutrino DM production by the decay

of a scalar singlet, the phase-space distribution function of the sterile neutrinos is not a

Fermi–Dirac distribution. The relevant distribution function f(p, t) is found by solving

the Boltzmann equation [157]:

∂f(p, t)

∂t
−Hp∂f(p, t)

∂p
=

2mσΓ

p2

∫
p+

m2
σ

4p

dE fσ(p, t) . (4.1.19)
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Γ is the decay width of the decay process σ −→ NN and fσ(p, t) is the phase-space

distribution of the decaying scalar singlet σ. If σ is still in thermal equilibrium when it

decays, its phase-space distribution function is the Bose–Einstein distribution. However,

if σ has already frozen-out when it starts to decay, its phase-space distribution function

has to be determined separately by solving the relevant Boltzmann equation [156].

In the scenario of scalar decay in thermal equilibrium at relative high temperatures

T ∼ 100 GeV, the average momentum per sterile neutrino is [157]:(
〈p〉
T

)
T∼100 GeV

=
π6

378ζ(5)
' 2.45 . (4.1.20)

Although the sterile neutrino is produced at this high temperature, it is a warm DM

candidate particle and thus effects the structure formation. Structure formation starts

after BBN, i.e., when the temperature is much below 1 MeV. During the time in which the

Universe expands and thus cools down from the production temperature T ∼ 100 GeV of

the sterile neutrinos to the temperature T � 1 MeV at which structure starts to form,

the momenta of the sterile neutrinos are redshifted. At the production temperature, the

relativistic degrees of freedom geff for the energy density are the SM particles plus a

real scalar singlet plus a Majorana neutrino, which add up to gieff = 109.5. If we take

T = 0.1� 1 MeV as the temperature at which structure begins to form, then gfeff = 3.36.

The redshift occurs in all three spatial dimensions, such that the average momentum per

sterile neutrino decreases by a factor of ξ1/3 = (gieff/gfeff)1/3 to:(
〈p〉
T

)
T∼0.1 MeV

= 0.76ξ−
1
3 ' 0.24 . (4.1.21)

Compared to the average momentum 〈p〉/T = 2.83 [156] of sterile neutrinos produced

at low temperatures via the DW mechanism, the relatively small value in this decay

scenario leads to a smaller free streaming scale. The Lyman-alpha limit changes to [155]:

M > 2.7 keV , (4.1.22)

such that it is compatible with the X-ray bound, without the need of a pre-existing

lepton number asymmetry as in the SF framework.

In the scenario of the out-of-thermal-equilibrium decay of the scalar at relative low

temperatures, the average momentum per sterile neutrino can be as low as [156]:

〈p〉
T
'
(

2.5

ξ
1
3

)
T�1 MeV

= 0.8 . (4.1.23)

At this stage it is worth pointing out that the identifiers cold, warm and hot DM are

not solely referring to the mass of the DM, but to the free streaming horizon of the DM
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candidate particle defined in equation (2.4.8), which in turn depends on the product of

the DM mass and its average momentum distribution. Therefore, in principle, a particle

with a mass of the order of keV can also be a cold DM particle, as long as its average

momentum divided by the relevant temperature is relatively small compared to that one

for usual keV warm DM.

4.2. The Basic Idea: Decays of Scalar FIMPs

We illustrate the proposed mechanism before entering into the technical details. The keV

neutrinos emerge as daughter particles of a decaying scalar singlet particle. Thus, in the

first place, the parent particle has to be produced. All in all, we then have two production

stages: the production of the decaying particle followed by the production of keV sterile

neutrinos as decay products. Since different constraints may hold for the two particles

involved, two production stages may have advantages over mechanisms with only one

production stage. For example, the keV sterile neutrino cannot be produced from the

thermal plasma only: in case it enters thermal equilibrium, it is typically overproduced

since it is relativistic at freeze-out [150]. If it does not enter thermal equilibrium and

is only produced non-resonantly by small admixtures, its spectrum is too warm, if the

correct abundance is produced. The constraints from structure formation [158] can then

only be realized for relatively large keV sterile neutrino masses, which are in conflict

with the constraints from the non-observation of the decay of the keV neutrino into a

light neutrino and a photon [159], as outlined above. The singlet scalar, instead, can

be produced via thermal freeze-out, and its decay leads to a suitable abundance of keV

sterile neutrino DM, while at the same time being compatible with all bounds [155,156],

as we already have discussed.

We pursue a different path to produce the singlet scalar σ: if the Higgs portal coupling

is small enough, λ� 10−6 [155,156], the scalar particle does not enter thermal equilibrium

because its feeble interaction rate with the thermal bath is always smaller than the

Hubble expansion rate. However, it can still be produced by the plasma. This opens up

a new region in the parameter space where a non-negligible abundance can be produced,

which actually increases for increasing λ, contrary to what would happen in thermal

freeze-out. This is the freeze-in mechanism which is not new, see, e.g., [54], but has been

recently summarized and systematized in [55], where also the term FIMP, i.e., feebly

interacting massive particle, has been introduced. See also the discussion in section 2.5.2.

Furthermore, a scalar that has been produced via freeze-in has not been studied before

for the case of the production of keV sterile neutrinos.

The frozen-in physical singlet scalar σ will have a spectrum with approximately thermal

shape, but with an overall suppression factor. This scalar σ will then fully decay into

keV neutrinos N1 via the reaction σ −→ N1N1. We assume the decays into the heavier
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Figure 4.2.: Example variation of yields YN1 and Yσ as a function of the temperature T ,

see section 4.3.1 for details. As can be seen from the figure, a significant

abundance of σ gradually builds up due to freeze-in, before the decays

σ −→ N1N1 set in and, at the same time, a significant amount of keV sterile

neutrinos N1 is produced.

sterile neutrinos N2,3 to be kinematically forbidden, since we consider M2,3 � mσ. Thus,

the decisive decay mode is σ −→ N1N1. We always assume M1 � mσ �M2,3, keeping

in mind that there are several models and mechanisms which can indeed generate such a

mass pattern for Majorana sterile neutrinos [160]. An example evolution of the yields Y

of σ and N1 with decreasing temperature T is displayed in figure 4.2. As can be seen, we

essentially start with a zero abundance of both particles, the precise value of the initial

abundance plays no role as long as it is negligibly small, but with decreasing temperature

the abundance of σ increases before reaching a plateau at the freeze-in temperature

T ∼ mσ, which is typical for the freeze-in process as discussed above. However, this

abundance decreases again later, due to the decays σ −→ N1N1. Since every scalar σ

decays into exactly two N1’s, this implies YN1(late times) = 2Yσ(early times) as long as

no N1’s are produced from other sources. If the N1’s are fully non-relativistic at late

times, this also implies the relation ΩN1h
2 = 2 ·M1/mσ ·Ωσh

2 between the final abundances,

which makes it evident that this mechanism is useful to correct an overabundance of

σ by a suitable mass ratio M1/mσ. However, since the N1’s can also be semi-relativistic,

i.e., warm, at least for times close to their production, the above relation could receive a

correction factor in case the yield YN1 is not evaluated at a late enough time. Nevertheless,

the above formula can be applied as an estimate.

Finally, note that the assumption that the keV neutrinos N1 are produced exclusively

by the described scalar decays does not always need to be true. In particular, in a setting
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where there is a non-negligible active-sterile mixing between N1 and the light neutrinos

νi, a certain contribution to the abundance of N1’s produced by the DW mechanism

is unavoidable. We will take this contribution into account by estimating the maximal

amount of keV neutrinos which can be produced by DW, without violating the X-ray

bound or overproducing the DM. However, we would like to stress that our production

mechanism does not need active-sterile mixing. While such a mixing may or may not

be desirable from a phenomenological perspective, there are settings known in which

it is exactly zero due to a discrete symmetry, see, e.g., [161]. In such a scenario, the

production of keV neutrinos by a combination of the standard DW and SF mechanisms

would fail, while our mechanism, as well as the version where σ does enter thermal

equilibrium, could still be valid.

This is the general idea behind our proposal; we will now present the more technical

aspects of our mechanism.

4.3. Details of the Production Mechanism

4.3.1. The Model

The particle content of the SM is extended by three right-handed sterile neutrinos Ni

(i = 1, 2, 3) and one real scalar SU(2)L singlet S [156]. The Lagrangian is:

L =LSM +

[
iNi∂/Ni +

1

2
(∂µS)(∂µS)− yi

2
S NC

i Ni + h.c.

]
− Vscalar

+ Lν , (4.3.1)

which consists of the SM, kinetic terms of the sterile neutrinos Na, Yukawa interactions

fa of the singlet S with Na, and a scalar potential Vscalar. Finally, Lν is the part of

the Lagrangian giving mass to the light neutrinos. In the simplest setting, we would

have Lν = −yαiDLαH̃Ni + h.c., where H̃ = iσ2H
∗. Then, a type-I seesaw mechanism

could be at work using the right-handed Majorana masses for Ni arising from a VEV

f = 〈S〉, as long as the Yukawa couplings respect the observational X-ray bound [162].

Alternatively, there could exist more complicated seesaw-type mechanisms, or radiative

light neutrino mass generation as discussed in part part:one. Since we do not rely on a

specific mechanism, we will leave the mass generation of light neutrinos unspecified. Any

realistic setting must provide a way to generate a viable light neutrino mass and mixing

pattern, but the details do not play a decisive role in our production mechanism.

We restrict our considerations to a potential Vscalar that only depends on the absolute

value of the SM Higgs doublet H and on even powers of the real scalar singlet S. Such a

potential results from a global symmetry, e.g., lepton number, and does not impose a
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severe restriction. Assuming a Z4 = {±1,±i} symmetry 1 such that Lα → iLα, eα → ieα,

Ni → Ni and S → −S, while all other fields transform trivially, the most general potential

is:

Vscalar = −µ2
HH

†H − 1

2
µ2
SS

2 + λH(H†H)2 +
1

4
λSS

4 + 2λ(H†H)S2. (4.3.2)

The Higgs doublet H and the scalar singlet S are parametrized as:

H =

(
h+

1√
2
(v + h̃eiρ)

)
→

(
0

1√
2
(v + h̃)

)
and S = f + σ̃. (4.3.3)

We use the unitary gauge as in equations (2.1.3), (3.1.3) and equation (3.4.7). The

Goldstone bosons h± are eaten by W± to make them massive, similar to the neutral

boson ρ being eaten by the Z0. All other components are physical: h̃ is the SM-like

Higgs and σ̃ is a physical singlet scalar, see equation (2.1.3). The VEVs are given by

〈H〉 = 1/
√

2 · v, where v = 246 GeV, and 〈S〉 = f . Note that f could potentially be large.

Inserting the VEVs, H†H → v2/2 and S2 → f 2, and differentiating the potential with

respect to v2 and f 2, respectively, gives the minimum conditions:

µ2
H = λHv

2 + 2λf 2, (4.3.4)

µ2
S = λSf

2 + 2λv2. (4.3.5)

The Higgs portal coupling λ results in mixing of the physical scalar fields. Concentrating

on the potential terms which are proportional to σ̃2, h̃2, and σ̃h̃, and inserting the

minimum conditions, equation (4.3.4) and equation (4.3.5), the mass matrix in the

interaction basis (h̃, σ̃)T reads: (
λHv

2 2λvf

2λvf λSf
2

)
. (4.3.6)

1Note that this discrete Z4 symmetry might potentially be problematic, since its breaking by a non-zero

VEV f = 〈S〉 could lead to so-called domain walls [163], which would considerably alter the history

of the Universe but are not observed. There are arguments for how this problem could be evaded,

see e.g., [164–166]. We will not enter this discussion here and simply assume that this problem is

solved in a model containing the framework presented here. Nevertheless, we would like to point out

that the most obvious solution of taking S to be complex and promoting the symmetry to a global

U(1) rotation, for which no domain walls would appear, is not a straightforward solution to pursue.

In that case, our production mechanism would suffer considerably from the existence of a Goldstone

boson [135], more precisely a singlet Majoron [137] which would also couple to N1 and considerably

modify the DM production. In general, there can be a non-trivial interplay between the abundances

of the different scalar fields in the early Universe, which makes the model with a complex scalar S

considerably different from the freeze-in of a real scalar, the latter case being addressed in this paper.
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In the basis (h, σ)T of mass eigenstates we have, in the limit of small λ:

1

2
(h, σ)

(
m2
h 0

0 m2
σ

)(
h

σ

)
, where

m2
h

m2
σ

}
'
{
λHv

2

λSf
2

}
∓ (2λfv)2

λSf 2 − λHv2
. (4.3.7)

Interpreting the transition from the interaction to the mass basis as an abstract rotation

similar to equation (3.4.22),(
h̃

σ̃

)
=

(
cosα − sinα

sinα cosα

)(
h

σ

)
, (4.3.8)

equations (4.3.6) and (4.3.7) yield:

λS =
m2
h sin2 α +m2

σ cos2 α

2f 2
, λH =

m2
h cos2 α +m2

σ sin2 α

2v2
, (4.3.9)

λ =
(m2

h −m2
σ) cosα sinα

4fv
. (4.3.10)

The independent parameters are the singlet mass mσ, the Higgs portal λ, and the VEV

f of the singlet. Since the Higgs portal λ is small, we can practically identify h with h̃

and σ with σ̃. We will use the notation h and σ in the following.

In our numerics, we have fixed the SM Higgs mass to 125 GeV in accordance with

the experimental results by the ATLAS and the CMS collaborations. In addition we

assume mσ > mh for definiteness and mσ < f in order to avoid being in danger of

entering a non-perturbative regime, i.e., we vary mσ between the 1σ upper limit of

mh < 126.4 GeV [167] and f .

4.3.2. Dark Matter Relic Density

The relic density of our DM candidate particle N1 is produced by the decays of a frozen-in

real scalar singlet particle σ. The Boltzmann equations for the annihilation and decay

processes are given in equations (E.0.2) and (E.0.12), respectively. To calculate the relic

density of N1, we have to solve a system of coupled equations simultaneously describing

the annihilation and decay processes as it is done in, e.g, [168].

We have to solve the following two coupled Boltzmann equations:

d

dT
Yσ =

d

dT
Y Aσ +

d

dT
Y Dσ , (4.3.11)

d

dT
YN1 =

d

dT
Y DN1

, (4.3.12)
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with

d

dT
Y Aσ = −

√
π

45GN

√
g∗〈σannvr〉Y 2

σ,eq ,
d

dT
Y Dσ = −1

2

d

dT
Y DN1

, (4.3.13)

d

dT
Y DN1

= −
√

45

π3GN

1

T 3

1
√
geff

〈Γ(σ → N1N1)〉Yσ , (4.3.14)

see appendix E, in particular equations (E.0.6) and (E.0.13), for detailed information.

The equilibrium yield is given by:

Yσ,eq =
45gσ
4π4

x2K2(x)

heff(T )
, (4.3.15)

with gσ = 1 being the spin degrees of freedom for the particle σ, x ≡ mσ/T , and

√
g∗ ≡

heff√
geff

(
1 +

1

3

T

heff

dheff

dT

)
. (4.3.16)

For the definitions of heff , geff and of the Bessel function K2(x), see appendices C and D.

Building on our verified results obtained in the calculation of the relic density for the

singlet scalar FIMP, we have further developed our numeric treatment of the freeze-in

scenario. Thus we are able to numerically solve the system of the coupled Boltzmann

equations (4.3.11) and (4.3.12).

Equation (C.0.7) and equation (C.0.6) for the effective relativistic degrees of freedom

heff and geff are implemented in our Mathematica procedure and summed over as in

equations (C.0.9) and (C.0.8). Thus we are able to correctly account for the contribution

of the singlet scalar to the relativistic degrees of freedom. In addition, we obtain
√
g∗ of

equation (4.3.16) as a function of the temperature T . The system of Boltzmann equations

in equations (4.3.11) and (4.3.12) is numerically solved for each combination of integer

valued mσ and M1 in the range we have scanned, see below. For each parameter pair, we

check that the equilibrium condition neq〈σvr〉 > H is satisfied for each temperature T .

As already explained, the DM particle is the lightest sterile neutrino N1 that is produced

by the frozen-in real scalar singlet σ due to out-of-equilibrium decays, σ −→ N1N1. The

thermally averaged cross section times relative velocity 〈σannvr〉 for the real scalar singlet

σ is calculated numerically using the micrOMEGAs package [64]. 〈Γ(σ −→ N1N1)〉 is the

thermally averaged decay rate for the decay σ −→ N1N1 and the analytically determined

decay width in the rest frame of the decaying particle σ is:

Γ(σ −→ N1N1) =
y2

1

16π
mσ

[
1− 4M2

1

m2
σ

]
. (4.3.17)

See equations (E.0.9) and (E.0.11) for the definition of 〈Γ(σ −→ N1N1)〉. The relic

density is obtained from formula (2.3.21).
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4.3.3. Existing Constraints on the Free Streaming Horizon

In this section, we determine the free streaming horizon rFS for the sterile neutrinos

produced through our new mechanism. In a spatial flat universe, the curvature constant

k is zero. Assuming isotropy, i.e., dΘ = dφ = 0, the Robertson–Walker metric, see

equation (2.3.4), reads:

ds2 = c2dt2 − a2(t)dr2 . (4.3.18)

Note that t and r are the comoving coordinates. A freely propagating particle with

velocity v then moves on a geodesic ds2 = 0 and satisfies:

v(t)dt = a(t)dr . (4.3.19)

The free streaming horizon rFS is the comoving distance a freely moving particle propagates

between a time tin and t0 and is thus given by:

rFS =

∫ t0

tin

dt
v(t)

a(t)
, (4.3.20)

where tin is the initial time at which the integration starts, t0 is the current time, v(t) is the

mean velocity of the DM particles, and a(t) is the scale factor, see also equation (2.4.8).

The first step is to calculate the average momentum 〈p〉. Therefore, the phase-space

distribution function is needed, see discussion of equation (2.4.1) The sterile neutrinos

are produced at the time tin after the singlet scalar σ has frozen-in, which happens at

the time tprod, and then decays, i.e., tin = tprod + τ where τ is the lifetime of σ given

by τ = 1/Γ. The freeze-in of σ happens when the temperature of the photons equals

the mass of σ, which is of order O(100) GeV. At that time, σ is clearly non-relativistic.

Since matter radiation equality occurs much later on at teq, the decays of σ and thus

the production of the sterile neutrinos take place in the radiation dominated era. Under

these circumstances, the phase space distribution of the sterile neutrinos is given by [169]:

f(p, t) =
β
p

TDM

exp

(
− p2

T 2
DM

)
, (4.3.21)

where β is a normalization factor that will turn out to be irrelevant for our purposes, p

is the co-moving momentum, and the DM temperature is defined as TDM = TDM(t) =

pcma(td)/a(t). Here, pcm =
√
m2
σ−M2

1/2 ' mσ/2 is the DM momentum in the center-of-mass

frame and the decay time td is defined as H(t = td) = 1/2tin [170]. Since the particle

production happens in the radiation dominated era, the Hubble expansion rate H scales

like H(t) = 1/2t. Therefore, H(td) = 1/2td and we can identify td ≡ tin.

The average momentum 〈p〉 follows after integrating the phase space distribution

function to:

〈p(t)〉 =

√
π

2
TWDM(t) '

√
π

2

mσ

2

a(tin)

a(t)
. (4.3.22)



4.3. Details of the Production Mechanism 111

The mean velocity v(t) of the sterile neutrinos can be set to 1 as long as they are

relativistic. After the non-relativistic transition, which sets in at the time tnr, the sterile

neutrinos are non-relativistic and their mean velocity simply follows from the determined

average momentum 〈p(t)〉, i.e., v(t) = 〈p(t)〉/M.

In a second step, we answer the question about the time when the non-relativistic

transition happens. The non-relativistic transition will set in when 〈p(t)〉 '
√
π/2 · mσ/2 ·

a(tin)/a(t) = M . The scale factor a(t) can be approximated as a(t) ∝ t1/2 (a(t) ∝ t2/3) for

radiation (matter) dominance. Since the scale factor has a different time dependence in

the radiation and matter dominated era, respectively, one has to distinguish between the

cases of non-relativistic transition happening before, i.e., tearly
nr < teq, or after the matter

radiation equality, i.e., tlate
nr > teq.

One finds:

tearly
nr =

(√
π

2

mσ

2M1

)2

tin , (4.3.23)

tlate
nr =

(√
π

2

mσ

2M1

) 3
2

t
3
4
int

1
4
eq . (4.3.24)

With the outcomes of steps one and two, the free streaming horizon can now be calculated.

In the case tearly
nr < teq, the interval [tin; t0] can be split into three pieces yielding:

rFS =

∫ t0

tin

dt
〈v(t)〉
a(t)

=

∫ tnr

tin

dt

a(t)
+

∫ teq

tnr

dt
〈v(t)〉
a(t)

+

∫ t0

teq

dt
〈v(t)〉
a(t)

(4.3.25)

' 2
√
teqtnr

aeq

+

√
teqtnr

aeq

ln

(
teq

tnr

)
+

3
√
teqtnr

aeq

=

√
teqtnr

aeq

[
5 + ln

(
teq

tnr

)]
. (4.3.26)

For the case tlate
nr > teq, the result reads:

rFS =

∫ t0

tin

dt
〈v(t)〉
a(t)

=

∫ teq

tin

dt

a(t)
+

∫ tnr

teq

dt
〈v(t)〉
a(t)

+

∫ t0

tnr

dt
〈v(t)〉
a(t)

(4.3.27)

' 2teq

aeq

+

(
3t

2
3
eqt

1
3
nr

aeq

− 3teq

aeq

)
+

√
π

2

mσ/2

M1

√
tin
teq

3 t
4
3
eq

aeqt
1
3
nr

(4.3.28)

=
3t

2
3
eqt

1
3
nr

aeq

− teq

aeq

+

√
π

2

mσ/2

M1

√
tin
teq

3 t
4
3
eq

aeqt
1
3
nr

. (4.3.29)

We have assumed matter-dominance until t0, since very late times practically do not have

any effect on the result [158]. Both expressions exactly coincide in the limit tnr → teq.

One still has to take into account the entropy dilution between the time of production,

which happens at a very high temperature, and the current time. This amounts to a
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further factor of ξ−1/3 [156], with an entropy dilution factor given by:

ξ =
geff(high T )

geff(t0)
≈ 109.5

3.36
, (4.3.30)

where we have taken both the real scalar σ and the keV Majorana neutrino N1 to

contribute to radiation at high temperatures.2 Since the scalar σ has been produced in

a significant amount at the time of its decay, this should not be a bad approximation,

and for the same reason also a significant amount of N1’s should be produced. The final

result for the free streaming horizon is:

rFS '


√
teqtnr

aeq

[
5 + ln

(
teq

tnr

)]
ξ−1/3 if tnr < teq,[

3t
2
3
eqt

1/3
nr

aeq
− teq

aeq
+
√
π

2
mσ/2
M1

√
tin
teq

3 t
4
3
eq

aeqt
1
3
nr

]
ξ−1/3 if tnr > teq,

 . (4.3.31)

One can define a free-streaming horizon of 0.1 Mpc [172], which is about the size of a

dwarf galaxy, as the separation between HDM (rFS >0.1 Mpc) and WDM (rFS ¡ 0.1 Mpc).

In turn, free-streaming horizons which are considerably smaller typically correspond to

CDM. Note that this is in some sense an artificial definition, as we will explain in detail

in section 4.4, but it nevertheless gives a good orientation in practice. As we will see,

the condition rFS <0.1 Mpc will lead to a lower bound on the mass M1 of the keV sterile

neutrino.

We have used equation (4.3.31) to mark the excluded region of HDM (rFS >0.1 Mpc)

later on in figure 4.4 and in figure 4.5. We will furthermore indicate the CDM regions

(rFS <0.01 Mpc), which are not excluded and instead reveal that a keV-mass particle can

also act as CDM, depending on the details of its production.

4.3.4. Collider Bounds on the Production of Dark Matter

In colliders, a DM signal can be detected through monojet or cascade events. If the

DM particle is stable, it does not decay inside the detector volume and thus leaves its

track as missing energy, which can be reconstructed. Comparing simulated DM events

with data analysis allows to constrain the DM interaction and its mass. Bounds exist on

DM masses around 1 GeV. Specific collider constraints on Majorana fermion DM can be

found in [173]; for Dirac fermion, complex scalar, and real scalar DM, see [174].

Because a Majorana field is its own charge conjugate, only operators which are even

under charge conjugation are allowed for Majorana fermions. Therefore, in contrast to

the case of Dirac fermions, there are neither vector nor tensor field bilinears for Majorana

2At this step, we disagree with [156], where the number of degrees of freedom at a high temperature

has been taken to be 110.5. This corresponds to one Majorana neutrino and a complex scalar [171].

However, the resulting numerical difference is tiny and would in no case affect the results significantly.
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fermions. However, note that the constraints cited above are not relevant in our case,

since the DM is a sterile neutrino N1 with a mass in the keV range, produced by the

decay of a frozen-in scalar singlet FIMP.

The scalar singlet FIMP itself is produced via the Higgs portal. In [175], the allowed

region for the Higgs portal coupling λ and the mass of the scalar singlet is presented.

Through the Higgs portal, the SM Higgs could decay invisibly into two scalar singlets.

By demanding that the invisible decay width is less than 20% of the SM decay width,

the strongest upper bound on the Higgs portal coupling is λ < 0.01, but for scalar singlet

masses mσ & 60 GeV there is essentially no constraint. In the mechanism we propose,

the Higgs portal coupling is of order λ ∼ O(10−8), i.e., given the mass range of our scalar

singlet and its feeble interactions, the constraints in [175] for the allowed λ−mS region

are not relevant for us.

To conclude, all existing collider bounds on the production of DM are not relevant for

our mechanism and do not constrain the parameters we are considering in our numerical

analysis.

4.4. Numerical Analysis

We have numerically solved equations (4.3.11) and (4.3.12) in order to determine the

final abundance of keV sterile neutrinos N1.

First of all we scanned over a range of values for the Higgs portal coupling λ in order to

identify the successful region to obtain the correct relic abundance. The only requirement

we impose on λ is that λ . 10−6 in order not to enter thermal equilibrium [156]. The

result of this scan can be found in figure 4.3, where we plot the abundance regions for

different values of the coupling, λ = 10−7,8,9, as a function of the keV neutrino mass M1.

The broadening of the corresponding bands originates from the variation over the scalar

mass mσ. For definiteness, we assume that the singlet scalar mass is always larger than

the SM-like Higgs mass mh ≈125 GeV, corresponding to the upper end of the bands in

the plot. Furthermore, in order to avoid entering a potentially non-perturbative regime,

we also assume that mσ < f corresponding to the lower ends of the bands in the plot,

where f is the VEV of the singlet field S.

In figure 4.3, we present the plots for the two example values f =500 GeV and f =1 TeV,

which are perfectly compatible with all bounds. As can be seen from figure 4.3, the

successful value of the Higgs portal coupling λ should be around 10−8, more or less

independently of the value of the VEV f . Accordingly, we will focus on the region λ ≈ 10−8

in what follows and investigate this region in greater detail in what concerns the relic

abundance and in particular the experimental and observational bounds.A more detailed

investigation of the successful regions in parameter space can be found in figures 4.4

and 4.5, where we have indicated the region of the correct abundance, i.e., within the 3σ
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ranges of the Planck data [5], as generated by scalar FIMP production only, by the orange

band in the plot. The parameter values for the plots are chosen as f ∈ [500; 1000] GeV,

with λ ∈ [1.0 · 10−8; 1.2 · 10−8] for figure 4.4 and λ ∈ [1.5 · 10−8; 2.0 · 10−8] for figure 4.5.

As can be seen from the plots, the iso-abundance lines reveal a more or less linear

dependence of the keV sterile neutrinos mass M1 on the scalar singlet mass mσ. This

feature can be understood easily by observing that the final DM energy density must be

equal to the initial energy density in scalar σ particles, which can at most be redshifted.

Since this initial energy density is non-relativistic, it can be written as ρσ = mσnσ,

where nσ is the number density of σ-particles. Similarly, the energy density in N1 can

be computed by the non-relativistic expression for late times, see the discussion in

section 4.2, since in the successful regions in the parameter space the DM particles

become non-relativistic within the age of the Universe. In addition, we have indicated

some important bounds. As explained, we have assumed that mσ > mh, and we indicate

the corresponding regions left of the upper 1σ bound on mh of 126.4 GeV [167] by gray

rectangles. Furthermore, we know that HDM is excluded or, rather, bound to make up at

most 1% of the DM in the Universe [176,177] by considerations of cosmological structure

formation.

A rough way to quantify when DM particles are HDM, WDM, or CDM is the co-moving

free-streaming horizon rFS, see section 4.3.3. Since it is a bit crude to attribute the

property of a whole velocity spectrum of DM particles to one single number, it is to

some extent a question of definition where to draw the lines between the three DM

categories. A relatively common choice, which somewhat representatively reflects the use

of the three terms in the literature [178, 179] is to take the border between HDM and

WDM at a free-streaming horizon of roughly rFS = 0.1 Mpc, where larger values signal

HDM which is forbidden. Note that this value is physically motivated due to the size of

dwarf satellite galaxies being in that range. However, between CDM and WDM, there is

not a very well-defined boundary, since it is not easy to unambiguously define at which

value of rFS the structure formation on small scales starts to depart from the pure CDM

case [158,180]. However, it is clear that the free-streaming horizon for CDM should be

“significantly smaller” than the one for WDM. For definiteness, we have therefore decided

to simply take a value that is by one order of magnitude smaller than the one for the

HDM–WDM boundary. Keeping in mind that this distinction between WDM and CDM

is also a matter of definition, the values of rFS which we used are:

Cold DM (CDM) :⇐⇒ rFS < 0.01 Mpc,

Warm DM (WDM) :⇐⇒ 0.01 Mpc < rFS < 0.1 Mpc,

Hot DM (HDM) :⇐⇒ 0.1 Mpc < rFS.

Thus, in the plots displayed in figures 4.4 and 4.5, the thick red line at the bottom of

the plots marks the transition between WDM and HDM, and the light red region below
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this line is excluded by structure formation. The light blue region in the upper part of

the plots, bounded by the thick blue line, corresponds to CDM and the white region

marks the WDM sector. Here, it is worth pointing out that in a considerable region of

the parameter space, keV sterile neutrinos with large enough masses can be cold DM,

or, more precisely, indistinguishable from CDM according to our definition, in contrast

to most of the scenarios for keV sterile neutrino DM. To some extent, this is a simple

reflection of the fact that our DM production happens in the early Universe, but the more

crucial point is that the mass ratio mσ/M1 happens to be in the correct region to allow for

a sufficient cooling time. Figures 4.4 and 4.5 reveal that the region of the correct DM

relic abundance lies in the cold or warm DM parameter space, depending on the specific

value of λ, respectively. We also have the possibility to produce part of the DM as keV

sterile neutrinos by the ordinary DW-mechanism [151], in addition to the production by

the mechanism proposed here. This contribution depends on the active-sterile mixing

angle θ1 of the keV sterile neutrino N1, and it can be estimated by the approximate

formula [181]:

ΩN1,DWh
2 ≈ 0.2 · sin2 θ1

3 · 10−9

(
M1

3 keV

)1.8

. (4.4.1)

Note that, if the keV sterile neutrino makes up all of the DM in the Universe and if

it is unstable under and decays into photons, then there is a strong bound from the

non-observation of the corresponding X-ray line, see [159,182,183] for recent collections of

bounds. In the plots, we have represented the corresponding maximal, i.e., for the largest

allowed value of sin2 θ1 addition of particle production due to the DW mechanism by the

purple bands. As can be seen from the plots, this would shift the allowed regions, i.e., the

regions where the total abundance of keV neutrinos, as produced by both mechanisms

together, is within the 3σ regions of Planck data, towards slightly larger values of mσ.

For very low M1, there is a considerable DW-production resulting from the comparatively

weak X-ray bound in this mass region. In this region, nearly all the DM can be produced

by the DW-mechanism, which for these masses completely dominates the production by

frozen-in scalars, if the maximum possible value is taken for the active-sterile mixing.

However, from studies of the Lyman-alpha forest, the corresponding lower bound on

the keV sterile neutrino mass, when the DW-mechanism is at work, is between 8 keV

and 10 keV [158]. Note that this accidentally coincides with the light red HDM region

in our plots. Thus, this region of the parameter space is excluded. On the other hand,

depending on the exact value of the active-sterile mixing, the combined abundance of

keV sterile neutrinos produced by both mechanisms could also lie in between the orange

and purple bands, which we indicate in the plots.

We want to stress that the orange bands correspond to production by scalar FIMPs

only, i.e., this is the region of correct abundance for a vanishing active-sterile mixing,

θ1 ≡ 0. While this may not be desirable from a phenomenological point of view, e.g., for
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a possible detection of the X-ray line [184], or for a potential detection of modifications

of neutrino-less double beta decay [183,185]), vanishing active-sterile mixing may be very

natural in certain settings [186]. In such frameworks it would be impossible to produce

keV sterile neutrinos via the DW and/or SF mechanisms, but our mechanism as well as

the version in which the scalar freezes out could be easily used as an alternative.

Finally, we have also indicated possible mass limits arising from the X-ray bound.

For example, if the bound on the active-sterile mixing is taken to be sin2(2θ1) < 10−13,

this excludes keV sterile neutrino masses M1 above 64.5 keV, while the values below are

consistent with the X-ray bound, but not necessarily with the HDM bound. If active-

sterile mixing is not present, then there is no fixed upper bound on M1, and alternative

scenarios with stable, e.g., MeV or GeV sterile neutrino DM could be found, too. The

general message of our plots is that there is considerable room for keV sterile neutrinos

to be produced by scalar FIMPs and to be compatible with all bounds. Accordingly, if in

a certain setting the Higgs portal coupling of a singlet scalar is bound to be very small,

it could still be used to produce sterile neutrino DM.

4.5. Summary: Freeze-In Production of keV Sterile

Neutrino Dark Matter

Many models beyond the SM include three right-handed neutrinos as counterparts to the

left-handed neutrinos. As SU(2)L singlets, right-handed neutrinos do not directly take

part in weak interactions, or in other words, they are sterile. For an appropriate mass

hierarchy of the three right-handed neutrinos, two of these can generate the measured

neutrino oscillation parameters, the remaining lightest one, given that it is stable, can

be a DM particle. If its mass is in the keV range, this right-handed neutrino can be a

warm DM. On large scales, warm DM behaves as cold DM, but on small scales warm

DM describes the structures of the Universe even better than cold DM. These arguments

turn keV sterile neutrino DM into a are very interesting candidate for warm DM, offering

at the same time a common framework for neutrino mass generation and DM physics.

Numerous mechanisms to produce keV sterile neutrino DM are discussed in the

literature. As examples, we discussed oscillations between active and sterile neutrinos

and the production of sterile neutrinos by decays of scalar particles. In the latter

case, scenarios had been studied in which the scalar particle freezes out from thermal

equilibrium.

We presented a new and successful mechanism for the production of keV sterile neutrino

DM. The underlying principle is the freeze-in of a scalar particle σ that never enters

thermal equilibrium. A significant abundance of σ is produced by a feeble mixing with

the SM Higgs doublet H. If σ is unstable, it can decay into pairs of keV sterile neutrinos

N1. Thus, the correct DM relic density is achieved by the decay of a frozen in feebly
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Figure 4.3.: Relic density ΩN1h
2 as a function of the sterile neutrino mass M1, for Higgs

portal coupling λ = 10−7,8,9. In the left panel we show the results considering

f =500 GeV, while in the right panel the results with f =1 TeV.

interacting scalar particle.

The corresponding system of coupled Boltzmann equations was solved numerically. The

relevant bounds for keV sterile neutrinos were discussed emphasizing the new parameter

regions of our mechanism.



118 4. New Production Mechanism for keV Sterile Neutrino Dark Matter

0 200 400 600 800 1000
0

20

40

60

80

100

mΣ@GeVD

M
1
@k

eV
D

WN1
h

2 within the 3Σ range of WDMh
2

S
ca

la
r

li
g
h
te

r
th

an
S

M
H

ig
g
s

HDM region HrFS>0.1 MpcL

CDM region
HrFS<0.01 MpcL

f=500 GeV

Λ=1.0�10-8

M1,max for sin2H2ΘL=5�10-14

M1,max for sin2H2ΘL=1�10-13

M1,max for sin2H2ΘL=1�10-12

0 200 400 600 800 1000
0

20

40

60

80

100

mΣ@GeVD
M

1
@k

eV
D

WN1
h

2 within the 3Σ range of WDMh
2

S
ca

la
r

li
g
h
te

r
th

an
S

M
H

ig
g
s

HDM region HrFS>0.1 MpcL

CDM region HrFS<0.01 MpcL

f=1000 GeV

Λ=1.0�10-8

M1,max for sin2H2ΘL=5�10-14

M1,max for sin2H2ΘL=1�10-13

M1,max for sin2H2ΘL=1�10-12

0 200 400 600 800 1000
0

20

40

60

80

100

mΣ@GeVD

M
1
@k

eV
D

WN1
h

2 within the 3Σ range of WDMh
2

S
ca

la
r

li
g
h
te

r
th

an
S

M
H

ig
g
s

HDM region HrFS>0.1 MpcL

CDM region
HrFS<0.01 MpcL

f=500 GeV

Λ=1.2�10-8

M1,max for sin2H2ΘL=5�10-14

M1,max for sin2H2ΘL=1�10-13

M1,max for sin2H2ΘL=1�10-12

0 200 400 600 800 1000
0

20

40

60

80

100

mΣ@GeVD

M
1
@k

eV
D

WN1
h

2 within the 3Σ range of WDMh
2

S
ca

la
r

li
g
h
te

r
th

an
S

M
H

ig
g
s

HDM region HrFS>0.1 MpcL

CDM region
HrFS<0.01 MpcL

f=1000 GeV

Λ=1.2�10-8

M1,max for sin2H2ΘL=5�10-14

for sin2H2ΘL=1�10-13

M1,max for sin2H2ΘL=1�10-12

Figure 4.4.: We show the results using λ = 1.0·10−8, 1.2·10−8, as well as f =500 GeV and

f =1 TeV. The orange (purple) bands represent the regions of the parameter

space with a sterile neutrino relic abundance ΩN1h
2 within the 3σ observed

value, obtained only through the decay of a freeze-in scalar, considering also

the DW mechanism, see text for more details. The red and blue areas denote

the HDM and CDM regions, respectively.
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Figure 4.5.: Same as figure 4.4, but for λ = 1.5 · 10−8, 2.0 · 10−8.





5. Conclusions

Neutrino flavor oscillation experiments have precisely measured the neutrino mixing

angles and the difference of squared mass eigenvalues, which are all different from

zero. However, the SM does not contain a mass term for neutrinos. Apart from that,

cosmological observations that probe the energy density of the Universe have shown

that the matter content of the SM does only contribute with approximately 15.50% to

the whole matter content of the Universe. That is, 84.50% of the matter content is not

described by SM particle physics. Since up to now only gravitational interactions of

this missing mass component have manifest themselves in the structure formation of the

Universe, but no electromagnetic interactions, in particular, this lion share of matter is

called DM. In the introductory section 1 of this thesis, we outlined the importance of

neutrino masses and DM.

It is tempting to ask if neutrino masses and DM physics could be explained by a

common theoretical principle, thus providing a unified framework for these two issues. In

that sense, models which generate neutrino masses radiatively are one possible answer;

the loops needed to make neutrinos massive could connect to DM physics such that

neutrino masses and a DM particle have a common energy scale. In most of these kinds

of frameworks, the DM relic density is produced by freeze-out, which starts with a DM

particle that is in thermal equilibrium. An alternative to obtain the correct DM relic

density is the freeze-in scenario, which starts with a particle that is never in thermal

equilibrium. This thesis contributes to unified frameworks for neutrino mass generation

and to DM physics.

In part I, DM freeze-out production is considered in two exemplarily models which

generate neutrino masses at loop-level; these are the Ma-model discussed in sections 3.1

and 3.2 and the Zee–Babu-model in section 3.4.

The Ma-model is a one-loop radiative neutrino mass model in which the DM particle

runs in the loop. Therefore, neutrino masses and DM physics are directly linked in the

neutrino mass generation. The particles beyond the SM are a complex scalar doublet η

and three right-handed Majorana neutrinos Ni(i = 1, 2, 3). In principle, the Ma-model

has two candidates for a DM particle: either the neutral component η or the lightest of

the Ni. In section 3.1.3, we chose N1, which is the lightest of the right-handed Majorana

neutrinos, as the DM particle. Also, we chose a small mass splitting δ of N1 to the

second lightest right-handed Majorana neutrino N2. With this choice, we have to include

co-annihilations of N1 and N2. Our result is that these co-annihilations are essential for
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producing the correct DM relic density: the N1−N1, N2−N2 and N1−N2 annihilations

depend on Yukawa coupling constants that are constrained by LFV processes. In many

cases, these Yukawa coupling constants have to be tiny yielding a too large relic density in

the freeze-out scenario. In our case, the co-annihilations N1−N2 have a term independent

of the relative velocity at lowest order and thus give a relative large cross section for

relative small Yukawa coupling constants, i.e., a small enough DM relic density. In

addition, in some regions of the parameter space, co-annihilations between N1 and η

become important. N1 has no direct couplings to quarks or gluons that are necessarily for

its possible direct detection. However, via one-loop photon exchange, N1 can effectively

couple to a nucleus realizing inelastic scattering. To the best of our knowledge, we have

calculated for the first time the inelastic scattering cross sections in an effective field

theory approach, see section 3.2.1. We have determined charge-charge, dipole-charge and

dipole-dipole interactions. We have found that the mass splitting δ has to be small in

order to obtain a sizable signal in direct detection experiments, which is consistent with

the need of co-annihilations relying on a small δ. The XENON1T experiment could have

sensitivity to most of our parameter space.

The Zee–Babu-model is a two-loop neutrino mass model. In its original version, it has

no right-handed neutrinos and no candidate for a DM particle. The particles beyond the

SM are a singly charged scalar h+ and a doubly charged scalar k++. To close the loops, a

lepton number violating trilinear scalar interaction term µk++h−h− has to be introduced

by hands. To connect neutrino mass generation with DM physics in the Zee–Babu model,

we have used the spontaneous breaking of a global U(1)B−L symmetry. Therefore, the

model is extended by a complex scalar singlet φ driving the symmetry breaking and two

right handed neutrinos for DM. The µ term and thus neutrino masses as well as the mass

of the DM arise when φ obtains its vacuum expectation value. After the spontaneous

symmetry breaking, a remnant discrete symmetry stabilizes the DM. We have used a

global symmetry and not a local one. If one uses a local B − L symmetry, the B − L
charges of the three right-handed neutrinos are fixed by gauge anomaly conditions and

Yukawa interactions to SM lepton doublets are allowed. To have the lightest of the three

right-handed neutrinos stable, an additional Z2 symmetry has to be introduced. This is

not the case for a global symmetry: the B −L charges of the right-handed neutrinos can

be chosen with more freedom and the stability of the DM is automatically guaranteed by

a remnant stabilization symmetry. Also, in the global case, there are no bounds coming

from a Z ′ gauge boson, which would decrease the allowed parameter space for the correct

DM relic density. But in the global case, there is a Goldstone boson which contributes

to the DM relic density in contrast to the local case.

In part II, we have presented an alternative to freeze-out of DM: a new production

mechanism for keV sterile neutrino DM is introduced that is based on the freeze-in of a

scalar particle σ. Although it never enters thermal equilibrium, a significant abundance

of σ is produced due to its feeble interactions with the SM Higgs doublet. If it is unstable,
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it can decay into a pair of keV sterile neutrinos which are the proposed DM particles.

Thus, the relic density of DM is produced by the decay of a frozen-in feebly interacting

massive particle. Similar mechanisms had already been proposed previously for early

and late freeze-out and subsequent decay of the scalar. Our proposal opens up a new

window in a region of the parameter space where freeze-out is not at all possible. This

is particularly interesting for models which predict a very small Higgs portal coupling

between σ and the SM-like Higgs. Our mechanism is applicable to many models including

neutrino mass generation by seesaw scenarios or at loop level.





Appendix

125





A. Expansion of the Annihilation

Cross Section

In chapter 3, we express the 2→ 2 effective annihilation cross section σeff times relative

velocity vr as an expansion in v:

σeffvr = aeff + beffv
2
r +O(v4

r) . (A.0.1)

In this appendix, we provide a detailed explanation for this expansion. We rely on the

argumentation of [59].

As initial states, we consider N1N1, N2N2, N1N2 and N1η. The mass differences

between the intial particles either vanish or is almost zero in the cases we consider.

Therefore, it is justified to set the masses of the initial particles to M1. p1 and p2 are the

incoming momenta. pα and pβ are the outgoing momenta. The masses of the final state

particles are mα and mβ, respectively. The differential cross section σeff with respect to

the solid angle Ω is written as:

dσeff

dΩ
=
|M|2

64π2s

|pα|
|pβ|

. (A.0.2)

M is the corresponding amplitude. Here and in the following, s, t and u are the

Mandelstam variables. Since u =
∑

(M2
i + m2

α) − s − t, where the sum includes all

final and initial state particles, the amplitude does in general depend on s and t, i.e.,

|M|2 = J(s, t). Due to kinematics, |p1| = M1vcm/
√

1−v2
cm with the center of mass system

velocity vcm = 1/2vr and |pα| =
√

(s−(mα+mβ)2)(s−(mα−mβ)2)/2
√
s. We further introduce the

s-depending function K(s) = pα/16πM1s such that the differential cross section σeff with

respect to the solid angle Ω, into which the final state products are produced, equals:

vcm
dσeff

dΩ
=
J(s, t)

4π
K(s)

√
1− v2

cm . (A.0.3)

The Mandelstam variable s equals s = 4M2
1//1− v2

cm. Since vcm � 1, s can be Taylor

expanded in vcm yielding:

s = 4M2
1 (1 + v2

cm + v4
cm +O(v6

cm)) . (A.0.4)
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The Mandelstam variable t equals t = M2
1 +m2

α − 2(E1Eα − p1pα). E1 can be written

as E1 =
√
s/2 and Eα =

√
s/2 · (1 + m2

α−m2
β/s). The scalar product p1pα equals p1pα =

|p1||pα| cos Θ. For |p1| and |pα| we can write: |p1| =
√
s/2 · vcm and

|pα| =
√
s

2

√(
1− (mα +mβ)2

s

)(
1− (mα −mβ)2

s

)
. (A.0.5)

Thus the Mandelstam t equals:

t =M2
1 +m2

α −
s

2

(
1 +

m2
α −m2

β

s

− cos Θvcm

√(
1− (mα +mβ)2

s

)(
1− (mα −mβ)2

s

))
. (A.0.6)

Expressing s again via vcm, a Taylor expansion of t yields:

t =
−2M2

1 +m2
α +m2

β

2

+
1

2
cos Θvcm

√
(4M2

1 − (mα −mβ)2)(4M2
1 − (mα +mβ)2)

− 2M1v
2
cm

+ cos Θv3
cm

2M2
1 (4M2

1 −m2
α −m2

β)√
(4M2

1 − (mα −mβ)2)(4M2
1 − (mα +mβ)2)

− 2M2
1 v

4
cm +O(v5

cm) . (A.0.7)

In the Taylor expansion of K(s), only even powers of vcm remain:

K(s) = K0 +K2v
2
cm +K4v

4
cm +O(v6

cm) . (A.0.8)

The coefficients Ki do depend only on the masses M1, mα and mβ.

Using the expansions of s and t, the quantity J(s, t)/4π can be Taylor expanded around

s0 ≡ 4M2
1 and t0 ≡ (−2M2

1 +m2
α +m2

β)/2:

J(s, t) ≈ J(s, t)|s=s0;t=t0
+
∂J

∂s

∣∣∣∣
s=s0;t=t0

(s− s0) +
∂J

∂t

∣∣∣∣
s=s0;t=t0

(t− t0)

+
1

2

∂2J

∂s2

∣∣∣∣
s=s0;t=t0

(s− s0)2 +
1

2

∂2J

∂t2

∣∣∣∣
s=s0;t=t0

(t− t0)2

+
1

2

∂2J

∂s∂t

∣∣∣∣
s=s0;t=t0

(s− s0) (t− t0) (A.0.9)

To obtain the cross section, the integration over the solid angle dΩ = sin ΘdΘdφ has

to be performed. The only angle dependence is cos Θ in the expansion of t. Since
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J(s, t)|s=s0;t=t0
and ∂m+nJ/∂ms∂nt|s=s0;t=t0

do not depend on cos Θ after inserting s0

and t0, the only cos Θ dependence is in (t − t0)n. Because
∫ π

0
dΘ sin Θ cos Θ2n+1 = 0,

only even powers of cos Θ and therefore only even powers of vcm contribute. Due to the

dependence of the Mandelstam variables s and t on cos Θ and vcm, the cross section thus

depends only on even powers of vcm. Integrating the expanded J(s, t) over the solid angle

Ω, the result can therefore be written as:∫
dΩ

J(s, t)

4π
= J(s, t)|s=s0;t=t0

+ J2v
2
cm + J4v

4
cm +O

(
v6

cm

)
. (A.0.10)

The coefficients Ji only depend on the involved masses and derivatives of J(s, t)|s=s0;t=t0
.

The outcome for the cross section can then be expressed as:

σeffvcm = aeff + beffv
2
cm + ceffv

4
cm +O(v6

cm) . (A.0.11)

The involved coefficients are given in terms of M1, mα, mβ and derivatives of |M|2.





B. Loop Integrals

We present the calculation for the loop function F2(x) involved in the lepton flavor

violating decay Lα −→ Lβγ, see (3.1.34). The loop integral is:∫
ddq

(2π)d
u (p′)PR

p/+ q/+Mi

(p+ q)2 −M2
i

(2q + k)µ

((q + k)2 −M2
η )(q2 −m2

0)
PLu (p) . (B.0.1)

Using Feynman parametrization, the denominator D of (B.0.1) can be expressed as

(D)−
1
3 = l2 − Λi with l = q + Q, Λi ≈ xM2

i + (1 − x)m2
0 and Q = xp + yk. We have

neglected the masses of the muon and electron compared to the masses of Ni and η.We

keep trace of the additional factor (3 − 1)! = 2. In dimensional regularization, the

denominator of (B.0.1) results to:∫ 1

0

dx

∫ 1−x

0

dy2

∫
ddl

(2π)d
1

(l2 − Λi)3
=

∫ 1

0

dx

∫ 1−x

0

dy 2
(−1)3i

(4π)2

Γ(1)

Γ(3)

(
1

Λi

)
=

∫ 1

0

dx

∫ 1−x

0

dy
−i

(4π)2

1

xM2
i + (1− x)M2

η

. (B.0.2)

In the numerator, terms that are odd in l vanish by the symmetric integration in l.

The Dirac equation yields u (p′) p/′ = meu (p′) ≈ 0 and p/u (p) = mµu (p). Since the

polarization tensor ε∗µ of the outgoing photon is involved in the amplitude, terms in the

numerator that are proportional to kµ vanish. Thus, the outcome for the numerator is

−mµx(1− x− y)u (p′) (pµ + p′µ)PRu(p).

Combining the numerator and the denominator expressions, respectively, yields the

loop function F2(x):∫ 1

0

dx

∫ 1−x

0

dy
x(1− x− y)

xM2
i + (1− x)m2

0

(B.0.3)

=
1− 6

M2
i

m2
0

+ 3
(
M2
i

m2
0

)2

+ 2
(
M2
i

m2
0

)3

− 6
(
M2
i

m2
0

)2

log
(
M2
i

m2
0

)
12
(

1− M2
i

m2
0

)4 (B.0.4)

=
1

2
F2

(
M2

i

m2
0

)
. (B.0.5)
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Figure B.1.: The loop function F2(x).

Next, we give the explicit functions involved in the effective interactions in equa-

tions (3.2.3), (3.2.4) and (3.2.5). The functions Ia(x, y) and Im(x) are given as follows:

Ia(x, y) =
1

3

∫ 1

0

3u2 − 6u+ 1

xu2 − (1 + x− y)u+ 1
, (B.0.6)

Im(x, y) = −
∫ 1

0

u(1− u)

xu2 − (1 + x− y)u+ 1
. (B.0.7)

The analytic formulas 1 of these integrations are written as:

(i) If (1 + x− y)2 − 4x > 0,

Ia (x, y) =
1

x

[
1 +

3A2
+ − 6A+ + 1

3(A+ − A−)
log

∣∣∣∣A+ − 1

A+

∣∣∣∣
−

3A2
− − 6A− + 1

3(A+ − A−)
log

∣∣∣∣A− − 1

A−

∣∣∣∣] , (B.0.8)

Im(x, y) =
1

x

[
1 +

A+(A+ − 1)

A+ − A−
log

∣∣∣∣A+ − 1

A+

∣∣∣∣
− A−(A− − 1)

A+ − A−
log

∣∣∣∣A− − 1

A−

∣∣∣∣] . (B.0.9)

(ii) If (1 + x− y)2 − 4x = 0,

1I am indebted to Takashi Toma for providing me the analytic formulas.
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Ia (x, y) =
1

x

[
1 + 2(A0 − 1) log

∣∣∣∣A0 − 1

A0

∣∣∣∣+
3A2

0 − 6A0 + 1

3A0(A0 − 1)

]
, (B.0.10)

Im(x, y) =
1

x

[
2 + (2A0 − 1) log

∣∣∣∣A0 − 1

A0

∣∣∣∣] . (B.0.11)

(iii) If (1 + x− y)2 − 4x < 0,

Ia(x, y) =
1

x

[
1 +

B+ +B− − 2

2
log

∣∣∣∣(B+ − 1)2 + (B− − 1)2

B2
+ +B2

−

∣∣∣∣
+

6(B+ − 1)(B− − 1)− 4

3(B+ −B−)
tan−1

(
B+ −B−

B2
+ +B2

− −B+ −B−

)]
, (B.0.12)

Im(x, y) =
1

x

[
1 +

B+ +B− − 1

2
log

∣∣∣∣(B+ − 1)2 + (B− − 1)2

B2
+ +B2

−

∣∣∣∣
+

(2B+ − 1)(2B− − 1)− 1

2(B+ −B−)
tan−1

(
B+ −B−

B2
+ +B2

− −B+ −B−

)]
. (B.0.13)

A±, A0 and B± are defined as

A± ≡
1 + x− y ±

√
(1 + x− y)2 − 4x

2x
, (B.0.14)

A0 ≡
1 + x− y

2x
, (B.0.15)

B± ≡
1 + x− y ±

√
4x− (1 + x− y)2

2x
. (B.0.16)

The function Ic(x, y) is the same as Im(x, y).

These functions are continuous and smooth for 0 ≤ x, y ≤ 1. For 0 ' y � x � 1,

these functions approach to

Ia(x, y)→ 1

2
+

2

3
log y, (B.0.17)

Im(x, y)→ −1

2
. (B.0.18)

Therefore the obtained parameters |b12| and |µ12| at lowest order agree with the result

of [113] where the parameter λ2 corresponds to Im(h∗α2hα1)/2 in our notation. The

difference of the relative sign comes from the definition of the effective operators.





C. Degrees of Freedom

A particle species i with mass mi, momentum pi, energy Ei =
√
m2
i + p2

i and temperature

Ti that is in kinetic equilibrium has the following energy ρi and entropy density si [187]:

ρi (Ti) =

∫ ∞
0

d3pEifi(Ti, Ei) , (C.0.1)

si (Ti) =

∫ ∞
0

d3p
3m2

i + 4p2
i

3EiTi
fi(Ti, Ei) . (C.0.2)

The phase-space distribution function fi(Ti, Ei) is:

fi(Ti, Ei) =
gi

(2π3)

1

eEi/Ti + ηi
, (C.0.3)

with gi the number of internal degrees of freedom and ηi = 1 for Fermi–Dirac, ηi = −1

for Bose–Einstein and η = 0 for Maxwell–Boltzmann statistics. We write ρi and si as:

ρi (Ti) = gieff (Ti)
π2

30
T 4
i , (C.0.4)

si (Ti) = hieff (Ti)
2π2

45
T 3
i , (C.0.5)

with the effective T -dependent degrees of freedom gieff and hieff for a species i for energy

and entropy density, respectively. gieff and hieff follow from equations (C.0.1) and (C.0.2)

to:

gieff (Ti) =
15gi
π4

x4
i

∫ ∞
1

dy y2
√
y2 − 1

1

eyxi + ηi
, (C.0.6)

hieff (Ti) =
45gi
12π4

x4
i

∫ ∞
1

dy
(
4y2 − 1

)√
y2 − 1

1

eyxi + ηi
, (C.0.7)

with xi ≡ mi/Ti and y ≡ Ei/mi.

In our numerics in chapter 4, we account for the contribution of the real scalar singlet

σ and the sterile neutrino N using equations (C.0.6) and (C.0.7). The total energy and

entropy effective degrees of freedom, which enter into the calculation of the total entropy
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density and DM relic density, are given as:

geff(T ) =
∑
i

gieff(Ti)
T 4
i

T 4
, (C.0.8)

heff(T ) =
∑
i

hieff(Ti)
T 3
i

T 3
. (C.0.9)

The total energy and entropy densities equal:

ρ = geff (T )
π2

30
T 4 , (C.0.10)

s = heff (T )
2π2

45
T 3 . (C.0.11)

In the early Universe, all existing particle species i are in thermal equilibrium, such that

their temperatures Ti are equal to the photon temperature T . In that limit, T � mi for

each species i. Equations (C.0.4) and (C.0.5) then yield:

ρ =
∑
i

ρi (Ti) =

[∑
B

gB

(
TB
T

)4

+
7

8

∑
F

gF

(
TF
T

)4
]
π2

30
T 4 , (C.0.12)

s =
∑
i

si (Ti) =

[∑
B

gB

(
TB
T

)3

+
7

8

∑
F

gF

(
TF
T

)3
]

2π2

45
T 3 (C.0.13)

where gB is the number of internal degrees of freedom of a boson and the sum over bosons

takes all bosonic particle species i into account; analog for gF .



D. Modified Bessel Functions

The modified Bessel functions Kn(x) of the second kind obey the identity:

Kn (x) =

√
π(

n− 1
2

)
!

(
1

2
x

)n ∞∫
1

dy
(y2 − 1)n−

1
2

exy
. (D.0.1)

Assuming a Maxwell– Boltzmann distribution with zero chemical potential, the equilib-

rium number density neq of a particle with g internal degrees of freedom can, therefore,

be written as:

neq =
g

(2π)3

∞∫
0

d3p e−
E
T (D.0.2)

=
g

2π2

∞∫
m

dE E
√
E2 −m2

1

e
E
T

(D.0.3)

= m3 g

2π2

∞∫
1

dy
y
√
y2 − 1

exy
(D.0.4)

= m3 g

2π2

1

x
K2(x) . (D.0.5)

In terms of the abundance

Y =
n

s
(D.0.6)

with the entropy density

s = 2π2/45 · heffT
3 , (D.0.7)

it follows:

Yeq =
45g

4π4

x2

heff

K2(x) . (D.0.8)
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E. Annihilation and Decay

Reactions

In the Robertson–Walker metric, the Boltzmann equation for the number density n of a

particle species can be written as:

d

dt
n+ 3Hn = C[n] , (E.0.1)

where C is the collision operator expressing the number of particles per phase space

volume that are lost or gained per unit time due to interactions with other particles.

For the standard annihilation process σ σ 
 SM SM of a real scalar singlets σ into

SM particles, the Boltzmann equation for the number density nσ reads as:

d

dt
nσ + 3Hnσ = −〈σannvr〉(n2

σ − n2
σ,eq) ' 〈σannvr〉n2

σ,eq , (E.0.2)

where the last approximation is valid for the freeze-in case for which the initial number

density and thus the initial abundance can be neglected [55]. Furthermore, 〈σannvr〉 is the

relativistic thermally averaged annihilation cross section and vr is the relative velocity.

Following the discussion of [187], it is possible to write:

〈σannvr〉 =
1

8m4TK2
2(m/T )

∞∫
4m2

dsσ · (s− 4m2)
√
s K1

(√
s

T

)
, (E.0.3)

where we have made the assumption that the initial particles have masses equal to m.

We have generated the correct Feynman rules using LanHEP [63] and we have used

micrOMEGAs [64] for the calculation of Eq. (E.0.3).

In the radiation dominated era, the Hubble expansion rate can be expressed as:

H =

√
4π3GNgeff

45
T 2 . (E.0.4)

Furthermore, in the radiation dominated era the expansion age t of the Universe with

Ωtot = 1 equals:

t =
1

2H
. (E.0.5)

139



140 E. Annihilation and Decay Reactions

In terms of the abundance Y = n/s with the entropy density s = 2π2/45 · heffT
3, it follows:

d

dT
Y Aσ = −

√
π

45GN

√
g∗〈σannvr〉Y 2

σ,eq , (E.0.6)

with the definition

√
g∗ ≡

heff√
geff

(
1 +

1

3

T

heff

dheff

T

)
. (E.0.7)

The superscript A serves as indication of the annihilation process. The decay processes

σ −→ N1N1 of a real scalar singlet σ into two sterile neutrinos N1 is described by the

following phase space integration:∫
d3pσ

(2π)32Eσ

d3pN1

(2π)32EN1

d3pN1

(2π)32EN1

(2π)4δ(4)(pN1 + pN1 − pσ)|M|2σ→N1N1
fσ(1− fN1)(1− fN1).

(E.0.8)

Neglecting, as usual, the Pauli blocking and enhancing factors, we can define:∫
d3pN1

(2π)32EN1

d3pN1

(2π)32EN1

(2π)4δ(4)(pN1 + pN1 − pσ)|M|2σ→N1N1
≡ 2EσΓ∗(σ → NN) ,

(E.0.9)

with Γ∗(σ → N1N1) the decay width for the particle at energy Eσ. The above phase

space integration yields:∫
dnσ Γ∗(σ → N1N1) = nσ 〈Γ(σ → N1N1)〉 , (E.0.10)

where

〈Γ(σ → N1N1)〉 =

∫
d3pσΓ∗(σ → N1N1)e−

Eσ
T∫

d3pσe
−Eσ

T

=
K1(x)

K2(x)
Γ(σ → N1N1) , (E.0.11)

with Γ(σ → N1N1) the decay width in the rest frame of the decaying particle σ, i.e.,

Γ(σ → N1N1) = Eσ/mσ · Γ∗(σ → N1N1). Thus, for the decay process σ → N1N1 of a real

scalar singlet σ into two sterile neutrinos N1, the Boltzmann equation for the number

density nN1 reads as:

d

dt
nN1 + 3HnN1 = 2

K1(x)

K2(x)
Γ(σ → N1N1)nσ . (E.0.12)

The factor 2 accounts for the fact that two sterile neutrinos N1 are produced per decay.

In terms of the abundance Y = n/s with the entropy density s = 2π2/45 · heffT
3, it follows:

d

dT
Y DN1

= −
√

45

π3GN

1

T 3

1
√
geff

K1(x)

K2(x)
Γ(σ → N1N1)Yσ , (E.0.13)

where the superscript D serves as indication of the decay process.
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