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Zusammenfassung

Die direkte und optische Kontrolle atomarer Röntgenübergänge wird durch die Analyse der
Resonanzfluoreszenz- und der Absorptionsspektren theoretisch untersucht. Diese Arbeit ist mo-
tiviert durch die rapide, die Anwendung von Quantenkontrollschemata mit Röntgenstrahlen er-
möglichende Entwicklung von Hochfrequenzlichtquellen. In einem Zweizustandssystem werden
die Rabi-Oszillationen von Innerschalenelektronen untersucht, die von starken Röntgenpulsen
erzeugt werden und die gegen den konkurrierenden Auger-Zerfall des Systems aufkommen. An-
schließend wird die optische Manipulation hochenergetischer Zustände durch einen optischen
Frequenzkamm betrachtet, der deren spontanen Zerfall beeinflusst, indem er zwei benachbarte
angeregte Niveaus verbindet. Zuerst wird ein Modell entwickelt, das beschreibt, wie durch die
Anwendung von Schmalbandröntgenstrahlen die dynamischen Variablen des Atoms periodisch
gestaltet werden können, wodurch im Resonanzfluoreszenzspektrum ein Röntgenfrequenzkamm
entsteht. Ein realistischeres Modell zur direkten experimentellen Umsetzung wird daraufhin vor-
gestellt, um ins Absorptionsspektrum eines ultrakurzen Röntgenpulses einen Kamm einzuprägen.
Eine experimentelle Realisierung der hier vorhergesagten Kammstrukturen wird die Überführung
der Präzision eines optischen Frequenzkammes in den Röntgenbereich ermöglichen.

Abstract

The direct and optical control of x-ray transitions is studied theoretically by investigating the
spectra of resonance fluorescence and absorption. The work is motivated by the rapid advances
in x-ray science, enabling the application of quantum-control schemes at short wavelengths. In
a two-level system we study Rabi oscillations of atomic inner-shell electrons, induced by intense
x-ray pulses and competing with Auger decay, and their signature in the spectrum of resonance
fluorescence. Subsequently, optical manipulation of x-ray transitions is examined, by employing
an optical frequency comb coupling nearby excited levels to control their spontaneous decay.
First, narrow-bandwidth x rays are adopted, giving rise to the periodic shaping of the atomic
dynamic variables and the imprinting of a comb onto the x-ray resonance fluorescence spectrum.
A more realistic model for an immediate experimental implementation is then provided, by
developing a scheme to imprint a comb onto the absorption spectrum of an ultrashort x-ray
pulse. An experimental realization of the predicted comb structures is anticipated to transfer
the accuracy of optical frequency combs into the x-ray regime.
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Sie begriffen, daß die Vernunft nur das einsieht, was sie
selbst nach ihrem Entwurfe hervorbringt, daß sie mit Prin-
cipien ihrer Urtheile nach beständigen Gesetzen vorangehen
und die Natur nöthigen müsse auf ihre Fragen zu antworten,
nicht aber sich von ihr allein gleichsam am Leitbande gän-
geln lassen müsse; denn sonst hängen zufällige, nach keinem
vorher entworfenen Plane gemachte Beobachtungen gar nicht
in einem nothwendigen Gesetze zusammen, welches doch die
Vernunft sucht und bedarf.

Immanuel Kant,
Kritik der reinen Vernunft, Vorrede zur zweiten Auflage





1 Introduction

Optical lasers and frequency combs

A laser, acronym for light amplification by stimulated emission of radiation, is an intense source of
coherent light [1]. By setting a condition of population inversion in a gain medium, the radiation
is amplified by the principle of stimulated emission, first recognized by Einstein in 1916 [2]. The
maser, i.e., microwave amplification by stimulated emission of radiation, whose idea was conceived
by Townes, Gordon, Zeiger, Basov, and Prokhorov, first showed the realization of coherent
light in the microwave region and only in 1960, after the work of Townes and Schawlow [3],
the first optical laser was realized by Maiman [4]. Owing to the narrow bandwidth and high
intensity it provides, the laser played a fundamental role in the development of quantum optics,
i.e., the quantum theory of light and of its interaction with matter [5–7], the theory of light
coherence [8], and nonlinear optics [9]. Not only are lasers ubiquitous in modern technology, being
routinely adopted in everyday-life electronic devices, but they are utilized in several, sometimes
completely independent sectors of modern physics. For instance, techniques for laser trapping and
cooling of atoms and molecules, whose development could count on the fundamental contributions
from Chu, Cohen-Tannoudji, and Philips [10–12], allowed Cornell, Ketterle, and Wieman to
successfully demonstrate Bose-Einstein condensation in 1995 [13, 14], more than 70 years after
its prediction in 1924 [15–17]. Laser trapped ultracold atoms and ions currently represent an
essential tool for quantum information and quantum simulation [18, 19]. Significant advances
in our understanding of quantum dynamics in physics and chemistry were stimulated by the
availability of ultrashort attosecond-laser pulses, which allow one to observe the electron motion
in atoms and molecules [20]. However, one of the fields that most fruitfully took advantage of the
innovative possibilities offered by the laser is precision spectroscopy. The high monochromaticity
and tunability provided by lasers, along with techniques developed during the 1970s for nonlinear
Doppler-free spectroscopy [21], had a significant impact on the precision with which optical
frequencies could be measured.
In precision spectroscopy, the direct measurement of a frequency should be preferred to that

of a wavelength. Since 1967, in fact, the definition of time (and, therefore, of frequency) is based
on “the radiation corresponding to the transition between the two hyperfine levels of the ground
state of the cesium 133 atom” [22], whose frequency is exactly equal to 9,192,631,770 Hz, in the
radio-frequency range. For a long time, this rendered very challenging to extend the possibilities
of accurate spectroscopy to frequencies higher than ∼ 100 GHz. A significant progress was
achieved only through the introduction and development of optical frequency combs by Hänsch
and Hall [23–26].
An optical frequency comb consists in a series of equidistant spectral lines centered at the

optical frequency ωC, as displayed in Fig. 1.1 and thoroughly introduced in Appendix A. The
frequency ωk of each peak in the comb,

ωk = ωC + kωr = ωo + k′ωr, (1.1)

with k, k′ ∈ Z, is entirely determined by the offset frequency ωo and the repetition frequency ωr.
The possibility to precisely measure, e.g., with a cesium atomic clock, these two radio frequencies
ωr and ωo and directly link them to an optical frequency ωk revolutionized the field of precision
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1 Introduction

Figure 1.1: The spectrum of an optical frequency comb centered at the optical frequency ωC is represented by
the thick lines, with repetition frequency ωr and overall width ∆ω. By extending the equidistant lines to the
origin of the frequency axis, the offset frequency ωo can be determined. Similar pictures are widely adopted
in the literature to present the properties of a frequency comb, see, e.g., Refs. [23, 24].

spectroscopy. A comb-like frequency structure was already clearly apparent in mode-locked lasers
from the early 1970s [27]: However, it was not until the late 1990s [28,29] that stabilized mode-
locked femtosecond lasers succeeded in providing combs with the required control over ωo and
ωr.
Optical frequency combs were initially generated via intracavity phase modulation, i.e., by plac-

ing an electro-optic modulator inside a low-loss optical cavity to generate modulation sidebands
of the optical carrier frequency [30,31]. The resulting spectrum is a set of equally distant peaks,
with accurately determined spacing frequency, despite being centered at a carrier frequency which
is not determined with equal accuracy. Such a comb aimed at bridging wide frequency intervals,
i.e., between an optical reference and an unknown optical frequency. It was only subsequently
that the spectrum of stabilized mode-locked lasers provided a comb [28, 29, 32–37] to measure
an optical transition with unprecedented accuracies, up to 10−18 [38, 39]. A significant step for-
ward was in particular the generation of octave-spanning frequency combs, i.e., combs spanning
a factor two in frequency: As discussed in Appendix A, this considerably simplified the direct
measurement and stabilization of the offset frequency ωo.
In addition to the direct use in metrology and spectroscopy, optical frequency combs play a

crucial role in the realization of all-optical atomic clocks [25,38,40], by precisely counting optical
oscillations, e.g., in trapped-atom and -ion standards [41]. Additional examples of the plethora of
applications of optical frequency combs range from the calibration of astronomical spectrographs
[42, 43], which are essential for the discovery of earthlike extrasolar planets or for the direct
measurement of the cosmic-expansion rate [44], to the control of atomic coherence [45, 46] and
molecular dynamics [47]. Furthermore, by virtue of the stabilized offset phase which they exploit,
optical frequency combs were widely employed in the quantum control of phase matching in high-
order harmonic generation (HHG) [48,49] and in attosecond-pulse generation [20,35,50].

Resonance fluorescence and absorption spectra

Laser spectroscopy of atoms and ions takes advantage of the spectral features of the signal
emitted upon interaction with a coherent source of light and which unequivocally characterizes
the atomic species under study. The response of a system of atoms or ions which are excited by
an external field can be studied by measuring either the resonance fluorescence or the absorption
signal which is produced.
The spectrum of resonance fluorescence which is emitted by an ensemble of atoms and ions
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Figure 1.2: An atom ensemble (red) is driven by x rays (blue) tuned to a resonance. The emitted photons
(green) are measured perpendicularly to the propagation direction of the x rays.

driven by an intense, near-resonant electric field [51, 52] is one of the cornerstones of quantum
optics [53,54]. The spectrum is measured experimentally by exposing an atomic ensemble to in-
tense light and detecting the scattered photons as shown in Fig. 1.2. During the last decades such
studies have received wide attention and have stimulated the development of nonperturbative
methods in quantum electrodynamics for the investigation of the coherent interaction between
light and matter [55–60].
The resonance fluorescence spectrum of a two-level quantum system driven by a monochro-

matic electric field has been studied extensively at optical frequencies [55, 56, 61–63]. For a
sufficiently strong continuous-wave driving field, a nonlinear three-peak structure appears in
the spectrum [64–66], which is explained theoretically by the nonperturbative approach of Mol-
low [55,56]. The presence of a strong external field, which resonantly drives an atomic transition,
“dresses” the atomic bare energy levels [67], which split as a result of this additional interaction
term. This frequently called dynamic (or AC) Stark splitting gives rise to the previously de-
scribed three-peak structure emerging in the resonance fluorescence spectrum. The same effect
can be alternatively understood from a time-dependent perspective, in terms of Rabi flopping of
the bare atomic dynamical variables. The external field induces Rabi oscillations of the popula-
tions and coherences of the bare atomic levels at a frequency (Rabi frequency) proportional to
the strength of the driving field.
A continuous-wave field is one of the few cases for which an exact analytical solution of the

equations of motion of the two-level system exists. When the system interacts with a short pulse,
a special class of time-dependent functions, including the case of a hyperbolic-secant pulse, were
analytically explored for particular values of the physical parameters [68–70] and a rich multi-
peak structure in the spectrum of resonance fluorescence was predicted [71–77]. This property,
which still represents a signature of Rabi oscillations induced by the intense driving field, is also
predicted to depend upon the pulse area, but cannot be intuitively explained by means of dressed
states [78].
An analogous dependence upon the induced time evolution of an atomic system is exhibited

by the absorption spectrum. In usual studies of absorption spectra, a system driven by a strong
(pump) field interacts with a weak (probe) continuous-wave field of frequency ω0: although this
field is weak enough not to significantly modify the time evolution of the system, its absorption
can strongly depend on its central frequency ω0. By repeating the experiment for fields of
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1 Introduction

different central frequency ω0, one obtains a spectrum containing information complementary
to that coming from emission spectra of resonance fluorescence in the absence of the probe
field [57,58,79,80].
A different approach characterizes studies of transient absorption in which an ultrashort, broad-

band pulse is used as a probe field. The transmission and absorption of the different frequency
components of the wide-bandwidth probe pulse can be studied as a function of the time delay
between the pump and the probe in a time-dependent perspective [81, 82]. Similar pump-probe
schemes are of particular interest for many-level systems, in which the pump and the probe
pulses are near-resonant to two different atomic transitions. For such cases, a proper choice
of the duration of the two pulses and of the delay can induce coherent trapping and other
quantum-coherence phenomena, e.g., electromagnetically induced transparency (EIT) [83], stim-
ulated rapid adiabatic passage (STIRAP) [84], and lasing without inversion (LWI) [85], which can
be identified experimentally by the observation of the absorption spectrum of a wide-bandwidth
probe pulse.

Short-wavelength light sources

The fundamental role played by optical lasers in a manifold of different sectors, from basic
research to applied engineering, explains the efforts which, since the invention of the laser, were
put into the development of intense, coherent, short-wavelength light sources, in the extreme-
ultraviolet (XUV) and x-ray ranges.
Since the time of their discovery by Röntgen in 1895 [86], x rays appeared to be an invaluable

tool to investigate the structure of matter, with applications in physics, chemistry, biology,
medicine, and engineering. Only in the 1970s, however, it was realized that the synchrotron
radiation produced by charged particles circulating in the storage rings used for high-energy
physics [87] was a much more intense and versatile source of x-ray radiation than the x-ray tubes
which had been utilized until then [88]. An increase in versatility and brilliance (intensity of the
emitted light) was achieved by second-generation synchrotron storage rings, explicitly built to
produce x rays, and then third-generation synchrotrons, in which the x-ray emission is optimized
by inserting straight sections in the ring with, e.g., an undulator [88].
An undulator consists of a set of oppositely directed magnets, producing a magnetic field

which forces the electrons passing through them to perform small-amplitude oscillations. X rays
emitted at different oscillations add coherently, resulting in a very intense beam [88]. The quality
of the emitted x-ray field strongly depends on that of the electron beam passing through the
undulator. In fourth-generation x-ray light sources, i.e., free-electron lasers (FELs), this quality
is highly improved by preaccelerating the electron beam with a linear accelerator (linac) instead
of employing a storage ring. The linac at the Stanford Linear Accelerator Center (SLAC, today
called SLAC National Accelerator Laboratory), initially built for high-energy experiments, is
now entirely adopted to preaccelerate electrons for the Linac Coherent Light Source (LCLS), the
world’s first hard x-ray FEL. X-ray free-electron lasers (XFELs) [89–93] provide tunable x-ray
pulses of unprecedented brilliance, up to one billion times higher than the intensity available at
third-generation synchrotron facilities. The intense and ultrafast pulses now available at XFELs
offer new tools for imaging [94–96], along with the opportunity to study nonlinear physics at
short wavelengths [97–107].
Despite the name, a free-electron laser is not based on the light amplification of spontaneously

emitted radiation in a gain medium. Extending lasing into the x-ray region, in fact, has faced
many difficulties [108], mostly due to the lack of high-reflectivity mirrors for x-ray radiation and
the very short duration of population inversion due to the fast decay time of x-ray levels. Existing
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XFEL facilities are based on the principle of Self-Amplified Spontaneous Emission (SASE) [109–
111]. The initially emitted, chaotic radiation interacts with the electron beam, such that this
self organizes into bunches of electrons propagating together through the undulator and emitting
x rays in phase. This gives rise to very intense femtosecond pulses at hard x-ray frequency which,
as a result of the initial chaotic emission, possess only partial temporal coherence and a spiky
temporal profile. An analogous situation occurred at the beginning of optical laser science, when
the interaction with the chaotic pulses available at that time was investigated [112,113].
Self-seeding or optical laser-seeding methods are being developed, which are significantly im-

proving the time coherence of the pulses generated at XFELs. In such cases, the emitted light is
produced by the amplification of a regular (Gaussian) seeding pulse which exhibits high temporal
coherence [114–119]. This results in a considerable improvement in the time coherence of the
emitted pulses.
In spite of the enormous advances in XFEL sources, the coherence which they provide is still

not sufficient for applications in precision spectroscopy. Owing to the lack of x-ray lasers, the
generation of XUV combs via intracavity HHG [120, 121] is presently recognized as the most
promising tool to extend precision spectroscopy to the short-wavelength domain [122]. Going up
to even higher frequencies, x-ray frequency combs would enable precise measurements of high-
energy transitions paralleling the accuracy achieved for optical frequencies, with an improvement
of several orders of magnitude. This would allow, to name but a few examples, even more
stringent experimental tests of quantum electrodynamics and astrophysical models [123] and
search for the variability of the fine-structure constant, to which transitions in highly charged
ions are predicted to be more sensitive [124]. One may also envision ultraprecise x-ray atomic
clocks [125].
While in conventional HHG an optical pulse in a gas produces a spectrum of odd harmonics of

the optical frequency, in intracavity HHG, a train of coherent optical pulses generates a spectrum
which in each harmonic line is structured into a fine comb. Based on this scheme, Ref. [122]
reported the observation of frequency combs at ∼ 40 nm (∼ 30 eV). The required optical peak
intensity of ∼ 1014 W/cm2 was obtained with a femtosecond enhancement cavity. Yet relativistic
effects limit the range in which HHG operates efficiently [126], i.e., where x-ray frequency combs
are presently advisable with HHG-based methods. Investigations of alternative schemes are,
therefore, timely.

Motivation of the Thesis and key results

The just described advances in nonlinear physics and x-ray science inspired the work presented
in this Thesis. In particular, the rapid development of x-ray light sources, which on the one
hand opens up novel possibilities, but on the other hand still requires further theoretical and
experimental research, stimulated and motivated the investigations which were pursued in this
work.
The progress in x-ray science enables the extension of tools and methods from quantum optics

to the x-ray regime [127]. Because of the lack of coherent and sufficiently intense light sources at
short wavelengths, previous studies of strong-field resonance fluorescence have been relevant for
a long time only at optical frequencies, for which a wide range of models and schemes have been
investigated [128–134]. Auger decay of inner-shell electronic levels takes place on a femtosecond
time scale. In order to actively control these K-shell electrons with an external field, e.g., by
repeatedly induce stimulated emission and absorption (Rabi flopping) within their Auger decay
time, a very intense and coherent x-ray light source is necessary, which for a long time has not
been available. The intense and ultrafast pulses now produced at XFELs, however, offer the
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1 Introduction

opportunity to induce Rabi flopping on a time scale that can be compared to, and therefore
compete with, the ultrafast inner-shell Auger decay. Active control of inner-shell electrons would
have a considerable impact on x-ray science, providing the necessary instruments, e.g., for the
suppression of x-ray radiation damage via inhibition of Auger decay [135] and the modification
of nuclear lifetimes [136, 137]. Recent theoretical and experimental investigations, focusing on
resonant-Auger-decay electron spectra [138, 139], were not conclusive. An alternative and more
easily accessible point of view could be provided by studies of resonance fluorescence, i.e., by
investigating the appearance of Rabi flopping in the x-ray spectrum of photons emitted upon
interaction with strong pulses from an XFEL. This motivates the analysis in Chapter 3. For
x-ray SASE pulses we show that, although Rabi flopping does not manifest itself clearly because
of the large bandwidth of the employed driving x-ray source, tails in the spectrum of resonance
fluorescence appear, which represent a good signature of atomic Rabi oscillations induced by the
intense x rays driving the system. In the case of laser-like Gaussian pulses, a clear signature of
Rabi flopping is predicted, thus rendering the prospects with self-seeded XFELs very promising.
An even more powerful setup is obtained when the just described x-ray-only scheme is aug-

mented by an optical pulse coupling to a nearby excited level. Initial investigations of reso-
nance fluorescence and absorption in three-level systems employed two driving continuous-wave
fields [57, 58]. There, it was shown how an optical laser, coupled to a resonant transition, can
influence the properties of the other off-resonant transitions. This provides an effective tool
to optically manipulate the features of a higher-energy transition, with direct impact upon the
related spectra of resonance fluorescence and absorption.
Similar optical-control schemes played a major role in recent studies of EIT at x-ray frequen-

cies [140, 141]: There, a long x-ray pulse propagates through a dense gas of Ne+ ions which is
simultaneously driven by a shorter, intense optical pulse. In the absence of the optical field, the
x-ray pulse is strongly absorbed by the dense gas. However, the presence of the optical pulse,
owing to the imprinted splitting of the resonant levels, modifies the atomic x-ray absorption spec-
trum and renders the gas transparent to the x-ray pulse. This results in a pulse-shaping method
to optically manipulate the intensity profile of an x-ray field. These results triggered additional
studies of laser-induced interference effects in transient absorption and impulsive manipulation
of x-ray spectral line shapes [142–147]. In these works, however, only interference effects which
ensue from the interaction of an ensemble of ions with a single optical pulse were analyzed.
In Chapters 4, 5, and 6, we aim to extend these single-optical-pulse studies to the case of a

driving, periodic train of coherent optical pulses, i.e., an optical frequency comb. This represents
a novel example of an x-ray amplitude- and phase-shaping scheme which we study by focusing
on those interference effects which emerge in the resonance-fluorescence and absorption spectra.
Furthermore, in light of the challenges which currently explored methods for x-ray-comb gener-
ation are facing, we study the possibility to exploit this quantum-control scheme to imprint a
comb onto the x-ray component of the spectrum. We further investigate how this method may
alternatively address those problems which present HHG-based schemes are facing because of
the limits set to the efficiency of HHG at high harmonic orders by relativistic effects.
First, we develop a wave-mixing scheme to generate an x-ray frequency comb on the spectrum

of resonance fluorescence, by driving a multi-level system with narrow-bandwidth x rays and an
optical frequency comb. The width of the peaks in the comb is determined by the bandwidth
of the utilized x-ray light source. The scheme is applied to model isolated transitions in He-like
ions. Thereby, we predict a comb which is as wide as the driving optical frequency comb and,
for Be2+, is centered on the x-ray atomic transition energy at ∼ 120 eV. This is four times
higher than the central frequency of XUV frequency combs demonstrated with HHG [122]. The
necessary optical-frequency-comb peak intensity is predicted to be ∼ 1010 W/cm2, by several
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orders of magnitude lower than the peak intensities presently required for HHG-based XUV-
comb-generation schemes.
Since present x-ray FEL sources do not provide small-bandwidth x rays, we then provide a more

robust scheme to imprint a comb onto the absorption spectrum of an ultrashort x-ray pulse, such
as those presently generated at XFEL facilities. This second model may be employed, therefore,
with currently available x-ray and optical-frequency-comb technology to generate a comb at x-ray
photon energies. The scheme allows one to control the width and the number of peaks in the
generated x-ray frequency comb, by properly taking advantage of long-lived excited states in a
multi-level system. Also in this case, we manage to push the central frequency of the generated
comb into the 100-eV range while maintaining the intensity of the driving optical frequency comb
at ∼ 1010 W/cm2.

Structure of the Thesis

The Thesis is organized as follows:
In Chapter 2 we introduce the theoretical background and the notation which is employed

throughout the Thesis. We focus on the interaction between light and matter in a time-frequency
perspective, stressing those concepts, such as Rabi flopping, which play a major role in the
following Chapters.
In Chapter 3 we study, in terms of a two-level model, the coherent interaction of x rays with

core electrons by excitingK-shell transitions. In a recent experiment, intense and ultrashort x-ray
pulses from the LCLS have been utilized to excite the 1s 2p−1 → 1s−1 2p transition at 848 eV
in Ne+ [139]. The electron spectrum of resonant Auger decay was measured to investigate Rabi
flopping. However, with only partial coherence of the SASE pulses available at LCLS and the lack
of means for single-shot diagnostics, the clear observation of Rabi oscillations and its distinction
from noise effects was challenging [139]. In this Chapter, we aim at predicting how the induced
Rabi flopping could be detected in the spectrum of resonance fluorescence. This paves the way
for further theoretical and experimental studies of active control of inner-shell transitions and
their application.
By going from the x-ray-only setup of Chapter 3 to a many-color scheme, in Chapter 4 we study

the optical modification of the x-ray resonance fluorescence spectrum in a four-level system driven
by small-wavelength x rays and an optical frequency comb. The resulting spectrum is a frequency
comb centered at the x-ray atomic transition energy, with as many peaks as the driving optical
frequency comb and with intensities comparable to those obtained via HHG-based methods.
The comb may be used to bridge an energy difference between an x-ray reference level and an
unknown x-ray frequency, similarly to the way optical-frequency comb-generation schemes based
on intracavity phase modulation were exploited [30, 31]. We show that our proposed scheme
requires lower optical peak intensities than present x-ray comb-generation methods and could be
applied, e.g., with highly charged ions as multi-level quantum system, at large x-ray transition
energies for which x-ray frequency-comb generation via HHG-based methods would encounter
significant obstacles [126].
In contrast to the previous Chapters focusing on resonance fluorescence, Chapter 5 discusses

the optically modified absorption spectrum of an ultrashort x-ray pulse which interacts with
a low-density gas of particles. In particular, we derive the equations for the calculation of
the absorption spectrum of the transmitted x-ray field and investigate the coherent population
transfer taking place when an optical pulse couples an x-ray-driven excited level to a nearby
metastable state.
These concepts are further implemented in Chapter 6 to investigate how differently the system
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1 Introduction

studied in Chapter 5 is affected if, instead of a single pulse, an optical frequency comb is employed.
Also in this Chapter, similarly to Chapter 4, we aim at developing an x-ray comb-generation
scheme which can be utilized at high photon energies, for which HHG-based methods are not
advisable. The main difference lies in the assumptions about the x-ray driving field: While in
Chapter 5 a narrow-bandwidth x-ray field is assumed to drive an atomic transition in a many-
level system, the method developed in Chapter 6 takes advantage of a broadband, ultrashort
pulse such as those presently available at FELs. By driving the system with an optical frequency
comb, we periodically modify the coherent response of the atomic system, thus imprinting a
comb onto the absorption spectrum of the transmitted x-ray field.
Finally, Chapter 7 summarizes the main results of this Thesis and presents possible directions

to which this work may lead.

Units

Atomic units (a.u.) are employed throughout the Thesis, unless otherwise stated, for which
the electron mass, the reduced Planck constant, the charge of the electron, and the vacuum
permittivity are, respectively, me = ~ = −e = 4πε0 = 1 a.u. The Bohr radius is a0 = 4πε0~2

mee2
=

1 a.u., and, from the definition of the fine-structure constant α = e2

4πε0~c ≈
1

137 , the speed of light
in vacuum is c = 1

α a.u. ≈ 137 a.u. The Hartree, fundamental unit of energy in atomic units,
equals 1Eh = ~2

a20me
≈ 27.2 eV.
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2 Time and spectral properties of the interaction of
light with matter

In the present Chapter we introduce the general mathematical model for describing the inter-
action of a low-density ensemble of particles interacting with an external electric field. As in
the following we are always interested in near-resonance conditions between an electromagnetic
field and a corresponding atomic transition, we are allowed to model the particles as a set of
multi-level systems with a limited number of states. The general framework presented here
will be specialized in each Section, where a fixed number of fields and a corresponding number
of levels will be studied. The Chapter contains a personal presentation of well known topics
and results, a discussion of which is material of standard atomic-physics and quantum-optics
textbooks [7, 53,54,148–150].

2.1 Theory of the interaction of light with matter

In this Section we introduce the classical theory of the interaction between a single atom, with
a nucleus with positive charge Z at position r = 0, surrounded by Q electrons of positions rq
and velocity ṙq, q ∈ {1, . . . , Q}, and an external electromagnetic field, with classical electric and
magnetic fields, E(r, t) and B(r, t), respectively. When both the atom and the electromagnetic
field are treated classically, such system is described by the microscopic Maxwell’s equations [87]

∇ ·E(r, t) = 4πρ(r, t), (2.1a)
∇ ·B(r, t) = 0, (2.1b)

∇×E(r, t) = −∂B(r, t)

∂t
, (2.1c)

∇×B(r, t) =
1

c2

(
∂E(r, t)

∂t
+ 4πJ(r, t)

)
, (2.1d)

with the charge and current densities

ρ(r, t) = −
Q∑
q=1

δ(r − rq(t)) + Zδ(r), (2.2a)

J(r, t) = −
Q∑
q=1

ṙq(t) δ(r − rq(t)), (2.2b)

together with the Lorentz’s force

∂2rq
∂t2

= −[E(rq, t) + ṙq ×B(rq, t)]. (2.3)

This set of differential equations can be recovered in the Lagrangian formalism [151]. We intro-
duce the generalized coordinates rq, A(r), and U(r), with associated generalized velocities ṙq,
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2 Time and spectral properties of the interaction of light with matter

Ȧ(r), and U̇(r). For this purpose, the electromagnetic field is better described by the vector
potential A(r, t) and the scalar potential U(r, t), defined such that [87]

B(r, t) = ∇×A(r, t), (2.4a)

E(r, t) = −∇U(r, t)− ∂A(r, t)

∂t
. (2.4b)

Lagrange’s equations [151]
d

dt

∂L

∂ṙq
− ∂L

∂rq
= 0, (2.5a)

d

dt

∂L

∂ζ̇
− ∂L

∂ζ
+ ∇ · ∂L

∂(∇ζ)
= 0, (2.5b)

where ζ ∈ {U(r), Ai(r)}, i ∈ {x, y, z}, with the Lagrangian

L =

Q∑
q=1

|ṙq|2

2
+

∫
L d3r (2.6)

and the Lagrangian density

L =
1

8π
[E2(r)− c2B2(r)]−

Q∑
q=1

[ṙq ·A(r)− U(r)] δ(r − rq), (2.7)

provide one with the correct Lorentz-Maxwell equations (2.1) and (2.3).
From (2.4), the two potentials A(r, t) and U(r, t) are not unequivocally determined, as

the physical fields E(r, t) and B(r, t) remain unchanged under the gauge transformation
A(r, t) → A(r, t) + ∇f(r, t), U(r, t) → U(r, t) − ∂f(r,t)

∂t , for a generic, differentiable function
f(r, t) [87]. The usually chosen gauge is the Coulomb gauge [87], in which

∇ ·A(r, t) = 0, (2.8a)

U(r, t) =
Z

r
−

Q∑
q′=1

1

|r − rq′(t)|
, (2.8b)

such that the vector potential A(r, t) is transverse1 and the scalar potential U(r, t), from di-
rect application of the Maxwell’s equations, coincides with the Coulomb potential due to the
interaction between particles. In such gauge, the Lagrangian becomes

L =

Q∑
q=1

|ṙq|2

2
+

Q∑
q=1

[
Z

rq
−

Q∑
q′=q+1

1

|rq(t)− rq′(t)|

]
+

∫
L d3r, (2.9)

with the Lagrangian density

L =
1

8π
[E2
⊥(r)− c2B2(r)]−

Q∑
q=1

ṙq ·A(r) δ(r − rq). (2.10)

The electric field is E(r, t) = E⊥(r, t)+E‖(r, t), with E⊥(r, t) = −∂A(r,t)
∂t and E‖ = −∇U(r, t).

1As follows from Helmholtz’s theorem, any vector V is the sum of a transverse (or solenoidal) component V⊥
and a longitudinal (or irrotational) component V‖, i.e., V = V⊥ + V‖, such that ∇ · V⊥ = 0 and ∇× V‖ = 0.
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2.1 Theory of the interaction of light with matter

After having introduced the conjugate momenta of the generalized coordinates rq and A(r)—
U(r, t) is entirely determined by the position of the particles and is not an independent variable—,

pq =
∂L

∂ṙq
= ṙq −A(rq), (2.11a)

Π(r) =
∂L

∂Ȧ
= −E⊥(r)

4π
, (2.11b)

one obtains the minimal-coupling Hamiltonian [7, 148]

H =

Q∑
q=1

pq · ṙq +

∫
Π(r) · Ȧ(r) d3r − L

=

Q∑
q=1

|pq +A(rq)|2

2
−

Q∑
q=1

[
Z

rq
−

Q∑
q′=q+1

1

|rq(t)− rq′(t)|

]
+

1

8π

∫
[E2
⊥(r) + c2B2(r)] d3r

(2.12)

in the Coulomb gauge.
An equivalent description of the electrodynamics can be obtained via a different choice of the

Lagrangian [151]. The Lagrange equations are in fact not modified by any transformation [7]

L(x, ẋ)→ L′(x, ẋ) = L(x, ẋ) +
dF (x, t)

dt
= L(x, ẋ) + ẋ

∂F (x, t)

∂x
+
∂F (x, t)

∂t
, (2.13)

this implying, though, a different definition of the conjugate momenta

p =
∂L

∂ẋ
→ p′ =

∂L

∂ẋ
+
∂F (x, t)

∂x
= p+

∂F (x, t)

∂x
. (2.14)

In order to alternatively describe the interaction between light and matter, we introduce,
instead of the charge and current densities ρ(r, t) and J(r, t), two new potentials, i.e., the
polarization density P (r, t) and magnetization density M(r, t), such that [87]

ρ(r, t) = −∇ · P (r, t), (2.15a)

J(r, t) = Ṗ (r, t) + ∇×M(r, t). (2.15b)

These equalities, together with Eq. (2.2), are satisfied if the polarization and magnetization
densities are defined as [7, 148]

P (r) = −
Q∑
q=1

rq

∫ 1

0
δ(r − urq) du, (2.16a)

M(r) = −
Q∑
q=1

rq × ṙq
∫ 1

0
u δ(r − urq) du. (2.16b)

These are used to obtain a new Lagrangian L′ as in Eq. (2.13) by performing a Power-Zienau-
Woolley transformation [152–154], i.e., by adding to L in the Coulomb gauge the total time
derivative of the function

F = −
∫

d3rP (r) ·A(r). (2.17)
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2 Time and spectral properties of the interaction of light with matter

The equations of motion do remain unchanged, but the new Lagrangian reads

L′ =

Q∑
q=1

|ṙq|2

2
+

Q∑
q=1

[
Z

rq
−

Q∑
q′=q+1

1

|rq(t)− rq′(t)|

]
+

∫
L ′ d3r, (2.18)

with the new Lagrangian density

L ′ =
1

8π
[E2
⊥(r)− c2B2(r)] +M(r) ·B(r) + P (r) ·E⊥(r). (2.19)

The new canonical momenta are

p′q =
∂L′

∂ṙq
= ṙq −B(r)× rq

∫ 1

0
uδ(r − urq) du

= pq +A(rq)−B(r)× rq
∫ 1

0
uδ(r − urq) du,

Π ′(r) =
∂L ′

∂Ȧ
= − ∂L ′

∂E⊥
= −E⊥(r)

4π
− P⊥(r) = −

E′⊥(r)

4π
,

(2.20)

where we have introduced the transformed electric field2 E′(r) = E(r) + 4πP⊥(r). In terms of
the new canonical momenta, the Hamiltonian associated with the Lagrangian L′ is

H ′ =
∑
q

p′q · ṙq +

∫
Π ′(r) · Ȧ(r) d3r − L′

=

Q∑
q=1

1

2

∣∣∣∣p′q +B(r)× rq
∫ 1

0
uδ(r − urq) du

∣∣∣∣2 − Q∑
q=1

[
Z

rq
−

Q∑
q′=q+1

1

|rq(t)− rq′(t)|

]

+
1

8π

∫ [∣∣E′⊥(r)− 4πP⊥(r)
∣∣2 + c2B2(r)

]
d3r

≈
Q∑
q=1

|p′q|2

2
−

Q∑
q=1

[
Z

rq
−

Q∑
q′=q+1

1

|rq(t)− rq′(t)|

]
+

1

8π

∫ [
E′2⊥(r) + c2B2(r)

]
d3r

− d ·E′⊥(0)−m ·B(0)−
∑
ij

qij
∂E′⊥,j(0)

∂ri
+ . . .

(2.21)

with the electric-dipole (E1) moment d, the magnetic-dipole (M1) moment m, and the electric-
quadrupole (E2) moment qij , defined as

d = −
Q∑
q=1

rq, (2.22a)

m = −
Q∑
q=1

1

2
rq × p′q, (2.22b)

qij = −
Q∑
q=1

1

2

(
rq,irq,j −

1

3
δijr

2
q

)
. (2.22c)

2The transformed electric field which we define here is related to the electric displacement fieldD(r) = E′(r)
4π

. The
differentiation is not essential for our purposes, as we are interested in the effect induced by the polarization of
the medium only in the far-field region, i.e., at large distance from the particles themselves, where D(r) = E(r)

4π
.

Indeed, from a formal point of view, this difference would not arise at all if we directly proceeded with a Göppert-
Mayer transformation which neglects from the very beginning contributions other than the electric-dipole E1
interaction [7, 148].
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2.1 Theory of the interaction of light with matter

Here, we have expanded the electric and magnetic fields on the central coordinate 0 in the long-
wavelength approximation. The electric-dipole approximation neglects the contribution
of the magnetic field B(r, t) and takes only the first term in the expansion in the electric field
E′⊥. It follows that

p′q = ṙq (2.23)

and

H ′ =

Q∑
q=1

|p′q|2

2
−

Q∑
q=1

[
Z

rq
−

Q∑
q′=q+1

1

|rq(t)− rq′(t)|

]

+
1

8π

∫ [
E′2⊥(r) + c2B2(r)

]
d3r − d ·E′⊥(0).

(2.24)

A quantum theory of light-matter interaction can be obtained by canonical quantization of the
Hamiltonian (2.24) [155,156]. When a quantum system is driven by a strong external field, i.e.,
the number of photons is large, this interaction can be treated semiclassically, i.e., by describing
the atom as a quantum system with a discrete set of energy levels interacting with a classical
external field. The electromagnetic response of the system, though, ought to be treated quantum
mechanically. As a result, before we introduce the quantum Hamiltonian which we are going to
deal with in the next Chapters, we split the total electric field Etot(r, t) into two components,
i.e., the strong, external driving field Eext(r, t) and the fluorescence field Eem(r, t) which is
spontaneously emitted by the system of charges,

Etot(r, t) = Eext(r, t) +Eem(r, t). (2.25)

A canonical formalism is necessary to describe the dynamical evolution of the spontaneously
emitted field only, whereas we assume that the driving field is not affected by the interaction
with the atom. Therefore, the vector potential A(r) and the conjugate momentum field Π(r)
only refer to the spontaneously emitted electromagnetic field.
The interaction Hamiltonian in the dipole approximation is

H = H0 +HAL +HF +HAF, (2.26)

with

H0 =

Q∑
q=1

|pq|2

2
−

Q∑
q=1

[
Z

rq
−

Q∑
q′=q+1

1

|rq(t)− rq′(t)|

]
, (2.27a)

HAL = −d · Eext(0), (2.27b)

HF =
1

8π

∫ [
E2

em,⊥ + c2B2
em(r)

]
d3r, (2.27c)

HAF = −d ·Eem,⊥(0), (2.27d)

where H0 describes the electronic structure Hamiltonian of the bare atom, whereas HAL includes
the interaction of the atom with the strong external laser field Eext(r, t). The energy of the
fluorescence field is given by HF, while HAF accounts for the interaction of such field with the
atomic system. The canonical variables are rq and A(r), associated with the canonical momenta
pq = ṙq and Π(r) = −Eem,⊥(r)

4π . The quantization of the Hamiltonian H follows the standard
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2 Time and spectral properties of the interaction of light with matter

prescription [155, 156] rq → r̂q, pq → p̂q, A(r) → Â(r), Π(r) → Π̂(r), with the commutation
relations

[r̂q, r̂q′ ] = [p̂q, p̂q′ ] = 0,

[r̂q, p̂q′ ] = iδq,q′ ,

[Â(r), Â(r′)] = [Π̂(r), Π̂(r′)] = 0,

[Â(r), Π̂(r′)] = iδ3(r − r′).

(2.28)

2.2 Atomic spectra

The prediction of atomic spectra in hydrogen and in more general many-electron systems is a
problem which dates back to the origin and foundation of quantum mechanics itself and which
has played a stimulating role in the development and refinement of quantum theory [149, 150].
A survey of the theory of atomic structure and spectra is not the purpose of this Section. We
rather aim at revising those concepts, such as spin orbitals, electron configurations, and angular-
momentum coupling, which are essential to understand the properties of a bare many-electron
state.
High-precision calculations of atomic spectra require a relativistic quantum-field-theoretical

description of the problem, in order to properly take into account relativistic and QED correc-
tions. For our purposes, however, we can limit ourselves to the usual stationary Schrödinger
equation,

Ĥ0|Ψi〉 = ωi|Ψi〉, (2.29)

where the electronic structure Hamiltonian for a set of Q electrons, with position and momenta
given by r̂q and p̂q, respectively, q ∈ {1, . . . , Q}, surrounding a nucleus of atomic number Z, is
given by

Ĥ0 =

Q∑
q=1

p̂2
q

2
−

Q∑
q=1

Z

r̂q
+

Q∑
q=1

q′>q+1

1

|r̂q − r̂q′ |
+ Ĥrel. (2.30)

Here, p̂
2
q

2 is the kinetic energy of the qth electron, Z
r̂q

is its potential energy due to the Coulomb
interaction with the nucleus, 1

|r̂q−r̂q′ |
represents the potential energy due to the Coulomb interac-

tion between the qth and the q′th electron, and Ĥrel accounts for those relativistic corrections to
the Schrödinger equation which can be derived from the Dirac Hamiltonian [149]. The eigenstates
of the Hamiltonian

Ĥ0 =
∑
i

ωi|Ψi〉〈Ψi|+
∫
ωλ|λ〉〈λ|dλ (2.31)

are either bound states |Ψi〉, 〈Ψi|Ψi′〉 = δii′ , associated with a discrete spectrum of eigenvalues ωi,
or states in the continuum |λ〉, 〈λ|λ′〉 = δ(λ− λ′), with eigenvalues ωλ. In the next part, we are
going to focus on bound states only, in terms of which any atomic operator can be expanded by
exploiting the completeness of the basis formed by eigenstates. For instance, the electric-dipole
moment operator d̂, obtained by quantization of d in Eq. (2.22a), is written as

d̂ =
∑
ii′

|Ψi〉〈Ψi|d̂|Ψi′〉〈Ψi′ | =
∑
ii′

dii′ σ̂ii′ , (2.32)

where we have introduced the associated matrix elements dii′ = 〈Ψi|d̂|Ψi′〉 = d∗i′i and the ladder
operators

σ̂ii′ = |Ψi〉〈Ψi′ |. (2.33)
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2.2 Atomic spectra

The electric-dipole moment operator d̂ is the sum of a positive- and a negative-frequency com-
ponent, d̂ = d̂+ + d̂−, with d̂− = [d̂+]† and

d̂+ =
∑
ii′
i<i′

dii′ σ̂ii′ . (2.34)

The presence of the electron-electron interaction prevents one from obtaining an exact analyti-
cal solution of Eq. (2.29). The steps taken to extract an approximate numerical solution [149,150]
can be nevertheless very informative. The eigenstates |Ψi〉 can be written as a linear combination

|Ψi〉 =
∑
b

yib |Φb〉, with yib = 〈Φb|Ψi〉, (2.35)

of known vectors |Φb〉, 〈Φb|Φb′〉 = δbb′ , forming a basis of the Hilbert space in which |Ψi〉 lies.
Two criteria should be kept in mind in choosing a proper basis of states |Φb〉:

1. Perturbation theory—Each basis state |Φb〉 should be as close as possible to one of the
states |Ψi〉. This can be achieved, e.g., by choosing a basis formed by the eigenstates of an
operator which differs from Ĥ0 only by a small correction;

2. Symmetries—If there exists a set of operators which commute with Ĥ0, it is convenient to
choose a basis of states |Φb〉 which are also eigenstates of these operators. In this way, the
solution of the stationary Schrödinger equation (2.29) corresponds to the diagonalization
of an already block-diagonal matrix.

When these criteria are followed, the numerically obtained eigenstates |Ψi〉 often display a major
contribution only from one of the basis vectors |Φb〉 used for the expansion in Eq. (2.35). In
other words, for a given index i one can often notice that there exists one index b for which
|yib|2 � |yib′ |2, for b′ 6= b: a one-to-one correspondence |Ψi〉 ↔ |Φb〉 can hence be established and
it is customary to label the eigenstate |Ψi〉 via the well defined and known quantum numbers,
e.g., electron configuration and angular momenta, of the corresponding basis state |Φb〉.
In the remaining of this Section, we wish to shortly revise the criteria whereby the basis

states |Φb〉 are chosen and the associated quantum numbers which throughout the Thesis will be
employed to label the eigenstates of the bare electronic structure Hamiltonian Ĥ0. Our discussion
follows Refs. [149,150].

The central-field model

In order to choose a proper set of basis states |Φb〉, let us write the total Hamiltonian as

Ĥ0 =

Q∑
q=1

(
p̂2
q

2
− Z

r̂q
+ V (r̂q)

)
+

Q∑
q=1

( Q∑
q′=q+1

1

|r̂q − r̂q′ |
− V (r̂q)

)
+ Ĥrel, (2.36)

where we have introduced the central potential V (r̂q), function of the single-electron coordi-
nate r̂q, including the average effect of the other Q − 1 electrons surrounding it. Under these
assumptions, the total Hamiltonian consists of three terms, i.e., (i) the sum of Q terms,

Hcf =

Q∑
q=1

Hcf,q =

Q∑
q=1

(
p̂2
q

2
− Z

r̂q
+ V (r̂q)

)
, (2.37)
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2 Time and spectral properties of the interaction of light with matter

describing the motion of Q independent electrons in the central field − Z
r̂q

+ V (r̂q), (ii) a first
spin-independent correction due to the electron-electron correlation, and (iii) a second correction
due to relativistic effects. The eigenvalues and eigenstates of the central-field Hamiltonian Ĥcf,q

are the starting point for the calculation of the exact solution of Eq. (2.29).

Spin orbitals

The properties of the spectrum of Hcf,q, i.e., the solution of the eigenvalue problem

Hcf,q ϕnqlqmlqmsq (rq, θq, φq, sq) = Enqlq ϕnqlqmlqmsq (rq, θq, φq, sq), (2.38)

have been known for a long time [149,150]. This Hamiltonian commutes with the qth particle’s
orbital and spin angular-momentum operators, respectively given by l̂q and ŝq. In the spherical
coordinates rq, θq, and φq, and for spin sq = 1/2, the eigenstates of Hcf,q,

ϕnqlqmlqmsq (rq, θq, φq, sq) =
1

rq
Pnqlq(rq)Ylqmlq (θq, φq)χmsq (sq), (2.39)

are completely identified by the list of quantum numbers nq, lq, mlq , sq, and msq . Such a set
of quantum numbers unequivocally defines a spin orbital, i.e., a one-electron eigenstate of the
central-field Hamiltonian Ĥcf,q. The quantum number lq is usually identified by a letter, i.e.,
s, p, d, f, g, . . . for lq = 0, 1, 2, 3, 4, . . . A spin orbital is also eigenstate of the single-particle
orbital- and spin-angular-momentum operators l̂2q , l̂zq , ŝ2

q , and ŝzq , respectively with eigenvalues
lq(lq + 1), mlq , sq(sq + 1) = 3/4, and msq . χmsq (sq) denotes the spin part of the wavefunction;
the radial term Pnqlq(rq) depends on the precise shape of the central potential V (r̂q), whereas
the angular part is exclusively associated with the angular momentum of the system, i.e., it is
given by the spherical harmonics

Ylml(θ, φ) = (−1)(ml+|ml|)/2
[

(2l + 1)(l − |ml|)!
4π(l + |ml|)!

]1/2

P
|ml|
l (cos(θ)) eimlφ, (2.40)

where we have introduced the Legendre polynomials Pmll (x), associated with the quantum num-
bers l = 0, 1, 2, . . . and ml = −l, −l + 1, . . . , l − 1, l. The energy eigenvalue Enqlq of the
Hamiltonian Hcf,q depends only on the quantum numbers nq and lq, where nq ≥ lq + 1 counts
the number of nodes, nq − lq − 1, of the radial function Pnqlq(rq). Spin orbitals which differ only
in mlq or msq belong, therefore, to the same degenerate level.

Antisymmetrization

The single-electron spin orbitals (2.39) can be used to calculate the eigenstates |Λ{nqlqmlqmsq}〉
and eigenvalues E{nqlq} of the many-electron Hamiltonian (2.37), i.e.,

Hcf |Λ{nqlqmlqmsq}〉 = E{nqlq}|Λ{nqlqmlqmsq}〉. (2.41)

Each eigenvalue,

E{nqlq} =

Q∑
q=1

Enqlq , (2.42)

depends on the set of Q pairs of quantum numbers {nq, lq} = {n1, l1, . . . , nQ, lQ}, whereas each
eigenvector |Λ{nqlqmlqmsq}〉 is fixed by the set of Q lists of quantum numbers {nq, lq, mlq , msq} =
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2.2 Atomic spectra

{n1, l1, ml1 , ms1 , . . . , nQ, lQ, mlQ , msQ}. Any linear combination of the Q! terms

Q∏
q=1

ϕnjq ljqmljqmsjq
(rq, θq, φq, sq),

associated with each one of the Q! possible permutations P = j1, j2, . . . , jQ of 1, 2, . . . , Q, is
an eigenstate of Ĥcf [Eq. (2.37)]. However, there is only one state |Λ{nqlqmlqmsq}〉 with phys-
ical meaning, i.e., that linear combination, called Slater determinant, which renders the total
wavefunction antisymmetric [156].

Electron configurations

The list of Q pairs of quantum numbers {nq, lq} = {n1, l1, . . . , nQ, lQ} is called an electron
configuration. The concept of a configuration is not only relevant for the Hamiltonian Ĥcf ,
but also for the total Hamiltonian Ĥ0. In real atoms, in fact, the presence of electron-electron
interaction and of relativistic corrections breaks the degeneracy of the electron configuration,
but is usually not so strong to significantly mix states belonging to different configurations—i.e.,
states whose energy would already be far apart in the absence of these small correction terms.

Coupling

In order to find a good set of basis states |Φb〉, one should choose vectors which are eigenstates
of the operators commuting with the Hamiltonian Ĥ0 (2.30). The antisymmetrized spin orbitals
|Λ{nqlqmlqmsq}〉 clearly do not satisfy this condition and do not represent a good basis for a direct
diagonalization of Ĥ0. An intermediate step is therefore necessary in order to obtain coupled
states |Φb〉, in terms of which the total Hamiltonian is, as previously discussed, block-diagonal.
A coupled basis can be constructed by linear combinations of the spin orbitals |Λ{nqlqmlqmsq}〉 in

Eq. (2.41). In the most general case, each one of these coupled states ought to be a linear combi-
nation of all the spin orbitals, for any nonequivalent list of quantum numbers {nq, lq, mlq , msq},
i.e.,

|Φb〉 =
∑
n1

∑
l1

∑
ml1

∑
ms1

· · ·
∑
nQ

∑
lQ

∑
mlQ

∑
msQ

fb,{nqlqmlqmsq}|Λ{nqlqmlqmsq}〉. (2.43)

However, in particular for low-energy levels, due to the very small degree of configuration mixing,
one can usually rely on the single-configuration approximation, whereby only those spin orbitals
are utilized which are associated with the same electron configuration {nq, lq}, for all the possible
values of the remaining parameters {mlq , msq},

|Φb〉 =
∑
ml1

∑
ms1

· · ·
∑
mlQ

∑
msQ

fb,{nqlqmlqmsq}|Λ{nqlqmlqmsq}〉, for fixed n1, l1, . . . , nQ, lQ. (2.44)

Should this procedure not be sufficient, then a multi-configuration approximation is required, i.e.,
states corresponding to different electron configurations are used to build the coupled eigenstates
|Φb〉. Even when configuration mixing renders a multi-configuration approach necessary, it is
often such that a given eigenstate of the total Hamiltonian |Ψi〉 still presents a major contribution
coming just from one particular configuration. Therefore, it is customary to denote the basis
states |Φb〉—and then the approximated eigenstates |Ψi〉—via that specific configuration which
mostly contributes to the sum (2.43).
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2 Time and spectral properties of the interaction of light with matter

Levels and states in LS coupling

When relativistic corrections are neglected in (2.30), the total Hamiltonian Ĥ0 commutes with
the total orbital angular-momentum operator L̂ =

∑Q
q=1 l̂q and the total spin angular-momentum

operator Ŝ =
∑Q

q=1 ŝq. For each electron configuration {nq, lq}, one ought to determine that
linear combination of spin orbitals which simultaneously diagonalizes L̂2, L̂z, Ŝ2, and Ŝz, with
quantum numbers L, ML, S, and MS . Each one of the coupled states |Φb〉, along with the
corresponding eigenstate |Ψi〉, can be identified through the dominant electronic configuration
{nq, lq} and the exact angular-momentum quantum numbers L, ML, S, and MS .
The previous approximation fails if spin-orbit effects need to be taken into account. In such

cases, in fact, the total orbital and spin angular momenta are not constants of motion, due
to their mutual interaction: L and S are usually still good quantum numbers, but ML and
MS are not. Although L̂ and Ŝ are not constants of motion of a Hamiltonian with spin-orbit
interactions, the total angular momentum Ĵ = L̂+ Ŝ commutes with the total Hamiltonian and
its eigenstates, associated with the two quantum numbers J andMJ , can be employed to describe
the eigenstates of Ĥ0. The eigenstates of the operators Ĵ2, L̂2, Ŝ2, and Ĵz can be related to
the eigenstates of L̂2, Ŝ2, and L̂z, and Ŝz via the Clebsch-Gordan coefficients [155]. As a result,
a coupled state |Φb〉 and the associated eigenstate |Ψi〉 are labeled via the dominant electronic
configuration {nq, lq}, the exact total-angular-momentum quantum numbers J andMJ , and the
two additional quantum numbers L and S in the LS coupling.

2.3 The quantum field

2.3.1 Canonical quantization of the electromagnetic field

In order to quantize the fluorescent electromagnetic field, we write A(r) and Π(r) in normal
modes in the volume V [7, 148,151], i.e.,

Π(r) =
∑
k

1√
V
πk eik·r, πk =

∫
1√
V
Π(r) e−ik·r d3r, (2.45a)

A(r) =
∑
k

1√
V
Ak eik·r, Ak =

∫
1√
V
A(r) e−ik·r d3r, (2.45b)

B(r) =
∑
k

1√
V
Bk eik·r, Bk =

∫
1√
V
B(r) e−ik·r d3r = ik ×Ak, (2.45c)

where πk =π∗−k, Ak = A∗−k, and Bk = B∗−k. Furthermore, since both A(r) and Π(r) are
transverse vectors, it follows that

∇ ·A(r) = 0 → k ·Ak = 0, (2.46a)
∇ ·Π(r) = 0 → k ·πk = 0. (2.46b)

For each k, therefore, one can introduce two orthogonal unit vectors, ê(1)
k and ê(2)

k , such that
ê

(λ)
k · ê

(λ′)
k = δλλ′ , ê

(λ)
k · k = 0, in terms of which we write

πk =

2∑
λ=1

πkλ ê
(λ)
k , πkλ =πk ·ê

(λ)
k , (2.47a)

Ak =

2∑
λ=1

Akλ ê
(λ)
k , Akλ = Ak · ê

(λ)
k , (2.47b)
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2.3 The quantum field

where ê(λ)
k = ê

(λ)
−k and, therefore, πkλ =π∗−kλ, Akλ = A∗−kλ. After having defined the frequency

associated with each mode, ωk = ck, one can introduce

akλ = − 1√
8πωk

(4π πkλ −iωkAkλ) =

∫
αkλ(r) d3r, (2.48a)

a∗−kλ = − 1√
8πωk

(
4π π∗−kλ +iωkA∗−kλ

)
=

∫
α∗−kλ(r) d3r, (2.48b)

with
αkλ = − 1√

8πωkV
[4πΠ(r)− iωkA(r)] · ê(λ)

k e−ik·r, (2.49)

such that

πkλ = −
√
ωk
8π

(akλ + a∗−kλ), Π(r) = −
∑
k

2∑
λ=1

√
ωk

8πV
(akλ eik·r + a∗kλ e−ik·r) ê

(λ)
k , (2.50a)

Akλ = −i

√
2π

ωk
(akλ − a∗−kλ), A(r) = −i

∑
k

2∑
λ=1

√
2π

ωkV
(akλ eik·r − a∗kλ e−ik·r) ê

(λ)
k .

(2.50b)

The calculation of the Poisson brackets [151]

{akλ, a∗k′λ′} =

∫
∂αkλ

∂A
·
∂α∗k′λ′

∂Π
−
∂α∗k′λ′

∂A
· ∂αkλ

∂Π
d3r = −i δkk′ δλλ′ , (2.51a)

{akλ, ak′λ′} = {a∗kλ, a∗k′λ′} = 0, (2.51b)

shows that akλ and a∗k′λ′ form couples of canonically coupled variables suitable for quantization.
In terms of these new variables we write the electric field

Eem,⊥(r) =
∑
k

2∑
λ=1

√
2πωk
V

(akλ eik·r + a∗kλ e−ik·r) ê
(λ)
k , (2.52)

and, after having shown that∫
E2

em,⊥(r) d3r = (4π)2

∫
Π2(r) d3r = (4π)2

∑
k

πk ·π∗k

=
∑
k

2∑
λ=1

2πωk (akλa
∗
kλ + akλa−kλ + a∗−kλa

∗
kλ + a∗−kλa−kλ)

(2.53)

and similarly that∫
B2

em(r) d3r =
∑
k

(ik ×Ak) · (−ik ×A∗k) =
∑
k

k2Ak ·A∗k

=
∑
k

2∑
λ=1

2πωk
c2

(akλa
∗
kλ − akλa−kλ − a∗−kλa∗kλ + a∗−kλa−kλ),

(2.54)

we conclude that the total energy in the fluorescent electromagnetic field is given by

HF =
1

8π

∫ [
E2

em,⊥ + c2B2
em(r)

]
d3r =

1

2

∑
k

2∑
λ=1

ωk(akλa
∗
kλ + a∗kλakλ). (2.55)
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2 Time and spectral properties of the interaction of light with matter

The quantization of the canonically coupled fields A(r) → Â(r), Π(r) → Π̂(r), is equivalent
to the quantization of the mode components akλ → âkλ, a∗kλ → â†kλ, such that

{akλ, a∗k′λ′} = −i δkk′ δλλ′ → [âkλ, â
†
k′λ′ ] = δkk′ δλλ′ , (2.56)

with creation and annihilation operators â†kλ and âkλ acting on the Fock space Fkλ relative to
the mode kλ, with Fkλ = H0kλ ⊕ H1kλ ⊕ H2kλ ⊕ . . . being the direct sum of zero-, one-, two-,
. . .-particle Hilbert spaces, Fkλ = span{|0kλ〉, |1kλ〉, |2kλ〉, . . .} and

â†kλ|nkλ〉 =
√
nkλ + 1|nkλ + 1〉,

âkλ|nkλ〉 =
√
nkλ|nkλ − 1〉,

n̂kλ|nkλ〉 = â†kλâkλ|nkλ〉 = nkλ|nkλ〉.
(2.57)

As a result, the eigenstates of the multi-mode Hamiltonian ĤF, obtained by quantization of
Eq. (2.27c) and (2.55), i.e.,

HF → ĤF =
1

2

∑
k

2∑
λ=1

ωk(âkλâ
†
kλ + â†kλâkλ) =

∑
k

2∑
λ=1

ωk

(
â†kλâkλ +

1

2

)
, (2.58)

are the symmetrized product states |nk1λ1 , nk2λ2 , nk3λ3 , . . .〉 = |{nkλ}〉, i.e.,

ĤF|{nkλ}〉 =
∑
k

2∑
λ=1

ωk

(
â†kλâkλ +

1

2

)
|{nkλ}〉 =

[∑
k

2∑
λ=1

(
nkλ +

1

2

)]
|{nkλ}〉. (2.59)

We finally observe that, in terms of creation and annihilation operators, the emitted electric
field, from quantization of the classical electric field (2.52), is

Eem,⊥(r) → Êem,⊥(r) =
∑
k

2∑
λ=1

√
2πωk
V

(âkλ eik·r + â†kλ e−ik·r) ê
(λ)
k . (2.60)

2.3.2 Electric-field operator in the far-field region

The quantization of the interaction Hamiltonian HAF (2.27d) results from Eqs. (2.32) and (2.60),
such that

ĤAF = −d̂ · Êem,⊥(r0) = −
∑
ii′

∑
k

2∑
λ=1

√
2πωk
V

(dii′ σ̂ii′ âkλ eik·r0 + d∗ii′ σ̂i′iâ
†
kλ e−ik·r0) · ê(λ)

k

≈ −
∑
ii′
i′<i

∑
k

2∑
λ=1

√
2πωk
V

(dii′ σ̂ii′ âkλ eik·r0 + d∗ii′ σ̂i′iâ
†
kλ e−ik·r0) · ê(λ)

k ,

(2.61)

which describes the electric-dipole interaction of an atom at position r0 with the electric field
in the rotating-wave approximation [53,54]. This Hamiltonian, together with ĤF (2.58), can be
used to derive the Heisenberg equations of motion [156] for the operator âkλ, i.e.,

˙̂akλ = i[ĤF + ĤAF, âkλ] = −iωkâkλ + i
∑
ii′
i′<i

√
2πωk
V

(d∗ii′ · ê
(λ)
k )σ̂i′i e−ik·r0 , (2.62)
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2.3 The quantum field

which can be formally integrated, leading to

âkλ(t) = âkλ(t0) e−iωk(t−t0) + i
∑
ii′
i′<i

√
2πωk
V

(d∗ii′ · ê
(λ)
k ) e−ik·r0

∫ t

t0

σ̂i′i(t
′) e−iωk(t−t′) dt′. (2.63)

The first term represents the free evolution of the field in the absence of the interaction [53].
Here, we focus on the second contribution, i.e., in the electric-field operator

Êem,⊥(r, t) = i
∑
k

2πωk
V

eik·(r−r0)
∑
ii′
i′<i

[ 2∑
λ=1

ê
(λ)
k (d∗ii′ · ê

(λ)
k )

] ∫ t

t0

σ̂i′i(t
′) e−iωk(t−t′) dt′ + H.c.

≈ i
∑
ii′
i′<i

d∗ii′ ·
∫ ∞

0
k2 ωk

4π2

[∫
eik·(r−r0)

(
1− kk

k2

)
dΩk

] ∫ t

t0

σ̂i′i(t
′) e−iωk(t−t′) dt′ dk + H.c.,

(2.64)

where H. c. denoted the Hermitian conjugate, we have substituted the sum over k with a three-
dimensional integral over k = |k| and over the solid angle Ωk, and have used the relation

2∑
λ=1

ê
(λ)
k ê

(λ)
k = 1− kk

k2
. (2.65)

For large values of |r−r0|, in the far-field region, one can approximate the integral over the solid
angle with ∫

eik·(r−r0)

(
1− kk

k2

)
dΩk ≈ 4π

sin(k|r − r0|)
k|r − r0|

(
1− (r − r0)(r − r0)

|r − r0|2

)
, (2.66)

such that, by adopting the Weißkopf-Wigner approximation, i.e., by substituting k2 with (ωii′/c)
2

and extending the integral over k to −∞, we obtain [53]

Êem,⊥(r, t) =
∑
ii′
i′<i

d∗ii′ ·
(

1− (r − r0)(r − r0)

|r − r0|2

)
ω2
ii′

c|r − r0|

×
∫ t

t0

σ̂i′i(t
′)

1

2π

∫ ∞
−∞

e−ik[c(t−t′)−|r−r0|] − e−ik[c(t−t′)+|r−r0|]) dk dt′ + H.c.

=
∑
ii′
i′<i

d∗ii′ ·
(

1− (r − r0)(r − r0)

|r − r0|2

)
ω2
ii′

c2|r − r0|
[σ̂i′i(t− |r − r0|/c) + σ̂i′i(t+ |r − r0|/c)] + H.c.

(2.67)

By taking only the retarded-time term and going back to the definition of the electric-dipole
moment operator, we conclude that

Êem,⊥(r, t) =
∑
ii′

ω2
ii′

c2|r − r0|

[
d̂ii′(t− |r − r0|/c))−

r − r0

|r − r0|

(
d̂ii′(t− |r − r0|/c) ·

r − r0

|r − r0|

)]
.

(2.68)

This equation is of fundamental importance, because it tells us that, to know the properties of
the electric field, a complete dynamical study of the infinitely many modes kλ is unnecessary.
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2 Time and spectral properties of the interaction of light with matter

It is namely sufficient to study how the atomic operators σ̂ii′(t) evolve in time to automatically
also gain knowledge of the properties of the electric field. This suggests to treat the atom as
an open quantum system, i.e., to look for equations of motion which involve the sole atomic
operators and which include effectively the impact of the interaction Hamiltonian ĤAF in terms
of dissipation of the system.
In conclusion, we can use Eq. (2.68) to write the emitted electric field as the sum of a positive-

and a negative-frequency component, i.e.,

Êem,⊥(r, t) = Ê+
em,⊥(r, t) + Ê−em,⊥(r, t), (2.69)

with Ê−em,⊥(r, t) = [Ê+
em,⊥(r, t)]† and

Ê+
em,⊥(r, t) =

∑
ii′
i′<i

d∗ii′ ·
(

1− (r − r0)(r − r0)

|r − r0|2

)
ω2
ii′

c2|r − r0|
σ̂i′i(t− |r − r0|/c). (2.70)

2.4 Density matrix formalism and spontaneous decay

A solution of the Heisenberg equations of motion would imply an exact treatment of the infinite
number of modes of the electromagnetic field |{nkλ}〉. Not only this is not possible, but, owing
to Eq. (2.68), would also be of little interest for our purposes.
In the following, we introduce the density matrix of the atomic system. This object is necessary

when one deals with an open quantum system. This allows one to describe the dynamics of a
small system in interaction with the rest of the universe without having to take the latter into
account explicitly. The effect of ĤAF, describing the interaction of the atom with a reservoir of
modes of the electromagnetic field, results in the spontaneous decay of the atomic excited states
and gives rise to dissipation terms in the equations of motion. Our discussion follows Ref. [157].

2.4.1 Density matrix

A density matrix is the fundamental object to describe an open quantum system [157]. We
assume that {|i〉} is a complete and orthogonal basis spanning the Hilbert space HS of the
system, whereas the rest of the universe, i.e., the environment, is described by a quantum state
in the Hilbert space HE spanned by the complete and orthogonal basis {|j〉}. The total state,
describing the system and the environment in the tensor-product Hilbert space H = HS ⊗HE,
can be written as a linear combination of tensor-product basis states {|i〉 ⊗ |j〉}, i.e.,

|ψ(t)〉 =
∑
i,j

aij(t) |i〉 ⊗ |j〉. (2.71)

Similarly, a general operator acting both on the system and on the environment can be written
in this basis as

Â =
∑
ii′
jj′

Aii′,jj′ |i〉〈i′| ⊗ |j〉〈j′|, (2.72)

with expectation value
〈Â〉 =

∑
ii′
jj′

a∗ij(t) ai′j′(t)Aii′,jj′ . (2.73)
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2.4 Density matrix formalism and spontaneous decay

One is usually interested in operators which act directly only on the degrees of freedom of the
system, i.e., Â = ÂS ⊗ 1E, such that Aii′,jj′ = AS,ii′ δjj′ . It follows that

〈ÂS〉 = 〈Â〉 =
∑
ii′

(∑
j

a∗ij(t) ai′j(t)

)
AS,ii′ =

∑
ii′

ρS,i′iAS,ii′ =
∑
i

〈i|ρSAS|i〉 = TrS{ρ̂SÂS},

(2.74)
where we have introduced the density matrix of the system

ρS(t) =
∑
ii′

ρS,ii′(t)|i〉〈i′| =
∑
ii′

(∑
j

aij(t) a
∗
i′j(t)

)
|i〉〈i′|

=
∑
j

〈j|ψ(t)〉〈ψ(t)|j〉 = TrE{|ψ(t)〉〈ψ(t)|},
(2.75)

and have used the definition of trace of an operator on the degrees of freedom of the system TrS

and of the environment TrE,

TrS{Â} =
∑
i

〈i|Â|i〉 =
∑
jj′

(∑
i

Aii,jj′
)
|j〉〈j′|, (2.76a)

TrE{Â} =
∑
j

〈j|Â|j〉 =
∑
ii′

(∑
j

Aii′,jj

)
|i〉〈i′|, (2.76b)

Tr{Â} = TrE{TrS{Â}} =
∑
ij

〈i| ⊗ 〈j| Â |i〉 ⊗ |j〉 =
∑
ij

Aii,jj . (2.76c)

From the definition of the density matrix ρ̂S we can see that

ρS,ii′ =
∑
j

aij a
∗
i′j = ρ∗S,i′i ⇒ ρ̂†S = ρ̂S, (2.77)

i.e., the density matrix is a Hermitian operator, with diagonal real elements ρS,ii and complex
conjugate off-diagonal elements ρS,ii′ = ρ∗S,i′i. The diagonal elements of the density matrix,
usually called populations,

ρS,ii = TrS{ρ̂S|i〉〈i|} =
∑
j

|aij |2 =
∑
j

|(〈i| ⊗ 〈j|) |ψ(t)〉|2, (2.78)

describe the statistical probability to measure the system in the state |i〉. The off-diagonal terms
of the density matrix ρS,ii′ , usually called coherences, describe the amplitude whereby the
system is found in a coherent superposition of states |i〉 and |i′〉, i.e.,

ρS,ii′ = TrS{ρ̂S|i′〉〈i|} =
∑
j

aij a
∗
i′j =

∑
j

(〈i| ⊗ 〈j|) |ψ(t)〉〈ψ(t)|(|i〉 ⊗ |j〉|). (2.79)

From Eq. (2.74), we can calculate the expectation values of the identity operator 1S and of
the projector operator |ϕ〉〈ϕ|, where |ϕ〉 is a state in HS, 〈ϕ|ϕ〉 = 1, |ϕ〉 =

∑
i ci|i〉, i.e.,

〈1S〉 = TrS{ρ̂S} = TrS{TrE{|ψ(t)〉〈ψ(t)|}} = Tr{|ψ(t)〉〈ψ(t)|} = 〈ψ(t)|ψ(t)〉 = 1, (2.80a)

〈|ϕ〉〈ϕ|〉 = TrS{ρ̂S|ϕ〉〈ϕ|} = 〈ϕ|ρS(t)|ϕ〉 = Tr{|ψ(t)〉〈ψ(t)| (|ϕ〉〈ϕ| ⊗ 1E)} =
∑
j

∣∣∣∑
i

cia
∗
ij

∣∣∣2 ≥ 0.

(2.80b)
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2 Time and spectral properties of the interaction of light with matter

This allows one to conclude that the density matrix ρS(t) is a positive definite Hermitian matrix
with norm equal to 1, for any time t.
When the system and the environment are uncorrelated, i.e., the total Hamiltonian does not

include any interaction terms, Ĥ = ĤS⊗ 1E + 1S⊗ ĤE, then at any time t the total state |ψ(t)〉
can be factorized into the product |ψ(t)〉 = |ψS(t)〉 ⊗ |ψE(t)〉, and the density matrix

ρS(t) = TrE{|ψS(t)〉〈ψS(t)| ⊗ |ψE(t)〉〈ψE(t)|} = |ψS(t)〉〈ψS(t)| (2.81)

describes a pure state. From the Schrödinger equation satisfied by |ψS(t)〉, i.e.,

d|ψS(t)〉
dt

= −iĤS|ψS(t)〉, (2.82)

we obtain the Liouville-von Neumann equation [157] describing the dynamics of the density
matrix

∂ρ̂S(t)

∂t
= −i[ĤS, ρ̂S]. (2.83)

When the Hamiltonian does contain an interaction term, Ĥ = ĤS ⊗ 1E + 1S ⊗ ĤE + Ĥint, the
total state |ψ(t)〉 cannot be written as the previous tensor product. We can introduce the total
density matrix ρ̂SE(t) = |ψ(t)〉〈ψ(t)| evolving under the effect of the total Hamiltonian Ĥ,

∂ρ̂SE(t)

∂t
= −i[ĤS ⊗ 1E + 1S ⊗ ĤE + Ĥint, ρ̂SE(t)], (2.84)

such that the time evolution of the system density matrix ρ̂S(t) can be recovered by tracing on
the degrees of freedom of the environment, i.e.,

∂ρ̂S(t)

∂t
= −i TrE{[ĤS ⊗ 1E + 1S ⊗ ĤE + Ĥint, ρ̂SE(t)]}. (2.85)

This equation of motion, though, is not very informative, as it requires a solution of the Liouville-
von Neumann equation for ρ(t) which includes the presence of the environment explicitly. The
same problem could be more effectively addressed if one could rely on a dynamical map V(t, t0)
which, given the initial state of the system ρS(t0), is able to predict how this state evolves,
ρS(t) = V(t, t0) ρS(t0), without having to take into account the presence of the environment
explicitly. In other words, we look for a Lindblad form of the Liouville-von Neumann equation,

∂ρ̂S(t)

∂t
= L[ρ̂S(t)], (2.86)

with the Lindblad superoperator L[ρ̂S(t)] acting only on the degrees of freedom of the system.
Such a dynamical map must preserve at any time all the defining properties of the density matrix
ρ̂S(t), i.e., hermiticity, positive definiteness, and norm equal to unity.

2.4.2 Spontaneous decay of the excited levels in a quantum system

We adopt a density-matrix formalism to include the effect of the interaction Hamiltonian ĤAF on
the atomic-system dynamics. We introduce the total density matrix ρ̂AF(t), whose time evolution
is given by the Liouville-von Neumann equation

dρ̂AF

dt
= −i[Ĥ0 + ĤF + ĤAL(t) + ĤAF, ρ̂AF(t)], (2.87)
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where the total Hamiltonian

Ĥ = Ĥ0 + ĤF + ĤAL(t) + ĤAF (2.88)

is the quantum counterpart of the classical total Hamiltonian (2.26), where Ĥ0 is the electronic
structure Hamiltonian of the bare atom, ĤF represents the total Hamiltonian of the fluorescence
field, ĤAL(t) describes the time-dependent interaction of the atom with the classical laser field
Eext(r, t), and ĤAF accounts for the interaction of the atomic system with the fluorescence field.
As introduced in the previous Section, one can define an atomic density matrix

ρ̂A(t) = TrF{ρ̂AF(t)} =
∑
{nkλ}

〈{nkλ}|ρ̂AF(t)|{nkλ}〉, (2.89)

whose evolution in time is obtained by tracing the Liouville-von Neumann equation (2.87) on
the electromagnetic-field degrees of freedom, i.e.,

dρ̂A

dt
= −i TrF

{
[Ĥ0 + ĤF + ĤAL(t) + ĤAF, ρ̂AF(t)]

}
. (2.90)

The trace on the right-hand side of the previous equation is performed in the Born-Markov
approximation, by assuming that the environment, formed by the reservoir of modes of the
electromagnetic field, loses memory of its past state in a time scale which is much shorter than the
time scale characterizing the evolution of the atomic variables [54,158]. From the electric-dipole
interaction Hamiltonian in the rotating-wave approximation, the Born-Markov approximation,
and the Weißkopf-Wigner approximation already discussed in the derivation of Eq. (2.68), the
following master equation ensues,

dρ̂A

dt
= −i[Ĥ0 + ĤAL(t), ρ̂A(t)] + L[ρ̂A(t)], (2.91)

with the Lindblad superoperator

L[ρ̂A(t)] =
∑
ii′
i′<i

−Γii
′

2
(σ̂ii′ σ̂i′iρ̂A(t)− σ̂i′iρ̂A(t)σ̂ii′) + H.c. (2.92)

in which we have utilized the E1 decay rates

Γii′ =
4ω3

ii′ |di′i|2

3c3
. (2.93)

It is possible to show that such master equation preserves the norm, the hermiticity, and the
positive definiteness of the density matrix at any time [158].

2.5 Selection rules

It is worthwhile to spend a few words on the transition rules, i.e., the conditions that need
be fulfilled in order dii′ not to vanish. We observe that d̂ is an irreducible tensor operator of
rank 1 [155,159], which can be written as

d̂ = d̂
(1)
−1êσ− + d̂

(1)
0 êz + d̂

(1)
1 êσ+ , (2.94)
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2 Time and spectral properties of the interaction of light with matter

where d̂(1)
m , m ∈ {0,±1} are the three independent components of the tensor, êx, êy, and êz

are the three unit vectors in the three real independent directions and we have introduced the
circular polarization vectors

êσ± =
∓êx + iêy√

2
, ê∗σ± = −êσ∓ , (2.95a)

êσ± · ê∗σ± = 1, êσ± · ê∗σ∓ = 0, (2.95b)

positive (negative) for polarization λ = ±1.
Spin-degenerate levels. In the case in which spin effects are not important and the eigen-

states |Ψi〉 of the bare electronic structure Hamiltonian Ĥ0 are also eigenstates of the orbital and
spin total-angular momentum operators L̂2, L̂z, Ŝ2, and Sz, with eigenvalues Li(Li + 1), MLi ,
Si(Si + 1), and MSi , then these eigenstates can be written as

|Ψi〉 = |τi LiMLi SiMSi〉, (2.96)

where τi = {nqi lqi} collects all the quantum numbers associated with a given electron configura-
tion. The electric-dipole moment operator d̂ acts only on the orbital part of the eigenstates |Ψi〉,
such that dii′ = 〈τi LiMLi |d̂|τi′ Li′MLi′ 〉 δSiSi′ δMSi

MSi′
. The application of the Wigner-Eckart

theorem [155,159] implies that

〈τi LiMLi |d̂
(1)
j |τi′ Li′MLi′ 〉 =

1√
2Li + 1

〈τi Li||d(1)||τi′ Li′〉 〈Li′ 1MLi′ m|LiMLi′ 〉, (2.97)

where 〈τi Li||d(1)||τi′ Li′〉 is the reduced matrix element, independent of the quantum numbers
MLi and MLi′ , and 〈Li′ 1MLi′ m|LiMLi′ 〉 is the Clebsch-Gordan coefficient. The properties of
the Clebsch-Gordan coefficients imply the following selection rules [155], i.e., the matrix element
〈τi LiMLi |d̂

(1)
s |τi′ Li′MLi′ 〉 is nonzero if

m = MLi −MLi′ , (2.98)
|Li − Li′ | ≤ 1 ≤ Li + Li′ . (2.99)

Spin-nondegenerate levels. When spin effects have a determinant influence on the elec-
tronic structure of the atom or ion, such that the eigenstates |Ψi〉 of the atomic Hamiltonian need
be described as eigenstates of the total-angular-momentum operators Ĵ2 and Ĵz, with eigenvalues
Ji(Ji+1) andMJi , respectively, then in the LS coupling, when Li and Si are still good quantum
numbers, we can write

|Ψi〉 = |τi JiMJi Li Si〉. (2.100)

The previously described selection rules for Li and Si can be used also in this case, i.e., Si = Si′ ,
|Li − Li′ | ≤ 1 ≤ Li + Li′ , but we ought to substitute the old selection rules based on the
quantum numbers MSi and MLi with new ones for Ji and MJi . This is achieved by applying the
Wigner-Eckart theorem in this new basis [155,159], thus obtaining

〈τi JiMJi |d̂
(1)
j |τi′ Ji′MJi′ 〉 =

1√
2Ji + 1

〈τi Ji||d(1)||τi′ Ji′〉 〈Ji′ 1MJi′ m|JiMJi′ 〉, (2.101)

where 〈τi Ji||d(1)||τi′ Ji′〉 is the new reduced matrix element, independent of the quantum numbers
MJi and MJi′ , and 〈Ji′ 1MJi′ m|JiMJi′ 〉 is the Clebsch-Gordan coefficient. The new selection
rules are

m = MJi −MJi′ , (2.102)
|Ji − Ji′ | ≤ 1 ≤ Ji + Ji′ . (2.103)
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Parity conservation. In the next Chapters we will focus on electron transitions involving
single-electron jumps, i.e., a configuration change {nqlq} → {n′ql′q} in which, for all q 6= q̃, where
q̃ labels a single given electron, one has nq = n′q, lq = l′q. In this case, the properties of a single-
electron orbital are sufficient to show that parity conservation implies the additional selection
rule [149,150]

lq̃ = l′q̃ ± 1. (2.104)

2.6 Rabi flopping

In the next Chapters we will often refer to Rabi flopping of the atomic population and coherences
induced by the interaction of an atom with a strong driving electric field, described by the
interaction Hamiltonian

ĤAL(t) = −
∑
ii′

dii′ · Eext(0, t)σ̂ii′ . (2.105)

Rabi oscillations were first studied by Rabi in the context of magnetic resonances [160]. However,
the same equations of motion also describe the dynamics of an atomic quantum system driven by
an electric field with constant amplitude. We extend this terminology to all the cases in which
an external field induces oscillations of the atomic variables, also when this does not take place
at a fixed and constant Rabi frequency.
We consider in this Section a two-level system formed by two states |1〉 and |2〉, with transition

energy ω21 and dipole-moment matrix element d12 = d12 êz aligned on the z direction, with decay
rate Γ = Γ21 and driven by an external field

Eext(0, t) =
E0(t)

2

(
eiωLt + e−iωLt

)
êz, (2.106)

with amplitude E0(t), central frequency ωL, with detuning ∆ = ω21 − ωL, and polarized in the z
direction. In the rotating-wave approximation, the interaction Hamiltonian is

ĤAL = − (d12σ̂12 + d21σ̂21) · Eext(0, t)

≈ −1

2

[
d12 E0(t) eiωLt σ̂12 + d21 E0(t) e−iωLt σ̂21

]
,

(2.107)

where one neglects fast oscillating contributions due to the terms e−iωLt σ̂12 and eiωLt σ̂21. One
can therefore introduce the time-dependent Rabi frequency

Ω(t) = d12 E0(t) (2.108)

in terms of which we write the master equation for the atomic density matrix ρ̂(t),

dρ̂

dt
= −i

[
ω1σ̂11 + ω2σ̂22 −

Ω(t)

2
eiωLt σ̂12 +

Ω∗(t)

2
e−iωLt σ̂21, ρ̂(t)

]
+ L[ρ̂(t)], (2.109)

with the Lindblad superoperator

L[ρ̂(t)] = −Γ
2

[σ̂21σ̂12ρ̂(t)− 2σ̂12ρ̂(t)σ̂21 + ρ̂(t)σ̂21σ̂12] . (2.110)
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2 Time and spectral properties of the interaction of light with matter

This gives rise to the following equations of motion for the elements of the density matrix,

ρ̇11 = i

(
Ω(t)

2
eiωLt ρ21 −

Ω∗(t)

2
e−iωLt ρ12

)
+ Γ ρ22, (2.111a)

ρ̇22 = −i

(
Ω(t)

2
eiωLt ρ21 −

Ω∗(t)

2
e−iωLt ρ12

)
− Γ ρ22, (2.111b)

ρ̇12 = iω21 ρ12 + i
Ω(t)

2
eiωLt (ρ22 − ρ11)− Γ

2
ρ12, (2.111c)

with ρ12 = ρ∗21. These equations may be written in a Bloch form [161] by exploiting the algebraic
properties of the three operators σ̂− = σ̂12, σ̂+ = σ̂21, and σ̂z = σ̂22 − σ̂11, which form a
simple representation of Pauli operators, with standard commutation rules [σ̂+, σ̂−] = σ̂z and
[σ̂z, σ̂±] = ±2σ̂±. We notice that, owing to the absence of any norm-nonconserving term,
ρ̇11 = −ρ̇22, such that ρ22(t) = 1 − ρ11(t). In terms of the components of the slowly oscillating
density matrix %̂(t),

%ii(t) = ρii(t), %12(t) = %∗21(t) = ρ12(t) e−iωLt, (2.112)

these equations can be written as

%̇11 = i

(
Ω(t)

2
%21 −

Ω∗(t)

2
%12

)
+ Γ %22, (2.113a)

%̇22 = −i

(
Ω(t)

2
%21 −

Ω∗(t)

2
%12

)
− Γ %22, (2.113b)

%̇12 = i∆%12 + i
Ω(t)

2
(%22 − %11)− Γ

2
%12. (2.113c)

In the absence of spontaneous decay and detuning, a solution of the previous equations of
motion can be formally obtained by introducing the instantaneous pulse area

ϑ(t) =

∫ t

−∞
Ω(t′) dt′, (2.114)

with the total area

Q = lim
t→∞

ϑ(t) =

∫ ∞
−∞

Ω(t′) dt′. (2.115)

If Ω(t) = 0 for t < 0 and, at t = 0, the system is in the initial state %11(0) = 1, %12(0) = %21(0) =
0, %22(0) = 0, the solution of the equations of motion is [70]

%11(t) =
1 + cos [ϑ(t)]

2
, (2.116a)

%22(t) =
1− cos [ϑ(t)]

2
, (2.116b)

%12(t) = − i

2
sin [ϑ(t)] . (2.116c)

For pulses of finite area Q < ∞, one can predict in the limit of vanishing decay rates and
detuning, for an arbitrary shape of the time-dependent Rabi frequency, that the system reaches

28



2.7 The spectrum analyzer

the stationary value

%11,S =
1 + cos(Q)

2
, (2.117a)

%22,S =
1− cos(Q)

2
, (2.117b)

%12,S = − i

2
sin(Q). (2.117c)

For Q = (2n+1)π, n ∈ N, the system at the end of the pulse has performed a complete switch
in the population, whereas for Q = 2nπ, n ∈ N, the system at the end of the pulse is in the
same state it was at the beginning. We finally notice that the well known solution of the Rabi
problem in the case of constant Rabi frequency ΩR can be recovered by setting ϑ(t) = ΩRt in
Eq. (2.116).
When one includes the presence of the detuning ∆, an exact solution of the set of differential

equations (2.113) can be obtained only in two cases. For constant Rabi frequency ΩR, the
solution of the equations of motion

%11(t) = 1 +
ΩR

2
√
Ω2

R +∆2

[
1− cos

(√
Ω2

R +∆2 t

)]
, (2.118a)

%22(t) = − ΩR

2
√
Ω2

R +∆2

[
1− cos

(√
Ω2

R +∆2 t

)]
, (2.118b)

%12(t) = − i

2
sin

(√
Ω2

R +∆2 t

)
, (2.118c)

displays oscillations at the effective frequency Ωeff =
√
Ω2

R +∆2 [53]. An analytical solution can
be found also in the case of a hyperbolic-secant envelope function, Ω(t) = Ωmax sech(γt), where
sech(x) = 1/ cosh(x) and γ is the bandwidth of the pulse. We will investigate this situation in
depth for a three-level system in Chapter 6.
If one takes into account the presence both of detuning and decay rate, an analytical investi-

gation can be performed in the case of constant Rabi frequency. Because of the decay rate Γ ,
the system, despite being continuously driven by a field of constant Rabi frequency, reaches the
stationary solution

%11,S =
4∆2 + Γ 2 +Ω2

R

4∆2 + Γ 2 + 2Ω2
R

, (2.119a)

%22,S =
Ω2

R

4∆2 + Γ 2 + 2Ω2
R

, (2.119b)

%12,S = −i
ΩR

Γ − 2i∆

4∆2 + Γ 2

4∆2 + Γ 2 + 2Ω2
R

. (2.119c)

In the absence of detuning the system, with oscillations at the effective Rabi frequency Ωeff =√
Ω2

R + (Γ/4)2, reaches this stationary state with a decay rate given by 3Γ/4 [53].

2.7 The spectrum analyzer

An atomic system driven by an external field, whose dynamical evolution follows the equations
of motion given by the master equation (2.91), emits photons because of spontaneous decay.
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2 Time and spectral properties of the interaction of light with matter

This affects the time evolution of the electric-field operator in Eq. (2.68). The spectral features
of the emitted electric field are measured by a spectrometer, i.e., a detector able to distinguish
the presence of photons in a frequency interval [ω, ω + dω]. In this Section, we conclude this
introductory Chapter by revising Glauber’s theory of the spectrum analyzer [162], which provides
us with an operational definition of the spectrum of a classical or quantum electromagnetic
field [53].
We model the spectrometer as an ideal two-level system, with ground and excited states,
|g〉 and |e〉, respectively, with tunable transition energy ωeg and dipole-moment matrix element
Pge = P∗eg = Pge êge with polarization vector êge. The fixed polarization of the one-atom
detector allows one to model polarization-sensitive measurements.
The total Hamiltonian of a single-atom detector in interaction with an external electric field

is given by Ĥ in Eq. (2.88), where the detector Hamiltonian ĤD, the interaction Hamiltonian
ĤDL between detector and laser field, the quantum-field Hamiltonian ĤF, and the interaction
Hamiltonian ĤDF between detector and quantum field, are given by

ĤD =
ωeg
2
σ̂ee −

ωeg
2
σ̂gg, (2.120a)

ĤDL = −(Pge σ̂ge + P∗ge σ̂eg) · Eext(r, t) (2.120b)

ĤF =
∑
kλ

â†kλâkλ (2.120c)

ĤDF = −(Pge σ̂ge + P∗ge σ̂eg) · Êem,⊥(0). (2.120d)

We want to calculate the probability that, by interacting with the external field, the one-atom
detector is excited from its initial state |g〉 to the excited state |e〉. The system is described in
the Schrödinger picture by a total density matrix ρ̂DF(t), whose time evolution is given by the
Liouville-von Neumann equation

dρ̂DF

dt
= −i[ĤD + ĤF + ĤDL + ĤDF, ρ̂DF]. (2.121)

In the interaction picture, by including the fast oscillating terms in the definition of the slowly
varying density matrix

%̂DF(t) = ei(ĤD+ĤF)(t−t0)ρ̂DF(t)e−i(ĤD+ĤF)(t−t0), (2.122)

the Liouville-von Neumann equation for the transformed density matrix is

d%̂DF

dt
= −i[ĤDL(t) + ĤDF(t), %̂DF(t)], (2.123)

with interaction-picture Hamiltonians

ĤDL(t) = eiĤD(t−t0)ĤDLe−iĤD(t−t0), (2.124a)

ĤDF(t) = ei(ĤD+ĤF)(t−t0)ĤDFe−i(ĤD+ĤF)(t−t0), (2.124b)

which, in terms of the transformed operators

eiĤD(t−t0)σ̂gee
−iĤD(t−t0) = σ̂ge e−iωeg(t−t0), (2.125a)

eiĤF(t−t0)âkλe−iĤF(t−t0) = âkλ e−iωk(t−t0), (2.125b)

ˆ̃Eem,⊥(r, t) =
∑
k

2∑
λ=1

√
2πωk
V

(âkλ e−iωk(t−t0) e−ik·(r−r0) + â†kλ eiωk(t−t0) eik·(r−r0)) · ê(λ)
k ,

(2.125c)
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can be written as

ĤDL(t) = −(Pge σ̂ge e−iωeg(t−t0) + P∗ge σ̂eg eiωeg(t−t0)) · Eext(r, t), (2.126a)

ĤDF(t) = −(Pge σ̂ge e−iωeg(t−t0) + P∗ge σ̂eg eiωeg(t−t0)) · ˆ̃Eem,⊥(r, t). (2.126b)

The system is assumed to be initially in the state described by the density matrix ρ̂DF(t0) =
%̂DF(t0) = |g〉〈g| ⊗ ρ̂F. The interaction-picture Liouville-von Neumann equation can be solved in
second order of perturbation theory

%̂DF(t) = |g〉〈g| ⊗ ρ̂F − i

∫ t

t0

[ĤDL(t′) + ĤDF(t′), |g〉〈g| ⊗ ρ̂F] dt′

−
∫ t

t0

∫ t′

t0

[ĤDL(t′) + ĤDF(t′), [ĤDL(t′′) + ĤDF(t′′), |g〉〈g| ⊗ ρ̂F]] dt′′ dt′.

(2.127)

The transition probability, i.e., the probability that at time t the one-atom detector is in the
excited state |e〉, is the expectation value of the projector operator |e〉〈e| ⊗ 1F, which remains
unchanged in the interaction picture. We use the density matrix at second order to compute the
transition probability

TrDF {%̂DF(t)|e〉〈e| ⊗ 1F}

=

∫ t

t0

∫ t′

t0

TrDF

{
[ĤDL(t′) + ĤDF(t′)] |g〉〈g| ⊗ ρ̂F [ĤDL(t′′) + ĤDF(t′′)] |e〉〈e| ⊗ 1F

}
dt′′ dt′

+

∫ t

t0

∫ t′

t0

TrDF

{
[ĤDL(t′′) + ĤDF(t′′)] |g〉〈g| ⊗ ρ̂F [ĤDL(t′) + ĤDF(t′)] |e〉〈e| ⊗ 1F

}
dt′′ dt′

=

∫ t

t0

∫ t

t0

TrF

{
〈e|ĤDL(t′) + ĤDF(t′)|g〉〈g|ĤDL(t′′) + ĤDF(t′′)|e〉ρ̂F

}
dt′′ dt′.

(2.128)

This leads to

TrDF {%̂DF(t)|e〉〈e| ⊗ 1F} = |Pge|2
∫ t

t0

∫ t

t0

G(r, t′, t′′) e−iωeg(t′′−t′) dt′′ dt′, (2.129)

where the two-time expectation value

G(r, t′, t′′) =
〈{

[Eext(r, t
′) + Êem,⊥(r, t′)] · êge

} {
[Eext(r, t

′′) + Êem,⊥(r, t′′)] · ê∗ge
}〉

(2.130)

is the autocorrelation function of the field at the fixed position r. The two-time Fourier transform
of the autocorrelation function represents the probability that a two-level system with energy ωge
is excited by the interaction with the external field. This provides us with an operational defini-
tion of the spectrum of an external (classical or quantum) field, which will be used throughout
the entire Thesis.
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3 Resonance fluorescence in intense x-ray
free-electron-laser pulses

In this Chapter, we develop a time-dependent theory of resonance fluorescence in order to in-
vestigate, in terms of a two-level model, the coherent interaction of intense x-ray pulses with
core electrons by exciting K-shell transitions. In Sec. 3.1 we describe our theoretical approach,
by defining the energy spectrum of resonance fluorescence and its main properties and by in-
troducing the two-level model that is used throughout the Chapter. Results are discussed in
Sec. 3.2: there, we apply the model to study neon cations driven by x-ray free-electron-laser
(XFEL) pulses on the 1s 2p−1 → 1s−1 2p transition at ω21 = 848 eV and examine the spectrum
of resonance fluorescence for different driving pulses. In particular, we compare different spectra
for the presently available chaotic pulses produced via the self-amplified-spontaneous-emission
(SASE) principle and for pulses with a Gaussian temporal profile that seeding techniques are ren-
dering available. Section 3.3 concludes the Chapter. Parts of this Chapter have been published
in Ref. [163].

3.1 Theoretical model

3.1.1 Two-level model

The coherent interaction between atoms and ions and x rays tuned to a particular atomic reso-
nance can be described in terms of a two-level model when the transition is isolated from other
levels. In our case, we use such a model to study the 1s 2p−1

z → 1s−1 2pz transition in Ne+ at
an energy of 848 eV [139], driven by a near-resonant electric field linearly polarized along the z
direction. The two-level model, which is depicted in Fig. 3.1, is justified by the fact that the tran-
sition is very well isolated, by more than 70 natural linewidths separated from the next Rydberg
excitation 1s→ 3p of neutral Ne at 867 eV [139]. For neon, relativistic effects and fine-structure
splitting do not play an important role and, therefore, spin-orbit splitting can be neglected. Here
and in the remaining of the Section, we aim at specializing the general formalism, introduced in
Chapter 2, for the case of a two-level system.
As we did in Eqs. (2.68) and (2.70), we describe the emitted fluorescent light field by a

quantum operator Ê(r, t) = Ê+(r, t) + Ê−(r, t), where Ê+(r, t) and Ê−(r, t) are respectively
the positive-frequency and negative-frequency parts of the operator [164]. However, it is sufficient
to describe the relatively strong driving field classically [62], via

E(t) = E0(t) cos(ωXt+ ϕX(t) + ϕX,0), (3.1)

where E0(t) is the time-dependent electric-field envelope, ωX the x-ray central frequency, ϕX(t)
the time-dependent phase of the field and ϕX,0 the carrier-envelope phase (CEP). We assume
throughout an electric field linearly polarized along the z direction, E0(t) = E0(t) êz, with the unit
vector in z direction êz. The use of planar undulators at XFEL facilities, in fact, produces linearly
polarized x-ray pulses [93]; experimental evidence for a very high degree of linear polarization of
Linac-Coherent-Light-Source (LCLS) x rays has been given in Ref. [98,139]. We further assume
a pulse with uniform intensity distribution profile; spatial averaging is therefore not performed.
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Figure 3.1: Two-level model used to describe the coherent interaction between Ne+ and the external driving
field tuned to the 1s 2p−1 → 1s−1 2p transition at 848 eV [139]. The ground state 1s 2p−1 is given by
|1〉 = |L = 1, ML = 0〉 and the core-excited state 1s−1 2p is written as |2〉 = |L = 0, ML = 0〉. The external
field is linearly polarized along the z direction and induces Rabi flopping between these states. Spontaneous
decay, however, also allows the core-excited state to decay to valence-ionized states with ML = ±1.

In order to properly model the atomic transition, we have to take into account that, as seen in
Fig. 3.1, the 1s 2p−1 configuration is a spin doublet state with total orbital angular momentum
L = 1; consequently, it is triply degenerate in energy. The three eigenstates of the unperturbed
atomic Hamiltonian Ĥ0 with energy ω1 which diagonalize the z component of the total orbital
angular momentum operator L̂z are |1+〉, |10〉 and |1−〉, respectively with ML = +1, 0, −1.
Conversely, the 1s−1 2p configuration corresponds to the single eigenstate |2〉 of the field-free
atomic Hamiltonian, with L = 0, ML = 0 and energy ω2. The energy of the atomic transition is
ω21 = ω2 − ω1. The relevant raising and lowering atomic operators (2.33) are

σ̂ij = |i〉〈j|, i, j ∈ {1+, 10, 1−, 2}. (3.2)

The interaction between the ions and the electric field is described in the dipole approximation
because the 1s orbital of neon is compact, involving dimensions much smaller than the wavelength
associated with the transition 1s 2p−1 → 1s−1 2p, such that nondipole terms are negligible [138].
The Hamiltonian of the system is

Ĥ = Ĥ0 + Ĥint, (3.3)

where Ĥ0 =
∑

i ωi σ̂ii is the unperturbed atomic Hamiltonian [see Eqs. (2.30) and (2.31)] with
eigenvalues ωi, whereas Ĥint [see ĤAL in Eq. (2.105)] represents the interaction of the ion with
the classical, linearly polarized, near-resonant field (3.1) [53],

Ĥint = −d̂ · E0(t) cos(ωXt+ ϕX(t) + ϕX,0). (3.4)

The operator d̂ in (3.4) is the total atomic polarization operator [see Eqs. (2.32) and (2.34)]

d̂ = d̂+ + d̂−, (3.5)

with d̂− = [d̂+]† and [149]

d̂+ = 〈1+|d̂|2〉 σ̂1+2 + 〈10|d̂|2〉 σ̂102 + 〈1−|d̂|2〉 σ̂1−2

= ℘(êσ+ σ̂1+2 + êz σ̂102 + êσ− σ̂1−2),
(3.6)

where êx, êy, êz are unit vectors in the x, y, z directions and êσ± = (∓êx + iêy)/
√

2 are circular
polarization vectors, positive (negative) for polarizations λ = ±1, with êσ± = −ê∗σ∓ . Due to
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spherical symmetry, the dipole matrix element is real, ℘ = ℘∗, and is the same for all transitions;
as the atomic states have a definite parity, 〈1±, 0|d̂|1±, 0〉 = 〈2|d̂|2〉 = 0, dipole transitions only
couple states with different total angular momentum quantum numbers, ∆L = 1 [149].
Since the external electric field is assumed to be linearly polarized [98, 139], the dipole inter-

action only couples the states |2〉 and |10〉 satisfying the condition ∆ML = 0 [149]: in Eq. (3.4),
within the rotating-wave approximation [53] and by using Eq. (3.6), Ĥint reduces to

Ĥint = −ΩR(t)

2

(
σ̂102 ei(ωXt+ϕX(t)) + σ̂210 e−i(ωXt+ϕX(t))

)
, (3.7)

where we have set the CEP ϕX,0 to 0 and where the instantaneous Rabi frequency

ΩR(t) = ℘ E0(t) (3.8)

has been introduced.
In our model the dynamics of the two x-ray coupled states |2〉 and |10〉 is independent from the

other two states |1±〉 and one can develop an actual two-level description of the system in which
the equations of motion (EOMs) exclusively contain the two aforementioned states |10〉 = |1〉
and |2〉 and neglect the other two states entirely.

3.1.2 Density matrix formulation and equations of motion

We investigate in the following the two-level system formed by the states |1〉 ≡ |10〉 and |2〉. We
introduce the density matrix

ρij(t) = 〈i|ρ̂(t)|j〉 = 〈σ̂ji(t)〉 (3.9)

(i, j ∈ {1, 2}), whose evolution is described by the master equation [157]

dρ̂

dt
= −i [Ĥ, ρ̂(t)] + Lρ̂(t) +Dρ̂(t), (3.10)

which is a generalization of Eq. (2.91) in order to include in an effective two-level description of
the atomic system the transition, e.g., due to Auger decay, to other states not directly included
in the model. The first term −i [Ĥ, ρ̂(t)] describes the coherent dynamics of the two-level system.
In the total Hamiltonian Ĥ [Eq. (3.3)] the only relevant terms of the unperturbed atomic Hamil-
tonian Ĥ0 are ω1σ̂11 and ω2σ̂22. The Lindblad operator Lρ̂(t) represents the norm-conserving
spontaneous decay of the population from the excited state |2〉 to the ground state |1〉. The rate
at which this process occurs is given by [53]

ΓR,z =
4ω3

21

3c3
|℘|2. (3.11)

Atoms and ions with high atomic number are usually characterized by a high fluorescence yield,
i.e., the importance of spontaneous decay compared to Auger decay increases with the atomic
number of the ion of interest. The last term Dρ̂(t) denotes the norm-nonconserving term not
present in the Lindblad form of the master equation [158]. We introduce this term to describe the
decrease of the population of both the upper and lower states [54]. These norm-nonconserving
processes include Auger decay, photoionization of the system due to the intense external field
and spontaneous decay from the excited level |2〉 to the two levels |1±〉 which are not coupled by
dipole interaction. We do not include Doppler broadening [165] and collision effects [54] in our
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3 Resonance fluorescence in intense x-ray free-electron-laser pulses

model, because they involve time scales much longer than the decay time of the system and, at
room temperature and for a pressure of 1 atmosphere, they can be neglected 1.

Auger decay and photoionization destroy the two-level system by further ionization of Ne+ to
levels which need not be taken into account explicitly. The Auger decay width is ΓA, whereas
the rate of photoionization ΓP,i(t), i ∈ {1, 2}, is [88]

ΓP,i(t) = σX,iJX(t), (3.12)

with the photoionization cross section for the level i σX,i = σi(ωX), the x-ray flux

JX(t) = I(t)/ωX, (3.13)

and the x-ray intensity

I(t) =
E2

0 (t)

8πα
. (3.14)

Notice that we evaluate the photoionization cross section and the flux at ωX since the cross
sections do not vary much within the bandwidth of the field.
The spontaneous decay of the excited level |2〉 to the states |1±〉 also represents a process which

does not conserve the norm of our two-level system. The total radiative decay rate is given by

ΓR = ΓR,σ+ + ΓR,z + ΓR,σ− = 3ΓR,z, (3.15)

where ΓR,z is the spontaneous decay width to the state |1〉 given in (3.11) and ΓR,σ± are defined
analogously for the other two decay channels; the second equality exploits Eq. (3.6). Since the
spontaneous decay of the excited level |2〉 only depends on the population of the state itself, as
we are going to show in the following EOMs, the actual dynamics of states |1±〉 can be indeed
neglected for our purposes.
The total decay processes are included in Eq. (3.10). In order to derive the EOMs for the four

relevant components of the density matrix, we move to the rotating frame [166], by introducing
the operators

ς̂ii = σ̂ii, ς̂12 = eiωXt σ̂12, ς̂21 = e−iωXt σ̂21, (3.16)

whose expectation values are denoted by

Rij(t) = 〈ς̂ji(t)〉, (3.17)

which, from (3.9) and (3.16), implies that Rii(t) = ρii(t), R12 = ρ12 e−iωXt and R21 = ρ21 eiωXt.
We introduce the vector

~R(t) = (R11(t), R12(t), R21(t), R22(t) )T,

whose components are given by the elements of the density matrix Rij(t) in the rotating frame.
Before the arrival of the light pulse the two-level system is assumed to be in the ground state,
i.e., ~R0 = (1, 0, 0, 0 )T. This assumption is supported by experimental observations of orbital
alignment in ions produced by strong-field ionization [167]. If the fraction of ions in the ML = 0
ground state is lower than 1, the resonance fluorescence spectrum must be multiplied by this
factor.

1In the case of neon cations driven on the 1s 2p−1 → 1s−1 2p transition at ω21 = 848 eV which we are going to
consider in the following, at 300 K and for a pressure of 1 atmosphere, the Doppler broadening is 0.0024 eV,
which is much less than the decay width of the system. Using the kinetic theory of gases, the mean time
between collisions is approximately 1 ns, longer by many orders of magnitude than the lifetime of a 1s hole.
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The master equation (3.10) can then be rewritten in matrix form

d~R(t)

dt
= M(t)~R(t), ~R(0) = ~R0, (3.18)

where M(t) is the following time-dependent matrix

M(t) =


−γ1(t) −iΩR(t)

2 e−iϕX(t) iΩR(t)
2 eiϕX(t) +ΓR,z

−iΩR(t)
2 eiϕX(t) i∆− 1

2 (γ1(t) + γ2(t)) 0 iΩR(t)
2 eiϕX(t)

iΩR(t)
2 e−iϕX(t) 0 −i∆− 1

2 (γ1(t) + γ2(t)) −iΩR(t)
2 e−iϕX(t)

0 iΩR(t)
2 e−iϕX(t) −iΩR(t)

2 eiϕX(t) −γ2(t)

 ,

(3.19)
with

γ1(t) = σX,1JX(t), (3.20a)
γ2(t) = σX,2JX(t) + ΓA + ΓR, (3.20b)

where we have defined the detuning ∆ = ω21 − ωX.
The knowledge of the time evolution of the atomic one-time expectation values is used to derive

the two-time expectation values necessary for the computation of the spectrum of resonance
fluorescence. For this purpose, we introduce the two-time vector

~Y (t1, t2) = (Y11(t1, t2), Y12(t1, t2), Y21(t1, t2), Y22(t1, t2) )T, (3.21)

whose elements are defined as

Yij(t1, t2) = 〈ς̂ji(t1)ς̂12(t2)〉. (3.22)

Applying the quantum regression theorem [166,168] yields

∂~Y (t1, t2)

∂t1
= M(t1)~Y (t1, t2), t1 ≥ t2, (3.23)

with the initial conditions given by Yij(t2, t2) = δi1R2j(t2). The solution of the first set of differ-
ential equations (3.18) provides one with the initial conditions for the second set of differential
equations (3.23), whose solution gives

Y12(t1, t2) = 〈ς̂21(t1)ς̂12(t2)〉
= 〈σ̂21(t1)σ̂12(t2)〉 e−iωX(t1−t2).

(3.24)

3.1.3 Spectrum of resonance fluorescence

The study and calculation of the spectral properties of the fluorescent light requires the knowledge
of the first-order autocorrelation function of the electric field operator [8, 162]

G(1)(t1, t2, r) = 〈Ê−(r, t1) · Ê+(r, t2)〉, (3.25)

which we defined in Eq. (2.130).
In the case of continuous-wave (cw) light, when the first-order autocorrelation function depends

explicitly only on the time difference τ = t1 − t2, i.e., G(1)(t1, t2, r) = G(1)(τ, r), the Wiener-
Khintchine theorem [53] states that the power spectrum of resonance fluorescence, S(r, ω),
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Figure 3.2: Spherical coordinates with respect to the observation point r (red arrow).

associated with the rate of photons emitted at a given frequency is well defined and given by the
Fourier transform of G(1)(τ, r) [169]. However, for ultrashort light pulses, G(1)(t1, t2, r) explicitly
depends upon the two distinct instants t1 and t2 and the Wiener-Khintchine theorem cannot be
analogously used to define a power spectrum. Instead, one needs to study the energy spectrum
of resonance fluorescence, W (r, ω), defined as a quantity proportional to the probability that an
ideal photon detector—modeled itself as a two-level system with tunable transition energy ω—is
excited by the fluorescent light. In first order of perturbation theory and in the electric dipole
approximation, the energy spectrum is defined as [162]

W (r, ω) =
1

4πα

∫ +∞

−∞

∫ +∞

−∞
G(1)(t1, t2, r) e−iω(t1−t2) dt1 dt2. (3.26)

Here, W (r, ω) dω dA represents the energy detected on average in the differential energy interval
[ω, ω + dω] and in a surface element dA = r2 dΩ êr centered at r = r êr. Further, α is the
fine-structure constant, dΩ is the differential solid angle and êr = r/|r| is the unit vector in the
direction of observation (0 is the position of the atom).
We assume that the driving field propagates along the y axis. As shown in Eqs. (2.68) and

(2.70), in the far-field limit and in the electric-dipole approximation—away from the y propaga-
tion axis in which also the driving field would be present—the electric-field operator associated
with the fluorescent light can be related to the atomic polarization operator d̂+(t) [Eq. (3.6)] via
the relation [53,57,62]

Ê+(r, t) =
ω2

21

c2r

(
d̂+(t− r/c)− (d̂+(t− r/c) · êr) êr

)
. (3.27)

We consider here the resonance fluorescence spectrum emitted by the two-level system dis-
played in Fig. 3.1 which is measured by rotating the detector around the y axis of Fig. 1.2, i.e.
the spectrum at point r = r êr(θ), with êr(θ) = cos θ êx + sin θ êz, where θ is the angle between
êr(θ) and the x axis, lying in the x − z plane, as in Fig. 3.2. We further introduce the vector
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êθ(θ) = − sin θ êx + cos θ êz, which also lies in the x− z plane and is orthogonal to êr(θ); in this
way, from (3.6) and (3.27), one has that Ê+(r êr(θ), t) = Ê+

θ (r êr(θ), t) êθ(θ)+Ê+
y (r êr(θ), t) êy,

with

Ê+
θ (r êr(θ), t) =

℘ω2
21

c2r

[
cos θ σ̂102(t′) + sin θ

σ̂1+2(t′)− σ̂1−2(t′)
√

2

]
(3.28)

and

Ê+
y (r êr, t) =

i√
2

℘ω2
21

c2r

(
σ̂1+2(t′) + σ̂1−2(t′)

)
, (3.29)

with t′ = t− r/c. The autocorrelation function (3.25) is

G(1)(t1, t2, r êr(θ)) = G
(1)
θ (t1, t2, r êr(θ)) +G(1)

y (t1, t2, r êr(θ)),

with

G
(1)
θ (t1, t2, r êr(θ)) = I(r)

[
cos2 θ 〈σ̂210(t′1) σ̂102(t′2)〉

+
sin2 θ

2

(
〈σ̂21−(t′1) σ̂1−2(t′2)〉+ 〈σ̂21+(t′1) σ̂1+2(t′2)〉

)] (3.30)

and

G(1)
y (t1, t2, r êr(θ)) = I(r)

1

2

(
〈σ̂21−(t′1) σ̂1−2(t′2)〉+ 〈σ̂21+(t′1) σ̂1+2(t′2)〉

)
, (3.31)

where

I(r) =
(ω2

21 |℘|
c2r

)2
(3.32)

is a factor dependent on the position of observation at which the detector is placed and having
the dimension of an intensity [62] and the application of the quantum regression theorem allows
one to show that the cross-terms 〈σ̂2i(t

′
1) σ̂j2(t′2)〉, with i, j ∈ {1+, 1−, 10}, i 6= j, vanish for any

t′1 and t′2. We notice, therefore, that the photons emitted in transitions to the two undriven states
|1±〉 can be both polarized along the axes êy and êθ(θ). Conversely, the photons spontaneously
emitted to the state |10〉 are exclusively polarized along the axis êθ(θ) and their intensity, varying
in space as cos2 θ, is maximized for θ = 0, π. For the same angles the intensity of the photons
that are emitted in transitions to the two undriven states |1±〉 and which are linearly polarized
along êθ(θ) vanishes. For this reason, we choose to study the spectrum of resonance fluorescence
for θ = 0, êr = êx and êθ = êz. Polarization-dependent detection of the resonance fluorescence
spectrum can take advantage of the properties just presented.
If the detector is placed along the x axis, as shown in Fig. 1.2, then êr = êx, θ = 0, and one

obtains
G(1)(t1, t2, r êx) = G(1)

z (t1, t2, r êx) +G(1)
y (t1, t2, r êx), (3.33)

with
G(1)
z (t1, t2, r êx) = I(r) 〈σ̂210(t′1) σ̂102(t′2)〉 (3.34)

and
G(1)
y (t1, t2, r êx) = I(r)

1

2

(
〈σ̂21−(t′1) σ̂1−2(t′2)〉+ 〈σ̂21+(t′1) σ̂1+2(t′2)〉

)
, (3.35)

where I(r) was defined in Eq. (3.32).
With (3.26) and (3.33), the resonance fluorescence energy spectrum is also split into two terms

W (r êx, ω) = Wz(r êx, ω) + Wy(r êx, ω). The calculation of Wy(ω, r êx) goes beyond the two-
level approximation we adopt in this Chapter and requires a complete four-level description of the
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system. Here, we describe the appearance of Rabi flopping in the resonance fluorescence spectrum
for those photons which are emitted in the transition to the ground state |1〉. For êr = êx
this represents the only contribution in Wz(r êx, ω) and its observation can be experimentally
realized using a polarization-dependent detection to selectively detect the radiation which is
linearly polarized in the z direction, in order to select those fluorescence photons associated with
the transition to the state with ML = 0.
Polarization-dependent measurements can be very informative, e.g., they have played an im-

portant role for molecules where the valence orbitals can be resolved [170–172]. Reflections from
mirrors, gratings, or crystals at angles that achieve high polarization selectivity at the frequency
of the atomic transition involved allow one to measure the polarization of the radiation. The
use of wavelength-dispersive spectrometers, which involve reflecting x rays from a grating or
crystal, can provide one with polarization selectivity. Energy-dispersive spectrometers, such as
a cryogenic spectrometer, can be polarization-sensitive if they are pixellated and the x rays are
hard enough to Compton scatter in the absorber. In addition, polarization-dependent detection
in a parallel and perpendicular setup facilitates background reduction [163].
By introducing the time delay τ = t1−t2 and noticing that 〈σ̂21(t1)σ̂12(t2)〉 = 〈σ̂21(t2)σ̂12(t1)〉∗,

we conclude that knowledge of 〈σ̂21(t1)σ̂12(t2)〉 in the region t1 ≥ t2 (and hence τ ≥ 0) is sufficient
for the calculation of the energy spectrum of resonance fluorescence [166]. We rewrite (3.26) in
compact form as

Wz(r êx, ω) =
3ΓR,z ω21

8π r2

∫ +∞

−∞

∫ +∞

0
Re
[
e−iωτ 〈σ̂21(t2 + τ)σ̂12(t2)〉

]
dτ dt2, (3.36)

where we use Eqs. (3.11), (3.32), and (3.34). As a result, one can use Y12(t1, t2) from the solution
of (3.23) to calculate the energy spectrum of resonance fluorescence.
In the following, we are going to compute Wz(Ω, ω) = r2Wz(r êx, ω) for a detector along the

x axis. Wz(Ω, ω) dΩ dω is the energy emitted into dΩ and dω; in atomic units Wz(Ω, ω) has
the dimension of 1/steradian. Finally, we notice that the total detected energy emitted into dΩ
is

E =

∫ +∞

−∞
Wz(Ω, ω) dω =

3ΓR,z ω21

8

∫ +∞

−∞
R22(t) dt, (3.37)

exploiting the relation

2π δ(t1 − t2) =

∫ +∞

−∞
e−iω(t1−t2) dω.

3.2 Results and discussion

Here we apply our two-level model to study Ne+ cations driven by x rays on the 1s 2p−1 → 1s−1 2p
transition at ω21 = 848 eV [139], i.e., the detuning is ∆ = ω21 − ωX = 0. Scattered x rays could
be observed if the XFEL beam energy is detuned from resonance. As demonstrated in Ref. [173],
for example, Compton scattering, resonant Raman scattering, and Rayleigh scattering can be
observed as the resonance is approached from below. At 848 eV, however, resonance fluorescence
will dominate the measured spectrum.
The destruction rate of our effective two-level system is dominated by the Auger decay width

of Ne 1s−1 which is ΓA = 0.27 eV [174]. The dipole moment ℘ = 0.0524 a0 is computed with the
Hartree-Fock-Slater mean-field model [175–179], whereas the photoionization cross sections are
computed using the Los Alamos Atomic Physics Codes [180,181]. From Eq. (3.11) the radiative
decay width follows, where ΓR,z = 0.0012 eV, the total decay rate is ΓR = 0.0039 eV [182], in
good agreement with Eq. (3.15).
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The spectrumWz(Ω, ω) that we will compute represents the emitted photons linearly polarized
along the z direction from our two-level model. Off-resonant Rayleigh scattering from 2s and
2p electrons in Ne is, however, not taken into account. This elastic scattering is predicted to be
anisotropically distributed for a linearly polarized electric field: in our case, E(t) = E(t) êz, the
intensity of the elastic scattering would be affected by the source-dependent polarization factor
sin2 ψ [88], where ψ is the angle between the z axis and the direction of detection êr at which the
detector is placed. This additional contribution is not included in the two-level approximation
that we implement in this Chapter. Its only effect is an enlargement of the central peak of the
spectrum.

3.2.1 Gaussian x-ray pulses

Self-seeding techniques at LCLS are providing one with pulses with an approximately Gaussian
temporal profile [116–118]; it is interesting therefore to predict the evolution of the atomic
properties in time and the spectrum of resonance fluorescence for Ne+ cations for this case. We
write the Gaussian pulse as

E0,G(t) = Emax e−
t2

2T2 , ϕX(t) = 0, (3.38)

where T = τG/(2
√

ln 2) and τG is the FWHM of E2
0,G(t). The FWHM of |Ẽ0,G(ω)|2 is ∆ωG =

4 ln 2/τG, where

Ẽ0,G(ω) =

∫
E0,G(t) eiωt dt = T

√
2π Emax e−

ω2T2

2

is the Fourier transform of E0,G(t) [164]. The peak intensity [Eq. (3.14)] is IG = E2
max/(8πα),

yielding a maximum Rabi frequency [Eq. (3.8)] ΩRG,max = ℘Emax = ℘
√

8πα IG.
Further, we recall the definition (2.115) of the pulse area

Q =

∫ +∞

−∞
ΩR(t) dt, (3.39)

which in Sec. 2.6 was shown to play an important role in the description of the dynamics of
a two-level system in interaction with a regular pulse (ϕX(t) = 0) and in the properties of
the corresponding resonance fluorescence spectrum [71–74]. Let us assume for now that level
decay and photoionization are both negligible. Then, for ∆ = 0, if n is a natural number and
Q = 2πn, the final population after the interaction with the pulse is in the ground state, whereas
for Q = 2π(n + 1/2) a complete inversion happens and the total final population occupies the
excited state. For a Gaussian regular pulse the area (3.39) is QG = ΩRG,max τG

√
π/(2 ln 2).

We begin by studying the interaction of Ne+ cations driven by a Gaussian x-ray pulse with
peak intensity IG = 2.6× 1017 W/cm2 and τG = 5 fs: Such x-ray pulses are becoming available
from seeding techniques implemented at LCLS [116–118]. In Fig. 3.3 we show the time evolution
of the two-level system when Auger decay is included and when it is not included (ΓA = 0) in
the EOMs (3.18). The time evolution of the total population of the system reveals that Auger
decay is the major depopulation mechanism. Photoionization makes, however, also a noticeable
contribution at the chosen x-ray intensity; the maximum rates of photoionization are [Eq. (3.12)]
ΓP1,max = 0.03 eV and ΓP2,max = 0.04 eV, which is small compared to the Auger decay width
ΓA = 0.27 eV. In Ref. [138] this channel was, therefore, neglected entirely. The decay time
associated with Auger decay is approximately given by ∆τ = 1/ΓA = 2.4 fs. As one notices
in Fig. 3.3, the total population of the system almost completely vanishes after the pulse of

41



3 Resonance fluorescence in intense x-ray free-electron-laser pulses

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

t HfsL

P
o
p
u
la

ti
o
n

Figure 3.3: Time evolution of the population of a two-level system driven by a Gaussian x-ray pulse (3.38)
of peak intensity IG = 2.6 × 1017 W/cm2 and FWHM duration τG = 5 fs, corresponding to a pulse area of
QG = 14π. The dashed lines show the total population of the two-level system ρ11(t) + ρ22(t) [Eq. (3.9)]
in the absence (black line) and presence (red line) of Auger decay. The solid lines show the corresponding
occupation of the excited state ρ22(t).

5 fs. Whether Auger decay is included or not does not interfere with Rabi oscillations which are
clearly discernible; the pulse area QG = 7× 2π results in 7 oscillations.
The corresponding energy spectra of resonance fluorescence are shown in Fig. 3.4. The

Rabi oscillations induced by the intense external x-ray field appear in both cases with and
without Auger decay, with nonvanishing contributions in the region approximately given by
[−ΩRG,max , ΩRG,max], with the maximum Rabi frequency ΩR,max,G = 3.9 eV. First, when only
spontaneous decay and photoionization are taken into account, a multi-peak structure is pre-
dicted, in analogy to what was computed in absence of any decay processes [71]. The presence of
many peaks is nontrivially related to the pulse-shape of the electric field, i.e., to its finite duration
and width. The seven peaks in the energy spectrum—six lateral peaks and the seventh central
one—are related, as was shown in [71], to the pulse area QG = 7×2π. Second, when Auger decay
is taken into account, the multipeak structure of the spectrum becomes smoother because of the
increase in the decay rate. Furthermore, the intensity of the radiation emitted by the two-level
system decreases, since Auger decay destroys it and, consequently, reduces the fraction of atoms
which can Rabi flop. The resulting maximum Rabi frequency ΩR,max,G = 3.9 eV is however much
higher than the bandwidth of the pulse, ∆ωG = 0.36 eV, the Auger decay width, ΓA = 0.27 eV,
and the frequency resolution of present spectrometers ∆ωres = 0.4 eV [183]. Hence the signature
of Rabi flopping, clearly visible in Fig. 3.4, will be detectable.
In Fig. 3.5 and 3.6 we consider different pulses with τG = 2 fs and QG = 2π(n− 1/2) [panels

(a)] or QG = 2πn [panels (b)], for n ∈ {1, 2, 3}. One can clearly see a dependence of the
population of the two-level system upon the area QG. When this area is an odd multiple of π
[Fig. 3.5a], a major part of the population at the end of the pulse occupies the excited state:
One can discern the n− 1/2 oscillations due to the interaction with the pulse and the following
Auger decay of the system when the pulse is over. As shown in Fig. 3.6a, the long Auger decay
which follows the interaction with the pulse results in a high Lorentzian peak in the spectrum of
resonance fluorescence at ω = ωX with a width that can be related to the major decay process,
i.e., ΓA. This peak results from the fact that the excited system decays freely, radiatively and
electronically, without Rabi flopping. In contrast, a considerably different situation appears
when the area of the pulse is an even multiple of π [Fig. 3.5b]: after n complete oscillations, the
population of the excited state is almost 0 at the end of the pulse. Consequently, the previously
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Figure 3.4: Energy spectrum of resonance fluorescence for the Gaussian pulse used in Fig. 3.3 in the absence
(black, dashed line) and presence (red, solid line) of Auger decay. As indicated by the arrows, the scale on the
left refers to the black, dashed curve, whereas the scale on the right refers to the red, solid curve.
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Figure 3.5: Time evolution of the population of the excited state ρ22(t) for a two-level system driven by
Gaussian x-ray pulses [Eq. (3.38)] of different peak intensities (shown in the legend) and a FWHM duration
τG = 2 fs. In panel (a) pulse areas QG = 2π(n − 1/2), for n = 1 (red, dotted line), n = 2 (black, dashed
line) and n = 3 (green, solid line) are used. In panel (b) pulse areas QG = 2πn, for n = 1 (red, dotted line),
n = 2 (black, dashed line) and n = 3 (green, solid line) are used.

present post-x-ray-exposure decay does not take place. The total emitted energy is therefore
lower because the central peak at ω21 is reduced by almost one order of magnitude, as one can
clearly see by looking at Fig. 3.6b. In the case of a longer pulse, so that the two-level system
has completely Auger decayed before its conclusion, the difference between pulses whose areas
are an odd or even multiple of π becomes less important.
The dependence of the resonance fluorescence spectrum upon the duration of the pulse is an

additional point that needs to be investigated. In order to observe this dependence, in Fig. 3.7
we study the main features of the spectrum as functions of the normalized pulse area QG/(2π)
and of the pulse FWHM duration τG. We recall that for fixed τG the area of the Gaussian
pulse is directly proportional to the square root of the intensity, QG = 2π℘τG

√
(α/ ln 2) IG. In

Fig. 3.7a we show the total emitted energy E [Eq. (3.37)] for three different values of τG; for
the shortest pulses one can clearly observe an oscillating behaviour of the total emitted energy
as a function of QG/(2π); this behaviour is less pronounced for the longest pulses. It is also
worthwhile to notice that for increasing values of QG, the intensity can become so high that
also for the shortest pulses the system is in any case completely destroyed by photoionization
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Figure 3.6: Spectrum of resonance fluorescence of a two-level system driven by Gaussian x-ray pulses of different
peak intensities (shown in the legend) and a FWHM duration τG = 2 fs. Line styles of panels (a) and (b) as
in Fig. 3.5.

within the duration of the pulse itself. The increasing importance of photoionization implies a
less remarkable difference in the time evolution of systems driven by pulses whose areas are an
odd or even multiple of π and, consequently, resonance fluorescence spectra characterized by a
lower dependence upon the area of the pulse.
In Fig. 3.7b we display πΓAW (ωX)/2, where W (ωX) is the central maximum value of the

spectrum of resonance fluorescence. The constant prefactor πΓA/2 allows us to compare the
shape of the spectrum of resonance fluorescence with that of a Lorentzian function of Auger
decay width ΓA. If the only process involved was a decay causing a rate width Γ , then the
spectrum of resonance fluorescence would be proportional to a Lorentzian function

L(ω) =
πΓ

2
L0

Γ/(2π)

(ω − ωX)2 + (Γ/2)2
, (3.40)

with peak value L0 = L(ωX) and with total emitted energy EL =
∫ +∞
−∞ L(ω) dω = πΓL0/2. By

computing in Fig. 3.7b the quantity πΓAW (ωX)/2, we can relate it to the actual total emitted
radiation of Fig. 3.7a and understand the relative importance of Auger decay in relation to the
other decay processes. By comparing the oscillating features in Fig. 3.7b with those of Fig. 3.7a,
one notices that πΓAW (ωX)/2 approaches E only for short pulses satisfying Q = 2π(n − 1/2).
In these cases, as we have already discussed in Fig. 3.5a, the main term is represented by post-
x-ray-exposure Auger decay of the system. Nonetheless, because of the nonnegligible role played
by Rabi flopping, photoionization and spontaneous decay, one can notice in Fig. 3.7 a clear
difference between πΓAW (ωX)/2 and E .
Figures 3.4 and 3.6 reveal that Rabi flopping produces a clear signature in the spectrum of

resonance fluorescence of Gaussian pulses, which self-seeding at LCLS is rendering available
[116–118]. However, since shot-to-shot variations in pulse intensity and duration are anticipated,
we investigate how the spectrum of resonance fluorescence is influenced by the presence of these
fluctuations. For this purpose, we compute the energy spectrum of resonance fluorescence for a
wide set of Gaussian pulses [Eq. (3.38)], by independently randomizing their duration and energy.
The mean duration is chosen to be τG = 7 fs and the mean peak intensity is IG = 7×1017 W/cm2,
giving a mean peak Rabi frequency of approximately 6 eV. We compute the energy spectrum of
resonance fluorescence for 500 different realizations of the driving pulses. Thereby, the duration
and the intensity are random variables whose probability distribution is Gaussian with a variance
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Figure 3.7: (a) Total emitted energy E =
∫ +∞
−∞ Sz(ω, Ω) dω and (b) peak value of the spectrum W (ωX)

multiplied by πΓA/2 as functions of the normalized pulse area QG/(2π) [Eq. (3.39)] for τG = 2 fs (red,
dashed line), τG = 5 fs (black, dotted line) and τG = 10 fs (green, solid line).
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Figure 3.8: Average resonance fluorescence spectrum for 500 different realizations of the Gaussian driving pulses
[Eq. (3.38)]. The mean duration of the pulses is τ̄G = 7 fs, the mean peak intensity is Ī = 7× 1017 W/cm2.
Here, τG and I are Gaussian random variables independently chosen for each realization with a variance equal
to the 20% of the respective mean values.

of 20% of the mean value. The resulting average resonance fluorescence spectrum is shown in
Fig. 3.8. It reveals that Rabi flopping is discernible even if energy and duration of the pulse vary
appreciably from shot to shot.

3.2.2 Self-amplified-spontaneous-emission x-ray pulses

The SASE light is modeled with the Partial Coherence Method (PCM) [184,185], whose details
are discussed in Appendix B. The SASE pulses have a central photon energy which is tuned to
the transition energy of Ne+ of 848 eV, with a bandwidth (FWHM of |Ẽ(ω)|2) of ∆ωSASE = 6 eV.
The envelope function f(t) that we adopt [Eq. (B.8)] has FWHM duration τenv = 6.5 fs. Further
details are discussed in Appendix B.
In Fig. 3.9a we display the time-dependent Rabi frequency [Eq. (3.8)] ΩR(t) = ℘ E0(t) induced

by the amplitude of a SASE pulse and in Fig. 3.9b the phase ϕX(t) of a SASE LCLS pulse obtained
with the PCM method. The mean Rabi frequency and phase are also given. In Fig. 3.10a the
time evolution of the population of the excited state and the total population of the two-level
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Figure 3.9: (a) The Rabi frequency ΩR(t) induced by the amplitude of a SASE pulse and (b) the phase ϕX(t)
of the SASE pulse (red, solid lines) and their mean value (black, dashed lines). The mean pulse has a duration
τenv = 6.5 fs and a peak intensity I = 3.8× 1018 W/cm2. Its bandwidth is ∆ωSASE = 6 eV.
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Figure 3.10: Time evolution of a two-level system driven by a SASE pulse with the time-dependent Rabi
frequency of Fig. 3.9a. The phase is assumed to be (a) constant, ϕX(t) = 0, or (b) to be equal to the phase
of Fig. 3.9b. The red, dashed line shows the evolution of the total population ρ11(t) + ρ22(t) [Eq. (3.9)]; the
black, solid line represents the occupation of the excited state ρ22(t).

system are plotted if the phase of the pulse is supposed constant, ϕX(t) = 0, and the spiky time-
dependent Rabi frequency of Fig. 3.9a is used to integrate the EOMs. In Fig. 3.10b both the Rabi
frequency and the phase of Fig. 3.9 are used to integrate the EOMs. If the phase fluctuations
are neglected, the decay of the system is slower; in both cases, due to the chaotic SASE pulse
shape, the time evolution is very irregular. For the case displayed in Fig. 3.10a, though, one can
see the presence of complete oscillations in ρ22(t), reaching its minimum at ρ22(t) = 0 and its
maximum when ρ11(t) = 0: This feature disappears when the phase fluctuations of Fig. 3.9b are
taken into account.
In contrast to the case of a Gaussian pulse, one cannot extract from the time evolution of the

system any clear relation to the pulse area. Nevertheless, one observes a relation between the Rabi
frequency of Fig. 3.9a and the frequency with which the population of the excited state ρ22(t)
oscillates in Fig. 3.10. These oscillations, in fact, take place in a time interval which is shorter
than the time characterizing the random fluctuations of Fig. 3.9. They are Rabi oscillations
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Figure 3.11: Time evolution of a two-level system driven by SASE pulses generated with the PCM described in
Appendix B. In both cases the pulses have a mean duration τenv = 6.5 fs and a bandwidth ∆ωSASE = 6 eV.
The peak intensity is (a) I = 3.8× 1015 W/cm2 and (b) I = 8.8× 1017 W/cm2. The red, dashed line shows
the evolution of the total population ρ11(t) +ρ22(t) [Eq. (3.9)]; the black, solid line represents the occupation
of the excited state ρ22(t).

induced by the interaction with the intense driving field; as we show in Fig. 3.11, if a pulse of
similar bandwidth but of far lower intensity is used to excite the system, the time evolution
of the atomic system displays slower oscillations, whose mean frequency increases at increasing
intensities. We further notice that, because of photoionization, the increase in the intensity of
the driving field reduces the actual decay time of the system: This emerges by comparing the
graphs displayed in Fig. 3.11 with that of Fig. 3.10b.
In Fig. 3.12 we display the resonance fluorescence spectrum from SASE x rays. To observe Rabi

flopping we need the Rabi oscillations to occur within the coherence time of the pulse; for this
reason, the intensity of the external electric field is chosen such that the maximum Rabi frequency
is larger than the bandwidth ∆ωSASE of the pulse itself. We look in particular at the emitted
spectrum by averaging over 1000 independent SASE pulses. The tails appearing in the spectrum
of Fig. 3.12 are nonvanishing contributions at frequencies higher than the bandwidth of the pulse
itself. These tails would not appear if the field had equal bandwidth but lower intensity: They
represent, therefore, a signature of the Rabi oscillations described in Fig. 3.10. These tails are
also in good agreement with the spectrum emitted when a Gaussian transform-limited pulse of
identical intensity and time duration—but clearly with much lower bandwidth—is used to excite
the system. If the phase of the SASE pulse remained constant and only its amplitude displayed
chaotic fluctuations, then the spectrum emitted after one single pulse would be symmetric;
furthermore, the average spectrum would present a lower width, due to the absence of phase
fluctuations. A clear observation of the tails of Fig. 3.12 and of the enlargement of the resonance
fluorescence spectrum at increasing intensities might represent a possible way to detect Rabi
flopping also at present SASE facilities.
Analogous conclusions had been drawn for the resonant Auger electron spectrum [138]: The

width of the resonant Auger electron line profile was expected to help in estimating the presence
of Rabi oscillations in the system. Nonetheless, the very short coherence times at present XFEL
facilities limited the actual experimental observability of this effect at LCLS [139].
As last point, we study the dependence of the resonance fluorescence spectrum on the duration

of the SASE pulse. In Fig. 3.13 we plot the average spectrum emitted by Ne+ cations when excited
by an ultrashort pulse with peak intensity I = 1.6×1018 W/cm2 and bandwidth ∆ωSASE = 6 eV.
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Figure 3.12: Resonance fluorescence spectrum for SASE pulses. The black, dotted line shows the spectrum
from a Gaussian pulse with FWHM duration τG = 6.5 fs and peak intensity IG = 3.8 × 1018 W/cm2. The
red, solid line is the arithmetic mean over 1000 SASE pulses with average peak intensity IG, FWHM duration
τG and a bandwidth of ∆ωSASE = 6 eV. The green, dashed line is for the pulse in Fig. 3.9.
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Figure 3.13: Average resonance fluorescence spectrum over SASE pulses. The pulses have an average peak
intensity of I = 1.6 × 1018 W/cm2 and bandwidth ∆ωSASE = 6 eV. The red, solid line shows the average
over SASE pulses with average FWHM duration of τenv = 6.5 fs; the black, dotted line is associated with
pulses of average FWHM duration of τenv = 2 fs.

The results are obtained by averaging over spectra resulting from SASE pulses respectively with
a FWHM duration of τenv = 6.5 fs and of τenv = 2 fs. It is worth noticing a remarkable difference
between different pulse durations. Naively, after the previous considerations, one would assume
that the resonance fluorescence peak has a FWHM associated with the large bandwidth of the
pulse ∆ωSASE = 6 eV. For the shortest pulses, though, the resonance fluorescence spectrum
exhibits a higher central peak whose width is clearly lower than ∆ωSASE. The explanation is
based on the same arguments that we used to describe the spectra depicted in Fig. 3.6a, in
which the post-x-ray-exposure decay results in a high Lorentzian peak of width given by the
Auger decay width of the system. Analogously, for the ultrashort SASE pulses with τenv = 2 fs
used in Fig. 3.13, the interaction with the pulse is shorter than the time needed by the system to
completely decay; hence, at the end of the pulse, the probability of destruction of the system is
about 90%. The Auger decay which follows the interaction with an ultrashort SASE pulse implies,
therefore, the high central peak in the resonance fluorescence spectrum shown in Fig. 3.13; for
the same reason, its width is lower than the bandwidth of the pulse itself. A similar reduction
of the FWHM was also observed in Ref. [139] in the Auger electron spectrum. In that case, by
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using the same x-ray pulse to create Ne+ ions and to drive the 1s 2p−1 → 1s−1 2p transition, the
system could not completely Auger decay before the end of the pulse. The decay of the excited
state with the natural decay time of the system turned out to dominate the observation.

3.3 Conclusions

We develop a two-level model of resonance fluorescence whose time evolution is described by
master equations which include the coherent interaction of the system with the classical x-ray
field. All processes that destroy the system, namely, Auger decay and photoionization, are fully
taken into account. We use our model to describe Ne+ cations driven by an intense linearly
polarized x-ray field tuned to the 1s 2p−1 → 1s−1 2p transition at 848 eV; the transition is
well isolated, i.e., separated by more than 70 natural linewidths from the lowest lying Rydberg
excitation, 1s → 3p [139]. The intensity available at present x-ray FELs such as LCLS is
sufficiently high to induce Rabi flopping at frequencies that compete with the rate of destruction
of the system. The two-level approximation allows us to investigate the resonance fluorescence of
photons associated with the transition to the state withML = 0 for two different scenarios. First,
we consider SASE radiation from present XFELs; second, we explore resonance fluorescence from
coherent Gaussian pulses which are becoming available via the use of self-seeding techniques at
fourth-generation x-ray sources [116–119]. The measurement of the spectra predicted in this
Chapter need to take advantage of the polarization properties of the emitted light.
In the case of laser-like Gaussian pulses, a clear signature of Rabi flopping is predicted. We

show that the observation of Rabi flopping persists even when intensity and duration of the pulse
vary appreciably from shot to shot. For SASE pulses, although Rabi flopping does not manifest
itself as clearly as in the previous case, we predict the appearance of tails in the spectrum that
might represent a good signature of Rabi oscillations in the atomic system. These tails would not
appear if the system was excited by a less intense pulse of equally large bandwidth. In the case
of the resonant Auger spectrum, however, the presently large bandwidth at LCLS represented a
limit for the observation of analogous effects in the resonant Auger electron spectrum [139] and
the signature of Rabi flopping did not appear indistinguishably. Also in the case of resonance
fluorescence the identification of Rabi flopping in the spectrum might be challenging. The am-
plitude of the aforementioned tails is predicted to be neither very high nor easily distinguishable.
A much clearer signature is, however, identified for ions driven by Gaussian pulses, rendering the
prospects with self-seeded LCLS very promising.
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4 X-ray frequency combs from resonance fluorescence
with narrow-bandwidth x rays

In this Chapter, we develop an x-ray pulse-shaping scheme to imprint a frequency comb onto
the x-ray resonance fluorescence spectrum. In Sec. 4.1 we present the theoretical model which
we utilize in the remaining of the Chapter. The particles in interaction with three external
electric fields are modeled as four-level systems [Sec. 4.1.1]: After having presented the interaction
Hamiltonians, we exploit the single-particle equations of motion to prove the existence of a
periodic, nontrivial solution. In Sec. 4.1.2 we discuss the space properties of the coherent and
incoherent parts of the spectrum due to many-particle effects and prove the existence of a comb in
the x-ray spectrum of resonance fluorescence ensuing from the periodic structure of the equations
of motion. In Sec. 4.2, the four-level scheme is employed to model He-like Be2+ ions in interaction
with narrow-bandwidth x rays, an optical laser, and an optical frequency comb. Specifically, we
analyze the properties of the imprinted x-ray comb for different parameters of the driving fields.
Sec. 4.3 concludes the Chapter. Parts of this Chapter have been presented in Ref. [186].

4.1 Theoretical model

The results presented in this Chapter are triggered by the conclusions which were drawn in
Ref. [75]. In particular, when (i) the equations of motion (EOMs) governing the interaction of
an atomic system with external driving fields are perfectly periodic such that, (ii) when turn-on
effects have ceased, the atomic system reaches a nontrivial periodic solution, then the spectrum
of resonance fluorescence contains an incoherent part which consists of equally spaced delta peaks
centered at an atomic transition energy. With “trivial solution”, we refer here to the case in which
all the population is stored in the ground state: Although this can be considered an asymptotic
“periodic” solution, it is also of very little interest.
In this Chapter we adopt a four-level model in order to implement a resonance fluorescence

scheme of x-ray comb generation. Before going into the details, we provide an intuitive explana-
tion of the reasons whereby four levels are needed.
In order to imprint a comb onto the x-ray emission spectrum, the three-level scheme in Fig. 4.1a

may be sufficient. There, the transition energy between the ground state |g〉 and the first excited
state |e1〉 is in the x-ray regime, whereas the transition energy between the two excited states
|e2〉 and |e1〉 is in the optical range. Population and coherence stored in |e2〉 can be transferred
to the excited state |e1〉 via an optical field driving the corresponding optical transition: The
resulting spontaneous decay of |e1〉 would imply the emission of optically manipulated x rays. In
order to guarantee both an efficient optical driving and a significant x-ray emission, the involved
transitions |g〉 ↔ |e1〉 and |e2〉 ↔ |e1〉 ought to be E1 allowed. Parity reasons imply that the
remaining transition |g〉 ↔ |e2〉 is not E1 allowed and cannot be driven efficiently.
The just described three-level system, with optical population transfer from |e2〉 to |e1〉 and

consequent decay to the ground state, converges to a very trivial solution of the EOMs, with all
the population stored in the ground state. In contrast to the method which we will employ in
Chapter 6, the approach that we develop here does require a nontrivial asymptotic solution of the
EOMs, which can be achieved only by repopulating |e2〉. Since direct driving from the ground
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?

(a) (b)

Figure 4.1: (a) Three-level scheme for the generation of an x-ray frequency comb via the manipulation, with
an optical frequency comb (green, solid line) driving the e2 ↔ e1 transition, of the spontaneous decay (blue,
dashed line) from state |e1〉 to the ground state |g〉. (b) Four-level scheme for efficient repopulation of state
|e2〉 through an intermediate, helper level |h〉: an x-ray field (brown, solid line) and an optical laser (red, solid
line) are used to drive the transitions g → h and h→ e2, respectively.

state is prevented by the previously described parity reasons, one needs to take advantage of a
helper intermediate state |h〉 [Fig. 4.1b], such that an efficient driving of the E1 allowed transitions
|g〉 ↔ |h〉 and |h〉 ↔ |e2〉 makes it possible to repopulate |e2〉.

The remaining of this Section describes in detail the four-level model, whose adoption was
intuitively justified here. In particular, we aim at specializing the general description which we
provided in Chapter 2 to the case of N particles, at different positions rn, n ∈ {1, . . . , N},
modeled as four-level systems interacting with three external fields.

4.1.1 Four-level model

4.1.1.1 Electric-dipole Hamiltonians

We display in Fig. 4.2a the experimental setup that we are going to use in the following. An
x-ray field EX(r, t), an optical continuous-wave (cw) field EL(r, t), and an optical frequency
comb EC(r, t), irradiate an ensemble of ions. The fields copropagate in the y direction; at time
t and position r, for q ∈ {X, L, C}, they are given by

Eq(r, t) = Eq,0[t−r · (∂kq/∂ωq)] cos [ωqt+ ϕq(t) + ϕq,0 − kq · r] êq, (4.1)

with amplitude Eq,0(t), carrier frequency ωq, phase ϕq(t), carrier-envelope phase (CEP) ϕq,0,
wavevector kq = (ωq/c) êy, linear polarization vector êq, and intensity Iq = |Eq,0|2/(8πα) [164].
Furthermore, êX = êL = êz, êC = êx, where êx, êy, and êz are the unit vectors in the x, y, and
z direction, and ∂kq/∂ωq = êq/c are the inverses of the group velocities for each field; further,
c is the speed of light in vacuum and α = 1/c is the fine-structure constant. The indeces of
refraction nq for each field are here set equal to 1, thus implying that kq = (ωq/c). This relies on
the assumption of a dilute-gas setting, such that the phase velocity of all electric fields, in very
good approximation, equals the speed of light, resulting in good phase matching [143, 187, 188].
A direct consequence of this assumption is that ∂kq/∂ωq = (1/c) êy.
The bandwidth of EL(r, t) is so small that it can be entirely neglected. We also assume that

EX(r, t) has constant amplitude, EX,0(t) = ĒX,0, and phase, ϕX(t) = 0; the effect of the x-ray
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(a) (b)

Figure 4.2: (a) An ensemble of ions is driven by narrow-bandwidth x rays (kX, brown), an auxiliary optical
laser (kL, red), both linearly polarized along the z direction, and an optical frequency comb (kC, green),
linearly polarized along the x direction. All fields propagate in the y direction. The resonance fluorescence
spectrum (kF, blue) exhibits an induced x-ray frequency-comb structure. (b) Four-level scheme of He-like ions
interacting with the light fields.

bandwidth is later taken into account by a stochastic approach [189]. For the main part of the
Chapter, therefore, we consider two cw fields,

EX(r, t) = ĒX,0 cos (ωXt− kX · r) êz (4.2)

and
EL(r, t) = ĒL,0 cos (ωLt− kL · r) êz, (4.3)

both linearly polarized in the êz direction. The optical frequency comb has, in very good ap-
proximation, constant phase ϕC(t) ≡ 0 and periodic amplitude1 EC,0(t) =

∑+∞
k=−∞Ak e

−i 2πk
Tp

t,

with repetition period Tp and Fourier coefficients Ak = 1/Tp

∫ Tp
0 EC,0(t) e

i 2πk
Tp

t
dt, i.e.,

EC,0(t) = EC,max
∑+∞

n=−∞ G(t− nTp), (4.4a)

G(t) = cos2
[
π
Td

(
t− Td

2

)]
R
[

1
Td

(
t− Td

2

)]
, (4.4b)

where EC,max =
√

8παIC,max is its maximum, IC,max the maximum intensity, and the rectangular
function is defined with the help of the Heaviside step function θ as R(x) = θ(x+1/2)−θ(x−1/2).
The full width at half maximum (FWHM) of G2(t) is TFWHM = 2Td arccos ( 4

√
1/2)/π [190], with

Td being the interval in which G(t) is different from 0, Td � Tp. The choice of the polarization
of the field

EC(r, t) = EC,0(t−r · êy/c) cos (ωCt− kC · r) êx, (4.5)

in the êx direction, will be justified in the following.
The electric fields EX(r, t), EL(r, t), and EC(r, t), drive electric-dipole (E1) transitions in the

four-level system of Fig. 4.2b, where level i has energy ωi and the energy between the levels i
and j is given by ωij = ωi − ωj , i, j ∈ S = {1, 20,±, 3, 40,±}. The four-level model describes
He-like ions, with transition energies in the proper optical and x-ray ranges [191]. Here, the state
|1〉 represents the ground state 1s2 1S0, with total-angular-momentum quantum number J = 0

1The function is periodic in a very large time interval Tg � Tp, i.e., EC,0(t) = f(t)
∑+∞
n=−∞An e

−i 2πn
Tp

t, with
f(t) ≈ 1, −Tg/2 < t < Tg/2.
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and positive parity. The states, |2−〉, |20〉, and |2+〉, with MJ equal to −1, 0, and 1, describe
the level 1s2p 3P1, with J = 1 and negative parity. Furthermore, |3〉 represents 1s2s 1S0, with
J = 0 and positive parity, whereas |4−〉, |40〉, and |4+〉 represent the level 1s2p 1P1, with J = 1
and negative parity. In He-like ions, level 3 has higher energy than level 2 for a nuclear charge
Z ≥ 7 [191]; otherwise, these two levels are inverted in energy. In Fig. 4.2b and in the remaining
part of the discussion of the theoretical model, we assume that ω3 > ω2, i.e., that the three-level
system formed by levels 1, 2, and 3, is a Ξ-type system [57,58]. The generalization of the EOMs
to the case of a Λ-type three-level system, as the one formed by levels 1, 2, and 3, when ω3 < ω2,
is straightforward.
Other levels, such as 1s2s 3S1, 1s2p 3P0, and 1s2p 3P2, are not included in our description,

because they do not couple via E1 interaction to the levels in Fig. 4.2b and the spontaneous-
decay times from higher-energy levels to them are by orders of magnitude larger than Tp. The
levels 2, 3, and 4, are below the autoionization threshold, since in all configurations one electron
occupies the 1s orbital [191]. In the following equations, we also neglect ionization of multiply
charged ions such as Be2+ entirely, since it does not play a relevant role. We have used the
ADK formula for tunnel ionization from Ref. [192–194] to compute the multiphoton ionization
rate and verified that, for the parameters which will be later adopted in Sec. 4.2, this rate is
negligible. The single-photon ionization rate of the excited levels 2, 3, and 4, computed with
the Los Alamos National Laboratory Atomic Physics Codes [88, 180] due to the presence of the
driving x-ray field, is also shown not to affect our results significantly.
The interaction of the electric fields Eq(r, t) [Eq. (4.1)] with N ions at positions rn, n ∈
{1, . . . , N}, is described by the Hamiltonian Ĥ = Ĥ0 +

∑
q ĤE1,q, where Ĥ0 =

∑N
n=1

∑
i∈S ωi σ̂

n
ii

is the atomic electronic structure Hamiltonian [see Eqs. (2.30) and (2.31)] and ĤE1,q =
∑N

n=1 d̂n ·
Eq(rn, t) are the E1 interaction Hamiltonians from Eq. (2.105) [53,159]. Here, d̂n represents the
dipole operator of an ion at position rn [see Eq. (2.32)],

d̂n =
∑
i,j∈S

|i〉n n〈i|d̂n|j〉n n〈j| =
∑
i,j∈S

dij,n σ̂
n
ij , (4.6)

with matrix elements dij,n = n〈i|d̂n|j〉n, i, j ∈ S, n ∈ {1, . . . , N}. Because the dipole moment
is a general property of the ion species, i.e., of the atomic number and the charge of the ion,
the matrix elements dij,n = dij do not explicitly depend on n. Furthermore, since d̂n is an
irreducible tensor operator of rank 1 [159], the just introduced vector components dij , i, j ∈ S,
as we did in Eq. (2.94), can be written as

d̂ij = d−1
ij êσ− + d 0

ij êz + d 1
ij êσ+ , (4.7)

where we have used the circular-polarization vectors êσ± from Eq. (2.95) and the matrix elements
d kij , with i, j ∈ S and k ∈ {0,±1}, which satisfy the selection rules (2.102) and (2.103).
The interaction with the x-ray field (4.2), tuned to the |1〉 ↔ |20〉 transition, linearly polarized

in the êz direction and with kX = (ωX/c) êy, is described within the rotating-wave approximation
(RWA) [53], by the Hamiltonian2

ĤE1,X =
ΩRX

2

N∑
n=1

σ̂n120 ei(ωXt−kX·rn) + H.c., (4.8)

where ΩRX = d 0
120
EX,0 is the x-ray Rabi frequency. We recall that |1〉 has J = 0 and MJ = 0,

whereas |2〉 has J ′ = 1 and MJ ′ = 0, such that d120 = d 0
120
êz.

2In this Chapter, we assume that all the electric fields have a CEP of ϕq,0 = π, with q ∈ {X, L, C}. This gives
rise to a factor −1 which compensates the minus sign in the interaction Hamiltonian ĤAL from Eq. 2.105.
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Notice that also the transition |1〉 ↔ |40〉 can be analogously driven by an x-ray field along the
êz direction: The state |40〉 is characterized by quantum numbers J ′ = 1 andM ′J ′ = 0, such that
d140 = d 0

140
êz. We have found, though, that the detuned E1 driving of the |1〉 ↔ |40〉 transition,

with ∆ = ω4 − ω1 − ωX, has negligible effects on the evolution of the system and we therefore
neglect it 3.
The cw optical field (4.3), tuned to the |20〉 ↔ |3〉 transition, linearly polarized in the z

direction and with kL = (ωL/c) êy, interacts with the system via the RWA Hamiltonian

ĤE1,L =
ΩRL

2

N∑
n=1

σ̂n203 ei(ωLt−kL·rn) + H.c., (4.9)

where ΩRL = d 0
203EL,0 is the Rabi frequency associated with the laser field. Here, d203 = d 0

203êz
and d 0

203 is the only nonzero component of the vector d203.
Finally, the interaction with the optical frequency comb (4.5), with kC = (ωC/c) êy, tuned to

the |3〉 ↔ |4±〉 transition and linearly polarized on the êx direction, êx = (ê∗σ− − ê
∗
σ+)/
√

2, is
described by the E1 interaction Hamiltonian

ĤE1,C =
1

2

N∑
n=1

d34+ ·
ê∗σ− − ê

∗
σ+√

2
EC,0(t− rn · êy/c) σ̂n34+ ei(ωCt−kC·rn) + H.c.

+
1

2

N∑
n=1

d34− ·
ê∗σ− − ê

∗
σ+√

2
EC,0(t− rn · êy/c) σ̂n34− ei(ωCt−kC·rn) + H.c.,

(4.10)

with d34± = d∓1
34±

êσ∓ . Because of the associated Clebsch-Gordan coefficients, one notices that
the two quantities d∓1

34±
= d34± · ê∗σ∓ are identical: We set them equal to d̃34 and introduce the

time-dependent Rabi frequency ΩRC(t) = d̃34 EC,0(t). It follows that

ĤE1,C =
N∑
n=1

ΩRC(t− rn · êy/c)
2

1√
2
σ̂n34+ ei(ωCt−kC·rn) + H.c.

+
N∑
n=1

ΩRC(t− rn · êy/c)
2

−1√
2
σ̂n34− ei(ωCt−kC·rn) + H.c.,

(4.11)

where the additional factors ±1/
√

2 account for the amplitude whereby the transitions |3〉 → |4+〉
and |3〉 → |4−〉 are driven.
Despite being undriven, the E1-allowed transition 4 → 1 undergoes spontaneous decay [see,

e.g., Fig. 4.2b]: These photons, decaying from states |4±〉 with MJ = ±1 to state |1〉 with
MJ = 0, differ in energy and polarization from those decaying on the 2 → 1 transition. In
the following, we show that an x-ray comb emerges in the associated spectrum of resonance
fluorescence.

4.1.1.2 Equations of motion and periodicity of the asymptotically reached solution

As displayed by Eq. (2.91), the time evolution of the system obeys the master equation [53]
dρ̂/ dt = −i [Ĥ, ρ̂] + L[ρ̂], where ρ̂(t) is the density matrix of elements ρnij(t) = 〈σ̂nji(t)〉 =

3In the case of Be2+ ions that we consider in the paper, ∆ = 1.8 eV, whereas Γ41 = 5.05× 10−4 eV is the decay
rate of the same transition and we assume an x-ray bandwidth γc smaller than the optical-comb repetition
frequency 2π/Tp = 4.1× 10−6 eV.
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Tr{σ̂nji(t) ρ̂}, and L[ρ̂] describes norm-conserving spontaneous decay,

L[ρ̂] =
∑

i, j∈{1, 20, 3, 4±}
ωi<ωj

N∑
n=1

−Γji
2

(σ̂njiσ̂
n
ij ρ̂− σ̂nij ρ̂σ̂nji) + H.c., (4.12)

with spontaneous-decay rates Γji = 4ω3
jiα

3|dij |2/3 [53]; norm-nonconserving terms such as those
from autoionization or (multi-) photoionization are not present. Further, for cw x-ray and
optical fields, and an optical frequency comb, the EOMs are periodic with the repetition time
Tp of the optical frequency-comb pulse train: The master equation admits a periodic solution,
ρ̂eq(t) = ρ̂eq(t+ Tp), asymptotically reached after turn-on effects have ceased.
The fields are tuned to the respective transition energies, i.e., ωX = ω21, ωL = |ω32|, and

ωC = ω43. The effect of a field on the other transitions to which it is not tuned is negligible. The
relevant interactions are highlighted in Fig. 4.2b. The states |2±〉 and |40〉 are neglected, because
they are undriven and the decay from higher-energy levels to them is by orders of magnitude
smaller than to the ground state. In the following, therefore, we restrict our attention to the 5
states |1〉, |20〉, |3〉, |4+〉, and |4−〉.
Before writing the EOMs explicitly, we introduce the slowly varying operators [53,75,195]

ς̂n201(t) = σ̂n201(t) e−i(ω21t−kX·rn), (4.13a)

ς̂n320
(t) = σ̂n320

(t) e−i(ω32t−kL·rn), (4.13b)

ς̂n31(t) = σ̂n31(t) e−i[ω31t−(kX+kL)·rn], (4.13c)
ς̂n4±3(t) = σ̂n4±3(t) e−i(ω43t−kC·rn), (4.13d)

ς̂n4±20
(t) = σ̂n4±20

(t) e−i[ω42t−(kL+kC)·rn], (4.13e)

ς̂n4±1(t) = σ̂n4±1(t) e−i[ω41t−(kX+kL+kC)·rn], (4.13f)

and, clearly, ς̂nij(t) = [ς̂nji(t)]
†. Analogously, we define an associated slowly-varying density ma-

trix %̂(t) with matrix elements %nij(t) = 〈ς̂nji(t)〉, and introduce the n-dependent Rabi frequency
Ωn

RC(t) = ΩRC(t − rn · êy/c). The interaction Hamiltonians (4.8), (4.9), and (4.11), can be
included in the master equation, giving rise to the following EOMs,

∂%n11

∂t
= −i

ΩRX

2
%n201 + i

ΩRX

2
%n120 + Γ201%

n
2020 + Γ4+1%

n
4+4+ + Γ4−1%

n
4−4− , (4.14a)

∂%n120

∂t
= −Γ201

2
%n120 − i

ΩRX

2
(%n2020 − %

n
11) + i

ΩRL

2
%n13, (4.14b)

∂%n13

∂t
= −Γ320

2
%n13 − i

ΩRX

2
%n203 + i

ΩRL

2
%n120 + i

Ωn
RC(t)

2
√

2
%n14+ − i

Ωn
RC(t)

2
√

2
%n14− , (4.14c)

∂%n14±

∂t
= −i

ΩRX

2
%n204± ± i

Ωn
RC(t)

2
√

2
%n13 − (Γ4±1 + Γ4±3)%n14± , (4.14d)

∂%n2020

∂t
= −i

ΩRX

2
%n120 + i

ΩRX

2
%n201 − i

ΩRL

2
%n320 + i

ΩRL

2
%n203 − Γ201%

n
2020 + Γ320%

n
33, (4.14e)

∂%n203

∂t
= −Γ201 + Γ320

2
%n203 − i

ΩRX

2
%n13 − i

ΩRL

2
(%n33 − %n2020) + i

Ωn
RC(t)

2
√

2
(%n204+ − %

n
204−), (4.14f)

∂%n204±

∂t
= −

Γ201 + Γ4±1 + Γ4±3

2
%n204± − i

ΩRX

2
%n14± − i

ΩRL

2
%n34± ± i

Ωn
RC(t)

2
√

2
%n203, (4.14g)
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∂%n33

∂t
= − i

ΩRL

2
%n203 + i

ΩRL

2
%n320 − i

Ωn
RC(t)

2
(%n4+3 − %n4−3) + i

Ωn
RC(t)

2
(%n34+ − %

n
34−)

− Γ320%
n
33 + Γ4+3%

n
4+4+ + Γ4−3%

n
4−4− ,

(4.14h)

∂%n34±

∂t
= −

Γ4±1 + Γ4±3 + Γ320

2
%n34±−i

ΩRL

2
%n204±∓i

Ωn
RC(t)

2
√

2
(%n4±4±−%

n
33)±i

Ωn
RC(t)

2
√

2
%n4∓4± , (4.14i)

∂%n4±4±

∂t
= ∓i

Ωn
RC(t)

2
√

2
%34± ± i

Ωn
RC(t)

2
√

2
%4±3 − (Γ4±1 + Γ4±3)%n4±4± , (4.14j)

∂%n4±4∓

∂t
= ∓i

Ωn
RC(t)

2
√

2
%34∓ ∓ i

Ωn
RC(t)

2
√

2
%4±3 − (Γ4+1 + Γ4+3 + Γ4−1 + Γ4−3)%n4±4∓ . (4.14k)

Two main properties ought to be observed:

• the EOMs form a set of linear equations with time-dependent coefficients, where the explicit
dependence on time ensues from the n-dependent Rabi frequency Ωn

RC(t). This is also the
only n-dependent term in the EOMs, with Ωn

RC(t) = ΩRC(t− rn · êy/c). The elements of
the density matrices associated with different ions can be related, at different times, via
the following equality:

%nij(t) = %n
′
ij [t+ (rn′ − rn) · êy/c]. (4.15)

• The EOMs are symmetric under the transformation

{%i4± , %4±i, %4±4± , %4±4∓} → {−%i4∓ ,−%4∓i, %4∓4∓ , %4∓4±},

for i ∈ {1, 20, 3}. As a result, the periodic, asymptotically reached solution of the EOMs
satisfies the equality %14+ = −%14− .

The EOMs (4.14) form a set of 25 lineal differential equations, with time-dependent coefficients
for 25 elements of the 5×5 density matrix %̂n, which can be written in terms of a matrix differential
equation. The procedure is the same we already discussed to obtain Eq. (3.18) in the case of a
two-level system. We introduce the 25-dimensional vector ~R(t), of elements R1 = %11, R2 = %120 ,
. . ., R25 = %4+4+ , which satisfies the matrix differential equation

d~R(t)

dt
= M(t)~R(t), (4.16)

where M(t) is a 25×25 time-dependent, periodic matrix, resulting from Eqs. (4.14). Notice that
we have not specified any initial conditions for the vector ~R(t) because the asymptotic, periodic
solution ~Req(t) which we seek is independent of the initial state occupied by the atomic system.
In order to prove the existence of this periodic solution and, at the same time, display the

steps leading to its calculation, we take advantage of the conclusions drawn in Ref. [75]. We
introduce the vector ~R′(t) = A~R(t), where A is a time-independent invertible matrix such that,
owing to the absence of norm-nonconserving terms in the EOMs, the first component of the
vector R′1(t) = Tr%̂n(t) = %n11(t) + %n2020

(t) + %n33(t) + %n4−4−(t) + %n4+4+
(t) = 1 is a constant of

motion. In terms of the time-dependent, regular matrix M′(t) = AM(t)A−1, the vector ~R′(t),
solution of the differential equation

d~R′(t)

dt
= M′(t)~R′(t), (4.17)
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can be written as [196]
~R′(t) = U(t, t0)~R′(t0), (4.18)

where U(t, t0) is a 25 × 25 matrix, of elements Uij(t, t0), solution of the system of differential
equations

dU(t, t0)

dt
= M′(t)U(t, t0), U(t0, t0) = 125. (4.19)

In order to determine a periodic solution of the EOMs ~R′eq(t+ Tp) = ~R′eq(t), with Tp being the
period of the EOMs, the following identity need be fulfilled:

~R′eq(t0 + Tp) = U(t0 + Tp, t0)~R′eq(t0) = ~R′eq(t0). (4.20)

In other words, one has to determine the eigenstate ~R′eq(t0) of U(t0 +Tp, t0) associated with the
eigenvalue λ = 1. Since R′1(t) = 1 is a constant of motion, it necessarily follows that

U(t, t0) =


1 0 . . . 0

U2,1(t, t0) U2,2(t, t0) . . . U2,25(t, t0)
...

...
. . .

...
U25,25(t, t0) U25,2(t, t0) . . . U25,25(t, t0)

 , (4.21)

i.e., that U1j(t, t0) = δ1j for j ∈ {1, . . . , 25}, and that

U(t0 + Tp, t0)P =


1 0 . . . 0

U2,1(t0 + Tp, t0) U2,2(t0 + Tp, t0) . . . U2,25(t0 + Tp, t0)
...

...
. . .

...
U25,25(t0 + Tp, t0) U25,2(t0 + Tp, t0) . . . U25,25(t0 + Tp, t0)

P

= P


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λ25

 ,

(4.22)

where P is the invertible matrix, of elements Pij , whose columns are formed by the eigenstates
of the matrix U(t0 + Tp, t0), while λi, with i ∈ {1, . . . , 25}, are the eigenvalues of the same
matrix [196]. This means that, for i, j ∈ {1, . . . , 25},

25∑
k=1

Uik(t0 + Tp, t0)Pkj =
25∑
k=1

Pikλkδkj = λjPij : (4.23)

For the particular case in which i = 1 and U1k(t0 + Tp, t0) = δ1k, this implies that P1j =
λjP1j , for j ∈ {1, . . . , 25}. If none of the 25 eigenvalues λj is equal to 1, then P1j = 0 for all
j ∈ {1, . . . , 25}, i.e., an entire row of the matrix P is equal to zero, P is not invertible, and
U(t0 + Tp, t0) cannot be diagonalized. However, because U(t0 + Tp, t0) is by construction an
invertible, diagonalizable matrix, we can conclude that at least one eigenvalue must be equal
to 1. The corresponding eigenstate ~R′eq(t0), normalized such that R′1(t0) = 1, provides those
specific initial conditions associated with the sought periodic solution ~R′eq(t) = U(t, t0)~R′eq(t0),
i.e., ~Req(t) = A−1U(t, t0)~R′eq(t0).
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4.1.2 Many-atom spectrum of resonance fluorescence from periodic driving

In this Section we present the properties of the spectrum of resonance fluorescence emitted by an
atomic system periodically driven by the external electric fields EX(r, t), EL(r, t), and EC(r, t).
As we did in Eqs. (2.68) and (2.70), we introduce the electric-field operator

Ê(r, t) = Ê+(r, t) + Ê−(r, t), (4.24)

where r = r êr is the observation point in a reference frame in which 0 corresponds to the
position of the ion sample, such that r denotes the distance of the detector from the ions and
êr is the unit vector defining the direction of observation. In the electric-dipole approximation,
the positive-frequency component of the electric field is related to the electric-dipole moment
operator via [53]

Ê+(r, t) =
∑

i, j∈{1, 20, 3, 4±}
ωi<ωj

[ ω2
ji

c2 r
[dji − êr (dji · êr)]

N∑
n=1

σ̂nij(t− |r − rn|/c)
]
. (4.25)

This is used for the calculation of the energy spectrum of resonance fluorescence [53,162]

W (r, ω) =
1

4π2α

∫ ∞
−∞

∫ ∞
−∞

〈
Ê−(r, t1) · Ê+(r, t2)

〉
e−iω(t1−t2) dt1 dt2, (4.26)

where α is the fine structure constant. W (r, ω) dω r2 dΩ represents the energy detected in a
solid angle dΩ centered at the observation point r = r êr and in the differential energy interval
[ω, ω + dω].
In the case of periodic driving the energy spectrum diverges and one needs to introduce the

power spectrum of resonance fluorescence [162]

S(r, ω) =
1

4π2α
lim
T→∞

∫ T

0

∫ T

0

〈
Ê−eq(r, t1) · Ê+

eq(r, t2)
〉

e−iω(t1−t2) dt1 dt2, (4.27)

such that S(r, ω) dω r2 dΩ represents the power detected in a solid angle dΩ centered at the
observation point and in the differential energy interval [ω, ω + dω]. Here, Ê+

eq(r, t) is the
positive-frequency part of the electric field operator associated with the periodic, asymptotic
solution of the EOMs at position r and time t.

4.1.2.1 Many-atom effects in the coherent and incoherent parts of the spectrum of
resonance fluorescence

In terms of the polar coordinates r, θ, and φ, and of the three unit vectors

êr = sin θ cosφ êx + sin θ sinφ êy + cos θ êz, (4.28a)
êθ = cos θ cosφ êx + cos θ sinφ êy − sin θ êz, (4.28b)

êφ = − sinφ êx + cosφ êy, (4.28c)

appearing in Fig. 4.3, the electric-field operator at the observation point r = r êr and in the
far-field limit is the sum of the following six operators,

Ê+
201(r, t) = −ω

2
21

c2 r
d201 sin θ êθ

N∑
n=1

ς̂n120(t− |r − rn|/c) e−i[ω21(t−|r−rn|/c)−kX·rn], (4.29a)
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Figure 4.3: Spherical coordinates with respect to the observation point r (the red arrow).

Ê+
320

(r, t) = −ω
2
32

c2 r
d320 sin θ êθ

N∑
n=1

ς̂n203(t− |r − rn|/c) e−i[ω32(t−|r−rn|/c)−kL·rn], (4.29b)

Ê+
4±3(r, t) =

ω2
43

c2 r

d4±3√
2

[cos θ(∓ cosφ+ i sinφ)êθ + (± sinφ+ i cosφ)êφ]

×
N∑
n=1

ς̂n34±(t− |r − rn|/c) e−i[ω43(t−|r−rn|/c)−kC·rn],

(4.29c)

Ê+
4±1(r, t) =

ω2
41

c2 r

d4±1√
2

[cos θ(∓ cosφ+ i sinφ)êθ + (± sinφ+ i cosφ)êφ]

×
N∑
n=1

ς̂n14±(t− |r − rn|/c) e−i[ω41(t−|r−rn|/c)−(kX+kL+kC)·rn],

(4.29d)

where the selection rules in Eqs. (2.102) and (2.103) imply that d 0
201 = d201 · êz, d 0

320
= d320 · êz,

d±1
4±3 = d4±3 · êσ∗± , and d

±1
4±1 = d4±1 · êσ∗± . Furthermore, the explicit calculation of the Clebsch-

Gordan coefficients shows the validity of the following identities, d+1
4+3 = d−1

4−3 = d̃43, d+1
4+1 =

d−1
4−1 = d̃41.
The calculation of Eq. (4.26) involves terms of the form eiωat e−iωbt, where ωa and ωb are

elements of the vector {ω21, ω32, ω43, ω41}. However, when ωa 6= ωb, the integration of the
resulting fast oscillating function vanishes. By further adopting the approximation |r − rn| ≈
r− êr ·rn, valid in the far-field limit, we can write the emitted spectrum of resonance fluorescence
as the sum of six independent terms, i.e.,

W (r, ω) = W201,120(r, ω) +W320,203(r, ω) +
∑

j, j′∈{4±}

[Wj3,3j′(r, ω) +Wj1,1j′(r, ω)], (4.30)
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where we have defined

W201,120(r, ω) =
ω4

21 |d201|2

4π2c3r2

N∑
n=1

N∑
n′=1

∫ +∞

−∞

∫ +∞

−∞

〈
ς̂n201(t1 − |r − rn|/c) ς̂n

′
120(t2 − |r − rn′ |/c)

〉
× sin2 θ e−i(ω−ω21)(t1−t2) ei[(ω21/c) êr−kX]·(rn−rn′ ) dt1 dt2,

(4.31a)

W320,203(r, ω) =
ω4

32 |d320 |2

4π2c3r2

N∑
n=1

N∑
n′=1

∫ +∞

−∞

∫ +∞

−∞

〈
ς̂n320(t1 − |r − rn|/c) ς̂n

′
203(t2 − |r − rn′ |/c)

〉
× sin2 θ e−i(ω−ω32)(t1−t2) ei[(ω32/c) êr−kL]·(rn−rn′ ) dt1 dt2,

(4.31b)

W4±3,34±(r, ω) =
ω4

43 |d̃43|2

8π2c3r2

N∑
n=1

N∑
n′=1

∫ +∞

−∞

∫ +∞

−∞

〈
ς̂n4±3(t1 − |r − rn|/c) ς̂n

′
34±(t2 − |r − rn′ |/c)

〉
× (1 + cos2 θ) e−i(ω−ω43)(t1−t2) ei[(ω43/c) êr−kC]·(rn−rn′ ) dt1 dt2,

(4.31c)

W4±3,34∓(r, ω) =
ω4

43 |d̃43|2

8π2c3r2

N∑
n=1

N∑
n′=1

∫ +∞

−∞

∫ +∞

−∞

〈
ς̂n4±3(t1 − |r − rn|/c) ς̂n

′
34∓(t2 − |r − rn′ |/c)

〉
× (1− cos2 θ) (cos 2φ± i sin 2φ) e−i(ω−ω43)(t1−t2) ei[(ω43/c) êr−kC]·(rn−rn′ ) dt1 dt2,

(4.31d)

W4±1,14±(r, ω) =
ω4

41 |d̃41|2

8π2c3r2

N∑
n=1

N∑
n′=1

∫ +∞

−∞

∫ +∞

−∞

〈
ς̂n4±1(t1 − |r − rn|/c) ς̂n

′
14±(t2 − |r − rn′ |/c)

〉
× (1 + cos2 θ) e−i(ω−ω41)(t1−t2) ei[(ω41/c) êr−(kX+kL+kC)]·(rn−rn′ ) dt1 dt2,

(4.31e)

W4±1,14∓(r, ω) =
ω4

41 |d̃41|2

8π2c3r2

N∑
n=1

N∑
n′=1

∫ +∞

−∞

∫ +∞

−∞

〈
ς̂n4±1(t1 − |r − rn|/c) ς̂n

′
14∓(t2 − |r − rn′ |/c)

〉
× (1− cos2 θ) (cos 2φ± i sin 2φ) e−i(ω−ω41)(t1−t2) ei[(ω41/c) êr−(kX+kL+kC)]·(rn−rn′ ) dt1 dt2.

(4.31f)
In the following, we are going to focus on the spectrum of resonance fluorescence W41,14(r, ω)

[53] emitted on the 4 → 1 transition with x-ray energy ω41. The energy at which this part of
the spectrum is centered differs from the energy ω21 of the x-ray driven transition. Furthermore,
the photons emitted by the states |4±〉 and those emitted by the x-ray driven state |20〉 are
characterized by mutually perpendicular polarization directions: These distinct polarizations
are a direct consequence of the different directions on which the driving fields are aligned, as
displayed in Fig. 4.2. The just described differences in energy and polarization render the x-ray
comb emitted on the |4±〉 ↔ |1〉 transition clearly discernible from other spectral component of
the resonance fluorescence spectrum, and support our choice to analyze only those four terms
Wj1,1j′(r, ω), j, j′ ∈ {4+, 4−}, which are centered at the x-ray frequency ω41.
The spectrum of resonance fluorescence is usually divided into a coherent and an incoherent

component. This is performed by writing the ladder operators ς̂nij(t) as the following sum,

ς̂nij(t) =
〈
ς̂nij(t)

〉
1̂ + δς̂nij(t), (4.32)

with 〈
δς̂nij(t)

〉
= 0, (4.33a)〈

δς̂nji(t) δς̂
n′
i′j′(t

′)
〉

=
〈
δς̂nji(t1) δς̂ni′j′(t2)

〉
δnn′ , (4.33b)
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and, therefore,

〈ς̂nj1(t1) ς̂n
′

1j′(t2)〉 = 〈ς̂nj1(t1)〉 〈ς̂n′1j′(t2)〉+ 〈δς̂nj1(t1) δς̂n1j′(t2)
〉
δnn′ . (4.34)

This leads to the aforementioned definition of two components in the spectrum of resonance
fluorescence [195]. For j, j′ ∈ {4+, 4−}, for instance, Wj1,1j′(r, ω) in Eqs. (4.31) is the sum of a
coherent spectrum W coh

j1,1j′(r, ω) and an incoherent part W inc
j1,1j′(r, ω), given by

W coh
j1,1j′(r, ω) =

ω4
41 |d̃41|2

8π2c3r2

N∑
n=1

N∑
n′=1

∫ +∞

−∞

∫ +∞

−∞
〈ς̂nj1(t1 − |r − rn|/c)〉 〈ς̂n

′
1j′(t2 − |r − rn′ |/c)〉

× sjj′(θ, φ) e−i(ω−ω41)(t1−t2) ei[(ω41/c) êr−(kX+kL+kC)]·(rn−rn′ ) dt1 dt2,
(4.35)

W inc
j1,1j′(r, ω) =

ω4
41 |d̃41|2

8π2c3r2

N∑
n=1

∫ +∞

−∞

∫ +∞

−∞

〈
δς̂nj1(t1 − |r − rn|/c) δς̂n1j′(t2 − |r − rn|/c)

〉
× sjj′(θ, φ) e−i(ω−ω41)(t1−t2) dt1 dt2,

(4.36)

where we have introduced the angular factor

sjj′(θ, φ) =

{
1 + cos2 θ if j = j′,

(1− cos2 θ) (cos 2φ± i sin 2φ) if j, j′ ∈ {4+, 4−},
(4.37)

and have exploited Eq. (4.33b) in order to obtain Eq. (4.36).
The calculation of the spectrum of resonance fluorescence (4.35) can take advantage of the

relationship (4.15) between the atomic expectation values 〈ςnij(t)〉 and 〈ςn
′

ij (t)〉 associated with
different ions. We define the expectation value 〈ςeq

ij (t)〉 for an ion at the fixed position r0, such
that the n-ion expectation value is given by %nij(t) = %eq

ij [t+ (r0 − rn) · êy/c]. By further taking
advantage of the relation |r − rn| ≈ r − êr · rn, valid in the far-field limit, we conclude that the
coherent component of the spectrum (4.35) is

W coh
j1,1j′(r, ω) =

ω4
41 |d̃41|2

8π2c3r2

∫ +∞

−∞

∫ +∞

−∞
〈ς̂eq
j1 (t1)〉 〈ς̂eq

1j′(t2)〉 e−i(ω−ω41)(t1−t2) dt1 dt2

× sjj′(θ, φ)

∣∣∣∣∣
N∑
n=1

ei{[(ω−ω41)/c] (êr−êy)+(ω41/c) êr−(kX+kL+kC)}·rn

∣∣∣∣∣
2

=
ω4

41 |d̃41|2

8π2c3r2

∫ +∞

−∞

∫ +∞

−∞
〈ς̂eq
j1 (t1)〉 〈ς̂eq

1j′(t2)〉 e−i(ω−ω41)(t1−t2) dt1 dt2

× sjj′(θ, φ)N2 |η(êr)|2 .

(4.38)

Three factors can be distinguished in Eq (4.38): (i) the Fourier transforms of the single-particle
atomic functions 〈ς̂eq

j1 (t)〉 and 〈ς̂eq
1j′(t)〉, (ii) the space-dependent term characterizing the emission

of an oscillating dipole sjj′(θ, φ), and (iii) another space-dependent factor emerging in the co-
herent part of the spectrum of resonance fluorescence from many-particle effects and associated
with the function

η(êr) =
1

N

N∑
n=1

ei{[(ω−ω41)/c] (êr−êy)+(ω41/c) êr−(kX+kL+kC)}·rn

≈ 1

N

N∑
n=1

ei[(ω41/c) êr−(kX+kL+kC)]·rn .

(4.39)
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In Eq. (4.39), in order to go from the first to the second line, we neglected the dependence on
ω as we will study this function only for ω ≈ ω41. The factor η(êr) in Eq. (4.39) is a very
peaked function and determines a preferential emission direction of the coherent part of the
spectrum [195]. Notice that the presence of the factor N2 in Eq. (4.38) is due to the coherent
interference of the radiation emitted by different ions in the medium.
The direction êr maximizing the function η(êr) strongly depends on the propagation directions

of the three driving fields, i.e., on the three wavevectors kX, kL, and kC. As we showed in Fig. 4.2,
three collinear fields are employed with wavevectors kq = kq êy for q ∈ {X, L, C}. Under these
assumptions, the factor η(êr) can be calculated by further assuming a constant density of particles
in the interaction volume V =

∏3
i=1 Li and by approximating the sum in (4.39) with the integral

η(êr) ≈
3∏
i=1

1

Li

∫ Li/2

−Li/2
dxi e−ipixi =

3∏
i=1

sinc(piLi/2)

= sinc
(ω41L1

2c
sin θ cosφ

)
sinc

(ω41L3

2c
cos θ

)
sinc

[ω41L2

2c
(sin θ sinφ− 1) +

L2∆k

2

]
.

(4.40)
Here, p = (ω41/c) êr − (kX + kL + kC) depends upon θ and φ and

∆k =
ω41

c
− |kX + kL + kC|. (4.41)

The function η(êr) is maximized by êr = êy, whereby p = ∆kêy and η(êy) = sinc
(
L2∆k

2

)
.

For different detection directions, the function η(êr) decreases very fast, unless the interaction
volume V is small compared to the wavelength of the x-ray emitted field.
We use the high degree of directionality of the coherent spectrum and look at it in the neigh-

borhood of êr = êy, θ = π/2, φ = π/2. The multiplication factors sjj′(θ, φ) [Eq. (4.37)]
in Eqs. (4.38) vary much more slowly than the other prefactor |η(êr)|2, which falls to 0 in
a very small neighborhood of êy. One is therefore allowed to evaluate these two functions,
1 + cos2 θ = 1 and (1 − cos2 θ) (cos 2φ ± i sin 2φ) = −1, for θ = φ = π/2. By introducing
s̃jj′ = sjj′(π/2, π/2) = (−1)δjj′+1, it follows that

W coh
j1,1j′(r êr, ω) = |η(êr)|2W coh

j1,1j′(r êy, ω), (4.42)

with

W coh
j1,1j′(r êy, ω) =

ω4
41 |d̃41|2

8π2c3r2
sjj′ N

2

∫ −∞
−∞

∫ −∞
−∞
〈ς̂eq
j1 (t1)〉 〈ς̂eq

1j′(t2)〉 e−i(ω−ω41)(t1−t2) dt1 dt2.

(4.43)
Finally, by using the fact that, from Eq. (4.11) and from the symmetry of the EOMs (4.14), the

periodic solution of the system of differential equations satisfies the equality %eq
14+

(t) = −%eq
14−

(t),
i.e., 〈ς̂eq

14+
(t)〉 = −〈ς̂eq

14−
(t)〉, we conclude that the total spectrum emitted on the |4〉 → |1〉

transition W coh
41,14(r êy, ω) =

∑
j, j′∈{4±}W

coh
j1,1j′(r êy, ω) is

W coh
41,14(r êy, ω) =

ω4
41 |d̃41|2

2π2Tpc3r2
N2

∣∣∣∣∫ −∞
−∞
〈ς̂eq

14+
(t)〉 ei(ω−ω41)t dt

∣∣∣∣2 . (4.44)

We assume a dilute-gas setting, such that the phase velocity of all electric fields, in very good
approximation, equals the speed of light, resulting in good phase matching [143, 187, 188]. For
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the densities employed here, in fact, the contribution due to ∆kL2
2 ≈ 10−8 can be completely

neglected and the factor η(êr) can be safely approximated by

η(êr) ≈
3∏
i=1

1

Li

∫ Li/2

−Li/2
dxi e−ipixi =

3∏
i=1

sinc(piLi/2)

= sinc
(ω41L1

2c
sin θ cosφ

)
sinc

(ω41L3

2c
cos θ

)
sinc

[ω41L2

2c
(sin θ sinφ− 1)

]
.

(4.45)

However, the presence of ∆kL2
2 may have to be taken into account if a different experimental

setting was considered.
Going back to the incoherent part of the spectrum (4.36), we notice that this component

is only proportional to N and completely lacks space-directionality contributions ensuing from
the coherent superposition of many-particle effects: No terms such as η(êr) are present in the
incoherent spectrum and the radiation is emitted almost isotropically in space [195], i.e.,

W inc
j1,1j′(r, ω) =

ω4
41 |d̃41|2

8π2Tpc3r2
sjj′(θ, φ)N

∫ +∞

−∞

∫ +∞

−∞

〈
δς̂j1(t1) δς̂1j′(t2)

〉
e−i(ω−ω41)(t1−t2) dt1 dt2.

(4.46)
In the forward direction this term is much weaker than the coherent spectrum by a factor N and
will hence be neglected in the following.

4.1.2.2 Spot geometry and size

In a typical interaction volume V the two lengths L1 and L3 are determined by the spot size
of the laser beams, whereas L2 is given by the length of the ion sample. When φ = π/2, the
product in Eq. (4.45) exhibits two factors, sinc

(
ω41L3

2c cos θ
)
and sinc

[
ω41L2

2c (sin θ − 1)
]
, which

are compared in Fig. 4.4 as functions of the angle θ. The red, dashed curve represents the function
sinc2

(
ω41L3

2c cos θ
)
for the small prefactor ω41L3

2c associated with a small value of L3. This curve
is almost constantly identical to 1 in the whole region in which the blue, continuous curve,
representing the function sinc2

[
ω41L2

2c (sin θ sinφ− 1)
]
for L2 � L3, differs from 0. In the case

of Eq. (4.40), L2 is larger than both L1 and L3 by some orders of magnitude and, in light of the
conclusions drawn from Fig. 4.4, it is the dimension that most strictly limits the spot size of the
emitted x rays: One is therefore allowed to approximate |η(êr)|2 ≈ sinc2

[
ω41L2

2c (sin θ sinφ− 1)
]
.

The beam area is given by the differential area dA = r2 dθ dφ (the factor sin θ is equal to 1
for θ = π/2). We assume dθ and dφ equal to the small angles θ̃ and φ̃ responsible for the first
zero of the function |η(êr)|2, i.e.,

ω41L2

2c

[
sin
(π

2
− θ̃

2

)
sin
(π

2
− φ̃

2

)
− 1
]

= −π. (4.47)

For φ̃ = 0, we find that the previous equality is satisfied by

θ̃ = 2 arccos
(

1− 2πc

ω41L2

)
≈ 2

√
4πc

ω41L2
, (4.48)

such that the emitted beam has an area of radius

r sin
θ̃

2
≈ r

√
4πc

ω41L2
= r

√
2λ41

L2
(4.49)
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Figure 4.4: The red, dashed curve displays the function sinc2
(
ω41L3

2c cos θ
)

as a function of θ and for

the fixed angle φ = π/2 with the prefactor ω41L3

2c = 3. The blue, continuous curve shows the func-

tion sinc2
[
ω41L2

2c (sin θ sinφ− 1)
]
as a function of θ and for the fixed angle φ = π/2 with the prefactor

ω41L2

2c = 300.

and size

π
(
r sin

θ̃

2

)2
≈ 4π2cr2

ω41L2
=

2πr2λ41

L2
, (4.50)

where λ41 = 2πc/ω41 is the wavelength of the emitted radiation. For L2 = 1 cm and λ41 = 10 nm,
the mean radius is ∼ 10−3 times smaller than the distance r at which the detector is placed.
In order to know how much energy per unit frequency is detected at the point r in a differential

area dA = r2 dΩ, we need to perform the integral

r2

∫ π
2

+ θ̃
2

π
2
− θ̃

2

∫ π
2

+ φ̃
2

π
2
− φ̃

2

sin θW coh
41,14(r êr, ω) dφ dθ

≈ r2W coh
41,14(r êy, ω)

∫ π
2

+ θ̃
2

π
2
− θ̃

2

∫ π
2

+ φ̃
2

π
2
− φ̃

2

sin θ sinc2
[ω41L2

2c
(sin θ sinφ− 1)

]
dφ dθ

(4.51)

This is achieved via a Taylor series of the integrand functions centered at θ = π/2, φ = π/2, i.e.,
sin θ = 1 − (θ − π/2)2/2, sinφ = 1 − (φ − π/2)2/2. Further, since the integrand differs from 0
only in a small region, the integration can be extended to the whole real axis, i.e.,

r2

∫ ∞
−∞

∫ ∞
−∞

sinc2
[
−ω41L2

4c

(
θ′2 + φ′2

)]
dφ′ dθ′ =

2πr2

∫ ∞
0

ρ sinc2
(
−ω41L2

4c
ρ2
)

dρ =
2π2cr2

ω41L2
=
πr2λ41

L2
.

(4.52)

This result is half as large as the differential area in (4.50), because the integrated function is
clearly not constant in the differential area itself.

4.1.2.3 Periodic-driving effects in the coherent spectrum of resonance fluorescence

In the previous Sections we have discussed the influence of many-particle effects on the space
distribution of the energy spectrum of resonance fluorescence: We have concluded that the
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4 X-ray frequency combs from resonance fluorescence with narrow-bandwidth x rays

coherent part of the spectrum is almost completely directed in the forward direction, along
which it is much stronger than the incoherent part. In the present Section we focus on those
properties of the spectrum ensuing from the periodic driving of the system.
In the case of a system periodically driven by the external electric fields, the energy spectrum

that we have been dealing with is not well defined. If we go back to Eq. (4.44), in fact, we can
observe that the total energy emitted by the system, i.e., the integral of the spectrum over the
frequency ω, is equal to∫ ∞

−∞

∣∣∣∣∫ −∞
−∞
〈ς̂eq

14+
(t)〉 e−i(ω−ω41)t dt

∣∣∣∣2 dω = 2π

∫ −∞
−∞

|〈ς̂eq
14+

(t)〉|2 dt→∞.

Since the periodic function |〈ς̂eq
14+

(t)〉|2 is strictly positive in the whole time axis, the integral
diverges and the energy spectrum is not well defined.
We introduce, therefore, the power spectrum of resonance fluorescence from Eq. (4.27). Cal-

culations analogous to those of the previous Sections show that the coherent part of the power
spectrum of resonance fluorescence, in the forward direction and centered at the x-ray transition
energy ω41, is equal to

Scoh
41,14(r êy, ω) =

ω4
41 |d̃41|2

2π2c3r2
N2 lim

T→∞

∣∣∣∣∫ T

0
〈ς̂eq

14+
(t)〉 ei(ω−ω41)t dt

∣∣∣∣2
≈ ω

4
41 |d̃41|2

2π2c3r2
N2 lim

M→∞

∣∣∣∣∫ MTp

0
〈ς̂eq

14+
(t)〉 ei(ω−ω41)t dt

∣∣∣∣2 .
(4.53)

By observing that∫ MTp

0
〈ς̂eq

14+
(t)〉 ei(ω−ω41)t dt =

∫ Tp

0
〈ς̂eq

14+
(t)〉 ei(ω−ω41)t dt

1− ei(ω−ω41)MTp

1− ei(ω−ω41)Tp
, (4.54)

one can conclude that the coherent spectrum is

Scoh
41,14(r êy, ω) =

ω4
41 |d̃41|2

2π2c3r2
N2

∣∣∣∣∫ Tp

0
〈ς̂eq

14+
(t)〉 ei(ω−ω41)t dt

∣∣∣∣2 lim
M→∞

1

MTp

1− cos [(ω − ω41)MTp]

1− cos [(ω − ω41)Tp]
.

(4.55)
The limit in Eq. (4.55) can be calculated by defining the function

hM (x) =
1

2πM

1− cos (Mx)

1− cos (x)
=

1

2πM

sin2
(
Mx

2

)
sin2

(
x
2

) (4.56)

and observing that, since cos [M(x+ 2kπ)] = cosMx for k ∈ Z, also hM (x) is periodic with
period 2π. We focus, therefore, on the function

h̃M (x) =

{
hM (x) if − π ≤ x < π,
0 otherwise , (4.57)

such that

hM (x) =
+∞∑

k=−∞
h̃M (x− 2πk). (4.58)

Since ∫ ∞
−∞

h̃M (x) dx =

∫ π

−π

1

2πM

sin2
(
Mx

2

)
sin2

(
x
2

) dx = 1 (4.59)
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and, for x 6= 0,

lim
M→∞

h̃M (x) = lim
M→∞

1

2πM

sin2
(
Mx

2

)
sin2

(
x
2

) ≤ 1

sin2
(
x
2

) lim
M→∞

1

2πM
= 0, (4.60)

one notices that

lim
M→∞

h̃M (x) = δ(x) lim
M→∞

hM (x) =
+∞∑

k=−∞
δ(x− 2πk), (4.61)

which leads to

lim
M→∞

1
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) (4.62)

and, from Eq. (4.55), to
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(4.63)
By recalling the identity

∫ ∞
−∞

e−i$t
+∞∑

m=−∞
δ

(
$ − 2mπ

Tp

)
d$ = Tp

+∞∑
n=−∞

δ (t− nTp) , (4.64)

one confirms that the total emitted power∫ ∞
−∞

Scoh
41,14(r êy, ω) dω =

ω4
41 |d̃41|2

πTpc3r2
N2

∫ Tp

0

∣∣∣〈ς̂eq
14+

(t)〉
∣∣∣2 dt (4.65)

is a well-defined, nondivergent quantity.
To summarize, the spectrum consists of a coherent and an incoherent part [53, 75, 195, 197],

whose intensity profiles are highly affected by many-ion effects. The light coherently emitted
by many different ions adds constructively in the êy forward direction, along which the driving
fields propagate. This implies an enhancement of the spectrum proportional to N2 along this
preferential direction. Conversely, the incoherent part of the spectrum does not undergo this
many-particle enhancement: It is proportional to N and is distributed in space with a dipole
radiation pattern displaying low space directionality [195, 197]. Hence, in the forward direction,
resonance fluorescence is dominated by coherent emission and one can neglect the incoherent part.
Owing to the periodicity of the asymptotically reached solution ρ̂eq(t) [75]—turn-on effects are
neglected—the coherent part of the spectrum emitted on the 4 → 1 transition in the forward
direction consists of an x-ray frequency comb centered at the frequency ω41 with the same tooth
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spacing as the driving optical frequency comb,

Scoh(r êy, ω) =

+∞∑
m=−∞

Sm δ
(
ω − ω41 −

2πm

Tp

)
, (4.66a)

Sm =
ω4

41 |d̃41|2

πc3r2
N2

∣∣∣ 1

Tp

∫ Tp

0
%eq

4+1(t) e
i 2πm
Tp

t
dt
∣∣∣2. (4.66b)

We notice that Eq. (4.66) includes interference in the resonance fluorescence of the two transitions
4+ → 1 and 4− → 1 [198,199]. Because of many-ion effects, the photons emitted in the forward
direction are focused in a beam of mean area ∆A = 2π2cr2/(ω41L) [195, 197], where L is the
mean length of the ion sample: It follows that Pm = Sm2π2cr2/(ω41L) is the power of the mth
peak in the spectrum.

4.2 Results and discussion

In order to bridge an energy difference between two x-ray levels, a sufficiently wide comb is
needed. Here, we aim at generating an x-ray comb with the same number of peaks, i.e., overall
width, as the driving optical comb, and with emitted power comparable to that of present-day
XUV combs generated via HHG [122]. Comparable powers, in fact, guarantee that our predicted
comb could be similarly detected and used.
After a description of the general properties of the periodic solution of the EOMs in Sec. 4.2.1,

we present in Sec. 4.2.2 an atomic implementation of our model with He-like Be2+ ions.

4.2.1 General properties of the solution of the equations motion

In the following, we investigate the properties of the periodic function %̂eq(t) within a single
period, i.e., in the time interval [0, Tp] = [0, Td] ∪ [Td, Tp]. Owing to the definition of the
periodic amplitude EC,0(t) in Eq. (4.4), two subintervals can be distinguished, [0, Td] and [Td, Tp],
respectively associated with the presence and the absence of an optical pulse from the optical
frequency comb driving the 3 → 4 transition. The evolution of the system can be separately
analyzed in these two subintervals, although one needs to bear in mind that the features of
the resulting density matrix %̂eq(t) in different subintervals, by virtue of the periodicity of the
solution of the EOMs, are mutually related, as we are going to describe in the following.

4.2.1.1 Interaction with one of the pulses from the optical frequency comb

The main parameters determining the time evolution of the density matrix are the peak intensity
of the pulses in the optical frequency comb and the intensity of the cw x-ray and optical fields.
Here, we discuss their influence on the properties of the periodic function %̂eq(t) in the time
interval [0, Td].
Peak intensity of the pulses in the optical frequency comb.—The power in each peak

Pm in the imprinted, x-ray comb [Eq. (4.66b)] is proportional to the modulus squared of the
mth Fourier coefficient of %eq

4+1(t). The properties of a Fourier-series expansion [196] imply that
the overall width of the spectrum is inversely proportional to the duration of %eq

4+1(t). To provide
an x-ray comb with as many teeth as in the driving optical one, %eq

4+1(t) must follow in time the
envelope of the driving train of optical pulses from the optical frequency comb. In other words,
we seek a solution of the EOMs %eq

4+1(t) with a pulse-like shape, where %eq
4+1(t) differs from 0 in
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the sole presence of the optical pulses from the optical frequency comb and vanishes exactly in
their absence.
We encountered an analogous behaviour while analyzing the time evolution of a two-level

system driven by short regular pulses in Secs. 2.6 and 3.2.1. There, we showed that a strong
pulse induces Rabi oscillations of the populations and coherences of the two levels at the time-
dependent Rabi frequency determined by the strength of the field. After having introduced the
pulse area Q, we investigated the specific features emerging when the pulse area Q = nπ is
an integer multiple of π, with n ∈ N. For n odd, we observed that the pulse causes a complete
population inversion, which is followed by (spontaneous or Auger) decay of the excited level. This
manifested itself in the spectrum of resonance fluorescence in terms of a strong Lorentzian peak
centered at the frequency of the decaying resonance. In contrast, for n even, we showed that,
when the interaction with the external field has concluded, the system is led back to the ground
state, with strong suppression of the post-pulse-exposure decay of the excited level. A pulse-like
shape is displayed by the population and the coherences of the excited level, which vanish in the
absence of the external pulse. As a result, the appearance of the previously described Lorentzian
peak in the spectrum is considerably hindered and spectral contributions due to the field-induced
Rabi oscillations clearly emerge in a wider spectrum of resonance fluorescence.
The just described behaviour, associated with pulses of area 2nπ, is here employed on the

3→ 4 transition in the four-level system. Short optical pulses of properly set intensity are namely
utilized to similarly transfer population and coherence to the excited level 4, thus imprinting a
pulse-like shape onto all the elements of the density matrix which are related to the excited states
|4±〉, thus also onto %eq

4+1(t). As we did in Eq. (2.115), we introduce the pulse area

QC =

∫ Tp

0
ΩRC(t) dt (4.67)

associated with one pulse in the optical frequency comb EC(r, t) driving the optical transition
3 → 4. The peak intensity Ic,max whereby the pulse area is QC = 2nπ ensures that, after an
integer number of Rabi cycles [53], population and coherences of the highest level 4 are led back
to 0 [68–71,73,163] such that, in the absence of the pulses from the optical frequency comb, the
population of the states |4±〉 and the off-diagonal terms %eq

4±1(t) vanish exactly. This has a major
impact upon the properties of the associated spectrum (4.66): Being associated to the Fourier
coefficients [Eq. (4.66b)] of a function which is different from 0 in an interval of duration TFWHM,
the spectrum exhibits an overall width of ∼ 2π/TFWHM.
Conversely, for QC 6= 2nπ, the interaction with the pulse would be followed by the spontaneous

decay of the highest level. As a result, this long decay would represent the main feature of the
off-diagonal element of the density matrix, i.e., %eq

4+1(t) ∼ e−Γ41t. This would affect the amplitude
of the peaks in Eq. (4.66b) and would result in a spectrum of smaller width, Γ41 � 2π/TFWHM,
and smaller number of relevant teeth.
Intensity of the cw x-ray and optical fields.—The essential feature displayed by the time

evolution of the density matrix %̂eq(t) in the time interval [0, Td] is the transfer of population
and coherences from level 3 to level 4 due to the presence of a pulse from the optical frequency
comb. This transfer is only perturbed by the fast spontaneous decay of the excited level 4 to
the ground state, resulting in x-ray emission. The direct link between the off-diagonal elements
of the density matrix %eq

4±1(t) and %eq
31(t) is apparent from a close inspection of the EOMs (4.14).

The increase in %eq
4±1(t) is proportional to the decrease in %eq

31(t): In particular, the higher is
%eq

31(0) at t = 0, when still no coherence has been “moved” to the excited level 4, the larger is the
peak value that %eq

4±1(t) can reach when a complete “coherence transfer” is actually performed.
Hence, owing to the just described relation between the peak value of %eq

4±1(t) and the state of
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the system preceding the interaction with the optical-comb pulses, one ought to properly tune
the intensities of the cw, x-ray and optical pulses in order to optimize the value of %eq

31(0). This
allows one to maximize the peak amplitude of %eq

4±1(t) and, consequently, the intensity of the
lines in the imprinted comb (4.66b).

4.2.1.2 Evolution of the remaining three-level system in the interval in between two pulses
from the optical frequency comb

In the time interval [0, Td], the interaction with one of the pulses in the optical frequency comb
leads the system from its initial state %̂eq(0) to the state %̂eq(Td). The implementation of our
pulse-shaping scheme, employing 2nπ pulses with n ∈ N, ensures that the following condition
is met, %eq

4±i
(0) = %eq

4±i
(Td) for i ∈ {1, 20, 3, 4−, 4+}. However, the remaining elements of the

density matrix display different values at 0 and at Td. Since %̂eq(t) is a periodic solution of
the EOMs, with %̂eq(0) = %̂eq(Tp), it is apparent that the intensities of the cw x-ray and optical
fields, by driving the system also in the time interval in between two optical-comb pulses [Td, Tp],
significantly influence the distinguishing features of the periodic density matrix.
The adoption of a frequency comb consisting of 2nπ pulses guarantees that at time Td, once the

interaction with a pulse from the optical frequency comb has concluded, each one of the elements
of the density matrix which are related to level 4, i.e., %eq

4±i
(Td) for i ∈ {1, 20, 3, 4−, 4+}, is

exactly equal to 0. As a result, in the time interval [Td, Tp] the system behaves as a three-level
system, formed by states |1〉, |20〉, and |3〉 and driven by the two cw fields EX(r, t) and EL(r, t).
In the following, we discuss the criteria which these two fields need to meet in order to maximize
the value of %eq

31(0). We take advantage of previous results for a three-level system driven by two
cw fields [57,58]. Two situations have to be distinguished:
Rapid spontaneous decay of the three-level system.—Because of the presence of spon-

taneous decay, the three-level system formed by the states |1〉, |20〉, and |3〉, converges to a
stationary state within the decay time of the excited levels 2 and 3 [57, 58]. If this decay time
is shorter than the repetition period Tp of the optical frequency comb, this stationary state %̂S

is actually reached in the time interval in between two optical pulses [Td, Tp]. The state %̂S is
the stationary solution of the EOMs (4.14) for constant ΩRX and ΩRL and in the absence of
ΩRC(t). Furthermore, %̂eq(Tp) = %̂eq(0) = %̂S is completely independent of the state %̂eq(Td) into
which the interaction with an optical-comb pulse leads the system. As a result, this state does
not depend on the properties of the optical frequency comb, but only on ΩRX and ΩRL.
In a three-level Λ-type system, i.e., ω20 > ω3, by neglecting the (non-E1) decay rate Γ31 from

state 3 back to the ground state 1, the stationary state %̂S displays matrix elements

%11,S =
Ω2

RL

Ω2
RX +Ω2

RL

, %2020,S = 0, %33,S =
Ω2

RX

Ω2
RX +Ω2

RL

,

%201,S = 0, %31,S = − ΩRXΩRL

Ω2
RX +Ω2

RL

, %320,S = 0,

(4.68)

and %31,S is maximized by setting ΩRX = ΩRL. Also for a three-level Ξ-type system, which we do
not describe explicitly [58], it is possible to identify a relation between the two Rabi frequencies
ΩRX and ΩRL which maximizes the stationary value of the off-diagonal term of the density matrix
%31,S. This relation sets the criteria for the choice of the optimal intensities IX and IL.
Slow spontaneous decay of the three-level system.—When the decay time of the three-

level system consisting of the states |1〉, |20〉, and |3〉, is much larger than the repetition period
Tp of the optical frequency comb, the system does not converge to the stationary solution of the
EOMs %̂S within a period. The time evolution of the system in the time interval [Td, Tp] features
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Rabi oscillations induced by the presence of the cw fields. The state of the system at Tp, and in
particular the value of %eq

31(Tp) = %eq
31(0) which has to be maximized, depends upon the frequency

with which the Rabi flopping takes place as well as on the state %̂eq(Td) due to the interaction
with an optical-comb pulse.
In a three-level system with negligibly small decay rates, the frequency of the induced oscil-

lations can be determined in a dressed-state picture [57, 58, 67]. As described in Ref. [58], the
elements of the density matrix undergo Rabi flopping at frequencies ΩR,eff and 2ΩR,eff , with

ΩR,eff =
1

2

√
Ω2

RX +Ω2
RL. (4.69)

This corresponds to a number of cycles in the time interval [Td, Tp] equal to (Tp−Td)ΩR,eff/(2π).
Being able to predict the number of cycles performed by the system during a period can help
in determining the intensities IX and IL which maximize the value of %eq

31(0), as shown in the
following atomic implementation of the model.

4.2.2 Atomic implementation

In the following, we apply our four-level approximation to model atomic transitions in He-like
Be2+ ions in the desired x-ray and optical ranges. The decay rates Γji are calculated with grasp2K
[200–202], Γ41 = 1.2 × 1011 s−1, Γ43 = 8.7 × 106 s−1, Γ23 = 9.7 × 10−2 s−1, Γ21 = 4.1 × 105 s−1.
These values are also used for the calculation of the dipole moments dij , i.e., for the calculation
of the Rabi frequencies given the intensities of the corresponding electric fields. The transition
energies ω21 = 121.9 eV, ω23 = 0.2699 eV, ω43 = 2.018 eV, and ω41 = 123.7 eV, are taken
from Ref. [191]. We assume a density of Be2+ ions of 108 cm−3 which can be reached with an
electron-beam ion trap [123, 203]: For such a dilute sample, good phase matching is achieved
[143, 187, 188]. Alternative experimental settings, e.g., by gas-discharge or photoionization by
an x-ray pre-pulse [139, 204], may allow for higher densities, but one ought to make sure that a
stable environment is obtained, such that all pulses in the optical frequency comb encounter a
constant density of ions, atoms and free electrons.
The following parameters are used to model the optical frequency comb [Eq. (4.4)], TFWHM =

120 fs, Tp = 1 ns, 1/Tp = 1 GHz [122, 205–208], i.e., 2π/Tp = 4.1 × 10−6 eV. From Eq. (A.7),
this corresponds to a number of peaks ∆k ∼ 104. The ion sample has N = 106 particles over a
length of L = 1 cm and an area of 1 mm2. The peak intensity of the train of pulses in the optical
frequency comb is about 1010 W/cm2. This intensity is by orders of magnitude lower than the
peak intensities presently required for HHG-based schemes.
The repetition frequency of the optical frequency comb assumed here, 1 GHz, is higher than

what experimental techniques render routinely available. However, methods for improving repe-
tition frequencies [209] and peak intensities [122] of the train of pulses from an optical frequency
comb are being explored, such that a combination of these schemes may provide combs exhibiting
the features of which we take advantage in the following.
The here employed pulse-shaping scheme adopts pulses with area QC = 2nπ, with n ∈ N. The

pulse area defined in Eq. (4.67) is the integral of the single-pulse Rabi frequency ΩRC(t), which is
proportional toQC ∝ TFWHM

√
IC,max. For fixed values ofQC, it follows that IC,max ∝ 1/T 2

FWHM:
An increase in the duration of the pulses by one order of magnitude allows one to decrease by
two orders of magnitude the peak intensity of the pulses. In the following calculations, a FWHM
duration of TFWHM = 120 fs is assumed.
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4.2.2.1 Four-level system driven by optical 2π pulses

By using an optical frequency comb consisting of 2π pulses, which, for the previously mentioned
FWHM duration, corresponds to a peak intensity of IC,max = 3.0× 1010 W/cm2, the elements of
the density operator %̂eq(t) which are related to the atomic states |4±〉 vanish in the absence of an
optical pulse from the optical frequency comb. The time evolution of %eq

4+1(t) in the presence of
one of the optical-frequency-comb pulses is shown in Fig. 4.5a. The corresponding time evolution
of %eq

31(t) is displayed in Fig. 4.5b. It is interesting to observe that, while %eq
4+1(t) is led back to

its (vanishing) initial value at the end of the pulse, the same does not happen for %eq
31(t). Only

half cycle is exhibited and, as displayed in Fig. 4.5b, a complete switch in the sign of the matrix
element %eq

31(t) takes place. In the interval [Td, Tp], therefore, the remaining two fields, EX(r, t)
and EL(r, t), need to make up for this switch in the value of %eq

31(t), by guaranteeing that another
half oscillation is performed. Fig. 4.5c displays the time evolution of %eq

31(t) in the time interval
in between two optical pulses [Td, Tp]. In Fig. 4.5c, the associated, effective Rabi frequency,
corresponding to half cycle in the time interval (Tp−Td), is ΩR,eff = π/(Tp−Td): This, together
with Eq. (4.69), leads to the equality

2π

Tp − Td
=
√
Ω2

RX +Ω2
RL. (4.70)

When this condition is met, then the switch induced by the interaction with one optical-
frequency-comb pulse is compensated by another half oscillation taking place in [Td, Tp]. Here,
Eq. (4.70) is used to determine the intensities, IX = 1.5×104 W/cm2 and IL = 1.7×108 W/cm2,
which maximize %eq

13(0). Not fulfilling this condition would imply lower values of %eq
13(0) in the

asymptotically reached, periodic solution of the EOMs and, therefore, lower peak values of the
function %eq

4±1(t) than the peak value exhibited in Fig. 4.5a.
Having suppressed the post-pulse-exposure decay of %eq

4+1(t), the resulting spectrum of reso-
nance fluorescence [Eq.(4.66)] is shown in Fig. 4.5d: It is centered at ω41 = 123.7 eV and, as the
driving optical frequency comb, it contains ∼ 104 peaks of spacing 2π/Tp = 4.1 × 10−6 eV.
Fig. 4.5e highlights the comb structure of the spectrum. The optical-comb peak intensity,
IC,max = 3.0 × 1010 W/cm2, is much lower than the peak intensities used for the generation of
XUV frequency combs via HHG [205–208]. The power of each peak in the emitted spectrum—
about thousands of picowatts—is higher than that measured in Ref. [122].

4.2.2.2 Four-level system driven by optical 4π pulses

The situation is different when an optical frequency comb consisting of 4π pulses is used to drive
the system. For the here employed FWHM duration, such pulse area corresponds to a peak
intensity of IC,max = 1.2 × 1011 W/cm2. As one can see in Fig. 4.6a, the off-diagonal element
of the density matrix %eq

4±1(t) performs a complete cycle in the presence of each optical pulse:
The mean value of the function is 0 and, because of the properties of a Fourier expansion, one
deduces that the spectral component associated with m = 0 must vanish. Furthermore, in the
time interval [0, Td] a larger number of cycles is exhibited in Fig. 4.6a than in Fig. 4.5a: Larger
frequencies than in the previous case are involved and, from Eq. (4.66b), a wider spectrum than
in Fig. 4.5d has to be expected. The corresponding evolution of %eq

31(t) in the presence of an
optical-frequency-comb pulse is displayed in Fig. 4.6b: Now a complete cycle is performed and
%31(Td) almost coincides with %31(0). This simplifies the determination of the intensities IX and
IL which maximize %31(0). As shown in Fig. 4.6c, the role played by the Rabi oscillations in
[Td, Tp] is not determinant. The intensities IX = 9.5 × 108 W/cm2, IL = 1.7 × 108 W/cm2,
maximize %eq

31(0), whereby also the peak value of %eq
4±1(t) is maximized.
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Figure 4.5: Time evolution of the periodic, slowly-varying density matrix %̂eq(t) and spectrum of resonance
fluorescence for Be2+ ions. Present-day parameters are used to model the optical frequency comb [Eq. (4.4)],
TFWHM = 120 fs, Tp = 1 ns, 1/Tp = 1 GHz [122, 205–208], i.e., 2π/Tp = 4.1 × 10−6 eV. The ion sample
has N = 106 particles over a length of L = 1 cm and an area of 1 mm2. The driving fields have intensities
of IX = 1.5 × 104 W/cm2, IL = 1.7 × 108 W/cm2, and IC,max = 3.0 × 1010 W/cm2, associated with 2π
optical-frequency-comb pulses. The periodic solutions are (a) Im[%eq4+1(t)] for nTp < t < nTp + Td, with
Td = πTFWHM/(2 arccos ( 4

√
1/2)), (b) Re[%eq31(t)] for nTp < t < nTp+Td, and (c) Re[%eq31(t)] for nTp+Td <

t < (n + 1)Tp. Since all the fields are tuned to the respective transitions, Re[%eq4+1(t)] = Im[%eq31(t)] = 0.
The power Pm of each peak in the spectrum of Eq. (4.66) is displayed (d) for the whole comb, centered at
ω41 = 123.7 eV, and (e) around the maximum. In panel (e), a1 = 105 nW−1, a2 = 1.86 nW.

Also in this case, the choice of a 2nπ area makes sure that %eq
4+1(t) vanishes in the absence

of a pulse from the optical frequency comb. The resulting spectrum of resonance fluorescence
[Eq.(4.66)] is shown in Fig. 4.6d: It is centered at ω41 = 123.7 eV, with a minimum at m = 0
and two symmetric maxima. Furthermore, a larger number of peaks is exhibited than in the
previous case [Fig. 4.6d]. With ∼ 104 peaks of spacing 2π/Tp = 4.1 × 10−6 eV, the imprinted
x-ray spectrum is as wide as the driving optical frequency comb. Fig. 4.6e highlights the comb
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4 X-ray frequency combs from resonance fluorescence with narrow-bandwidth x rays

structure of the spectrum in the proximity of its maximum, i.e., for m ∼ 3780. The optical-comb
peak intensity, IC,max = 1.2 × 1011 W/cm2, is still much lower than the peak intensities used
for the generation of XUV frequency combs via HHG [205–208]. The power of each peak in the
emitted spectrum—about thousands of picowatts—is higher than that measured in Ref. [122].
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Figure 4.6: Time evolution of the periodic, slowly-varying density matrix %̂eq(t) and spectrum of resonance
fluorescence for Be2+ ions. Present-day parameters are used to model the optical frequency comb [Eq. (4.4)],
TFWHM = 120 fs, Tp = 1 ns, 1/Tp = 1 GHz [122, 205–208], i.e., 2π/Tp = 4.1 × 10−6 eV. The ion sam-
ple has N = 106 particles over a length of L = 1 cm and an area of 1 mm2. The driving fields have
intensities of IX = 9.5 × 108 W/cm2, IL = 1.7 × 108 W/cm2, and IC,max = 1.2 × 1011 W/cm2, as-
sociated with 4π optical-frequency-comb pulses. We display (a) Im[%eq4+1(t)] for nTp < t < nTp + Td,
with Td = πTFWHM/(2 arccos ( 4

√
1/2)), (b) Re[%eq31(t)] for nTp < t < nTp + Td, and (c) Re[%eq31(t)] for

nTp + Td < t < (n + 1)Tp. The power Pm of each peak in the spectrum of Eq. (4.66) is displayed (d) for
the whole comb, centered at ω41 = 123.7 eV, and (e) around the maximum. In panel (e), a1 = 105 nW−1,
a2 = 1.26 nW.
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4.3 Conclusions

4.2.3 Bandwidth of the x-ray field

The results presented so far were obtained by assuming cw x rays and neglecting the bandwidth
γc of the x-ray source. To remove this restriction and incorporate the effect of γc, we adopt the
stochastic approach from Ref. [189]. The x-ray field EX(t) is a stochastic process, varying in
the ensemble of all possible realizations: One derives EOMs for the ensemble-averaged density
matrix to obtain the ensemble-averaged spectrum. We find that the δ peaks of Eq. (4.66) are
broadened and the spectrum is a continuous function with peaks at ωm = 2πm/Tp of FWHM
∼ 2γc. To preserve the comb structure of Eq. (4.66), the x-ray bandwidth must be smaller
than the repetition frequency, i.e., 2γc < 2π/Tp = 4.1 × 10−6 eV: The many-peak structure is
otherwise washed out and the spectrum is reduced to a single wide peak. X rays with such a
small bandwidth are not available at present. Yet, by increasing the repetition frequency of the
optical frequency comb 2π/Tp [120–122, 209], a wider x-ray-comb tooth spacing results and a
larger x-ray bandwidth can be accommodated.

4.3 Conclusions

We present an x-ray pulse-shaping method which we apply to imprint a frequency comb onto
cw x rays. The particles, driven by three external fields, are modeled as four-level systems.
From many-atom effects, we observe that the coherent part of the power spectrum of resonance
fluorescence is the main component of the emitted spectrum, which we calculate from a solution
of the single-particle equations of motion. By exploiting an optical frequency comb consisting of
pulses with an area which is an integer multiple of 2π, we put forward a manipulation scheme
to imprint a pulse-train-like envelope onto the time evolution of the off-diagonal element of the
density matrix %4+1(t), resulting in a spectrum which is a comb of delta peaks centered at the
x-ray transition energy ω41. We apply our theory to He-like Be2+ at an x-ray energy of 123.7 eV
and show that the necessary peak intensity of the driving optical frequency comb is by orders of
magnitude lower than the intensities which are required by HHG-based methods.
Following the approach developed in Ref. [75], we develop a scheme which takes advantage of

the periodic evolution of the atomic system. This can be achieved if an x-ray source is adopted
with a narrow bandwidth, lower than the repetition frequency of the driving optical frequency
comb. Although the resolving power required here is not available yet [89–92], new schemes
are presently explored aiming at the small x-ray bandwidths of which we take advantage in the
atomic implementation of our method [118,119,204,210,211].
The predicted x-ray comb is valuable as a relative “ruler”, e.g., to bridge an energy difference

between an x-ray reference level and an unknown x-ray frequency at high energies for which,
owing to the inefficiency of HHG at high harmonic orders, x-ray frequency-comb generation via
HHG-based methods would encounter significant obstacles [126].
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5 Coherent population transfer and absorption
spectrum of a broadband x-ray pulse

In the previous Chapters we studied the resonance fluorescence of an ensemble of driven particles
in the case in which emitted radiation and driving fields can be separated and distinguished either
in space or in frequency. In Chapter 3, in order to calculate the incoherent part of the spectrum
of resonance fluorescence due to an ensemble of Ne+ ions driven by a field propagating along
the êy direction, we assumed a detector placed on the perpendicular êx direction. Conversely, in
Chapter 4, in order to take advantage of the enhancement of the coherent part of the spectrum of
resonance fluorescence in the forward direction due to many-atom effects, we assumed a detector
placed on the same propagation direction êy of the three driving fields: In this case, we could
exploit the different polarization directions and central frequencies of driving and emitted fields.
Furthermore, because of the small-bandwidth x rays employed in Chapter 4 to excite the x-ray
1 → 2 transition, we could also rely on the absence of frequency overlap between the spectrum
of the x-ray driving field and the spectrum of resonance fluorescence due to the photons emitted
on the 4→ 1 transition.
In the present and in the next Chapter, a different driving scheme is assumed. In contrast to

Chapter 4, where a continuous-wave field was used to drive an x-ray transition, here we assume
a wide-bandwidth, ultrashort x-ray pulse tuned to an x-ray transition in a multi-level system.
The atomic response of the system is manipulated by coupling the excited state to a nearby,
long-lived level by means of an optical field. Since the driving x-ray pulse and the emitted x rays
are centered at the same atomic transition energy, the spectral response of the system can be
analyzed in two different ways, i.e., (i) off the propagation direction of the driving x-ray pulse,
by observing the incoherent part of the spectrum of resonance fluorescence [55, 65, 123, 203], or
(ii) in the propagation direction of the driving field, by measuring the absorption spectrum of
the transmitted x-ray pulse [81, 82, 147]. This second scheme is the one we are going to employ
and investigate in the following.
The present Chapter introduces the theoretical model which we utilize in this and in the

next Chapter. In Sec. 5.1 we present the equations of motion describing an ensemble of particles,
modeled as a three-level system, interacting with a short x-ray pulse and an optical field. Sec. 5.2
presents a numerical solution of the equations of motion in the case in which the three-level system
is driven by an x-ray pulse and a single optical pulse. Results for different optical-pulse shapes and
delays are compared. Finally, in Sec. 5.3, we show how the coherent medium response modifies
the spectrum of an ultrashort, driving x-ray pulse, by investigating the absorption spectrum of
the light which is transmitted through the medium.

5.1 Three-level model and equations of motion

The model that we adopt is depicted in Fig. 5.1. A system of ions, here represented as three-
level, Λ-type systems, is driven by two external electric fields, respectively centered at an x-ray
and an optical frequency, both linearly polarized in the z direction, propagating in the forward
y direction, and nearly tuned to two different transitions in the atomic system.
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5 Coherent population transfer and absorption spectrum of a broadband x-ray pulse

Figure 5.1: An ensemble of ions is driven by an ultrashort, wide-bandwidth x-ray pulse (X, blue), coupling
states 1 and 2, and by an additional optical pulse (L, green) coupling the excited state 2 to the metastable
state 3. Both fields are linearly polarized along the z direction and propagate in the y direction.

The x-ray field consists of a single pulse,

EX(r, t) = EX,0(t−r · êy/c) cos [ωXt+ ϕX(t−r · êy/c) + ϕX,0 − kX · r] êz, (5.1)

with amplitude EX,0(t), carrier frequency ωX, phase ϕX(t), carrier-envelope phase (CEP) ϕX,0,
wavevector kX = (ωX/c) êy, and intensity IX = |EX,0|2/(8πα) [164], where êx, êy, and êz are the
unit vectors in the x, y, and z direction, c is the speed of light, and α = 1/c is the fine-structure
constant. The optical field is

EL(r, t) = EL,0(t−r · êy/c) cos [ωLt+ ϕL(t−r · êy/c) + ϕL,0 − kL · r] êz, (5.2)

where the same notation is used as in Eq. (5.1). The indeces of refraction nq, with q ∈ {X, L},
are here set equal to 1, thus implying that kq = (ωq/c).
The two electric fields EX(r, t) and EL(r, t) drive the electric-dipole (E1) transitions of the

three-level Λ-type system of Fig. 5.1, where level i has energy ωi and the energy between the
levels i and j is given by ωij = ωi − ωj , i, j ∈ S = {1, 2, 3}. The many-level model is used,
as in Chapter 4, to describe He-like ions, for which the transition energies are in the proper
optical and x-ray ranges [191]. States |1〉 and |3〉 represent the ground state 1s2 1S0 and the
metastable state 1s 2s 1S0, respectively, both with total-angular-momentum quantum numbers
J = 0, MJ = 0, and positive parity. However, the only negative-parity state included in this and
in the next Chapter is the state 1s 2p 1P1, with J = 1, MJ = 0, here represented by the excited
state |2〉. In He-like ions, level 3 has lower energy than level 2 [191], such that the three states
form indeed a three-level, Λ-type system [57,58].
Other levels, such as 1s 2s 3S1, 1s 2p 3P0, 1s 2p 3P1, and 1s 2p 3P2, along with the two states

1s 2p 1P1 with MJ = ±1, are not included in our description, because they do not couple via E1
interaction to the levels in Fig. 5.1 and the spontaneous-decay times from higher-energy levels to
them are by orders of magnitude larger than the time scale on which the evolution of the system
takes place. We recall that the levels 2 and 3 are below the autoionization threshold, since in
both cases one electron occupies the 1s orbital [191]. In the following equations, we are allowed
to neglect ionization of multiply charged ions such as Be2+ entirely.
In order to describe the interaction of the electric fields EX(r, t) and EL(r, t) with N ions

at positions rn, n ∈ {1, . . . , N}, we take advantage of the general results which we derived
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5.1 Three-level model and equations of motion

in Chapter 2 for the single-atom case. The interaction is described by the Hamiltonian Ĥ =
Ĥ0+

∑
q∈{X,L} ĤE1,q, where Ĥ0 =

∑N
n=1

∑
i∈{1,2,3} ωi σ̂

n
ii is the atomic electronic structure Hamil-

tonian [see Eqs. (2.30) and (2.31)] and, for q ∈ {X, L}, ĤE1,q =
∑N

n=1 d̂n · Eq(rn, t) are the E1
interaction Hamiltonians that we introduced in Eq. (2.105) [53, 159]. Here, d̂n, in analogy with
Eq. (2.32), represents the dipole operator of an ion at position rn,

d̂n =
∑

i,j∈{1,2,3}

|i〉n n〈i|d̂n|j〉n n〈j| =
∑

i,j∈{1,2,3}

dij,n σ̂
n
ij , (5.3)

with matrix elements dij,n = n〈i|d̂n|j〉n, i, j ∈ {1, 2, 3}, n ∈ {1, . . . , N}. Because the dipole
moment is a general property of the ion species, i.e., of atomic number and charge of the ion,
the matrix elements dij,n = dij do not explicitly depend on n. Furthermore, all the considered
states have angular-momentum quantum numberMJ = 0, wherebyMJ,i−MJ,j = 0 for any pairs
of states i, j. As a result, the dipole-moment matrix elements dij = d 0

ij êz are aligned on the z
direction.
We introduce the time- and space-dependent, complex Rabi frequencies

Ωn
RX(t) = EX,0(t−rn · êy/c) eiϕX(t−rn·êy/c) d 0

12, (5.4a)

Ωn
RL(t) = EL,0(t−rn · êy/c) eiϕL(t−rn·êy/c) d 0

32. (5.4b)

The x-ray field is nearly tuned to the 1→ 2 transition and does not affect the other E1-allowed
transition. Within the rotating-wave approximation (RWA) [53], the interaction with the N ions
is described by the following Hamiltonian1,

ĤE1,X =
N∑
n=1

Ωn
RX

2
σ̂n12 ei(ωXt−kX·rn+ϕX,0) + H.c. (5.5)

Similarly, the interaction of the optical field with the ensemble of ions is described by the Hamil-
tonian

ĤE1,L =

N∑
n=1

Ωn
RL

2
σ̂n32 ei(ωLt−kL·rn+ϕL,0) + H.c. (5.6)

As discussed in Eq. (2.91), the time evolution of the system obeys the master equation [53]
dρ̂/ dt = −i [Ĥ, ρ̂] + L[ρ̂], where ρ̂(t) is the density matrix of elements ρnij(t) = 〈σ̂nji(t)〉 =
Tr{σ̂nji(t) ρ̂}, and L[ρ̂] describes norm-conserving spontaneous decay,

L[ρ̂] =
∑

i, j∈{1, 2, 3}
ωi<ωj

N∑
n=1

−Γji
2

(σ̂njiσ̂
n
ij ρ̂− σ̂nij ρ̂σ̂nji) + H.c., (5.7)

with spontaneous-decay rates Γji [53]; norm-nonconserving terms such as those from autoioniza-
tion or (multi-) photoionization are not present. The equations of motion (EOMs) satisfied by
the elements of the n-ion density matrix ρ̂n(t) are

∂ρn11

∂t
= −i

Ωn
RX

2
ei(ωXt−kX·rn+ϕX,0)ρn21 + i

(Ωn
RX)∗

2
e−i(ωXt−kX·rn+ϕX,0)ρn12 +Γ31ρ

n
33 +Γ21ρ

n
22, (5.8a)

1In this Chapter, we assume that the minus sign in the interaction Hamiltonian ĤAL from Eq. 2.105 is included
in the CEP ϕq,0, with q ∈ {X, L}.
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∂ρn12

∂t
=

(
iω21 −

Γ21 + Γ23

2

)
ρn12 − i

Ωn
RX

2
ei(ωXt−kX·rn+ϕX,0)(ρn22 − ρn11)

+ i
Ωn

RL

2
ei(ωLt−kL·rn+ϕL,0)ρn13,

(5.8b)

∂ρn13

∂t
=

(
i(ω21 − ω23)− Γ31

2

)
ρn13 − i

Ωn
RX

2
ei(ωXt−kX·rn+ϕX,0)ρn23

+ i
(Ωn

RL)∗

2
e−i(ωLt−kL·rn+ϕL,0)ρn12,

(5.8c)

∂ρn22

∂t
= − i

(Ωn
RX)∗

2
e−i(ωXt−kX·rn+ϕX,0)ρn12 + i

Ωn
RX

2
ei(ωXt−kX·rn+ϕX,0)ρn21

− i
(Ωn

RL)∗

2
e−i(ωLt−kL·rn+ϕL,0)ρn32 + i

Ωn
RL

2
ei(ωLt−kL·rn+ϕL,0)ρn23 − (Γ21 + Γ23)ρn22,

(5.8d)

∂ρn23

∂t
=

(
−iω23 −

Γ21 + Γ23 + Γ31

2

)
ρn23 − i

(Ωn
RX)∗

2
e−i(ωXt−kX·rn+ϕX,0)ρn13

− i
(Ωn

RL)∗

2
e−i(ωLt−kL·rn+ϕL,0)(ρn33 − ρn22),

(5.8e)

∂ρn33

∂t
= − i

Ωn
RL

2
ei(ωLt−kL·rn+ϕL,0)ρn23 + i

(Ωn
RL)∗

2
e−i(ωLt−kL·rn+ϕL,0)ρn32 − Γ31ρ

n
33 + Γ23ρ

n
22.

(5.8f)

These equations can be simplified by introducing the slowly varying operators [53,75,195]

ˆ̃ςnii(t) = σ̂nii(t), (5.9a)
ˆ̃ςn21(t) = σ̂n21(t) e−i(ωXt−kX·rn+ϕX,0), (5.9b)
ˆ̃ςn23(t) = σ̂n23(t) e−i(ωLt−kL·rn+ϕL,0), (5.9c)
ˆ̃ςn31(t) = σ̂n31(t) e−i[(ωX−ωL)t−(kX−kL)·rn+ϕX,0−ϕL,0], (5.9d)

and, clearly, ˆ̃ςnij(t) = [ˆ̃ςnji(t)]
†. Analogously, we define a slowly-varying density matrix ˆ̃%(t), of

matrix elements %̃nij(t) = 〈ˆ̃ςnji(t)〉. By further introducing the detuning of the two electric fields

∆X = ω21 − ωX, ∆L = ω23 − ωL, (5.10)

we can write the EOMs as

∂%̃n11

∂t
= −i

Ωn
RX

2
%̃n21 + i

(Ωn
RX)∗

2
%̃n12 + Γ31%̃

n
33 + Γ21%̃

n
22, (5.11a)

∂%̃n12

∂t
=

(
i∆X −

Γ21 + Γ23

2

)
%̃n12 − i

Ωn
RX

2
(%̃n22 − %̃n11) + i

Ωn
RL

2
%̃n13, (5.11b)

∂%̃n13

∂t
=

(
i(∆X −∆L)− Γ31

2

)
%̃n13 − i

Ωn
RX

2
%̃n23 + i

(Ωn
RL)∗

2
%̃n12, (5.11c)

∂%̃n22

∂t
= −i

(Ωn
RX)∗

2
%̃n12 + i

Ωn
RX

2
%̃n21 − i

(Ωn
RL)∗

2
%̃n32 + i

Ωn
RL

2
%̃n23 − (Γ21 + Γ23)%̃n22, (5.11d)

∂%̃n23

∂t
=

(
−i∆L −

Γ21 + Γ23 + Γ31

2

)
%̃n23 − i

(Ωn
RX)∗

2
%̃n13 − i

(Ωn
RL)∗

2
(%̃n33 − %̃n22), (5.11e)

∂%̃n33

∂t
= −i

Ωn
RL

2
%̃n23 + i

(Ωn
RL)∗

2
%̃n32 − Γ31%̃

n
33 + Γ23%̃

n
22. (5.11f)
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5.2 Coherent population transfer via optical coupling

Since the only n-dependent coefficients in the previous set of linear differential equations are the
two Rabi frequencies Ωn

X(t) and Ωn
RL(t) defined in Eq. (5.4), the elements of the density matrices

associated with ions at different positions, rn and rn′ , are related by the following equality,

%̃nij(t) = %̃n
′
ij [t+ (rn′ − rn) · êy/c], (5.12)

such that, from Eq. (5.9),
ρnij(t) = ρn

′
ij [t+ (rn′ − rn) · êy/c]. (5.13)

5.2 Coherent population transfer via optical coupling

In this Section, we solve numerically the EOMs derived in Eq. (5.11) for the three-level scheme
of Fig. 5.1 which we apply to describe the dynamics of He-like O6+ ions driven by an x-ray pulse
tuned to the 1s2 1S0 → 1s 2p 1P1 E1 transition at ω21 = 573.96 eV in the presence of an optical
laser which couples the excited state 1s 2p 1P1 to the metastable state 1s 2s 1S0, separated by a
transition energy of ω23 = 5.06 eV. We employ a single-particle description and solve the EOMs
in Eq. (5.11) for the density matrix %̂eq(t), associated with a particle at position r0 = 0. The
system is assumed to be initially in the ground state, i.e., the initial state of the density matrix
is %eq

ij (0) = δi1 δj1. The decay rates Γ21 = 3.3 × 1012 s−1 and Γ23 = 2.5 × 107 s−1 are calculated
with grasp2K [200–202], whereas the two-photon decay rate Γ31 = 2.31 × 106 s−1 is taken from
Ref. [212]. These values are also used for the calculation of the dipole moments dij involved in
the definition of the Rabi frequencies (5.4). The transition energies ω23 and ω21 are taken from
Ref. [191].

5.2.1 Interaction of the system with an x-ray pulse and an optical laser

Here, we describe numerically how efficiently an optical pulse interacting with the atomic system
in Fig. 5.1 can lead to population transfer from the excited level 2 to the metastable state 3.
The x-ray Self-Amplified-Spontaneous-Emission (SASE) pulse [89–92] is generated via the

partial-coherence method which we discuss in Appendix B. Here, we assume an x-ray bandwidth
∆ωSASE = 6 eV, an average peak intensity IX,max = 1014 W/cm2, average time duration τenv =
10 fs and an average envelope function ĒX,0(t) = ĒX,max cos2[π(t−TX0)/T ] R[(t−TX0)/T ], where
ĒX,max =

√
8πα IX,max, α is the fine-structure constant, TX0 = 55 fs is the time at which the

pulse is centered, T = πτenv/(2 arccos 4
√

1/2) [190], and the rectangular function R(t) is defined
with the help of the Heaviside step function θ(t) as R(t) = θ(t+ 1/2)− θ(t− 1/2). We study the
evolution of the population of the two excited levels, 1s 2p 1P1 and 1s 2s 1S0, for optical pulses
of different shape, central time, and detuning.
In Fig. 5.2, the optical-pulse envelope EL,0(t) is modeled by a trapezoidal function of peak

intensity IL = 2×1013 W/cm2 and centered, as the x-ray pulse, at TL0 = 55 fs. The function has
a finite rise time of 5 fs and the time interval exhibiting constant amplitude is τL = 100 fs. The
x-ray pulse, the optical pulse and the corresponding time evolution of the populations of the two
excited states 2 and 3 are shown in Figs. 5.2a and 5.2b, respectively for an optical pulse tuned to
the transition at 5.06 eV and for a detuned, 266-nm optical pulse of photon energy 4.65 eV. In
the case of a tuned pulse, the populations perform Rabi cycles at constant Rabi frequency ΩRL

[Eq. (5.4)]. Notice that a complete population transfer is not achieved. In the case of a detuned
pulse, Rabi oscillations appear, although a less efficient population transfer is featured.
In Fig. 5.3, a smooth-envelope optical pulse is employed. It is centered, as in the previous case,

at TL0 = 55 fs and thus temporally overlaps with the x-ray pulse. We model this optical pulse via
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5 Coherent population transfer and absorption spectrum of a broadband x-ray pulse
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Figure 5.2: Three-level system driven by an x-ray SASE pulse (black), centered at TX0 = 55 fs, together with
a trapezoidal optical pulse (red), centered at TL0 = 55 fs, overlapping with the x-ray pulse. The population
of the excited state %eq22(t) (green) and of the metastable state %eq33(t) (blue) are depicted for (a) a tuned
optical pulse and (b) a 266-nm pulse, detuned from the corresponding optical transition 2→ 3. The value of
the intensity of the pulses is exhibited on the left-hand axis. The intensity of the x-ray pulse has still to be
multiplied by a factor 10. The value of the populations is exhibited on the right-hand axis.

the envelope function EL,0(t) = EL,max cos2[π(t− TL0)/TL]R[(t− TL0)/TL], where the maximum
electric-field strength EL,max =

√
8πα IL,max and the pulse duration TL = πτL/(2 arccos 4

√
1/2)

are related to the FWHM of the optical pulse τL = 40 fs and to its peak intensity IL,max =
2×1013 W/cm2. The essential features of the corresponding time evolution of the populations of
the excited states 2 and 3 were already present in Fig. 5.2. Rabi oscillations of the populations
are exhibited in Fig. 5.3a at the time-dependent Rabi frequency ΩRL(t) ensued from the time-
dependent envelope function EL,0(t) [Eq. (5.4)]. In the presence of detuning, Fig. 5.3b shows
Rabi oscillations featuring less efficient population transfer than in the case of a tuned pulse.
In Fig. 5.3, we present the time evolution of the three-level system when an optical pulse is

used which, being centered at TL0 = 125 fs, does not overlap with the preceding x-ray pulse.
The envelope function of the optical pulse is modeled also in this case via the already presented
cosine-squared function. When the optical pulse is tuned to the transition 2 → 3, several Rabi
cycles are exhibited (Fig. 5.4a) and complete population inversions are achieved. Totally different
is the case of a detuned pulse (Fig. 5.4b): Rabi oscillations are not induced and only a small
amount of population is transferred from the excited state 2 to the metastable state 3 at the
optical-field-envelope maximum.
As we have already discussed in Sec. 2.6, the number of Rabi oscillations is related to the

pulse area QL =
∫∞
−∞ΩRL(t) dt, where the Rabi frequency ΩRL(t) (5.4) associated with the

cosine-squared envelope function EL,0(t) = EL,max cos2[π(t− TL0)/TL]R[(t− TL0)/TL] leads to

QL = d 0
23

√
8πα IL,max

πτL

2(2 arccos 4
√

1/2)
.

In the absence of any spontaneous decay or detuning, a system driven by a pulse with area QL

would display a number of cycles QL/2π in the population oscillations induced by the external
field [68–71,73,163]. In particular, forQL = (2n+1)π, with n ∈ N, a complete population transfer
is performed. This is shown in Fig. 5.5, where an optical pulse with cosine-squared envelope
and QL = π is employed. For the FWHM τL = 40 fs and the dipole-moment matrix element
d23 in He-like O6+, this condition corresponds to a peak intensity IL,max = 3.7 × 1011 W/cm2.
The resulting population switch, from the fast decaying level 1s 2p 1P1 to the metastable state
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5.2 Coherent population transfer via optical coupling
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Figure 5.3: (a) and (b) as in Fig. 5.2, for a cosine-squared optical pulse (red) centered at the same TL0 = 55 fs
as the x-ray pulse.
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Figure 5.4: (a) and (b) as in Fig. 5.2, for a cosine-squared optical pulse (red) centered at TL0 = 125 fs, with
no temporal overlap with the x-ray pulse (black).

1s 2s 1S0, is displayed in Fig. 5.5. In Sec. 6.2 this will be studied analytically for the case of
an optical pulse with hyperbolic-secant envelope and employed in the rest of the Chapter to
implement a new x-ray pulse-shaping scheme via optical frequency combs.

5.2.2 A system driven by two optical pulses

In the previous part we have discussed how an optical pulse, following the interaction of a multi-
level system with an x-ray pulse, can be used to transfer population (and coherence) from the
excited state 1s 2p 1P1 to the long-lived state 1s 2s 1S0. We have shown that, when the interaction
with the optical pulse is concluded, both excited levels are in general occupied (Figs. 5.2, 5.3,
and 5.4), unless the parameters of the optical pulse are properly set to satisfy the condition
QL = (2n + 1)π (Fig. 5.5). Then, the population still occupying the excited state 1s 2p 1P1

decays back to the ground state at the decay rate Γ21, whereas the population stored in the
metastable state 1s 2s 1S0, decaying only because of two-photon emission at the much lower
decay rate Γ31, is marginally modified (Figs. 5.2, 5.3, and 5.4).
This population, effectively stored in the state 1s 2s 1S0, can be released by a second optical

pulse, as we show in Fig. 5.6. Here, we use two 266-nm pulses, both detuned from the optical
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5 Coherent population transfer and absorption spectrum of a broadband x-ray pulse
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Figure 5.5: Three-level system driven by an x-ray SASE pulse (black), centered at TX0 = 55 fs, together with
a cosine-squared optical pulse (red), centered at TL0 = 125 fs. The population of the excited state 2 (green)
and of the metastable state 3 (blue) are depicted for a tuned optical pulse with pulse area QL = π and peak
intensity IL,max = 3.7 × 1011 W/cm2. The value of the intensity of the pulses is exhibited on the left-hand
axis. The intensity of the x-ray pulse has still to be multiplied by a factor 1000. The value of the populations
is exhibited on the right-hand axis.

transition and with trapezoidal envelope functions, EL,0(t) and EL2,0(t), as in Fig. 5.2b. Only
the first pulse, centered at TL0 = 55 fs, overlaps with the x-ray pulse. In contrast, the second
optical pulse, centered at TL20 = 1835 fs, is largely delayed, such that it drives the three-level
system when the population of the excited state 1s 2p 1P1 has already completely decayed. This
pulse induces new Rabi oscillations which repopulate the excited level 1s 2p 1P1 and thus lead
to new decay of its population. This two-pulse scheme may be implemented with different pulse
durations, intensities, and delays. By measuring the emitted signal as a function of the pulse
delay, an experimental observation of the spontaneous decay ensuing from the interaction with
a second optical pulse would allow, e.g., accurate lifetime measurements of the 1s 2s 1S0 state.

5.3 Absorption spectrum of a transmitted ultrashort pulse

The ultrashort x-ray pulse (X) in Fig. 5.1 initiates the dynamic evolution of the three-level
system, as we also observed in the previous discussion in Sec. 5.2. The coherent response of the
medium is associated with the emission of x rays, whose interference with the initial pulse X
leads to the reshaping of the pulse spectrum. The modification of the x-ray spectral features
of the driving pulse ensuing from the coherent interaction with an ensemble of particles can be
investigated by studying the absorption spectrum of the transmitted x-ray field, displaying the
energy loss (or gain, depending on the sign of the spectrum) of the frequency components of the
broadband pulse [81].
In this Section, we investigate the relationship between the absorption spectrum of the trans-

mitted field and the atomic dipole response. In the particular case of the three-level system
displayed in Fig. 5.1, by virtue of the low density of the atomic sample with which the electric
fields interact, we can assume that the pulses propagate unperturbed through the medium. The
total electric field is given by the sum of the driving fields, EX(r, t) and EL(r, t), and the emitted
field Eem(r, t) resulting from the dipole response of the system,

E(r, t) = EX(r, t) + EL(r, t) +Eem(r, t). (5.14)

The usual approach to the calculation of the absorption spectrum is semiclassical and is based
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5.3 Absorption spectrum of a transmitted ultrashort pulse
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Figure 5.6: Three-level system driven by an x-ray SASE pulse (black), centered at TX0 = 55 fs, together with
two 266-nm, trapezoidal pulses (red). The first pulse is centered at the same time TL0 = 55 fs as the x-ray
pulse, whereas the second pulse is delayed, TL20 = 1835 fs, such that the population of the excited state
has almost completely decayed before its arrival. The corresponding populations of the excited state %eq22(t)
(green) and of the metastable state %eq33(t) (blue) display Rabi oscillations between the optically coupled states
1s 2p 1P1 and 1s 2s 1S0 and spontaneous decay of the excited state 1s 2p 1P1. The value of the intensity of
the pulses is exhibited on the left-hand axis. The intensity of the x-ray pulse has still to be multiplied by a
factor 10. The value of the populations is exhibited on the right-hand axis.

on the solution of Maxwell’s equation [53,144,146,164,213](
∇2 − 1

c2

∂2

∂t2

)
E(r, t) =

4π

c2

∂2

∂t2
P(r, t), (5.15)

with P(r, t) being the macroscopic polarization in the medium. The derivation which is pre-
sented here leads to the same conclusions by explicitly taking advantage of the concepts and
definitions which we introduced in the previous Chapters.
From Eqs. (2.32) and (2.60), the emitted electric field is described by the quantum operator

Êem(r, t) = Ê+
em(r, t) + Ê−em(r, t), (5.16)

where Ê+
em(r, t) [Ê−em(r, t)] is the positive[negative]-frequency component of the electric field,

Ê−em(r, t) = [Ê+
em(r, t)]†. The emitted field has two main contributions, i.e., a first term,

Ê21(r, t) = Ê+
21(r, t)+Ê−21(r, t), describing those x-ray photons emitted on the 2→ 1 transition,

and a second part, Ê23(r, t) = Ê+
23(r, t) + Ê−23(r, t), centered at the optical frequency of the

transition 2→ 3. Each component of the electric field, in the electric-dipole approximation and
in the far-field limit, can be written as the sum of spherical waves emitted by each one of the N
ions which, upon interaction with the external fields, behave like oscillating dipoles [Eq. (2.68)].
The positive-frequency parts of the two components of the electric field can be related to the
electric-dipole moment operators via the relation [53]

Ê+
21(r, t) =

ω2
21 d

0
21

c2

N∑
n=1

σ̂n12(t− |r − rn|/c)
|r − rn|

{
êz −

(r − rn) [êz · (r − rn)]

|r − rn|2

}
, (5.17a)

Ê+
23(r, t) =

ω2
23 d

0
23

c2

N∑
n=1

σ̂n32(t− |r − rn|/c)
|r − rn|

{
êz −

(r − rn) [êz · (r − rn)]

|r − rn|2

}
. (5.17b)
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5 Coherent population transfer and absorption spectrum of a broadband x-ray pulse

The semiclassical, x-ray emitted field EX,em(r, t) is

E+
X,em(r, t) = 〈Ê+

21(r, t)〉 =

ω2
21 d

0
21

c2

N∑
n=1

〈ˆ̃ςn12(t− |r − rn|/c)〉
|r − rn|

e−i[ωX(t−|r−rn|/c)−kX·rn+ϕX,0]

{
êz −

(r − rn) [êz · (r − rn)]

|r − rn|2

}
.

(5.18)

Along with the quantum operators, also the (semi)classical electric fields can be divided into
a positive- and negative-frequency part, e.g., EX(r, t) = E+

X(r, t) + E−X(r, t), with E−X(r, t) =
[E+

X(r, t)]∗ and

E+
X(r, t) =

1

2
EX,0(t−r · êy/c) e−i[ωXt+ϕX(t−r·êy/c)+ϕX,0−kX·r] êz. (5.19)

An x-ray spectrometer placed in the forward êy direction, at distance r from the ensemble of
ions, will measure the total spectrum of the transmitted field. From Eqs. (2.129) and (2.130),
this spectrum is given by

S(r êy, ω) =

∫ ∞
−∞

∫ ∞
−∞

〈(
E−X(r êy, t1) + Ê−21(r êy, t1)

)
·
(
E+

X(r êy, t2) + Ê+
21(r êy, t2)

)〉
× e−iω(t1−t2) dt1 dt2.

(5.20)

The spectrum S(r êy, ω) consists of the sum of the following terms:

S1(r êy, ω) =

∣∣∣∣∫ ∞
−∞

E+
X(r êy, t) eiωt dt

∣∣∣∣2 , (5.21a)

S2(r êy, ω) = 2 Re

{∫ ∞
−∞

(
E−X(r êy, t1) e−iωt1

)
dt1 ·

∫ ∞
−∞

(
E+

X,em(r êy, t2) eiωt2
)

dt2

}
, (5.21b)

S3(r êy, ω) =

∫ ∞
−∞

∫ ∞
−∞
〈Ê−21(r êy, t1) · Ê+

21(r êy, t2)〉 e−iω(t1−t2) dt1 dt2. (5.21c)

The first term S1(r êy, ω) represents the spectrum of the initial driving x-ray pulse. The sec-
ond term S2(r êy, ω) is yielded by the interference between the driving pulse and the emitted
x-ray photons, whose properties are optically manipulated by the driving field EL(r, t). Finally,
S3(r êy, ω) is the spectrum of resonance fluorescence of the system in the forward direction,
which we investigated in the previous Chapters.
The absorption spectrum

σ(r êy, ω) =
S(r êy, ω)− S1(r êy, ω)

S1(r êy, ω)
≈ 2 Re

{∫∞
−∞ êz ·E

+
X,em(r êy, t) eiω(t−r/c) dt∫∞

−∞ êz · E
+
X(r êy, t) eiω(t−r/c) dt

}
(5.22)

is defined as the difference between the total spectrum of the transmitted field S(r êy, ω) and
the initial spectrum of the driving pulse S1(r êy, ω), normalized to S1(r êy, ω). In the previous
identity we have used the fact that the emitted electric field is polarized in the z direction, as
we are going to show in the following. Since the duration of the driving x-ray pulse EX(r êy, t)
is much shorter than the time scale in which the emitted electric field E+

X,em(r êy, t) evolves, for
the calculation of the absorption spectrum we can rely on the approximation

êz · E+
X(r êy, t) ≈ B δ(t− T0 − r/c) e−i(ωXT0+ϕX,0), (5.23a)
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5.3 Absorption spectrum of a transmitted ultrashort pulse

Figure 5.7: Reference frame for the calculation of the total emitted x-ray field at r = r êy.∫ ∞
−∞

êz · E+
X(r êy, t) eiω(t−r/c) dt =

∫ ∞
−∞

B δ(t− T0 − r/c) e−i(ωXT0+ϕX,0) eiω(t−r/c) dt

= B ei(ω−ωX)T0 e−iϕX,0 .

(5.23b)

The total emitted field EX,em(r êy, t) ensues from the spherical waves emitted by each one of
the N atoms. We assume a cylindrical volume V with constant density N/V , length Ly and
radius R. By choosing the reference frame depicted in Fig. 5.7, in which the vector rn has
components rn = yn êy + rn(cos θn êx + sin θn êz), with yn ∈ [−Ly/2, Ly/2], θn ∈ [0, 2π], and
rn ∈ [0, R], such that |r−rn|2 = (r−yn)2 +rnn, we can approximate the sum over the N particles
with the following integral:

E+
X,em(r êy, t) =

N

V
e−iϕX,0

ω2
21 d

0
21

c2

∫ Ly/2

−Ly/2
eikXyn

∫ R

0
rn
〈ˆ̃ςn12(t− |r − rn|/c)〉

|r − rn|3
e−iωX(t−|r−rn|/c)

×
∫ 2π

0

{
[(r − yn)2 + r2

n cos2 θn]êz + [r2
n sin θn cos θn]êx + [rn (r − yn) sin θn]êy

}
dθn drn dyn.

(5.24)

The integral over θn vanishes along the y and x directions: The field is therefore polarized in the
z direction and is equal to

E+
X,em(r êy, t) = êz

2πNω2
21d

0
21

V c2
e−iϕX,0

×
∫ Ly/2

−Ly/2

∫ R

0

〈ˆ̃ςn12(t− |r − rn|/c)〉
|r − rn|

e−iωX(t−|r−rn|/c−yn/c) rn drn dyn.

(5.25)

We exploit now the fact that, from Eq. (5.12), ˆ̃ςn12(t) = ˆ̃ςn
′

12[t + (yn′ − yn)/c] = ˆ̃ςeq
12 [t − yn/c],

where the operator ˆ̃ςeq
12(t), related to the element of the density matrix %eq

21(t), is associated with
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5 Coherent population transfer and absorption spectrum of a broadband x-ray pulse

a particle at position r0 = 0. With the change of variables g = t− |r − rn|/c+ (r − yn)/c, one
can rewrite the previous integral as

E+
X,em(r êy, t) = êz

2πNLyω
2
21d

0
21

V c
e−iϕX,0

∫ t

t−R2/(2rc)
〈ˆ̃ςeq

12(g − r/c)〉 e−iωX(g−r/c) dg, (5.26)

where we have approximated the lower limit of the integral in g with

t−
√

(r − yn)2 +R2 − (r − yn)

c
≈ t− R2

2(r − yn)c
≈ t− R2

2rc
. (5.27)

Going back to the absorption spectrum, by exploiting the properties of the Fourier transform
of the integral of a function, we can see that the Fourier transform of the x-ray emitted field
provides∫ ∞

−∞
êz ·E+

X,em(r êy, t) eiω(t−r/c) dt

=
2πNLyω

2
21d

0
21

V c
e−iϕX,0

∫ ∞
−∞

[∫ t

t−R2/(2rc)
〈ˆ̃ςeq

12(g − r/c)〉 e−iωX(g−r/c) dg

]
eiω(t−r/c) dt

≈ i
2πω21

c
e−iϕX,0

∫ ∞
−∞

N Ly
V

d 0
21 〈ˆ̃ς

eq
12(t)〉 ei(ω−ωX)t dt

= i
2πω21

c
e−iϕX,0

∫ ∞
−∞
P(0, t) ei(ω−ωX)t dt,

(5.28)

where we have defined the mean polarization in the medium P(0, t) =
N Ly
V d 0

21〈ˆ̃ς
eq
12(t)〉 êz, linearly

polarized in the z direction, at position 0 and time t. The absorption spectrum is, therefore,

σ(r êy, ω) = 2 Re

{∫∞
−∞ êz ·E

+
X,em(r êy, t) eiω(t−r/c) dt∫∞

−∞ êz · E
+
X(r êy, t) eiω(t−r/c) dt

}

=
4πω21

c
Im
{ 1

B

∫ ∞
−∞
P(t) ei(ω−ωX)(t−T0) dt

}
,

(5.29)

which, by exploiting the general identity∫ ∞
−∞

f∗(t) ei$t dt =
{∫ ∞
−∞

f(t) e−i$t dt
}∗
,

can be shown to be proportional to the imaginary part of the spectral dipole response of the
system

σ(r êy, ω) ∝ ω21 Im
{∫ ∞
−∞

%eq
21(t) ei(ω−ωX)(t−T0) dt

}
= −ω21 Im

{∫ ∞
−∞

%eq
12(t) e−i(ω−ωX)(t−T0) dt

}
.

(5.30)

In the next Chapter, the optical manipulation of the absorption spectrum 5.30 is investigated in
the case in which an optical frequency comb is employed to drive the atomic system.
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6 X-ray frequency combs via optically modified
absorption

In the previous Chapter an optical pulse was employed to couple an x-ray-excited level to a
nearby metastable state and thereby to store populations and coherences in this long-lived state.
We also observed that a second optical pulse can be utilized to release these populations and
coherences: A periodic release, therefore, would be featured if instead of a single pulse a periodic
train of coherent pulses was employed. This leads us to the investigation which we discuss in the
present Chapter.
Here, we study the time evolution of a three-level system which, after having been excited

by an ultrashort x-ray pulse, is driven by a train of optical pulses. The effect of the coherent
response of the atomic system on the absorption spectrum of the transmitted x-ray pulse is further
investigated. The theoretical model is introduced in Sec. 6.1. In Sec. 6.2 we study analytically the
time evolution of the atomic system and the associated absorption spectrum of the transmitted
x-ray field when a single optical pulse follows the x-ray pulse, thus coupling the x-ray-excited
state to a nearby level. This single-pulse solution is used recursively in Sec. 6.3 to analyze the
time evolution of the three-level system and the associated x-ray absorption spectrum when an
optical frequency comb is employed. Sec. 6.4 concludes the Chapter. Parts of this Chapter have
been presented in Refs. [214] and [215].

6.1 Theoretical model

In the following, we employ the three-level system depicted in Fig. 6.1. The absorption spectrum
of the transmitted x-ray pulse [Eq. (5.30)] ensues from quantum interference between the driv-
ing, ultrashort x-ray pulse (X,in in the figure) and the electric field (X,em in the figure) which
is emitted as a result of the atomic dipole response, optically manipulated by the field EC(r, t)
driving the 2 → 3 transition. At time T0, before the interaction with this optical field takes
place, each particle is in an initial state described by the density matrix ρ̂n(T0). This initial
state is prepared via the interaction with the ultrashort x-ray pulse EX(r, t) [Eq. (5.1)] and the
optical pulse EL(r, t) [Eq. (5.2)] in Fig. 5.1. This preparatory stage, preceding the interaction
with EC(r, t), was already analyzed in the previous Chapter and, therefore, is not discussed here.
The absorption spectrum of the transmitted x-ray field depends on the initial state ρ̂n(T0). In
the following, we are going to solve the equations of motion (EOMs) and calculate the associated
x-ray absorption spectrum (5.30) for a generic initial state ρ̂n(T0): The results will be subse-
quently analyzed for two specific sets of initial conditions, corresponding to different choices of
the driving pulses EX(r, t) and EL(r, t) in the preparatory state which precedes the interaction
with EC(r, t).
The driving optical field

EC(r, t) = EC,0(t−r · êy/c) cos [ωCt+ ϕC(t−r · êy/c) + ϕC,0 − kC · r] êz (6.1)

is written by exploiting the same notation we already used in Eqs. (5.1) and (5.2). We also
introduce the corresponding time- and space-dependent, complex Rabi frequency

Ωn
RC(t) = EC,0(t−rn · êy/c) eiϕC(t−rn·êy/c) d 0

32. (6.2)
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6 X-ray frequency combs via optically modified absorption

Figure 6.1: An ensemble of ions, after having been excited by an x-ray pulse (X,in blue) as in Fig. 5.1, is driven
by an optical field (C, green), linearly polarized along the z direction and propagating in the y direction. The
coherent response of the atomic system and the ensuing emission of x rays (X,em, blue) interfering with the
driving x-ray pulse (X,in, blue) give rise to the modification of the absorption spectrum of the transmitted
x-ray field

The time evolution of a system of N particles, described by the density matrices ρ̂n(t), with
n ∈ {1, . . . , N}, and driven by EC(r, t), is given by the solution of the EOMs1

∂ρn11

∂t
= Γ31ρ

n
33 + Γ21ρ

n
22, (6.3a)

∂ρn12

∂t
=

(
iω21 −

Γ21 + Γ23

2

)
ρn12 + i

Ωn
RC

2
ei(ωCt−kC·rn+ϕC,0)ρn13, (6.3b)

∂ρn13

∂t
=

(
i(ω21 − ω23)− Γ31

2

)
ρn13 + i

(Ωn
RC)∗

2
e−i(ωCt−kC·rn+ϕC,0)ρn12, (6.3c)

∂ρn22

∂t
= − i

(Ωn
RC)∗

2
e−i(ωCt−kC·rn+ϕC,0)ρn32 + i

Ωn
RC

2
ei(ωCt−kC·rn+ϕC,0)ρn23 − (Γ21 + Γ23)ρn22,

(6.3d)

∂ρn23

∂t
=

(
−iω23 −

Γ21 + Γ23 + Γ31

2

)
ρn23 − i

(Ωn
RC)∗

2
e−i(ωCt−kC·rn+ϕC,0)(ρn33 − ρn22), (6.3e)

∂ρn33

∂t
= − i

Ωn
RC

2
ei(ωCt−kC·rn+ϕC,0)ρn23 + i

(Ωn
RC)∗

2
e−i(ωCt−kC·rn+ϕC,0)ρn32 − Γ31ρ

n
33 + Γ23ρ

n
22.

(6.3f)

These equations can be simplified by introducing the new slowly varying operators [53,75,195]

ς̂nii(t) = ˆ̃ςnii(t) = σ̂nii(t), (6.4a)
ς̂n21(t) = ˆ̃ςn21(t) = σ̂n21(t) e−i(ωXt−kX·rn+ϕX,0), (6.4b)
ς̂n23(t) = σ̂n23(t) e−i(ωCt−kC·rn+ϕC,0), (6.4c)
ς̂n31(t) = σ̂n31(t) e−i[(ωX−ωC)t−(kX−kC)·rn+ϕX,0−ϕC,0], (6.4d)

and the corresponding Hermitian conjugate operators ς̂nij(t) = [ς̂nji(t)]
†, where we have used the

x-ray frequency ωX, wavevector kX, and offset phase ϕX,0 from Eq. (5.1). By recalling the
1Also in this Chapter, as already done in the previous one, we assume that the minus sign in the interaction
Hamiltonian ĤAL from Eq. 2.105 is included in the carrier-envelope phase ϕC,0.
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6.1 Theoretical model

definition of the operators ˆ̃ςnij(t), which we introduced in Eq. (5.9), we observe that ς̂n21(t) and
ˆ̃ςn21(t) are identically defined, whereas ς̂n23(t) and ˆ̃ςn23(t) are in general two different operators,
since they are determined by the potentially different carrier frequencies ωC and ωL. In terms of
these new operators we also introduce the slowly varying density matrix %̂(t), of matrix elements
%nij(t) = 〈ς̂nji(t)〉. By using the detunings

∆C = ω23 − ωC (6.5)

and ∆X [Eq. (5.10)], we can deduce from Eqs. (6.3) the EOMs which are satisfied by the matrix
elements of %̂n(t), i.e.,

∂%n11

∂t
= Γ31%

n
33 + Γ21%

n
22, (6.6a)

∂%n12

∂t
=

(
i∆X −

Γ21 + Γ23

2

)
%n12 + i

Ωn
RC

2
%n13, (6.6b)

∂%n13

∂t
=

(
i(∆X −∆C)− Γ31

2

)
%n13 + i

(Ωn
RC)∗

2
%n12, (6.6c)

∂%n22

∂t
= −i

(Ωn
RC)∗

2
%n32 + i

Ωn
RC

2
%n23 − (Γ21 + Γ23)%n22, (6.6d)

∂%n23

∂t
=

(
−i∆C −

Γ21 + Γ23 + Γ31

2

)
%n23 − i

(Ωn
RC)∗

2
(%n33 − %n22), (6.6e)

∂%n33

∂t
= −i

Ωn
RC

2
%n23 + i

(Ωn
RC)∗

2
%n32 − Γ31%

n
33 + Γ23%

n
22. (6.6f)

The definition of ς̂nji(t) and ˆ̃ςnji(t), together with the properties of the time- and space-dependent
Rabi frequency Ωn

RC(t), allow one to generalize Eq. (5.13) and use Eqs. (6.6) to prove that

%n12(t) = %n
′

12[t+ (rn′ − rn) · êy/c], for any t. (6.7)

As a result, all the steps which were followed to derive the absorption spectrum in Eq. (5.30)
can be similarly repeated also in the presence of the optical field EC(r, t).
The EOMs which are satisfied by %eq

12(t) can be obtained from Eq. (6.6) by setting r0 = 0. We
further introduce the total decay rates Γ2 and Γ3 and the detuning ∆, i.e.,

Γ2 = Γ21 + Γ23, Γ3 = Γ31, ∆ = −∆C, (6.8)

and assume that the electric field EC(r, t) has constant phase ϕC(t) = 0, such that the Rabi
frequency at the ion position r0 = 0 is real, i.e.,

ΩRC(t) = EC,0(t) d 0
32 = [ΩRC(t)]∗. (6.9)

We notice then that the two equations

∂%eq
12

∂t
=

(
i∆X −

Γ2

2

)
%eq

12 + i
ΩRC

2
%eq

13, (6.10a)

∂%eq
13

∂t
=

(
i(∆X +∆)− Γ3

2

)
%eq

13 + i
ΩRC

2
%eq

12, (6.10b)
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6 X-ray frequency combs via optically modified absorption

form a set of two linear differential equations which are completely independent of the other
elements of the density matrix. In order to solve these equations, it is useful to introduce the
rescaled variables

%̄12(t) = %eq
12 e

(
−i∆X+

Γ2
2

)
(t−T0)

, %̄13(t) = %eq
13 e

(
−i(∆X+∆)+

Γ3
2

)
(t−T0)

. (6.11)

The ensuing set of two linear differential equations

∂%̄12

∂t
= +i

ΩRC

2
%̄13 e

(
i∆+

Γ2−Γ3
2

)
(t−T0)

, (6.12a)

∂%̄13

∂t
= +i

ΩRC

2
%̄12 e

(
−i∆−Γ2−Γ3

2

)
(t−T0)

, (6.12b)

leads to the second-order differential equations

∂2%̄12

∂t2
−
(

1

ΩRC

∂ΩRC

∂t
+ i∆+

Γ2 − Γ3

2

)
∂%̄12

∂t
+
Ω2

RC

4
%̄12 = 0,

∂2%̄13

∂t2
−
(

1

ΩRC

∂ΩRC

∂t
− i∆− Γ2 − Γ3

2

)
∂%̄13

∂t
+
Ω2

RC

4
%̄13 = 0.

(6.13)

In the next Sections, we solve Eq. (6.13) for a single optical pulse and a train of optical pulses:
The solution is then employed to calculate the absorption spectrum of the transmitted x-ray
field (5.30) and, thereby, to put forward a manipulation scheme for high-photon-energy comb
generation.

6.2 Coherent control via a single optical pulse

In this Section, we focus on the interaction of a three-level system with a single hyperbolic-
secant pulse driving the 2 → 3 transition, as shown in Fig. 6.1. This single-pulse solution will
be iteratively used in the next Section to investigate the case of a periodic train of pulses and
thereby to imprint a comb onto the x-ray absorption spectrum of the transmitted x-ray field.

6.2.1 Time evolution of the system

The solution of Eq. (6.13) in the single-pulse case can be studied analytically if the Rabi frequency
is modeled by a hyperbolic-secant function, i.e., [68–71,73,163]

ΩRC(t) = A sech[γ(t− t0)]. (6.14)

Here, γ is the bandwidth of the pulse, associated with a FWHM duration given by τFWHM =
2 arccosh(

√
2)/γ, the constant A = d 0

32

√
8πα IC,max is the peak amplitude of the Rabi frequency,

associated with the peak intensity of the pulse IC,max, and t0 is the time at which the pulse is
centered. The pulse area defined in Eq. (2.115) is here equal to

QC =

∫ +∞

−∞
ΩRC(t) dt =

A

γ
π = π d 0

32

√
8πα IC,max

τFWHM

2 arccosh(
√

2)
. (6.15)

Details about the solution of the second-order differential equation (6.13) are provided in
Appendix C: There, we show that this solution can be written in terms of the hypergeometric
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6.2 Coherent control via a single optical pulse

functions 2F1(α, β; γ; z). By assuming initial conditions at time T0 given by %eq
12(T0) = %̄12(T0) =

%̄12,in, %
eq
13(T0) = %̄13(T0) = %̄13,in, and by introducing the parameters

a = −b =
A

2γ
, (6.16a)

c =
1

2
− i

∆

2γ
− Γ2 − Γ3

4γ
, (6.16b)

the solution of Eq. (6.13) can be written in terms of the variable

z(t) =
tanh [γ(t− t0)] + 1

2
(6.17)

as

%̄12(z) = %̄12,in 2F1(a,−a; c; z)

+ i %̄13,in
a

1− c
e2γ( 1

2
−c)(t0−T0) z1−c (1− z)c 2F1(1− a, 1 + a; 2− c; z),

(6.18a)

%̄13(z) = %̄13,in 2F1(a,−a; 1− c; z)

+ i %̄12,in
a

c
e2γ(c− 1

2)(t0−T0) zc (1− z)1−c
2F1(1− a, 1 + a; 1 + c; z),

(6.18b)

which, from the definitions in (6.11) and (6.17), lead to

%eq
12(t) = ei∆X(t−T0)

[
%̄12,in e−

Γ2
2

(t−T0)
2F1 (a,−a; c; z(t))

+ i %̄13,in
a

1− c
e−

Γ3
2

(t0−T0) ei∆(t0−T0) e−
Γ2
2

(t−t0)

× [z(t)]1−c[1− z(t)]c 2F1(1− a, 1 + a; 2− c; z(t))
]
,

(6.19a)

%eq
13(t) = ei∆X(t−T0)

[
%̄13,in e−

Γ3
2

(t−T0) ei∆(t−T0)
2F1 (a,−a; 1− c; z(t))

+ i %̄12,in
a

c
e−

Γ2
2

(t0−T0) e−
Γ3
2

(t−t0) ei∆(t−t0)

× [z(t)]c[1− z(t)]1−c 2F1(1− a, 1 + a; 1 + c; z(t))
]
.

(6.19b)

Since we assume small decay rates compared to the width of the pulse, the condition 0 <
Re(c) < 1 is satisfied. Furthermore, we notice that a > 0 is a positive constant determined by
the intensity of the optical pulse and related to the pulse area via

QC = 2aπ. (6.20)

By exploiting Eq. (C.31), the previous result (6.19) can be alternatively written as

%eq
12(t) = ei∆X(t−T0)

{
%̄12,in e−

Γ2
2

(t−T0)
2F1 (a,−a; c; z(t))

+ i %̄13,in
a

2(1− c)
e−

Γ3
2

(t−T0) ei∆(t−T0)

× sech[γ(t− t0)] 2F1(1− a, 1 + a; 2− c; z(t))
}
,

(6.21a)

%eq
13(t) = ei∆X(t−T0)

{
%̄13,in e−

Γ3
2

(t−T0) ei∆(t−T0)
2F1 (a,−a; 1− c; z(t))

+ i %̄12,in
a

2c
e−

Γ2
2

(t−T0)

× sech[γ(t− t0)] 2F1(1− a, 1 + a; 1 + c; z(t))
}
.

(6.21b)
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6 X-ray frequency combs via optically modified absorption

Even though this is generally true, the just found formula is of practical interest only when a = n,
such that the hypergeometric functions are reduced to polynomials in z and the hyperbolic-secant
function, approaching 0 at t → ∞, does represent the vanishing behaviour of the complete
function.
In order to better visualize the behaviour of the two functions in Eq. (6.19), we consider two

different sets of initial conditions, corresponding to different preparatory schemes via the x-ray
pulse EX(r, t) and the optical pulse EL(r, t).

6.2.1.1 X-ray-only preparation

When %̄12,in 6= 0 and %̄13,in = 0, situation simply achieved by exciting the system with an x-ray
pulse EX(r, t) and no preparatory electric pulse EL(r, t), the solution of the EOMs is

%̄12(z) = %̄12,in 2F1(a,−a; c; z), (6.22a)

%̄13(z) = i %̄12,in
a

c
e2γ(c− 1

2)(t0−T0) zc(1− z)1−c
2F1(1− a, 1 + a; 1 + c; z), (6.22b)

such that
%eq

12(t) = %̄12,in ei∆X(t−T0) e−
Γ2
2

(t−T0)
2F1 (a,−a; c; z(t)) , (6.23a)

%eq
13(t) = i %̄12,in

a

c
ei∆X(t−T0) e−

Γ2
2

(t0−T0) e−
Γ3
2

(t−t0) ei∆(t−t0)

× [z(t)]c [1− z(t)]1−c 2F1(1− a, 1 + a; 1 + c; z(t)).
(6.23b)

The final state which the system reaches when the interaction with the optical pulse EC(r, t)
has concluded can be analyzed via the two constants

µa = lim
t→∞ 2F1 (a,−a; c; z(t)) =

[Γ(c)]2

Γ(c− a) Γ(c+ a)
, (6.24a)

νa = lim
t→∞

[z(t)]c[1−z(t)]1−c 2F1(1−a, 1+a; 1+c; z(t)) =
Γ(1 + c) Γ(1− c)
Γ(1− a) Γ(1 + a)

=
c csc (πc)

a csc (πa)
, (6.24b)

where we have used Eq. (C.15) and the relation [216]

Γ (1 + x) Γ (1− x) = π x csc (πx). (6.25)

These two quantities are important to understand the effect of the optical pulse EC(r, t) on the
time evolution of the elements of the density matrix %eq

12(t) and %eq
13(t). For example, because of

the poles of the Gamma function Γ(z) for negative integers z = −n [216–218], we can predict
that µa and νa vanish when the following conditions are met,

a = Re(c) +m, m ∈ N
0 = Im(c)

}
⇒ µa = 0, (6.26a)

a = 1 +m, m ∈ N ⇒ νa = 0. (6.26b)

A vanishing value of µa, obtained when the pulse intensity IC,max is set such that Eq. (6.26a)
is satisfied, guarantees that %eq

12(t) vanishes when the interaction with the pulse has concluded.
The condition on the real part of c can be in general met, since a > 0 and 0 < Re(c) < 1.
However, the condition on the imaginary part of c can be fulfilled only if the detuning is equal
to 0.
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On the other hand, a vanishing value of νa, implying that %eq
13(t) = 0 when the interaction

with EC(r, t) has concluded, is an essential requirement for the implementation of the recursive
procedure we are going to describe and employ in Sec. 6.3. Owing to Eq. (6.20), the value of the
pulse intensity for which νa = 0, i.e., a = n with n ∈ N0, corresponds to a pulse area which is an
integer multiple of 2π. The corresponding value of µa is

µn = 2F1 (n,−n; c; 1) =
[Γ(c)]2

Γ(c+ n) Γ(c− n)
=

(c− n)n
(c)n

, (6.27)

where we have used the definition (C.11). For vanishing decay rates, Γ2 = Γ3 = 0, when

µn =

(
1
2 − i ∆2γ − n

)
n(

1
2 − i ∆2γ

)
n

=
n−1∏
j=0

i ∆2γ +
(

1
2 + j

)
i ∆2γ −

(
1
2 + j

) ⇒ |µn| = 1, (6.28)

the effect of the interaction with the pulse corresponds to a phase shift of %eq
12(t) given by arg(µn).

Furthermore, when also the detuning vanishes, ∆ = 0, one can observe that

µ̃n = 2F1

(
n,−n; 1

2 ; 1
)

= cos (nπ) = (−1)n ⇒ |µn| = 1, arg (µn) = nπ (6.29)

and conclude that this phase shift is equal to an integer multiple of π.
Vanishing values of νa are obtained also in the large-detuning limit, when ∆� γ: By recalling

the definition of c (6.16), one has namely that

lim
Im(c)→−∞

νa =
1

a csc (π a)

2 i [Re(c) + i Im(c)]

eiπ Re(c) e−π Im(c)
= 0. (6.30)

Also in this case, when the decay rates vanish, Γ2 = Γ3 = 0, the corresponding value of µa is
given by a pure phase shift arg(µa), as shown by

lim
∆
γ
→∞

µa = lim
∆
γ
→∞

[
Γ
(

1
2 − i ∆2γ

)]2

Γ
(

1
2 − i ∆2γ + a

)
Γ
(

1
2 − i ∆2γ − a

)
= lim

∆
γ
→∞

∞∏
k=0

[
1− a2(

1
2 − i ∆2γ + k

)2

] ⇒ lim
∆
γ
→∞
|µa| = 1, (6.31)

where we have used the equality [216]

Γ(α)Γ(β)

Γ(α+ γ)Γ(β − γ)
=
∞∏
k=0

(
1 + γ

α+k

) (
1− γ

β+k

)
. (6.32)

In order to visualize the time evolution of the matrix elements %eq
12(t) and %eq

13(t) and thus
better understand the results we just presented, in the following we use our three-level model to
describe an optical pulse EC(r, t) coupling the excited state 1s 2p 1P1 (level 2) to the metastable
state 1s 2s 1S0 (level 3) in He-like Be2+ ions, with optical transition energy ω23 = 2.02 eV.
Level 1 is given by the ground state of the system. The decay rates Γ21 = 1.2 × 1011 s−1 and
Γ23 = 8.7 × 106 s−1 are calculated with grasp2K [200–202], whereas the two-photon decay rate
Γ31 = 1.82 × 104 s−1 is taken from Ref. [212]. These values are also used for the calculation of
the dipole moments dij , i.e., for the calculation of the Rabi frequency (6.14). The transition
energies, ω23 = 2.02 eV and ω21 = 123.7 eV, are taken from Ref. [191].
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Figure 6.2: Off-diagonal elements of the three-level system of Fig. 6.1, (a) %eq12(t) and (b) %eq13(t), prepared
at time T0 = 0 in the initial state %̄12,in = −i/2, %̄13,in = 0, and driven by a single optical pulse, tuned to
the 1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions at ω23 = 2.02 eV, centered at t0 = 400 fs, with
FWHM duration of τFWHM = 100 fs and peak intensities IC,max = 1.6 × 109 W/cm2 (red, dashed line),
IC,max = 6.4 × 109 W/cm2 (blue, dotdashed line), IC,max = 1.4 × 1010 W/cm2 (black, dotted line), and
IC,max = 2.6 × 1010 W/cm2 (green, solid line), corresponding to a pulse area QC = π/2 (red, dashed line),
QC = π (blue, dotdashed line), QC = 3π/2 (black, dotted line), and QC = 2π (green, solid line), respectively.

In Fig. 6.2, we display the evolution of %eq
12(t) and %eq

13(t), initially prepared in %̄12,in = −i/2,
%̄13,in = 0, when a tuned optical pulse drives the 2→ 3 transition. Different lines are associated
with different values of the pulse area. The green, solid line, corresponding to a pulse area of
QC = 2π, confirms the results which we predicted in Eqs. (6.26b) and (6.27), i.e., that for a 2π
pulse the coherences between the ground state 1 and the two excited states 2 and 3 perform a
finite number of Rabi cycles after which %eq

13(t) is led back to its vanishing initial value. Provided
that the decay rates Γ2 and Γ3 are much smaller than the bandwidth of the driving pulse, the
conclusions which were drawn from Eq. (6.26a) are clearly apparent from the blue, dotdashed line,
corresponding to a pulse area of QC = π: The function %eq

12(t) converges to 0 and, correspondingly,
the coherence is transferred from the level 2 to the level 3, where it is stored owing to the almost
negligible decay rate Γ3.

In Fig. 6.3 we show how the off-diagonal elements %eq
12(t) and %eq

13(t) evolve in time when the
atomic system is driven by a detuned pulse. Intensities corresponding to different values of
the induced phase shift arg(µa) are employed to depict the results. The utilized optical pulses
have energy 1.5 eV, with detuning ∆ = −0.52 eV � γ, and the decay rates, in spite of their
nonvanishing values, are much smaller than the pulse bandwidth γ. Therefore, one can employ
the phase-shift description we deduced from Eq. (6.31), valid in the large-detuning limit and for
vanishing decay rates, to interpret the displayed evolution in time of the system. The phase-shift
mechanism due to the interaction with a detuned pulse is clearly apparent in Fig. 6.3: The
amplitudes of both |%eq

12(t)| and |%eq
13(t)| are minimally perturbed by the presence of the optical

pulse [Figs. 6.3a and 6.3c]. The phase, however, undergoes a phase shift ∆φ = arg(µa) related to
the intensity of the pulse via Eq. (6.24). For large values of the detuning ∆ � γ, this equation
can be employed to recover an approximately linear increase of the phase shift ∆φ with the pulse
peak intensity [214], ∆φ ≈ −(1/2)β

∫
E2

C,0(t) dt, where we have introduced the effective dynamic
polarizability β [149, 150, 159] of the excited level 1s 2p. In Figs. 6.3b and 6.3d, Eq. (6.24) was
namely used to determine the peak intensities corresponding to phase shifts equal to integer
multiples of π/4.
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6.2 Coherent control via a single optical pulse
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Figure 6.3: Off-diagonal elements of the three-level system of Fig. 6.1, (a) |%eq12(t)|, (b) arg[%eq12(t)], (c)
|%eq13(t)|, (d) arg[%eq13(t)], prepared at time T0 = 0 in the initial state %̄12,in = −i/2, %̄13,in = 0, and driven
by a single optical pulse with energy ωC = 1.5 eV, and detuning ∆ = −∆C = −0.52 eV with respect to the
1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions at ω23 = 2.02 eV. The pulse is centered at t0 = 400 fs,
with FWHM duration of τFWHM = 100 fs and peak intensities IC,max = 4.5×1011 W/cm2 (red, dashed line),
IC,max = 9.1 × 1011 W/cm2 (blue, dotdashed line), IC,max = 1.4 × 1012 W/cm2 (black, dotted line), and
IC,max = 1.9 × 1012 W/cm2 (green, solid line), corresponding to phase shifts arg(µa) = π/4 (red, dashed
line), arg(µa) = π/2 (blue, dotdashed line), arg(µa) = 3π/4 (black, dotted line), and arg(µa) = π (green,
solid line), respectively.

6.2.1.2 Coherence-storage preparation

In the previous part we have shown that a π-pulse mechanism can be used to store the coherence
in the metastable state 3. By employing a similar pulse immediately after that the system
has been excited by an x-ray pulse, one leads the system into a state which at time T0, before
the interaction with the optical field EC(r, t) takes place, is characterized by %̄12,in = 0 and
%̄13,in 6= 0. Here and in the following we assume therefore that such an initial state at time T0

has been obtained via a preparatory stage of the system, displayed in Fig. 5.1, which consists of
an x-ray pulse followed by an optical pulse EL(r, t) with area QL = π and detuning ∆ = 0.
If the initial state is given by %̄12,in = 0 and %̄13,in 6= 0, then the solution of the EOMs (6.13)

describing the interaction with EC(r, t) is given by

%̄12(z) = i %̄13,in
a

1− c
e2γ( 1

2
−c)(t0−T0) z1−c (1− z)c 2F1(1− a, 1 + a; 2− c; z), (6.33a)

%̄13(z) = %̄13,in 2F1(a,−a; 1− c; z), (6.33b)
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6 X-ray frequency combs via optically modified absorption

and

%eq
12(t) = i %̄13,in

a

1− c
ei∆X(t−T0) e−

Γ3
2

(t0−T0) ei∆(t0−T0) e−
Γ2
2

(t−t0)

× [z(t)]1−c [1− z(t)]c 2F1(1− a, 1 + a; 2− c; z(t)),
(6.34a)

%eq
13(t) = %̄13,in ei∆X(t−T0) e−

Γ3
2

(t−T0) ei∆(t−T0)
2F1 (a,−a; 1− c; z(t)) . (6.34b)

Also in this case it is useful to describe the final state reached by the system after having
interacted with the optical pulse EC(r, t) in terms of two constants, i.e.,

λa = lim
t→∞

[z(t)]1−c [1− z(t)]c 2F1(1− a, 1 + a; 2− c; z(t)) =
Γ(c) Γ(2− c)

Γ(1− a) Γ(1 + a)

=
(1− c) csc [π(1− c)]

a csc (πa)
,

(6.35a)

ξa = lim
t→∞ 2F1 (a,−a; 1− c; z(t)) =

[Γ(1− c)]2

Γ(1− c− a) Γ(1− c+ a)
, (6.35b)

where we have taken advantage of Eq. (C.15). These two quantities contain the necessary
information to analyze the effect of EC(r, t) on the time evolution of %eq

12(t) and %eq
13(t). For

instance, we can identify those conditions which, if satisfied, render λa and ξa equal to 0, i.e.,

a = 1 +m, m ∈ N ⇒ λa = 0, (6.36a)

a = Re(1− c) +m, m ∈ N
0 = Im(1− c)

}
⇒ ξa = 0. (6.36b)

By properly tuning the pulse intensity IC,max in order to fulfill the condition in Eq. (6.36b),
ξa vanishes and, correspondingly, %eq

13(t) converges to 0 when the interaction with the pulse has
concluded. The condition on the real part of 1 − c can be in general met, since a > 0 and
0 < 1−Re(c) < 1. The condition on the imaginary part of 1− c requires a vanishing detuning.
In Sec. 6.3 we will take advantage of the condition whereby λa = 0, such that %eq

12(t) vanishes
when the interaction with EC(r, t) has concluded. Due to Eq. (6.20), the value of the pulse
intensity for which λa = 0, i.e., a = n with n ∈ N0, corresponds to a pulse area which is an
integer multiple of 2π. We notice that, under the same conditions, also the previously defined
constant νa vanishes. The corresponding value of ξa is

ξn = 2F1 (n,−n; 1− c; 1) =
[Γ(1− c)]2

Γ(1− c+ n) Γ(1− c− n)
=

(1− c− n)n
(1− c)n

, (6.37)

where we have used the definition (C.11). For vanishing decay rates, Γ2 = Γ3 = 0, when

ξn =

(
1
2 + i ∆2γ − n

)
n(

1
2 + i ∆2γ

)
n

=

n−1∏
j=0

i ∆2γ −
(

1
2 + j

)
i ∆2γ +

(
1
2 + j

) ⇒ |ξn| = 1, (6.38)

the effect of the interaction with the pulse corresponds to a phase shift of %eq
13(t) given by arg(ξn).

Furthermore, when also the detuning vanishes, ∆ = 0, this phase shift is equal to an integer
multiple of π, i.e.,

ξ̃n = 2F1

(
n,−n; 1

2 ; 1
)

= cos (nπ) = (−1)n ⇒ |ξn| = 1, arg (ξn) = nπ. (6.39)
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Figure 6.4: (a) and (b) as in Fig. 6.2, with the system prepared at time T0 = 0 in the initial state %̄12,in = 0,
%̄13,in = −1/2.

The constant λa vanishes also in the large-detuning limit, when, by recalling the definition of
c (6.16), one can show that

lim
Im(c)→−∞

λa =
1

a csc (π a)

2 i [1−Re(c)− i Im(c)]

eiπ Re(c) e−π Im(c)
= 0. (6.40)

Also in this case one observes that, for vanishing decay rates Γ2 = Γ3 = 0, the corresponding
value of ξa is given by a pure phase shift arg(ξa),

lim
∆
γ
→∞

ξa = lim
∆
γ
→∞

[
Γ
(

1
2 + i ∆2γ

)]2

Γ
(

1
2 + i ∆2γ + a

)
Γ
(

1
2 + i ∆2γ − a

)
= lim

∆
γ
→∞

∞∏
k=0

[
1− a2(

1
2 + i ∆2γ + k

)2

] ⇒

lim
∆
γ
→∞
|ξa| = 1,

lim
∆
γ
→∞

arg(ξa) = − lim
∆
γ
→∞

arg(µa),
(6.41)

where Eq. (6.31) has been employed.
In the following figures we use the 1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions to

implement our model and visualize the previously discussed results, with level 1 being given by
the ground state of the system. Transition energies and decay rates have already been discussed
in Sec. 6.2.1.1.
Fig. 6.4 exhibits the time evolution of %eq

12(t) and %eq
13(t), initially prepared in %̄12,in = 0,

%̄13,in = −1/2, when a tuned optical pulse drives the 2 → 3 transition. Different lines are
associated with different values of the pulse area. The green, solid line, which corresponds to a
pulse area QC = 2π, i.e., to a = 1, is in full agreement with the predictions from Eqs. (6.36b) and
(6.37). The situation is symmetric to the behaviour we predicted and displayed via the green,
solid line in Fig. 6.2: For a 2π pulse the system performs a finite number of Rabi oscillations
and, when the interaction with the optical pulse EC(r, t) has concluded, %eq

12(t) is led back to
its initial, vanishing value. The behaviour displayed by the blue, dotdashed line, for a pulse
area QC = π and a = 1/2, agrees with Eq. (6.36a): The decay rates are much smaller than the
spectral width γ of the pulse and their effect in the equality (6.36a) is almost perfectly negligible
such that, after a π pulse, a perfect switch is observed and the coherence, initially stored in the
metastable state 3, is transferred from %eq

13(t) to %eq
12(t).

In Fig. 6.5 we show how the off-diagonal elements %eq
12(t) and %eq

13(t) evolve in time when the
system is driven by detuned pulses. The results can be explained in the limit of very small decay
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Figure 6.5: Off-diagonal elements of the three-level system of Fig. 6.1, (a) |%eq12(t)|, (b) arg[e−i∆t %eq12(t)], (c)
|%eq13(t)|, (d) arg[e−i∆t %eq13(t)], prepared at time T0 = 0 in the initial state %̄12,in = 0, %̄13,in = −1/2, and driven
by a single optical pulse with energy ωC = 1.5 eV, and detuning ∆ = −∆C = −0.52 eV with respect to the
1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions at ω23 = 2.02 eV. The pulse is centered at t0 = 400 fs,
with FWHM duration of τFWHM = 100 fs and peak intensities IC,max = 4.5×1011 W/cm2 (red, dashed line),
IC,max = 9.1 × 1011 W/cm2 (blue, dotdashed line), IC,max = 1.4 × 1012 W/cm2 (black, dotted line), and
IC,max = 1.9× 1012 W/cm2 (green, solid line), corresponding to a phase kick arg(ξa) = −π/4 (red, dashed
line), arg(ξa) = −π/2 (blue, dotdashed line), arg(ξa) = −3π/4 (black, dotted line), and arg(ξa) = −π
(green, solid line), respectively.

rates and large detuning, i.e., in terms of the phase shift arg(ξa) predicted by Eq. (6.41). We
use pulses with the same peak intensities as in Fig. 6.3: In the presence of the optical pulse, the
amplitudes of both |%eq

12(t)| and |%eq
13(t)| are minimally affected [Figs. 6.5a and 6.5c], whereas their

phases are shifted by arg(ξa) = − arg (µa) [Figs. 6.5b and 6.5d], where the sign of the phase shift
is opposite to the sign of the corresponding kick displayed in Fig. 6.3.

6.2.2 X-ray absorption spectrum

The absorption spectrum associated with the x-ray field which is transmitted by the medium is
given by Eq. (5.30) and requires the calculation of the Fourier transform of the function %eq

12(t)
in Eq. (6.21) for a three-level system interacting with an optical pulse EC(r, t). For simplicity,
since %eq

12(t) is the sum of two independent terms, we introduce the two functions

f1(z) = 2F1(a,−a; c; z) − 1, (6.42a)

f2(z) = z1−c (1− z)c 2F1(1− a, 1 + a; 2− c; z), (6.42b)

100



6.2 Coherent control via a single optical pulse

and denote with

Fi($) =

∫ ∞
T0

fi(z(t)) e−i$(t−T0) dt =

∫ ∞
−∞

fi(z(t)) e−i$(t−T0) dt, (6.43)

for i ∈ {1, 2}, the corresponding Fourier transforms, where we have extended the lower limit of
the integral to −∞ because

lim
z→0

fi(z) = 0, (6.44)

such that each fi(t) vanishes for t < T0. In terms of the new functions f1(t) and f2(t) we can
write %eq

12(t) as

%eq
12(t) = ei∆X(t−T0) e−

Γ2
2

(t−T0)
{
%̄12,in [1 + f1(t)] + i %̄13,in

a

1− c
e
Γ2−Γ3

2
(t0−T0) ei∆(t0−T0) f2(t)

}
(6.45)

and, by exploiting the equality [216]∫ ∞
0

e−i$t = π δ($) +
1

i$
, (6.46)

conclude that∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt = %̄12,in

[
1

Γ2
2 + i (ω − ω21)

+ F1

(
ω − ω21 − i Γ2

2

)]
+ i %̄13,in

a

1− c
e
Γ2−Γ3

2
(t0−T0) ei∆(t0−T0) F2

(
ω − ω21 − i Γ2

2

)
.

(6.47)

In this way, we have related the Fourier transform of %eq
12(t) to the two Fourier transforms F1($)

and F2($), whose explicit derivation is performed in Appendix C. These functions are here
evaluated at the complex frequency $ = ω − ω21 − iΓ2

2 , with negative imaginary part −Γ2
2 . The

final result,∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt

= %̄12,in

[
1

Γ2
2 + i (ω − ω21)

+ i e−i(ω−ω21)(t0−T0) e−
Γ2
2

(t0−T0) a
2

2γc
π csch

(
π ω−ω21

2γ − iπ Γ2
4γ

)
× 3F2

(
1− a, 1 + a, 1− i ω−ω21

2γ − Γ2
4γ ; 1 + c, 2; 1

)]
+ i %̄13,in

a

2γ(1− c)
e−

Γ3
2

(t0−T0) e−i(ω−ω21−∆)(t0−T0) π sech
(
π ω−ω21−∆

2γ − iπ Γ3
4γ

)
× 3F2

(
1− a, 1 + a, 1

2 − i ω−ω21−∆
2γ − Γ3

4γ ; 2− c, 1; 1
)
,

(6.48)

is a consequence of Eqs. (C.44) and (C.46).
In the following we discuss the properties of the just computed Fourier transform by separately

analyzing the two components of the absorption spectrum (5.30) associated with the two different
sets of initial conditions we already identified in the previous Section, i.e., %̄12,in 6= 0, %̄13,in = 0,
and %̄12,in = 0, %̄13,in 6= 0. These different sets of initial conditions correspond to different
preparatory schemes via the x-ray pulse EX(r, t) and the optical pulse EL(r, t).
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6 X-ray frequency combs via optically modified absorption

6.2.2.1 X-ray-only preparation

When a single x-ray pulse is used to prepare the system, such that at the initial time T0 the
initial state is characterized by %eq

13,in = 0, the Fourier transform in Eq. (6.48) can be written as∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt

= %̄12,in

[
1

Γ2
2 + i (ω − ω21)

+ i e−i(ω−ω21)(t0−T0) e−
Γ2
2

(t0−T0) a
2

2γc
π csch

(
π ω−ω21

2γ − iπ Γ2
4γ

)
× 3F2

(
1− a, 1 + a, 1− i ω−ω21

2γ − Γ2
4γ ; 1 + c, 2; 1

)]
.

(6.49)

Two main terms can be identified in the previous function. The first element %̄12,in
Γ2
2

+i (ω−ω21)
in the

sum on the left-hand side of Eq. (6.49) is the Fourier transform of a right-handed exponential
function, associated with the spontaneous decay of %eq

12(t) which takes place from the initial value
%̄12,in in the absence of the optical pulse EC(r, t). The real part of this complex function gives
rise to a well-known Lorentzian profile. The second term in the sum on the left-hand side of
Eq. (6.49) directly ensues from the presence of the pulse. A deeper insight into the meaning
and the properties of Eq. (6.49) can be gained through a Taylor expansion in the coordinate
$ = ω − ω21 − iΓ2

2 , centered at $0 = 0. Since the following Taylor expansions are valid,

csch
(
π$
2γ

)
= 2γ

π$ [1 +O($2)], (6.50a)

3F2

(
1− a, 1 + a, 1− i $2γ ; 1 + c, 2; 1

)
=

c

a2
(1− 2F1(a,−a : c : 1)) +O($)

=
c

a2
(1− µa) +O($),

(6.50b)

where we have used the definition of µa [Eq. (6.24)], we can approximate Eq. (6.49) via∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt ≈ %̄12,in µa

1
Γ2
2 + i (ω − ω21)

, (6.51)

which is the Fourier transform of a right-handed exponential decay starting at the “effective
initial value” µa %̄12,in which the off-diagonal matrix element %eq

12(t) exhibits when the interaction
with the optical pulse EC(r, t) has concluded. By assuming that %̄12,in = −i |%̄12,in|, we can write
the absorption spectrum in Eq. (5.30) as

σ(ω) ∝ ω21 |µa| |%̄12,in|

(
cos[arg(µa)]

Γ2
2

Γ 2
2
4 + (ω − ω21)2

+ sin[arg(µa)]
ω − ω21

Γ 2
2
4 + (ω − ω21)2

)
. (6.52)

When the system is not optically manipulated by an external field EC(r, t), such that µa = 1,
the absorption spectrum reduces to the well-known Lorentzian profile

σ(ω) ∝ ω21 |%̄12,in|
Γ2
2

Γ 2
2
4 + (ω − ω21)2

, (6.53)

which is yielded by the spontaneous decay of the atomic system following the exposure to the
ultrashort x-ray pulse. The function has positive sign, which is associated with absorption of
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Figure 6.6: Absorption spectrum (6.55) of Be2+ ions driven by a single optical pulse tuned to the 1s 2s 1S0 →
1s 2p 1P1 optical transition of Be2+ ions at ω23 = 2.02 eV. The spectrum is centered at ω21 = 123.7 eV.
The system is prepared at time T0 = 0 in the initial state %̄12,in = −i/2, %̄13,in = 0. The pulse is centered at
t0 = 400 fs, with FWHM duration of τFWHM = 100 fs and peak intensities IC,max = 4.5× 1011 W/cm2 (red,
dashed line), IC,max = 9.1× 1011 W/cm2 (blue, dotdashed line), IC,max = 1.4× 1012 W/cm2 (black, dotted
line), and IC,max = 1.9× 1012 W/cm2 (green, solid line), corresponding to a phase kick arg(µa) = π/4 (red,
dashed line), arg(µa) = π/2 (blue, dotdashed line), arg(µa) = 3π/4 (black, dotted line), and arg(µa) = π
(green, solid line), respectively. In panel (b) a detailed plot of the blue, dotdashed line from panel (a) is
provided.

energy as a result of the interaction of the x-ray field with the atomic system. For |%̄12,in| = 1/2,
as we are going to assume in the following, the peak value of this single Lorentzian function is

σ(ω21) ∝ ω21

Γ2
. (6.54)

This non-optically-modified spectrum represents the natural scale to compare and represent a
general absorption spectrum σ(ω) in the presence of the additional optical field EC(r, t). In
other words, in the following pictures we will display the normalized absorption spectrum

σn(ω) = Γ2 Im
{∫ ∞
−∞

%eq
12(t) e−i(ω−ωX)(t−T0) dt

}
. (6.55)

Going back to Eq. (6.52), we still observe that the extremal case associated with µa = i gives
rise to the following Fano-like profile

σ(ω) ∝ ω21 |%̄12,in|
ω − ω21

Γ 2
2
4 + (ω − ω21)2

. (6.56)

In the following figures we use the 1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions to
implement our optical-manipulation scheme and visualize the x-ray absorption spectrum (5.30)
associated with the Fourier transform in Eq. (6.49). As already discussed in the previous Sections,
the optical and x-ray transition energies are respectively given by ω23 = 2.02 eV and ω21 =
123.7 eV. The main decay contribution comes from Γ2 = 1.2 × 1011 s−1 = 5.05 × 10−4 eV. The
optical pulse is centered at t0 = 400 fs, with respect to the initial time T0 = 0. Its FWHM
duration is τFWHM = 100 fs and corresponds to a spectral bandwidth γ = 0.07 eV.
In Fig. 6.6a we display the absorption spectrum (5.30) of the transmitted x-ray field, calculated

for an optical pulse EC(r, t) tuned to the 2 → 3 transition. The same four values of the peak
intensity IC,max are employed as in Fig. 6.2. The Lorentzian profile predicted in Eq. (6.53) can
be used to interpret the results displayed in the picture. This is a consequence of the fact that,
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6 X-ray frequency combs via optically modified absorption

for ∆ = 0, the intensity-dependent factor µa = ±|µa| appearing in Eq. (6.52) is a real quantity
[see Eq. (6.24a)]. As a result, the employment of different values of the optical peak intensity
IC,max, corresponding to different values of the constant µa, modifies the peak value and the sign
(positive or negative for absorption or gain, respectively) of the Lorentzian profiles depicted in
Fig. 6.6a, but does not affect the lineshape.
The blue curve in Figs. 6.2 and 6.6b, however, is not well explained by the Taylor expansion

leading to the approximated Fourier transform in Eq. (6.51). In this case, in fact, the correspond-
ing value of the pulse area, QC = π, implies that µa ≈ 0. The negligible contribution ensuing
from the post-pulse-exposure spontaneous decay of the system strongly inhibits the previously
described Lorentzian profile and the spectrum is therefore dominated by the Rabi oscillations
taking place during the interaction with the external pulse EC(r, t). This can be formally shown
by considering higher-order terms in the Taylor expansion of Eq. (6.49), i.e.,∫ ∞

T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt

= %̄12,in

[
µa

1
Γ2
2 + i (ω − ω21)

− a2

c

e−i(ω−ω21)(t0−T0) − 1

i(ω − ω21)
2F1

(
1
2 , 1− i ω−ω21

2γ ; 2; 1
)]
,

(6.57)

where in the second term in the sum on the right-hand side of Eq. (6.57) we have included that
a = 1/2 and ∆ = 0, we have neglected the contribution from Γ2/(2γ), and have employed the
following approximation,

3F2

(
1− a, 1 + a, 1− i $2γ ; 1 + c, 2; 1

)
≈ 3F2

(
1
2 ,

3
2 , 1− i ω−ω21

2γ ; 3
2 , 2; 1

)
= 2F1

(
1
2 , 1−

ω−ω21
2γ ; 2; 1

)
.

(6.58)

In the Fourier transform (6.57) all the elements can be identified which appear in the x-ray
absorption spectrum in Fig. 6.6b: The Lorentzian peak centered at ω = ω21 is associated with
the function 1

Γ2
2

+i (ω−ω21)
appearing on the right-hand side of Eq. (6.57) and due to the fact

that µa, despite being very small for a = 1/2, does not vanish exactly [see Eq. (6.27)]. The
second term in the sum on the right-hand side of Eq. (6.57) determines the overall width of the
spectrum, ensuing from the width of the function 2F1

(
1
2 , 1 −

ω−ω21
2γ ; 2; 1

)
, and the oscillating

features associated with the function e−i(ω−ω21)(t0−T0)−1
i(ω−ω21) .

The absorption spectrum of the transmitted x-ray field, optically modified via an optical pulse
detuned from the corresponding optical transition 2 → 3, is analyzed in Fig. 6.7. Here, the
same values of detuning and peak intensities are used as in Fig. 6.3. The spectrum can be
interpreted via the function (6.52) by taking into account that the factor µa, because of the
small ratio between the decay rate Γ2 and the spectral bandwidth of the pulse γ, is a pure
phase factor µa = ei arg(µa) [see Eq. (6.31)]. The resulting absorption spectra (5.30) exhibit an
optically induced modification of the spectral lineshape: A symmetric Lorentzian lineshape (6.53)
is displayed by the green curve (µa = −1) and a centrally symmetric Fano-like profile (6.56) can
be identified in the blue curve (µa = i). The remaining two lines, associated with complex values
µa with nonvanishing real and imaginary parts, can be described by the general line profile in
Eq. (6.52). Similarly interpretable results were observed via optical coupling of the excited levels
of He to the continuum [147].

6.2.2.2 Coherence-storage preparation

When the preparatory stage of the system consists in an x-ray pulse EX(r, t) and an optical
pulse EL(r, t) tuned to the 2 → 3 transition and with area equal to π, the system is at the
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Figure 6.7: Absorption spectrum (6.55) of Be2+ ions driven by a single optical pulse of energy ωC = 1.5 eV,
detuned by ∆ = −∆C = −0.52 eV from the 1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions at
ω23 = 2.02 eV. The spectrum is centered at ω21 = 123.7 eV. The system is prepared at time T0 = 0 in the
initial state %̄12,in = −i/2, %̄13,in = 0. The pulse is centered at t0 = 400 fs, with FWHM duration of τFWHM =
100 fs and peak intensities IC,max = 4.5× 1011 W/cm2 (red, dashed line), IC,max = 9.1× 1011 W/cm2 (blue,
dotdashed line), IC,max = 1.4 × 1012 W/cm2 (black, dotted line), and IC,max = 1.9 × 1012 W/cm2 (green,
solid line), corresponding to a phase kick arg(µa) = π/4 (red, dashed line), arg(µa) = π/2 (blue, dotdashed
line), arg(µa) = 3π/4 (black, dotted line), and arg(µa) = π (green, solid line), respectively.

initial time T0 in a state with off-diagonal elements of the density matrix given by %̄12,in = 0 and
%̄13,in 6= 0. Under these conditions, the Fourier transform of %eq

12(t) in Eq. (6.48), resulting from
optical manipulation of the 2→ 3 transition via the pulse EC(r, t), reduces to

∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt

= i %̄13,in
a

2γ(1− c)
e−

Γ3
2

(t0−T0) e−i(ω−ω21−∆)(t0−T0) π sech
(
π ω−ω21−∆

2γ − iπ Γ3
4γ

)
× 3F2

(
1− a, 1 + a, 1

2 − i ω−ω21−∆
2γ − Γ3

4γ ; 2− c, 1; 1
)
.

(6.59)

Three main factors are distinguishable in the function (6.59): an oscillating contribution, given
by e−i(ω−ω21−∆)(t0−T0) and associated with the delayed time t0 − T0 at which the optical pulse
EC(r, t) drives the system; the hyperbolic-secant component sech

(
π ω−ω21−∆

2γ − iπ Γ3
4γ

)
, whose

width is determined by the width of the optical pulse γ; and the final term, given by the hyper-
geometric function π 3F2

(
1− a, 1 + a, 1

2 − i ω−ω21−∆
2γ − Γ3

4γ ; 2− c, 1; 1
)
.

In the following figures we use the 1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions to
display the modification of the absorption spectrum (5.30), resulting from the coherent response
of the atomic system and associated with the Fourier transform in Eq. (6.59). Here, level 1 is
given by the ground state of the system. Transition energies and decay rates have already been
discussed previously.
Also for this new set of initial conditions the x-ray absorption spectrum, manipulated via an

optical pulse EC(r, t) tuned to the 2→ 3 transition [Fig. 6.8], displays a clear Lorentzian profile,
with linewidth associated with the decay width of the excited level Γ2 = 5.05 × 10−4 eV. This
considerably tiny width can be related neither to the oscillating functions e−i(ω−ω21−∆)(t0−T0),
simply because no width can be associated with this pure-phase term, nor to the hyperbolic-
secant function sech

(
π ω−ω21−∆

2γ − iπ Γ3
4γ

)
, because its spectral width γ is much larger than the

linewidth appearing in Fig. 6.8. As a result, the displayed Lorentzian profile must ensue from
the third factor in Eq. (6.59), i.e., from the hypergeometric function 3F2. This can be shown via
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Figure 6.8: Absorption spectrum (6.55) of Be2+ ions driven by a single optical pulse, tuned to the 1s 2s 1S0 →
1s 2p 1P1 optical transition of Be2+ ions at ω23 = 2.02 eV. The spectrum is centered at ω21 = 123.7 eV. The
system is prepared at time T0 = 0 in the initial state %̄12,in = 0, %̄13,in = −1/2. The pulse is centered at
t0 = 400 fs, with FWHM duration of τFWHM = 100 fs and peak intensities IC,max = 4.5× 1011 W/cm2 (red,
dashed line), IC,max = 9.1× 1011 W/cm2 (blue, dotdashed line), IC,max = 1.4× 1012 W/cm2 (black, dotted
line), and IC,max = 1.9×1012 W/cm2 (green, solid line), corresponding to a phase kick arg(ξa) = −π/4 (red,
dashed line), arg(ξa) = −π/2 (blue, dotdashed line), arg(ξa) = −3π/4 (black, dotted line), and arg(ξa) = −π
(green, solid line), respectively. In panel (b) a detailed plot of the green, solid line from panel (a) is provided.

the following approximation,∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt ≈ i

%̄13,in aπ

2γ(1− c) 3F2

(
1− a, 1 + a, 1

2 − i ω−ω21−∆
2γ − Γ3

4γ ; 2− c, 1; 1
)

= i %̄13,in
a

2γ(1− c)
π

Γ(2− c)
Γ(1− a) Γ(1 + a)

1

Γ
(

1
2 − i ω−ω21−∆

2γ − Γ3
4γ

)
×
∞∑
n=0

Γ(1− a+ n) Γ(1 + a+ n)

[Γ(1 + n)]2

Γ
(

1
2 − i ω−ω21−∆

2γ − Γ3
4γ + n

)
Γ(2− c+ n)

,

(6.60)

where we have used the definition of the generalized hypergeometric function [see Eqs. (C.40)
and (C.11)] and have neglected the two terms e−i(ω−ω21−∆)(t0−T0) and sech

(
π ω−ω21−∆

2γ − iπ Γ3
4γ

)
,

which are equal to 1 in the small frequency interval determined by the linewidth Γ2. We have
also assumed that a 6= n, with n ∈ N, such that the sum in n does not terminate and the
prefactor [Γ(1− a)]−1 can be taken out of the series. By recalling the definition of the constant
λa [Eq. (6.35)] and by employing

Γ(1− a+ n) Γ(1 + a+ n)

[Γ(1 + n)]2
≈ 1,

to further approximate Eq. (6.60), we can write∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt ≈ i

%̄13,in a

2γ(1− c)
π λa

Γ
(

1
2 − i ω−ω21−∆

2γ − Γ3
4γ

)
Γ(c)

×
∞∑
n=0

Γ
(

1
2 − i ω−ω21−∆

2γ − Γ3
4γ + n

)
Γ(2− c+ n)

.

(6.61)
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6.2 Coherent control via a single optical pulse

This result, along with the identity [216]

∞∑
n=0

Γ(α+ n)

Γ(β + n)
=

Γ(α) Γ(−1− α+ β)

Γ(−1 + β) Γ(−α+ β)
,

the recurrence relation defining the Gamma function (C.12), and the definition of c (6.16), lead
to

∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt = i

%̄13,in a

2γ(1− c)
π λa

Γ(1− c) Γ(c)

Γ
(

1
2 + i ω−ω21−∆

2γ + Γ3
4γ − c

)
Γ
(

3
2 + i ω−ω21−∆

2γ + Γ3
4γ − c

)
≈ i %̄13,in

a

(1− c)
λa

1

2γ

1
1
2 + i ω−ω21−∆

2γ − Γ3
4γ − c

= i %̄13,in
a

(1− c)
λa

1
Γ2
2 + i (ω − ω21)

.

(6.62)

The obtained approximated Fourier transform is equal to the Fourier transform of a right-
handed exponentially decaying function, with decay rate Γ2 and with the “effective initial value”
i %̄13,in

a
(1−c) λa which the off-diagonal matrix element %eq

12(t) exhibits when the interaction with
the optical pulse EC(r, t) has concluded [see, e.g., Eqs.(6.34a) and (6.35)]. By assuming that
%̄13,in is real and by observing that, for ∆ = 0, also the constants c and λa are real, we can
take the imaginary part of the approximated Fourier transform (6.62) to recover the Lorentzian
spectral profile

σ(ω) = −ω21%̄13,in λa
a

1− c

Γ2
2

Γ 2
2
4 + (ω − ω21)2

, (6.63)

which agrees with the spectra in Fig. 6.8a. The peak value and the sign (positive or negative for
absorption or gain, respectively) of the Lorentzian profiles in the picture are associated with the
intensity-dependent factor aλa in Eq. (6.63).
The shape of the blue curve in Fig. 6.8b, calculated for a pulse area QC = 2π corresponding to

a = 1 and λa = 0, can be explained by observing that the generalized hypergeometric function
3F2

(
1−a, 1+a, 1

2 − i ω−ω21−∆
2γ − Γ3

4γ ; 2− c, 1; 1
)
is equal to 1 for a = 1 [see Eq. (C.40)]. The width

of the spectrum depicted in the figure is given by the bandwidth of the optical pulse γ, which is
also the width of the function sech

(
π ω−ω21−∆

2γ − iπ Γ3
4γ

)
in Eq. (6.48). The oscillating behaviour

featured by the spectrum can be related to the complex exponential function e−i(ω−ω21−∆)(t0−T0)

in Eq. (6.48).
When the employed optical pulse is significantly detuned from the corresponding optical tran-

sition 2 → 3 [Fig. 6.9], the spectrum ensues from the Fourier transform of the function %eq
12(t)

which we displayed in Fig. 6.5. The features, due to the interaction with the optical pulse, which
could be recognized in the time evolution of %eq

12(t), i.e., a small hyperbolic-secant-like modifi-
cation of the amplitude [Fig. 6.5a] and a phase shift [Fig. 6.5b], have spectral counterparts in
the Fourier transform (6.59). These can be immediately identified in the absorption spectrum
displayed Fig. 6.9: The central peak of the function is not at ω = ω21 + ∆, but the central
frequency of the spectrum exhibits a “shift” dependent upon the employed intensity and due
to the phase shift arg(ξa) in %eq

12(t). The oscillating features of the spectrum, associated with
the complex exponential function e−i(ω−ω21−∆)(t0−T0) in the Fourier transform (6.48), are now
superimposed to an asymmetric function [Fig. 6.9b] due to the product of the remaining factors
sech

(
π ω−ω21−∆

2γ − iπ Γ3
4γ

)
and 3F2

(
1− a, 1 + a, 1

2 − i ω−ω21−∆
2γ − Γ3

4γ ; 2− c, 1; 1
)
.
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Figure 6.9: Absorption spectrum (6.55) of Be2+ ions driven by a single optical pulse, detuned with detuning
∆ = −∆C = −0.52 eV from the 1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions at ω23 = 2.02 eV.
The spectrum is centered at ω21 = 123.7 eV. The system is prepared at time T0 = 0 in the initial state
%̄12,in = 0, %̄13,in = −1/2. The pulse is centered at t0 = 400 fs, with FWHM duration of τFWHM = 100 fs and
peak intensities IC,max = 4.5× 1011 W/cm2 (red, dashed line), IC,max = 9.1× 1011 W/cm2 (blue, dotdashed
line), IC,max = 1.4 × 1012 W/cm2 (black, dotted line), and IC,max = 1.9 × 1012 W/cm2 (green, solid line),
corresponding to a phase kick arg(ξa) = −π/4 (red, dashed line), arg(ξa) = −π/2 (blue, dotdashed line),
arg(ξa) = −3π/4 (black, dotted line), and arg(ξa) = −π (green, solid line), respectively. In panel (b) the
green solid line from panel (a) is compared to the green, dashed line, which plots the absorption spectrum
Eq. (6.59) when t0 is set equal to 0.

6.3 Coherent control via an optical frequency comb

In the present Section we employ a periodic train of optical pulses EC(r, t), i.e., an optical
frequency comb, to drive the 2 → 3 transition in the previously described three-level system
and thereby imprint a comb onto the absorption spectrum of the wide-bandwidth x-ray pulse
EX(r, t) exciting the 1→ 2 transition. The time evolution of the system upon interaction with
the optical frequency comb is calculated via recursive application of the single-pulse solution
which we discussed in Sec. 6.2 for given values of the optical-comb peak intensity and detuning.

6.3.1 Time evolution of the system

The optical frequency comb EC(r, t) is here modeled via a periodic train of hyperbolic-secant
pulses, with repetition period Tp and peak electric-field strength EC,max. This corresponds to the
Rabi frequency (5.4)

ΩRC(t) =
∞∑
j=0

Ω j
RC(t) =

∞∑
j=0

A sech[γ (t− tj)], (6.64)

where γ is the single-pulse spectral width, with FWHM duration τFWHM = 2 arccosh(
√

2)/γ, and
A = d 0

32

√
8πα IC,max is the same constant we already defined in the previous Section, leading to

the definition of a = A/(2γ). Each pulse is centered at time tj = t0 + jTp, j = 0, 1, 2, . . ., with
t0 > T0, and is much shorter than the repetition period, Tp � 1/γ. The Rabi frequency Ω j

RC(t)
in Eq. (6.64) is associated with the sole jth pulse.

The solution of the second-order differential equation (6.13) in the presence of the periodic
Rabi frequency (6.64) can be obtained by recursively employing the single-pulse solution we
described in Sec. 6.2. We define the functions %̄ j1k, with k ∈ {2, 3} and j ∈ N, which are solution
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of the single-pulse EOMs

∂%̄ j12

∂t
= +i

Ω j
RC

2
%̄ j13 e

(
i∆+

Γ2−Γ3
2

)(
t−tj+

Tp
2

)
, (6.65a)

∂%̄ j13

∂t
= +i

Ω j
RC

2
%̄ j12 e

(
−i∆−Γ2−Γ3

2

)(
t−tj+

Tp
2

)
, (6.65b)

where Ω j
RC is the Rabi frequency associated with the jth pulse, centered at tj , in the optical

frequency comb. With the substitutions t0 → tj and T0 → Tj0 = tj − Tp
2 , the set of differential

equations (6.65) coincides with the already discussed EOMs (6.12): The solution (C.32) can
therefore be exploited to analogously write the solution of the equations in (6.65). In terms of
the j-dependent variables

zj(t) =
tanh[γ(t− tj)] + 1

2
, (6.66)

this solution is namely

%̄ j12(zj) = %̄ j12,in 2F1(a,−a; c; zj)

+ i %̄ j13,in

a

1− c
e2γ( 1

2
−c)Tp2 z1−c

j (1− zj)c 2F1(1− a, 1 + a; 2− c; zj),
(6.67a)

%̄ j13(zj) = %̄ j13,in 2F1(a,−a; 1− c; zj)

+ i %̄ j12,in

a

c
e2γ(c− 1

2)Tp2 zcj (1− zj)1−c
2F1(1− a, 1 + a; 1 + c; zj).

(6.67b)

By employing Eqs. (C.32) and (6.35), we observe that %̄j12(t) and %̄j13(t) undergo time modifica-
tions only in the presence of the corresponding jth pulse itself, i.e., only in a short time interval
centered at tj and of amplitude ∼ 1

γ � Tp. By employing the Heaviside θ function, this in other
words implies that

%̄ j1k(t) θ
(
−t+ tj − Tp

2

)
= %̄ j1k,in θ

(
−t+ tj − Tp

2

)
, (6.68)

with the initial conditions at Tj0 = tj − Tp
2 given by

%̄ j1k,in = %̄ j1k

(
tj − Tp

2

)
≈ lim

t→−∞
%̄ j1k(t), for k ∈ {2, 3}. (6.69)

Each pulse is much shorter than the repetition period Tp, such that the total solution %eq
1k(t),

with k ∈ {2, 3}, which results from the interaction with the periodic train of pulses (6.64) can
be written as the following sum of jth-pulse functions %̄ j1k:

%eq
12(t) = e

(
i∆X−

Γ2
2

)(
t−t0+

Tp
2

)
%̄ 0

12(t) θ
(
−t+ t0 − Tp

2

)
+

∞∑
j=0

e

(
i∆X−

Γ2
2

)(
t−tj+

Tp
2

)
%̄ j12(t)

[
−θ
(
−t+ tj − Tp

2

)
+ 1− θ

(
t− tj − Tp

2

)]
,

(6.70a)

%eq
13(t) = e

(
i(∆X+∆)−Γ3

2

)(
t−t0+

Tp
2

)
%̄ 0

13(t) θ
(
−t+ t0 − Tp

2

)
+

∞∑
j=0

e

(
i(∆X+∆)−Γ3

2

)(
t−tj+

Tp
2

)
%̄ j13(t)

[
−θ
(
−t+ tj − Tp

2

)
+ 1− θ

(
t− tj − Tp

2

)]
,

(6.70b)
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where the Heaviside θ function appearing in the first addends of the sums on the right-hand
sides of Eqs. (6.70) is equal to

θ
(
−t+ t0 − Tp

2

)
=

{
1 if t < t0 − Tp

2

0 otherwise,
(6.71)

while the term in the second addends,

− θ
(
−t+ tj − Tp

2

)
+ 1− θ

(
t− tj − Tp

2

)
=

{
1 if tj − Tp

2 < t < tj +
Tp
2

0 otherwise,
(6.72)

selects only those times t which lie in the time interval ]tj − Tp/2, tj + Tp/2[, with j ∈ N.
The determination of the solution (6.70) requires the calculation of the jth-pulse initial con-

ditions %̄ j1k,in, for k ∈ {2, 3}. First of all, we notice that, from the definitions (6.69) and (6.70),
the value of the functions %eq

1k(t) and %̄ j1k(t) at tj − Tp/2 can be related via the equality

%̄ j1k,in = %̄ j1k

(
tj − Tp

2

)
= %eq

1k

(
tj − Tp

2

)
, for k ∈ {2, 3}. (6.73)

An analogous relation can be established at tj +Tp/2 by utilizing Eqs. (6.70), (6.24), and (6.35),
i.e.,

%eq
12

(
tj +

Tp
2

)
e

(
−i∆X+

Γ2
2

)
Tp = %̄ j12

(
tj +

Tp
2

)
≈ lim

t→+∞
%̄ j12(t)

=µa%̄
j
12,in + i νa

a

1− c
e2γ( 1

2
−c)Tp2 %̄ j13,in,

(6.74a)

%eq
13

(
tj +

Tp
2

)
e

[
−i(∆X+∆)+

Γ3
2

]
Tp = %̄ j13

(
tj +

Tp
2

)
≈ lim

t→+∞
%̄ j13(t)

= ξa%̄
j
13,in + iλa

a

c
e2γ(c− 1

2)Tp2 %̄ j12,in,

(6.74b)

where we have once again exploited the short duration of the independent pulses in the optical
frequency comb compared to the repetition period Tp, whereby it also follows that

%̄ j12(t) θ
(
t− tj − Tp

2

)
=
[
µa%̄

j
12,in + i νa

a

1− c
e2γ( 1

2
−c)Tp2 %̄ j13,in

]
θ
(
t− tj − Tp

2

)
, (6.75a)

%̄ j13(t) θ
(
t− tj − Tp

2

)
=
[
ξa%̄

j
13,in + iλa

a

c
e2γ(c− 1

2)Tp2 %̄ j12,in

]
θ
(
t− tj − Tp

2

)
. (6.75b)

One can simultaneously take advantage of Eqs. (6.73) and (6.74) to deduce the following recursive
relation which connects the jth initial conditions %̄ j1k,in to the j − 1th initial conditions %̄ j−1

1k′,in:

%̄ j12,in = %eq
12

(
tj − Tp

2

)
= %eq

12

(
tj−1 +

Tp
2

)
=µa e

(
i∆X−

Γ2
2

)
Tp %̄ j−1

12,in + i νa
a

1− c
e

[
i(2∆X+∆)−Γ2+Γ3

2

]
Tp
2 %̄ j−1

13,in,
(6.76a)

%̄ j13,in = %eq
13

(
tj − Tp

2

)
= %eq

13

(
tj−1 +

Tp
2

)
= ξa e

[
i(∆X+∆)−Γ3

2

]
Tp %̄ j−1

13,in + iλa
a

c
e

[
i(2∆X+∆)−Γ2+Γ3

2

]
Tp
2 %̄ j−1

12,in.
(6.76b)
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By iteratively using Eq. (6.76), we can relate each set of initial conditions % j1k,in to the initial
conditions % 0

1k,in associated with j = 0. By further employing Eq. (6.68) for j = 0, i.e., by using
the fact that the functions %̄ 0

1k(t) are constant for t� t0 such that

%̄ 0
12,in = %̄ 0

12(T0) = %eq
12(T0) e

(
−i∆X+

Γ2
2

)(
T0−t0+

Tp
2

)
= %̄12,in e

(
−i∆X+

Γ2
2

)(
T0−t0+

Tp
2

)
, (6.77a)

%̄ 0
13,in = %̄ 0

13(T0) = %eq
13(T0) e

[
−i(∆X+∆)+

Γ3
2

](
T0−t0+

Tp
2

)
= %̄13,in e

[
−i(∆X+∆)+

Γ3
2

](
T0−t0+

Tp
2

)
,

(6.77b)
we obtain a set of equalities connecting each %̄ j1k,in in Eq. (6.67) to the state of the system %eq

1k,in

at the initial time T0. The general solution of the EOMs %eq
1k(t) for general initial conditions

%eq
1k,in is thus an immediate consequence of Eqs. (6.70).
A closed-form relation between %̄ j1k,in and %eq

1k,in cannot be analytically extracted from the
recursive relation (6.76) for an arbitrary value of the pulse intensity, such that a numerical
solution is required. However, we proceed with an analytical derivation by focusing on those
particular cases in which νa = λa = 0. As we already observed in the previous Section while
discussing the single-pulse solution of the EOMs, this condition is met when either the parameter
a = A/(2γ) is an integer number, i.e., a = n with n ∈ N0 [see Eqs. (6.27) and (6.37)], or when
the detuning is much larger than the spectral width of the optical pulses in the optical frequency
comb, i.e., ∆ � γ [see Eqs. (6.30) and (6.40)]. When the detuning and the intensity of the
optical pulses are set such that both νa and λa vanish, the following closed-form solution can be
obtained,

%̄ j12,in = µjn e

(
i∆X−

Γ2
2

)
jTp %̄ 0

12,in, (6.78a)

%̄ j13,in = ξja e

[
i(∆X+∆)−Γ3

2

]
jTp %̄ 0

13,in, (6.78b)

such that, by further exploiting Eq. (6.77), one can conclude that

%̄ j12,in = %̄12,in e

(
i∆X−

Γ2
2

)(
tj−

Tp
2
−T0

)
µja, (6.79a)

%̄ j13,in = %̄13,in e

[
i(∆X+∆)−Γ3

2

](
tj−

Tp
2
−T0

)
ξja, (6.79b)

and, by using Eq. (6.67), that

%̄ j12(zj) = %̄12,in e

(
i∆X−

Γ2
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)(
tj−

Tp
2
−T0

)
µja 2F1(a,−a; c; zj) + i %̄13,in

a

1− c

× e2γ( 1
2
−c)Tp2 e
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i(∆X+∆)−Γ3
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Tp
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ξja z
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(6.80a)

%̄ j13(zj) = %̄13,in e
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2
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Tp
2
−T0

)
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+ i %̄12,in
a

c
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2)Tp2 e
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Tp
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c
j (1− zj)1−c

2F1(1− a, 1 + a; 1 + c; zj).

(6.80b)

By inserting (6.80) into Eq. (6.70), the final solution is obtained. This is shown explicitly only
for %eq

12(t), since exactly the same steps are necessary in order to write %eq
13(t) in closed form.
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6 X-ray frequency combs via optically modified absorption

The approximations justified via Eqs. (6.68) and (6.75) can be implemented in Eq. (6.70), thus
providing the function

%eq
12(t) = e

(
i∆X−

Γ2
2

)(
t−t0+

Tp
2

)
%̄ 0

12,in θ
(
−t+ t0 − Tp

2

)
+
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e
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)(
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2

) [
−%̄ j12,in θ

(
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2

)
+ %̄ j12(t) − µa %̄ j12,in θ

(
t− tj − Tp

2

)]
.

(6.81)

The sum in j on the right-hand side of the previous equality can be extended to all integers from
−∞ to +∞, provided that a multiplicative factor θ(t− t0 +

Tp
2 ) is included, i.e.,

%eq
12(t) = e

(
i∆X−

Γ2
2

)
(t−T0)

%̄12,in θ
(
−t+ t0 − Tp

2

)
+ θ
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Tp
2

){ ∞∑
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e
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Γ2
2

)(
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2

)
%̄ j12(t)

−
∞∑
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e

(
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Γ2
2

)
(t−T0)

[
µ ja θ

(
−t+ tj − Tp

2

)
+ µ j+1

a θ
(
t− tj+1 +

Tp
2

)]
%̄12,in

}
,

(6.82)

where we have utilized Eqs. (6.79) and we have substituted the argument of the second Heaviside
function on the third line by taking into account that tj = tj+1 − Tp. Rearranging the sum on
the third line of the previous equality and thereby exploiting the following identity,

θ
(
−t+ tj − Tp

2

)
+ θ

(
t− tj +

Tp
2

)
= 1, (6.83)

leads to
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(6.84)

and, therefore, to
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(6.85)

where we have employed the single-pulse solution %̄ j12(t) from Eq. (6.80). By recalling the def-
inition of c (6.16) and by rearranging the sums in j in the previous identity, we conclude that
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%eq
12(t) = %̄12,in e
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%eq
13(t) = %̄13,in e

[
i(∆X+∆)−Γ3

2

]
(t−T0)

[
1 +

∞∑
j=0

ξ ja

(
2F1(a,−a; 1− c; zj(t))− 1

)]

+ i %̄12,in
a

2c
e

(
i∆X−

Γ2
2

)
(t−T0)

∞∑
j=0
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(6.86b)

were analogous steps were followed for the calculation of the off-diagonal matrix element %eq
13(t).

In the following we analyze the solution of the EOMs (6.86) describing the interaction of
the three-level system with a train of optical pulses EC(r, t) by separately considering the two
different sets of initial conditions we already identified while presenting the single-pulse solution
in Sec. 6.2. These different sets of initial conditions correspond to different preparatory schemes
via the x-ray pulse EX(r, t) and the optical pulse EL(r, t).

6.3.1.1 X-ray-only preparation

When the initial coherence is created via a single x-ray pulse driving the 1→ 2 transition, such
that at time T0 the initial state is characterized by %eq

13,in = 0, then the solution of the EOMs in
Eq. (6.86) describing the interaction of the three-level system with the optical frequency comb
EC(r, t) is given by

%eq
12(t) = %̄12,in e

(
i∆X−

Γ2
2

)
(t−T0)

[
1 +

∞∑
j=0

µ ja

(
2F1(a,−a; c; zj(t))− 1

)]
, (6.87a)

%eq
13(t) = i %̄12,in

a

2c
e

(
i∆X−

Γ2
2

)
(t−T0)

∞∑
j=0

µ ja sech[γ(t− tj)] 2F1(1− a, 1 + a; 1 + c; zj(t)). (6.87b)

The amplitudes of both |%eq
12(t)| and |%eq

13(t)| exponentially decrease with time: In particular, for
t > t0 and k ∈ {2, 3}, we can see that

|%eq
1k(t+ Tp)|2 = e−Γ2Tp |µa|2 |%eq

1k(t)|
2 = e

−
(
Γ2−2

log(|µa|)
Tp

)
Tp |%eq

1k(t)|
2 = e−

Tp
τa |%eq

1k(t)|
2, (6.88)

i.e., the amplitude of |%eq
1k(t+ Tp)|2 displays an exponential decrease with decay time

τa =
1

Γ2 − 2 log(|µa|)
Tp

. (6.89)

The effective decay rate 1/τa is the sum of two components, (i) the decay rate of the excited
state Γ2 and (ii) the optically induced decay rate −2 log(|µa|)

Tp
associated with the periodic “loss

of amplitude” −2log(|µa|) taking place only in the presence of an optical pulse. The increase
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in decay rate related to −2 log(|µa|)
Tp

and ensuing from the interaction with an optical pulse is
numerically shown to be negligible if compared to the decay rate Γ2 of the fast decaying excited
level 2. This is also confirmed by the results exhibited in the next figures, where we employ the
1s 2p 1P1 → 1s 2s 1S0 (2→ 3) and the 1s2 1S0 → 1s 2p 1P1 (1→ 2) transitions of He and He-like
Be2+ to implement our three-level scheme.
The high-frequency, 1→ 2 transition in He is in the extended ultraviolet region, with transition

energy ω21 = 21.2 eV and decay rate Γ21 = 1.8 × 109 s−1, corresponding to a decay time of
∼ 6 ns. In order to optically modify the decay of the excited level with an optical frequency
comb EC(r, t), the repetition period Tp ought to be lower than its decay time. In the following
we employ a quite high repetition frequency of 1/Tp = 10 GHz. We implement a three-level
approximation by considering the impact of the sole 1s 2s 1S0 level, with transition energy ω23 =
0.6 eV and decay rates Γ23 = 2.0× 106 s−1 and Γ31 = 51 s−1. In He, however, such a three-level
approximation is not completely valid, because the 2 → 3 transition is not well isolated and
the effect of other nearby levels such as 1s 3s 1S0, 1s 3d 1D2, and 1s 3d 3D2 ought to be taken
into account. In contrast to the results presented here, a complete analysis including the effect
of other excited levels cannot be addressed via a completely analytical approach and requires a
numerical solution of the EOMs (6.13). The following implementation with He, therefore, does
not provide quantitatively precise results. However, the solution of the EOMs which we predict
with our three-level approximation captures the essential features ensuing from the interaction
of the system with an external train of optical pulses. In other words, by numerically taking into
account the presence of additional levels, the same qualitative behaviour could be recovered as
here, with a slight, quantitative difference in the values of the associated optical-comb parameters
such as detuning or peak intensity [214].
In contrast, the here adopted three-level approximation can be safely employed in the case

of He-like Be2+, since the corresponding 2 → 3 transition is well isolated: Furthermore, the
transition energy ω23 = 2.02 eV between the excited states 1s 2s 1S0 and 1s 2p 1P1 is the only one
in the optical range and the contribution from other excited levels is completely negligible. The
transition energies are ω23 = 2.02 eV and ω21 = 123.7 eV, as we already discussed in the previous
Section. The decay rate of the excited level 2 is equal to Γ21 = 1.2×1011 s−1, corresponding to a
decay time of ∼ 8 ps. As a result, in the following we assume an optical frequency comb with very
high repetition frequency, 1/Tp = 100 GHz, in order to optically modify the coherent response of
the system. The remaining decay rates are Γ23 = 8.7× 106 s−1 and Γ31 = 1.8× 104 s−1. Both for
He and He-like Be, the decay rates Γ21 and Γ23 were calculated with grasp2K [200–202], while
the two-photon decay rates Γ31 were taken from Ref. [212]. Transition energies are taken from
Ref. [191].
In Fig. 6.10 we employ a train of 2π, tuned optical pulses to drive the 2→ 3 transition in the

three-level system. As we already discussed in the single-pulse case of Fig. 6.2, in the presence of
an optical pulse an ultrashort transfer of coherence is performed. A periodic coherence transfer
ensues, therefore, from the interaction with an optical frequency comb. By fixing the value of
the single-pulse area to 2π, we ensure that %eq

13(t) is led back to its vanishing initial value at
conclusion of each pulse [Figs. 6.10c and 6.10d]. The effect of the pulses on the time evolution
of the decaying function %eq

12(t) is described by the constant µa, which we defined in Eq. (6.24a).
Since the pulses are here tuned to the resonance, ∆ = 0, and the decay rates are much smaller
than the single-pulse width, Γ2/γ � 1, we can use Eq. (6.29) to show that µn ≈ (−1)n. For a
pulse area equal to QC = 2π and therefore associated with a = 1, µa is equal to −1. As a result,
the optical manipulation of the atomic response, i.e., of %eq

12(t), gives rise to a periodic phase shift
equal to π, which appears in Figs. 6.10a and 6.10b.
For the same two atomic systems we display in Fig. 6.11 the functions %eq

12(t) and %eq
13(t) from
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Figure 6.10: Off-diagonal elements Im{%eq12(t)} [(a) and (b)] and Re{%eq13(t)} [(c) and (d)] of the three-level
system of Fig. 6.1, used to model He and He-like Be2+ ions, initially prepared at time T0 = 0 in a state with
%̄12,in = −i/2, %̄13,in = 0, whose 1s 2s 1S0 → 1s 2p 1P1 transition is driven by a train of 2π optical pulses,
with FWHM duration of τFWHM = 100 fs, tuned to the optical transition. In the case of He [panels (a) and
(c)], the transition energies are ω23 = 0.6 eV, ω21 = 21.2 eV, and the decay rate of the excited state is Γ2 =
1.8 × 109 s−1: We use pulses with repetition period Tp = 100 ps, i.e., 1/Tp = 10 GHz, and peak intensities
IC,max = 3.0 × 109 W/cm2. In the case of He-like Be2+ [panels (b) and (d)], the transition energies are
ω23 = 2.02 eV, ω21 = 123.7 eV, and the decay rate of the excited state is Γ2 = 1.2× 1011 s−1: We use pulses
with repetition period Tp = 10 ps, i.e., 1/Tp = 100 GHz, and peak intensities IC,max = 2.6×1010 W/cm2. In
both cases, the peak intensity corresponds to a pulse area QC = 2π. The train of pulses starts at t0 = T0+Tp.

Eqs. (6.87) in the large-detuning limit. We assume that the carrier frequency of the optical
pulses is ωC = 1.5 eV, resulting in a detuning ∆ = 0.9 eV and ∆ = −0.52 eV, for He and He-like
Be2+, respectively. As a consequence of Eq. (6.40), %eq

13(t) is led back to its vanishing initial value
at conclusion of each pulse [Figs. 6.11e and 6.11f]. As we already discussed in the single-pulse
case, the amplitude of %eq

12(t) is not significantly affected by the presence of the detuned pulses.
The same situation is confirmed in the many-pulse case displayed in Figs. 6.11a and 6.11b, which
exhibit an essentially unchanged exponential decay of the amplitude of the function. In the large-
detuning case, the main effect due to the interaction of the system with the optical frequency
comb is namely a periodic shift in the phase of %eq

12(t) [Figs. 6.11c and 6.11d]. The amplitude of
each phase shift is fixed by the constant arg(µa), whose dependence on the optical-comb peak
intensity follows from Eq. (6.24).

6.3.1.2 Coherence-storage preparation

When the preparatory stage of the system consists in an x-ray pulse EX(r, t) and an optical
pulse EL(r, t) of area π and tuned to the 2 → 3 transition, the state of the system at time T0
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Figure 6.11: Off-diagonal elements |%eq12(t)| [(a) and (b)], arg[%eq12(t)] [(c) and (d)], and |%eq13(t)| [(e) and
(f)], of the three-level system of Fig. 6.1, used to model He and He-like Be2+ ions, initially prepared at
time T0 = 0 in a state with %̄12,in = −i/2, %̄13,in = 0, whose 1s 2s 1S0 → 1s 2p 1P1 transition is driven
by a train of optical pulses with energy ωC = 1.5 eV and FWHM duration τFWHM = 100 fs. In the case
of He [panels (a), (c), and (e)], the transition energies are ω23 = 0.6 eV, ω21 = 21.2 eV, the detuning
is ∆ = −∆C = 0.9 eV, and the decay rate of the excited state is Γ2 = 1.8 × 109 s−1: We use pulses
with repetition period Tp = 100 ps, i.e., 1/Tp = 10 GHz, and peak intensities IC,max = 9.2 × 1010 W/cm2

(red, dashed line), IC,max = 1.8 × 1011 W/cm2 (blue, dotdashed line), IC,max = 2.8 × 1011 W/cm2 (black,
dotted line), and IC,max = 3.7 × 1011 W/cm2 (green, solid line). In the case of He-like Be2+ [panels (b),
(d), and (f)], the transition energies are ω23 = 2.02 eV, ω21 = 123.7 eV, the detuning is ∆ = −∆C =
−0.52 eV, and the decay rate of the excited state is Γ2 = 1.2 × 1011 s−1: We use pulses with repetition
period Tp = 10 ps, i.e., 1/Tp = 100 GHz, and peak intensities IC,max = 4.5×1011 W/cm2 (red, dashed line),
IC,max = 9.1 × 1011 W/cm2 (blue, dotdashed line), IC,max = 1.4 × 1012 W/cm2 (black, dotted line), and
IC,max = 1.9 × 1012 W/cm2 (green, solid line). In both cases, the peak intensities correspond to a phase
kick arg(µa) = π/4 (red, dashed line), arg(µa) = π/2 (blue, dotdashed line), arg(µa) = 3π/4 (black, dotted
line), and arg(µa) = π (green, solid line), respectively. The train of pulses starts at t0 = T0 + Tp.
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Figure 6.12: Off-diagonal elements (a) Im{%eq12(t)} and (b) Re{%eq13(t)} of the three-level system of Fig. 6.1,
used to model He-like Be2+ ions, initially prepared at time T0 = 0 in a state with %̄12,in = 0, %̄13,in = −1/2,
whose 1s 2s 1S0 → 1s 2p 1P1 transition is driven by a train of 2π optical pulses tuned to the optical transition
with τFWHM = 100 fs. The transition energy is ω23 = 2.02 eV: We use pulses with repetition period Tp =
10 ns, i.e., 1/Tp = 100 MHz, and peak intensities IC,max = 2.6× 1010 W/cm2, corresponding to a pulse area
QC = 2π. The train of pulses starts at t0 = T0 + Tp.

is described by the off-diagonal elements of the density matrix %̄12,in = 0 and %̄13,in 6= 0. The
corresponding solution of the EOMs upon interaction with an optical frequency comb EC(r, t)
is

%eq
12(t) = i %̄13,in

a

2(1− c)
e

[
i(∆X+∆)−Γ3

2

]
(t−T0)

∞∑
j=0

ξ ja sech[γ(t− tj)] 2F1(1− a, 1 + a; 2− c; zj(t)),

(6.90a)

%eq
13(t) = %̄13,in e

[
i(∆X+∆)−Γ3

2

]
(t−T0)

[
1 +

∞∑
j=0

ξ ja

(
2F1(a,−a; 1− c; zj(t))− 1

)]
. (6.90b)

The amplitudes of |%eq
12(t)| and |%eq

13(t)| exponentially decrease with time: in particular, for t > t0
and k ∈ {2, 3}, we can write that

|%eq
1k(t+ Tp)|2 = e−Γ3Tp |ξa|2 |%eq

1k(t)|
2 = e

−
(
Γ3−2

log(|ξa|)
Tp

)
Tp |%eq

1k(t)|
2 = e−

Tp
τ̃a |%eq

1k(t)|
2, (6.91)

such that a new, effective decay time τ̃a can be defined,

τ̃a =
1

Γ3 − 2 log(|ξa|)
Tp

. (6.92)

The decay rate 1/τ̃a exhibits two contributions, i.e., (i) the decay rate of the metastable state
Γ3 and (ii) an additional term −2 log(|ξa|)

Tp
associated with the “loss of amplitude” −2log(|ξa|)

taking place in the presence of an optical pulse. This second term −2 log(|ξa|)
Tp

is approximately
proportional to the ratio τFWHM/Tp between the duration of the pulses in the comb and its
repetition period. The effective decay time τ̃a is related to the decay rate Γ2 of the rapidly
decaying level 2 only indirectly, via this second additional term. In the following figures we use
the 1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions to display the two functions %eq

12(t) and
%eq

13(t) from Eq. (6.90), with level 1 being given by the ground state of the system. Transition
energies and decay rates have already been discussed previously.
In Fig. 6.12 we display the evolution in time of %eq

12(t) and %eq
13(t) upon interaction with a train

of 2π optical pulses tuned to the 2 → 3 transition at 2.02 eV. We use a repetition frequency of
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6 X-ray frequency combs via optically modified absorption

1/Tp = 100 MHz, as provided by present-day optical-comb technology; the value of the employed
peak intensity, ∼ 1010 W/cm2, is by orders of magnitude lower than the intensity presently used
by XUV-comb-generation methods based on HHG [122, 205–208]. In the long time interval in
between two optical pulses the coherence is stored in level 3, whose decay rate Γ3 is by orders
of magnitude smaller than Γ2. This is apparent from the constant amplitude which the function
|%eq

13(t)| exhibits in the time interval in between two pulses [Fig. 6.12b]. In the presence of the
optical pulses, however, the coherence is transferred to the fast decaying excited level 2: The pulse
area QC = 2π ensures that %eq

12(t) is led back to its vanishing initial value when the interaction
with the pulse has concluded [Fig. 6.12a]. As a result, the “loss of coherence and population”
associated with the fast decay of level 2, with decay rate Γ2, is restricted to the short time
intervals ∼ τFWHM in which one of the optical-comb pulses interacts with the ions. The loss of
coherence which the system undergoes in the presence of the optical pulses is given by −2log(|ξa|):
This loss is clearly apparent in Fig. 6.12b, which shows that the amplitude of |%eq

13(t)| periodically
decreases as a consequence of the interaction with the optical pulses. The effective decay rate 1/τ̃a
is approximately proportional to the ratio τFWHM/Tp between the duration of an optical pulse
and the optical-comb repetition period. Since this ratio is much lower than 1, also the effective
decay rate 1/τ̃a is by orders of magnitude lower than Γ2. As a result, repetition frequencies such
as those employed here, e.g., 1/Tp = 100 MHz, are sufficient to effectively manipulate the time
evolution of the system with the optical frequency comb EC(t). In Sec. 6.3.1.1, where we did
not take advantage of the here employed “coherence-storage” mechanism, much higher repetition
frequencies had to be utilized to optically manipulate the system withing its effective decay time
τa ≈ 1/Γ2.

The solution of the EOMs displayed in Fig. 6.13 is associated with a train of detuned pulses,
with central frequency ωC = 1.5 eV, i.e., ∆ = −0.52 eV, and repetition frequency 1/Tp =
100 MHz. The peak intensities are ∼ 1012, still some orders of magnitude lower than the intensity
obtained in a femtosecond enhancement cavity for the generation of XUV combs with HHG
[122,205–208]. A small transfer of coherence is exhibited by |%eq

13(t)| and |%eq
12(t)| in the presence

of the optical pulses. Owing to the large detuning of the optical frequency comb, |%eq
12(t)| is led

back to its vanishing initial value when the interaction with each pulse has concluded [Fig. 6.13a].
The loss of coherence taking place when |%eq

12(t)| is different from zero, despite being small, can
be seen in Fig. 6.13c to affect the evolution of the function |%eq

13(t)|, whose amplitude periodically
decreases as a result of the interaction with the optical pulses. Furthermore, the optical frequency
comb induces periodic shifts in the phases of both %eq

12(t) and %eq
13(t) which we display in Figs. 6.13b

and 6.13d.

6.3.2 X-ray absorption spectrum

The calculation of the absorption spectrum (5.30) of the transmitted x-ray field requires knowl-
edge of the Fourier transform of the just discussed function %eq

12(t) (6.86) ensuing from the inter-
action of the system with the optical frequency comb EC(r, t).

By recalling the definition of the functions f1(t) and f2(t) which we introduced in Eq. (6.42)
while discussing the interaction of the three-level system with a single pulse, we can reformulate
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Figure 6.13: Off-diagonal elements of the three-level system of Fig. 6.1, (a) |%eq12(t)|, (b) arg[e−i∆t %eq12(t)], (c)
|%eq13(t)|, (d) arg[e−i∆t %eq13(t)], used to model He-like Be2+ ions, initially prepared at time T0 = 0 in the initial
state %̄12,in = 0, %̄13,in = −1/2, and driven by a train of optical pulses with energy ωC = 1.5 eV, and detuning
∆ = −∆C = −0.52 eV with respect to the 1s 2s 1S0 → 1s 2p 1P1 optical transition of Be2+ ions at ω23 =
2.02 eV. The pulses have FWHM duration of τFWHM = 100 fs and peak intensities IC,max = 4.5×1011 W/cm2

(red, dashed line), IC,max = 9.1 × 1011 W/cm2 (blue, dotdashed line), IC,max = 1.4 × 1012 W/cm2 (black,
dotted line), and IC,max = 1.9×1012 W/cm2 (green, solid line), corresponding to a phase kick arg(ξa) = −π/4
(red, dashed line), arg(ξa) = −π/2 (blue, dotdashed line), arg(ξa) = −3π/4 (black, dotted line), and
arg(ξa) = −π (green, solid line), respectively. The train of pulses starts at t0 = T0 + Tp.

%eq
12(t) in terms of these two functions, i.e.,

%eq
12(t) = %̄12,in e

(
i∆X−

Γ2
2

)
(t−T0)

θ
(
−t+ t0 − Tp

2

)
+ %̄12,in e

(
i∆X−

Γ2
2

)
(t−T0)

∞∑
j=−∞

µ jaf1(zj(t)) θ
(
t− t0 +

Tp
2

)
+ i %̄13,in

a

1− c
e

[
i∆+

Γ2−Γ3
2

]
(t0−T0)

e

(
i∆X−

Γ2
2

)
(t−T0)

θ
(
t− t0 +

Tp
2

)
×

∞∑
j=−∞

e

[
i(∆Tp+arg ξa)+

Γ2−Γ3
2

Tp+log |ξa|
]
j
f2(zj(t)).

(6.93)

The first addend on the right-hand side on the first line of Eq. (6.93) is a right-handed exponen-
tially decaying function, whose Fourier transform can be easily calculated, i.e.,∫ t0−

Tp
2

T0

%̄12,in e

(
i∆X−

Γ2
2

)
(t−T0)

e−i(ω−ωX)(t−T0) dt = %̄12,in
1− e

[
−i(ω−ω21)−Γ2

2

](
t0−

Tp
2
−T0

)
Γ2
2 + i(ω − ω21)

. (6.94)
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6 X-ray frequency combs via optically modified absorption

The second addend on the second line in (6.93) is the product of two functions, the second of
which is a sum in j which can be expressed as the convolution of a function with a train of delta
peaks,

∞∑
j=−∞

µ jaf1(zj(t)) =

∫ ∞
−∞

µ
τ/Tp
a f1(z0(t− τ))

∞∑
j=−∞

δ(τ − jTp) dτ, (6.95)

such that we can take advantage of the properties of the Fourier transform of the convolution
and of the product to write∫ ∞

−∞
%̄12,in e

(
i∆X−

Γ2
2

)
(t−T0)

∞∑
j=−∞

µ jaf1(zj(t)) θ
(
t− t0 +

Tp
2

)
e−i(ω−ωX)(t−T0) dt

= %̄12,in
e

[
i(ω−ω21)+

Γ2
2

]
T0

2π

∫ ∞
−∞

∫ ∞
−∞

e

[
−i(ω′−ω21)−Γ2

2

]
t′
θ
(
t′ − t0 +

Tp
2

)
dt′

×
∫ ∞
−∞

µ
τ/Tp
a

∞∑
j=−∞

δ(τ − jTp) e−i(ω−ω′)τ dτ

∫ ∞
−∞

f1(z0(t))e−i(ω−ω′)t dt dω′.

(6.96)

The right-hand side of the previous equality displays the convolution—the integral in ω′—of two
Fourier transforms, the second of which is itself the product of two other Fourier transforms.
The integral in t′ on the second line in Eq. (6.96) is easily computable, since it involves once
again the calculation of the Fourier transform of a right-handed exponentially decaying function,

∫ ∞
−∞

e

[
−i(ω′−ω21)−Γ2

2

]
t′
θ
(
t′ − t0 +

Tp
2

)
dt′ =

e

[
−i(ω′−ω21)−Γ2

2

](
t0−

Tp
2

)
Γ2
2 + i(ω′ − ω21)

. (6.97)

The first Fourier transform on the third line in Eq. (6.96)—the integral in τ—can be calculated
after having expressed µτ/Tpa as a complex exponential function, i.e., µτ/Tpa = (|µa| ei arg µa)τ/Tp =

e
log |µa|
Tp

τ
e

i arg µa
Tp

τ , such that one can employ the Fourier transform of the train of delta functions
to obtain ∫ ∞

−∞

∞∑
j=−∞

δ(τ − jTp) e
−i
(
ω−ω′− arg µa

Tp
+i

log |µa|
Tp

)
τ

dτ

=
2π

Tp

∞∑
m=−∞

δ
(
ω − ω′ − argµa

Tp
+ i log |µa|

Tp
− 2πm

Tp

)
.

(6.98)

The second Fourier transform on the third line in Eq. (6.96)—the integral in t—was already
calculated in Eq. (C.44) to describe the interaction of the three-level system with a single pulse,∫ ∞

−∞
f1(z0(t))e−i(ω−ω′)t dt

=
e−i(ω−ω′)t0

2γ

a2

c
iπ csch

(
π(ω−ω′)

2γ

)
3F2

(
1 + a, 1− a, 1− i (ω−ω′)

2γ ; 1 + c, 2; 1
)
.

(6.99)

The presence of the “frequency comb” in Eq. (6.98) renders the calculation of the convolution,
i.e., the integral in ω′ appearing in Eq. (6.96), immediate.
Similar steps are necessary for the calculation of the Fourier transform of the third term

in (6.93) on the third and fourth lines: the sum in j is once again written as the convolution of a
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6.3 Coherent control via an optical frequency comb

function with a train of delta peaks such that an equation is recovered which requires the use of
the already calculated Fourier transform of f2(z0(t)) [see Eq. (C.46) from the single-pulse case].
These steps are not repeated here.
The just presented calculation allow us to conclude that the Fourier transform of %eq

12(t) from
Eq. (6.93) is

∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt = %̄12,in

1− e

[
−i(ω−ω21)−Γ2

2

](
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× π

2γTp
sech

(
π
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1− a, 1 + a, 1

2 − i 1
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(2πm+ arg ξa − i log |ξa|); 2− c, 1; 1
)
.

(6.100)

This result exhibits two sets of combs, which we analyze separately in the following by distinctly
considering the two different sets of initial conditions we already identified in the previous Sec-
tions. These sets of initial conditions correspond to different preparatory schemes via the x-ray
pulse EX(r, t) and the optical pulse EL(r, t).

6.3.2.1 X-ray-only preparation

When a single x-ray pulse EX(r, t) is used to prepare the system, such that at time T0 the initial
state is characterized by %eq

13,in = 0, then the Fourier transform in Eq. (6.100)

∫ ∞
T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt = %̄12,in

1− e
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2

](
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)
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2 + i(ω − ω21)
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2
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∞∑
m=−∞

e
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(
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Tp
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Tp

)
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Γ2
2
− log |µa|

Tp

]
Tp
2

Γ2
2 −

log |µa|
Tp

+ i
(
ω − ω21 − arg µa

Tp
− 2πm

Tp

)
× π

2γTp
csch

[
π

2γTp
(2πm+ argµa − i log |µa|)

]
× a2

c
3F2

(
1 + a, 1− a, 1− i 1

2γTp
(2πm+ argµa − i log |µa|); 1 + c, 2; 1

)
(6.101)

exhibits (i) a central peak, centered at the atomic transition energy ω21 and ensuing from the
spontaneous decay of the excited state 2 at rate Γ2 during the time interval [T0, t0 − Tp/2]
preceding the interaction with the periodic train of pulses, and (ii) a set of equidistant peaks,

121



6 X-ray frequency combs via optically modified absorption

-2 -1 0 1 2
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Ω - Ω21 H10-4 eVL

A
b

s
.

s
p

e
c
tr

u
m

(a)

-2 -1 0 1 2
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Ω - Ω21 H10-3 eVL

A
b

s
.

s
p

e
c
tr

u
m

(b)

Figure 6.14: Absorption spectrum (6.55) for the three-level system of Fig. 6.1, used to model He and He-like
Be2+ ions, initially prepared at time T0 = 0 in a state with %̄12,in = −i/2, %̄13,in = 0, whose 1s 2s 1S0 →
1s 2p 1P1 transition is driven by a train of 2π optical pulses, with FWHM duration τFWHM = 100 fs, tuned
to the optical transition. In the case of He [panel (a)], the transition energies are ω23 = 0.6 eV, ω21 =
21.2 eV, and the decay rate of the excited state is Γ2 = 1.8 × 109 s−1 = 7.45 × 10−6 eV: We use pulses
with repetition period Tp = 100 ps, i.e., 1/Tp = 10 GHz, 2π/Tp = 4.14 × 10−5 eV, and peak intensities
IC,max = 3.0×109 W/cm2. In the case of He-like Be2+ [panel (b)], the transition energies are ω23 = 2.02 eV,
ω21 = 123.7 eV, and the decay rate of the excited state is Γ2 = 1.2 × 1011 s−1 = 5.05 × 10−4 eV: We use
pulses with repetition period Tp = 10 ps, i.e., frequency 1/Tp = 100 GHz, 2π/Tp = 4.14 × 10−4 eV,and
peak intensities IC,max = 2.6 × 1010 W/cm2. In both cases, the peak intensity corresponds to a pulse area
QC = 2π. The train of pulses starts at t0 = T0 + Tp.

where each peak is given by the Fourier transform of a right-handed exponentially decaying
function. Each peak has a width which is given by the a-dependent effective decay width 1

τa
=

Γ2
2 −

log |µa|
Tp

which we defined in Eq. (6.89). The peaks are equally separated by the repetition
frequency of the optical frequency comb. The mth peak is centered at frequency ωm = ω21 +
arg µa
Tp

+ 2πm
Tp

, with m ∈ Z.
As a result of the Fourier transform (6.101), a comb centered at the high-frequency transition

energy ω21 and with the same separation frequency as the optical frequency comb is imprinted
onto the x-ray absorption spectrum (5.29) of the transmitted, ultrashort x-ray pulse EX(r, t)
which is employed to prepare the atomic system in its initial state. The prefactor determining
the amplitude of the mth peak can be approximated via Eq. (6.50b),

π

2γTp
csch

[
π

2γTp
(2πm+ argµa − i log |µa|)

]
≈ 1

2πm+ arg µa − i log |µa|
,

i.e., the amplitude of themth peak in the comb decreases as 1/m. In the next pictures we employ
the 1s 2p 1P1 → 1s 2s 1S0 (2 → 3) and the 1s2 1S0 → 1s 2p 1P1 (1 → 2) transitions of He and
He-like Be2+ to implement our three-level scheme and display the modifications of the absorption
spectrum which emerge when an optical frequency comb EC(r, t) is used to optically manipulate
the atomic response of the system. Transition energies and decay rates were introduced in
Sec. 6.3.1.1.
In Fig. 6.14 we plot the 10 central peaks in the absorption spectrum for He and He-like Be2+

ions driven by a train of 2π pulses tuned to the 2→ 3 transition. The spectra are centered at the
transition energy ω21, respectively given by ω21 = 21.2 eV for He and ω21 = 123.7 eV for He-like
Be2+ ions [191]. The corresponding time evolution was exhibited in Fig. 6.10. Each Fano-like
peak has a width 1/τa which is determined by the decay rate Γ2 of the fast decaying level 2. The
pictures show that the peak separation spacing, given by 2π/Tp, is comparable to the width of
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Figure 6.15: Absorption spectrum (6.55) for the three-level system of Fig. 6.1, used to model He and He-like
Be2+ ions, initially prepared at time T0 = 0 in a state with %̄12,in = −i/2, %̄13,in = 0, whose 1s 2s 1S0 →
1s 2p 1P1 transition is driven by a train of optical pulses with energy ωC = 1.5 eV and FWHM duration
τFWHM = 100 fs. In the case of He [panel (a)], the transition energies are ω23 = 0.6 eV, ω21 = 21.2 eV, and
the decay rate of the excited state is Γ2 = 1.8×109 s−1 = 7.45×10−6 eV: We use pulses with repetition period
Tp = 100 ps, i.e., 1/Tp = 10 GHz, 2π/Tp = 4.14×10−5 eV, and peak intensities IC,max = 9.2×1010 W/cm2

(red, dashed line), IC,max = 1.8 × 1011 W/cm2 (blue, dotdashed line), IC,max = 2.8 × 1011 W/cm2 (black,
dotted line), and IC,max = 3.7 × 1011 W/cm2 (green, solid line). In the case of He-like Be2+ [panel (b)],
the transition energies are ω23 = 2.02 eV, ω21 = 123.7 eV, and the decay rate of the excited state is Γ2 =
1.2 × 1011 s−1 = 5.05 × 10−4 eV: We use pulses with repetition period Tp = 10 ps, i.e., frequency 1/Tp =
100 GHz, 2π/Tp = 4.14 × 10−4 eV,and peak intensities IC,max = 4.5 × 1011 W/cm2 (red, dashed line),
IC,max = 9.1 × 1011 W/cm2 (blue, dotdashed line), IC,max = 1.4 × 1012 W/cm2 (black, dotted line), and
IC,max = 1.9 × 1012 W/cm2 (green, solid line). In both cases, the peak intensities correspond to a phase
kick arg(µa) = π/4 (red, dashed line), arg(µa) = π/2 (blue, dotdashed line), arg(µa) = 3π/4 (black, dotted
line), and arg(µa) = π (green, solid line), respectively. The train of pulses starts at t0 = T0 + Tp.

the peaks in the comb. In He (Fig. 6.14a) the decay time of the excited level 2 is ∼ 6 ns and
a repetition period of Tp = 100 ps is required. This corresponds to a peak separation spacing,
2π/Tp = 4.14 × 10−5 eV, which is comparable to the decay rate Γ2 = 7.45 × 10−6 eV. Similar
considerations are valid for He-like Be2+ (Fig. 6.14b), where, in light of the even smaller decay
time ∼ 8 ps of the excited level 2, an even smaller repetition period, Tp = 10 ps, is necessary
to effectively imprint a comb onto the absorption spectrum of the transmitted x-ray field. The
peak separation spacing 2π/Tp = 4.14 × 10−4 eV, which is associated with the fixed value of
the repetition period, is comparable to the decay rate Γ2 = 5.05 × 10−4 eV. In both pictures
it is apparent that the strength of the peaks decreases, as predicted, with the peak number m.
Finally, we notice that, for the case of a tuned pulse with 2π area in the limit of decay rates
much lower than the spectral width of the pulses, Eq. (6.29) predicts that µa ≈ −1, where the
constant µa determines the frequencies ωm = ω21 + argµa

Tp
+ 2πm

Tp
at which the peaks in the comb

are centered. For µa = −1, we can conclude that ωm = ω21 + π(2m+1)
Tp

, as confirmed by Fig. 6.14.

In Fig. 6.15 we plot the 10 central peaks in the absorption spectrum for He (Fig. 6.15a) and He-
like Be2+ ions (Fig. 6.15b) driven by a train of pulses EC(r, t) with central energy ωC = 1.5 eV.
The employed optical frequency comb is detuned from the corresponding optical transition ω23.
The peaks exhibit a Fano-like shape with peak amplitudes undergoing a fast decrease (1/m) at
increasing values of the peak number m. The width of the peaks is determined by the effective
decay rate 1/τa ≈ Γ2, while the separation spacing is given by the repetition frequency of the
optical frequency comb. Different peak intensities IC,max of the driving field are associated with
different values of the frequencies ωm at which the peaks in the imprinted comb are centered.
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6 X-ray frequency combs via optically modified absorption

These central frequencies ωm = ω21 + argµa
Tp

+ 2πm
Tp

are shown in Fig. 6.15 to uniformly translate at
increasing values of the peak intensity because of the correspondingly rising value of the intensity-
dependent parameter arg (µa). Notice that, in the large-detuning case, Eq. (6.31) predicts that
|µa| ≈ 1, such that µa ≈ ei arg (µa). This phase term arg (µa) represents the shift which %eq

12(t)
periodically undergoes upon interaction with the train of optical pulses in the optical frequency
comb.

6.3.2.2 Coherence-storage preparation

When the preparation of the three-level system described in Fig. 5.1 consists in an x-ray pulse
EX(r, t) followed by a 2π optical pulse tuned to the 2 → 3 transition, such that the system at
time T0 is in an initial state characterized by %eq

12,in = 0, then the Fourier transform in Eq. (6.100)
reduces to∫ ∞

T0

%eq
12(t) e−i(ω−ωX)(t−T0) dt

= i %̄13,in
a

1− c
e

[
−i(ω−ω21−∆)−Γ3

2

]
(t0−T0)

∞∑
m=−∞

e

[
i
(
ω−ω21−∆− arg ξa

Tp
− 2πm

Tp

)
+
Γ3
2
− log |ξa|

Tp

]
Tp
2

Γ3
2 −

log |ξa|
Tp

+ i
(
ω − ω21 −∆− arg ξa

Tp
− 2πm

Tp

)
× π

2γTp
sech

(
π

2γTp
(2mπ + arg ξa − i log |ξa|)

)
× 3F2

(
1− a, 1 + a, 1

2 − i 1
2γTp

(2πm+ arg ξa − i log |ξa|); 2− c, 1; 1
)
.

(6.102)

This function exhibits a new set of equidistant peaks, whose spacing 2π/Tp is the same as in
the optical frequency comb and whose spectral widths are given by the effective decay rate
1/τ̃a = Γ3

2 −
log |ξa|
Tp

[Eq. (6.92)], which is by orders of magnitude lower than the effective decay
rate 1/τa [Eq. (6.89)] from the previously analyzed case. As a result of the coherence-transfer
and -storage mechanism which we described in the time domain in Sec. 6.3.1.2, a set of very fine
peaks is imprinted onto the absorption spectrum of the transmitted x-ray field. Furthermore, by
shaping the envelope of the off-diagonal matrix element %eq

12(t) into a pulse-train-like function,
consisting of “pulses” with the same duration as the optical pulses in the optical frequency comb,
a wide absorption spectrum is obtained, whose overall spectral width is proportional to the
bandwidth γ of the optical-comb pulses. In particular, if we compare Eqs. (6.59) and (6.102),
we notice that the many-pulse Fourier transform in this Section is obtained by “sampling” with
fine, equidistant peaks of the form

1

Γ3
2 −

log |ξa|
Tp

+ i
(
ω − ω21 −∆− arg ξa

Tp
− 2πm

Tp

)
the single-pulse Fourier transform we analyzed in Sec. 6.2.2.2. Finally, we notice that the peaks
in the Fourier transform (6.102) are centered at the frequencies ωm = ω21 + ∆ + arg ξa

Tp
+ 2πm

Tp
,

which are directly determined by the detuning ∆ and, indirectly, by the peak intensity, pulse
duration, and repetition period of the optical frequency comb via the term arg ξa

Tp
.

In the next pictures we employ the 1s 2p 1P1 → 1s 2s 1S0 (2→ 3) and the 1s2 1S0 → 1s 2p 1P1

(1→ 2) transitions of He-like Be2+ to implement our three-level scheme and display the absorp-
tion spectrum (5.30) associated with the Fourier transform in Eq. (6.102). Transition energies
and decay rates were introduced in Sec. 6.3.1.2.

124



6.3 Coherent control via an optical frequency comb
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Figure 6.16: Absorption spectrum (6.55) from the three-level system of Fig. 6.1, used to model He-like Be2+

ions, initially prepared at time T0 = 0 in a state with %̄12,in = 0, %̄13,in = −1/2, whose 1s 2s 1S0 → 1s 2p 1P1

transition is driven by a train of 2π optical pulses, with FWHM duration of τFWHM = 100 fs, tuned to the
optical transition. The spectrum is centered at ω21 = 123.7 eV. The optical transition energy is ω23 = 2.02 eV:
We use pulses with repetition period Tp = 10 ns, i.e., 1/Tp = 100 MHz = 4.14×10−7 eV, and peak intensities
IC,max = 2.6×1010 W/cm2, corresponding to a pulse area QC = 2π. The train of pulses starts at t0 = T0+Tp.
The train of pulses starts at t0 = T0 + Tp. In panel (a) the 10 central peaks of the absorption spectrum are
displayed, whereas panel (b) shows the peak values of the absorption spectrum, calculated by evaluating
the Fourier transform of %eq12(t) at the central frequencies ωm = ω21 + arg µa

Tp
+ 2πm

Tp
for a peak intensity

IC,max = 2.6× 1010 W/cm2.

In Fig. 6.16 we show results for the case of an optical frequency comb EC(r, t) consisting of
2π pulses tuned to the 2 → 3 transition. Fine Lorentzian peaks separated by the optical-comb
repetition frequency 2π/Tp are shown in Fig. 6.16a. From Eq. (6.20), a pulse area QC = 2π
is associated with a = 1, whereby the generalized hypergeometric function 3F2 in Eq. (6.102)
is also equal to 1. As a result, the amplitude of the mth peak in the Fourier transform of
%eq

12(t) is proportional to sech
(

π
2γTp

(2mπ + arg ξa − i log |ξa|)
)
and a wide comb in the absorption

spectrum, with an overall width given by the optical-comb spectral width γ, is exhibited in
Fig. 6.16b. The number of peaks in this x-ray comb is proportional to ≈ Tp/τFWHM = 105. Each
peak has a very small width, given by 1/τ̃a � Γ2, as clearly appearing in the single Lorentzian
peak shown in Fig. 6.16c. For vanishing detuning∆ and in the limit of decay rates Γ2 and Γ3 much
lower than the single-pulse bandwidth γ, Eq. (6.39) can be employed to predict that ξa ≈ (−1)a:
For a = 1, the mth peak in the comb is centered at the frequency ωm = ω21 + ∆ + π(2m+1)

Tp
, as

Fig. 6.16a confirms.

In Fig. 6.17 we analyze the large-detuning limit by comparing results from 1.5-eV frequency
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Figure 6.17: Absorption spectrum (6.55) from the three-level system of Fig. 6.1, used to model He-like Be2+

ions, initially prepared at time T0 = 0 in the initial state %̄12,in = 0, %̄13,in = −1/2, and driven by a train of
optical pulses with energy ωC = 1.5 eV, and detuning ∆ = −∆C = −0.52 eV with respect to the 1s 2s 1S0 →
1s 2p 1P1 optical transition of Be2+ ions at ω23 = 2.02 eV. The spectrum is centered at ω21 = 123.7 eV. The
pulses have FWHM duration of τFWHM = 100 fs and peak intensities IC,max = 4.5×1011 W/cm2 (red, dashed
line), IC,max = 9.1×1011 W/cm2 (blue, dotdashed line), IC,max = 1.4×1012 W/cm2 (black, dotted line), and
IC,max = 1.9× 1012 W/cm2 (green, solid line), corresponding to a phase kick arg(ξa) = −π/4 (red, dashed
line), arg(ξa) = −π/2 (blue, dotdashed line), arg(ξa) = −3π/4 (black, dotted line), and arg(ξa) = −π
(green, solid line), respectively. The train of pulses starts at t0 = T0 +Tp. In panel (a) the 10 central peaks of
the absorption spectrum are displayed, whereas panel (b) shows the peak values of the absorption spectrum,
calculated by evaluating the Fourier transform of %eq12(t) at the central frequencies ωm = ω21+∆+ arg ξa

Tp
+ 2πm

Tp

for a peak intensity IC,max = 1.9× 1012 W/cm2.

combs of different peak intensities. As shown in Eq. (6.41), for large values of ∆ the parameter
ξa describing the effect of a single pulse on the off-diagonal matrix element %eq

12(t) has |ξa| ≈ 1. In
Fig. 6.5 we showed that this results in periodic phase shifts of %eq

12(t) whose amplitudes are given
by the intensity-dependent value of arg (ξa). These periodic phase shifts influence the central
frequency ω21 + ∆ + arg ξa

Tp
of the x-ray comb which is imprinted onto the absorption spectrum

of the transmitted x-ray field. This is exhibited by Fig. 6.17a, in which combs of different
lineshapes and central frequencies are displayed for different values of the driving peak intensity.
The overall spectral width of the comb is also proportional to the optical-comb bandwidth γ,
as Fig. 6.17b shows. The asymmetric shape featured in the picture is a consequence of the
properties, for general values of a and ∆, of the generalized hypergeometric function 3F2. The
single Lorentzian peak displayed in Fig. 6.17c, exhibiting a fine linewidth given by 1/τ̃a, is shown
for the value of the peak intensity which is associated with arg (ξa) = −π.
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6.4 Conclusions

6.4 Conclusions

By coupling an x-ray level to a nearby metastable state via an optical frequency comb, we
develop a quantum control scheme to manipulate the coherent response of the atomic system.
By controlling the periodic release of population and coherence stored in a metastable state, one
can imprint a comb structure onto the absorption spectrum of a broadband, femtosecond x-ray
pulse, such as those presently available at XFEL facilities [89–92]. The model can be applied when
one of the following two conditions is fulfilled, i.e., either the pulses in the optical frequency comb
have a pulse area equal to 2π, or the optical frequency comb is off-resonance. The single-pulse
solution, presented in Sec. 6.2, is recursively employed in Sec. 6.3, in order to find a solution
of the equations of motion in the case of periodic driving. Two sets of initial conditions are
investigated, corresponding to different preparation schemes with an x-ray pulse and an optical
pulse, as discussed in the previous Chapter. The three-level scheme models isolated transitions
in He-like Be2+: The imprinted comb is therefore centered at the corresponding x-ray transition
energy of 123.7 eV; the values of the necessary peak intensity of the driving optical frequency
comb, ranging from 1010 W/cm2 to 1012 W/cm2, are by orders of magnitude lower than the peak
intensity used for high-frequency-comb generation via other schemes.
In the case in which the driving frequency comb immediately follows the x-ray pulse, as

discussed in Secs. 6.3.1.1 and 6.3.2.1, the fast decay of the x-ray-excited state undergoes periodic
phase shifts, which imprint a comb onto the absorption spectrum. Each peak in the comb has a
width given by the decay rate of the excited state Γ2. The overall spectral width of the comb is
however limited, as the mth peak has an amplitude which decays like 1/m.
However, if an optical pulse preceding the arrival of the frequency comb is used to store the

coherence in the metastable state, as described in Secs. 6.3.1.2 and 6.3.2.2, then the envelope
of the off-diagonal matrix element %eq

12(t) is shaped into a pulse-train-like function and an x-ray
absorption spectrum is obtained, which is a comb with an overall width given by the optical-comb
bandwidth γ.
The exact frequency of the peaks in the predicted x-ray comb is as precisely known as the

x-ray line at which the comb is centered. Such comb may be valuable for spectroscopy, e.g.,
to determine an x-ray line with the same precision with which the reference line is known at
which the comb is centered. The scheme is of interest both as a phase and amplitude, x-ray
manipulation scheme, as for its potential applications in precision spectroscopy.
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7 Summary and outlook

New opportunities and new challenges are opened up by the rapid growth of x-ray science. On
the one hand, novel theoretical and experimental investigations can be envisaged thanks to the
constantly improving quality of the light which the evolution of x-ray sources, such as the x-ray
free-electron laser (XFEL), is rendering available; but on the other hand, in order to maintain
such an improvement rate, new, sometimes alternative solutions may have to be considered.
In Chapter 1, we introduce the properties of presently available optical and x-ray light sources,

with a particular focus on the advances in free-electron lasers (FELs) and extreme-ultraviolet
(XUV) frequency combs.
In Chapter 2, we summarize the theory of the interaction of matter with light. In particular,

we show how the properties of the light emitted by a set of atoms or ions interacting with an
external field can be related to the time evolution of the driven atomic system, described in
the density-matrix formalism through a Liouville-von Neumann master equation. We introduce
the concept of Rabi flopping, of fundamental importance in the whole Thesis, and conclude the
Chapter with a description of the spectral features of the emitted field, in terms of an idealized
spectrum analyzer.
In Chapter 3, we study theoretically the resonance fluorescence spectrum of an ensemble of

ions driven by intense, ultrashort x rays, inducing Rabi oscillations of atomic populations and
coherences within the decay time of the system. A two-level model is used to describe Ne+ cations
driven by an intense linearly polarized x-ray field tuned to the 1s 2p−1 → 1s−1 2p transition at
848 eV. The choice of the system was motivated by previous experimental investigations of
the resonant-Auger-decay electron spectra employing the same atomic system. We study the
signature of x-ray-induced Rabi oscillations in the resonance fluorescence spectrum. We consider
laser-like Gaussian pulses, now available via seeding methods, for which a clear signature of Rabi
flopping is predicted. In the case of pulses generated by self-amplified spontaneous emission, Rabi
flopping is less clearly visible, although tails in the spectrum appear, due to the high intensity
of the driving pulses, which might represent a good signature of x-ray-induced Rabi oscillations.
The work presented in the Chapter motivates further experimental investigation of resonance

fluorescence at XFEL facilities. In the case of Ar+ cations, for instance, the spectrum of resonance
fluorescence, because of the higher fluorescence yield compared to that of neon, is more intense
than the one shown in Chapter 3. The model which we adopt could be similarly used to study
cations such as argon, for which the measurement of the spectrum of resonance fluorescence
would present obvious advantages compared to the measurement of the electron spectrum.
Furthermore, for nonstationary light, e.g. when the electric field has a pulse-shaped envelope,

the study of the time-dependent power spectrum [74,166,219–221], i.e., the time-dependent rate
of detected photons, would allow one to investigate how the spectral properties of the fluorescent
light evolve during the pulse. Even though, because of the ultrashort nature of XFEL pulses—
with duration of the order of 10 to 100 fs—and because of the lack of sufficiently fast detectors,
such a power spectrum cannot be measured at present, the study of the time-dependent power
spectrum might provide better understanding and further knowledge of the interaction between
matter and x rays.
We would like to point out that the topic of Chapter 3 led to an experimental proposal to

LCLS, to experimentally validate our theoretical predictions.
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7 Summary and outlook

While Chapter 3 aims at investigating the direct manipulation of inner-shell levels with intense
pulses from an XFEL, the remaining part of the Thesis focuses on the optical manipulation of
x-ray transitions in a many-level system. We use an x-ray field to directly drive the transition
between the ground state and an x-ray level. The population and coherence of the x-ray-excited
state is optically manipulated via one or more optical fields coupling to other nearby levels. In
particular, by employing an optical frequency comb, we put forward quantum-control schemes to
imprint a frequency comb onto the x-ray spectrum. These schemes may represent an alternative
to currently explored comb-generation methods based on high-order harmonic generation (HHG)
in order to further increase the comb frequency while keeping the driving intensities on an
accessible level. Stringent experimental tests of quantum electrodynamics and astrophysical
models [123], and studies of the variability of the fine-structure constant with highly charged
ions [124] would significantly benefit of the possibilities opened up by the availability of an x-ray
frequency comb. Ultraprecise x-ray clocks may also be envisaged [125].
In Chapter 4, we develop a scheme to imprint a comb onto the resonance fluorescence spectrum

emitted by four-level ions driven by narrow-bandwidth x rays. By optimizing the intensities of
the driving fields, and in particular by utilizing an optical frequency comb consisting of pulses
with an area which is an integer multiple of 2π, we predict a comb in the resonance fluorescence
spectrum, which is centered on an atomic x-ray transition and which is as wide as the optical
frequency comb employed to excite the system.
The four-level scheme is exemplified by He-like Be2+ ions: The x-ray transition energy at

which the imprinted comb is centered, equal to 123.7 eV, is four times higher than the central
frequency of XUV combs which were demonstrated via HHG-based methods [122]. The presented
scheme requires optical-comb peak intensities of ∼ 1010 W/cm2, by orders of magnitude lower
than the intensities necessary for methods based on HHG. The wide comb we predict may be
used as a relative “ruler” [30, 31], e.g., to bridge an energy difference between an x-ray reference
level and an unknown x-ray frequency at high energies, for which the inefficiency of HHG due to
relativistic effects at high harmonic orders would render its adoption not advisable [126].
The scheme takes advantage of narrow-bandwidth x-ray sources: Although we believe that the

advances in x-ray science will soon provide the experimental conditions necessary to demonstrate
the viability of this scheme, we also recognize that the assumption of a very narrow x-ray band-
width does not allow an implementation of our scheme with currently available x-ray technology.
The following two Chapters aim at overcoming this limitation by employing ultrashort x-ray
pulses such as those presently available at FEL facilities.
In Chapter 5, we introduce a three-level model which is adopted to investigate coherent transfer

of population and coherence in highly charged ions. The short x-ray pulse populates an excited
state which a subsequent optical field couples to a nearby metastable state. The optical field
allows one to transfer population and coherence from the x-ray-excited state to the metastable
state and vice versa. A two-optical-pulse scheme is discussed, whereby the population “stored”
in the long-lived, metastable state by the first optical pulse is subsequently released by the
second one. An experimental demonstration of such a two-pulse scheme would represent an
important step forward in the development of methods for the optical manipulation of x-ray
excited levels. Furthermore, by modifying the time delay between the two pulses, accurate
lifetime measurements of metastable states in highly charged ions may be performed. We wish
to point out that these investigations are object of an experimental proposal at LCLS.
The same three-level model is employed in Chapter 6 to implement a scheme of x-ray-comb

generation. In contrast to the case we present in Chapter 4, the system is initially excited by an
ultrashort, broadband x-ray pulse, such as those currently available at FEL facilities [222]: An
experimental implementation would therefore be possible with present x-ray technology.
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An optical frequency comb coupling the x-ray-excited level to a metastable state is utilized
to imprint a comb onto the absorption spectrum of the transmitted x-ray pulse. The dynamical
evolution of the three-level system interacting with an optical frequency comb and the properties
of the ensuing absorption spectrum depend on the initial state in which the atomic system is
prepared. Two sets of initial conditions are investigated:
In Secs. 6.3.1.1 and 6.3.2.1, the sole ultrashort x-ray pulse is utilized to prepare the system

in its initial state. The following interaction with the optical frequency comb induces periodic
phase shifts of the exponentially decaying atomic variables. A sufficient number of phase shifts
has to be induced during the lifetime of the excited level, i.e., the repetition frequency of the
optical frequency comb need be higher than the decay rate of the excited state. The model is
exemplified by He and He-like Be2+ ions with high-frequency transition energies respectively in
the extended ultraviolet and in the x-ray ranges. The periodic modification of the dipole response
of the atomic system gives rise to an x-ray absorption spectrum exhibiting a comb with the same
frequency spacing as the optical frequency comb used to drive the system. The width of each
peak in the imprinted comb is given by the decay rate of the fast decaying, x-ray-excited level.
The amplitude of the peaks decays like ∼ 1/m, where m labels the peak number counted from
the x-ray transition energy at which the comb is centered.
In Secs. 6.3.1.2 and 6.3.2.2, the three-level system is prepared in its initial state by the combined

presence of the short x-ray pulse and of an immediately following optical pulse coupling the x-ray-
excited level to the nearby metastable state. Since the latter is characterized by an extremely
long decay time, population and coherences are thereby “stored” in this long-lived state. While in
Chapter 5 a single pulse is subsequently employed with the sole scope of releasing the coherence
from the metastable state, here, the following interaction with the optical frequency comb induces
a periodic sequence of coherence release and storage. This is achieved via either optical pulses
with a 2π area, or pulses which are very detuned from the corresponding atomic optical transition.
The x-ray emission, associated with the decay of the x-ray-excited level taking place in the
sole presence of the short pulses from the optical frequency comb, gives rise to a comb in the
absorption spectrum of the transmitted x-ray field. The comb is centered at the atomic transition
energy between the ground state and the x-ray-excited state. Since the long decay time of the
metastable state is properly exploited, the three-level system decays at an effective rate which
is by orders of magnitude smaller than the decay rate of the x-ray-excited state. As a result, an
optical frequency comb with routinely available repetition frequency is sufficient to demonstrate
the scheme. The low effective decay rate which we achieve by storing the coherence in the
metastable state also determines very sharp peaks in the imprinted comb, whose widths are
given by this low effective decay rate. Furthermore, by shaping the atomic variables into a “train
of pulses”, a wide comb is imprinted onto the x-ray absorption spectrum, with a number of peaks
which is comparable to that in the driving optical frequency comb. The model is exemplified by
He-like Be2+ ions with an x-ray transition energy of 123.7 eV. A comb centered at this energy is
predicted upon interaction with an optical frequency comb with peak intensity of ∼ 1010 W/cm2.
The comb which we predict in the absorption spectrum is referenced to an atomic transition

[30, 31], i.e., it provides a series of precisely separated peaks whose positions are as accurately
known as the x-ray atomic level at which they are centered. The scheme requires currently
available x-ray and optical-frequency-comb technology and its experimental demonstration is
presently under design [223].
In this Thesis, we employed ensembles of ions with low density such that good phase matching

is achieved. Phase-matching effects would have to be taken into account explicitly if one studied
ensembles of particles with higher densities than those assumed here. This can be achieved
via a self-consistent solution of the Maxwell-Liouville equations of motion through the medium,
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7 Summary and outlook

i.e., by solving the Liouville-von Neumann equation by taking into account consistently how
the atomic response at a given point in space modifies the electric-field strength. Not only
would this generalize the approach that we developed in this work, but it may also provide
better understanding of our study and would help the actual experimental implementation of
the theoretical models.
The quantum-control schemes which we present in Chapters 4 and 6 are applied to He-like Be2+

ions, which gives rise to combs centered at a transition energy of 123.7 eV. The schemes, however,
have general validity and can be used to model different atomic systems. Qualitatively similar
results can be obtained from other He-like ions, such as Ne8+; in this case, for a transition energy
of 922.0 eV [191], we predict a comb in the kiloelectronvolt range, although for the transition
energy at 6.679 eV intense optical frequency combs are not available yet.
Our models can be readily applied to different atomic transitions, e.g., 1s2 → 1s np with n ≥ 3,

in more highly charged He-like ions at higher photon energies, e.g., ∼ 500 eV. The model would
not have to be modified, since the level structure remains unchanged. However, one would have
to properly choose the atomic number Z of the ion in order to ensure that the corresponding
1s np → 1s ns transition has energy in the optical range, such that it can be effectively driven
via currently available optical frequency combs. However, ionic species with too high atomic
numbers should be avoided, since the decay rate of the excited state 1s np to the ground state
increases with Z as ∼ Z4 [159]. If the decay from the excited state is too fast, it can become in
fact challenging to efficiently transfer population and coherence with an optical laser to a nearby
metastable state.
Towards an experimental implementation of our schemes, it would be important to rely on a

more complete description of the atomic structure, in which the role of all atomic levels is taken
into account numerically. This would be particularly significant if one planned to employ, e.g., a
pulse of attosecond pulses, whose spectral width is from 100 to 1,000 times larger than the width
of the pulses employed throughout this Thesis. A broadband pulse, in fact, puts into question
the three- or four-level approximation of which we took advantage here, as several transitions
may have energies lying within the energy width of the driving pulses. A numerical approach
including the presence of practically all atomic levels would also be advisable if one decided
to consider, as previously described, higher-photon-energy transitions such as 1s2 → 1s np in
heavier ions. In this case, the intermediate excited levels with n′ < n may be accessed, e.g., via
spontaneous decay and their role may not be negligible.
The same many-level schemes which we utilized throughout the Thesis may be employed to

describe a frequency comb in the gamma range taking advantage of nuclear transitions [127,224–
226]. In this case, one would have to determine proper isotopes in which an excited state can be
optically coupled to a nearby level. The application of the concepts from this Thesis in nuclei,
however, may not be immediate. In particular, dipole matrix elements, i.e., oscillator strengths,
in nuclear transitions are extremely small. On the one hand, this renders the natural widths
of the excited levels tiny, such that only an exiguous amount of the energy in a broadband
driving pulse effectively contributes to the excitation of the level. On the other hand, small
oscillator strengths correspond to small Rabi frequencies. As a result, the model may be applied
with nuclear transitions, but very high intensities of the driving x-ray and optical fields may be
required. Therefore, one would have to find a proper nuclear isotope in which our scheme can
be applied at presently accessible peak intensities.
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A Time-frequency description of a frequency comb

In this Appendix we revise the main features characterizing frequency combs in the time and
frequency domain.
Fig. A.1a displays three pulses from a train of coherent pulses in an optical frequency comb.

The electric field can be written in very good approximation as

EC(t) =
1

2
Re{EC,0(t) e−iωCt} =

1

2

+∞∑
k=−∞

Re{Ak e−i(ωC+kωr)t}, (A.1)

where ωC is the optical carrier frequency and EC,0(t) is a (real) periodic envelope function, of
period Tp and repetition frequency ωr = 2π/Tp, which can be written as a Fourier series of
Fourier coefficients

Ak =
1

Tp

∫ Tp
2

−Tp
2

EC,0(t) eikωrt dt. (A.2)

In frequency space the spectrum of the field is given by

ẼC(ω) =

∫ ∞
−∞
EC(t) eiωt dt =

1

2

+∞∑
k=−∞

Ak δ(ω − ωC − kωr) +
1

2

+∞∑
k=−∞

A∗k δ(ω + ωC + kωr), (A.3)

i.e., the spectrum is a comb of delta peaks, equally separated by the repetition frequency ωr, as
shown in Fig. A.1b.
To render this more explicit, let us suppose that the optical frequency comb is the result of a

periodic train of Gaussian pulses, i.e., the periodic envelope function is

EC,0(t) = EC,max

∞∑
n=−∞

G(t− nTp), (A.4)

with

G(t) = e−
t2

2T2 , (A.5a)

G̃(ω) =

∫ ∞
−∞
G(t) eiωt dt = T

√
2π e−

ω2T2

2 . (A.5b)

We define τ = 2
√

ln(2)T and ∆ω = 2
√

ln(2)/T as the FWHM of |G(t)|2 and |G̃(ω)|2, respectively.
By supposing that each single pulse is much shorter than the repetition period Tp, one has

Ak =
1

Tp

∫ Tp
2

−Tp
2

EC,0(t) eikωrt dt =
1

Tp

∫ ∞
−∞
G(t) eikωrt dt =

G̃(kωr)

Tp
. (A.6)

We can see that Ak is given by the single-pulse Fourier transform G̃(ω), sampled with spacing ωr.
The overall width of the comb is given by the width of the single-pulse spectrum, ∆ω = 4 ln(2)/τ ,
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A Time-frequency description of a frequency comb

(a) (b)

Figure A.1: The electric field of an optical frequency comb in the (a) time and (b) frequency domain. In panel
A.1a the light blue line represents the total electric field EC(t), whereas the dark blue line is the envelope
EC,0(t), with repetition period Tp and FWHM τ . In panel A.1b, the spectrum of the frequency comb is
displayed by the thick lines, with repetition frequency ωr and overall width ∆ω. By extending the equidistant
lines to the origin of the frequency axis, the offset frequency ωo can be determined. Similar pictures are widely
used in the literature to present the properties of a frequency comb, see, e.g., Refs. [23, 24].

which is inversely proportional to the single-pulse FWHM τ . The effective number of peaks in
the comb is given by

∆k ∼ ∆ω

ωr
∼ Tp

τ
. (A.7)

The position of a peak
ωC + kωr = ωo + k′ωr, (A.8)

with k, k′ ∈ Z, is entirely determined by two radio frequencies, namely, the offset frequency ωo

and the repetition frequency ωr. Here, the offset frequency is defined as that frequency ωo, with
0 < ωo < ωr, such that ωC = ωo + Kωr, with K ∈ N and k′ = k + K. Eq. (A.8) represents the
key element for the direct radio-frequency–optical-frequency link allowed by optical frequency
combs. By measuring with a cesium clock the two frequencies ωo and ωr, the determination
of k′ immediately permits one to know the position of the corresponding frequency peak with
the precision of the clock. In an octave-spanning comb, i.e., a comb whose largest frequency
modes are about twice as large as its smallest ones, the measurement of the offset frequency is
straightforward [35]: one can, namely, optically measure the beat note between the frequency-
doubled k′th mode, i.e., 2(ωo + k′ωr), and the actual 2k′th mode ωo + 2k′ωr, which directly
provides the offset frequency

2(ωo + k′ωr)− (ωo + 2k′ωr) = ωo. (A.9)
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B Partial coherence method

We use the Partial Coherence Method (PCM) introduced in Ref. [184] to generate random real-
izations of the temporal shape of self-amplified-spontaneous-emission (SASE) x-ray free-electron-
laser (XFEL) pulses, whose knowledge is an important prerequisite for meaningful investigations
of nonlinear x ray-matter interaction [138]. Those parameters which can be measured at present
XFELs, such as the average spectral intensity and the pulse duration, are taken into account as
input parameters [185]. The PCM is used to generate non-transform-limited pulses, with a coher-
ence time lower than the average FWHM duration of the pulse and with significant fluctuations
in the pulse shape from shot to shot.
The pulses are generated starting from their frequency representation Ẽ(ω), whose amplitude

is given by the average spectral intensity of the pulse. If the phase of Ẽ(ω) was constant, then
by Fourier transform one would obtain a transform-limited pulse. In order to generate a SASE
pulse, we let the spectral phase vary in [−π, π[.
The PCM models the classical electric field E(t) [Eq. (3.1)]. We introduce the complex electric

field [164] E±(t) = 1
2E0(t) e∓i(ϕX(t)+ωXt) and the complex field envelope Ẽ(t) = 1

2E0(t) e−iϕX(t),
such that E(t) = Ẽ(t) e−iωXt + Ẽ∗(t) eiωXt. It follows that [164]

|E(t)|2 = 2|E±(t)|2 = 2|Ẽ(t)|2 =
|E0(t)|2

2
. (B.1)

We define the Fourier transform of Ẽ(t) as

Ẽ(ω) =

∫ +∞

−∞
Ẽ(t)eiωt dt = |Ẽ(ω)| e−iφ(ω) (B.2)

and from Parseval’s theorem it follows that∫ +∞

−∞
|Ẽ(t)|2 dt =

1

2π

∫ +∞

−∞
|Ẽ(ω)|2 dω. (B.3)

Analogously one can define E(ω) and E+(ω) as the Fourier transforms of E(t) and E+(t), respec-
tively. One notices that E+(ω) = Ẽ (ω − ωX) and therefore E(ω) = Ẽ (ω − ωX) + Ẽ (ω + ωX),
such that, from Parseval’s theorem (B.3), one finds in agreement with (B.1) that∫ +∞

−∞
|E(t)|2 dt =

1

2π

∫ +∞

−∞
2 |Ẽ(ω)|2 dω. (B.4)

The average spectral intensity of a SASE pulse is modeled here—close to measured spectral
intensities—as a Gaussian function, such that

|Ẽ(ω)|2 = |Ẽsp,max|2e−
ω2

Ω2 , (B.5)

whose FWHM is ∆ωSASE = 2Ω
√

ln 2. The FWHM duration of the squared modulus of the
inverse Fourier transform of |Ẽ(ω)| [164], which is here also a Gaussian function, is τSASE =
4 ln 2/∆ωSASE. It follows that

|E(ω)|2 = |Ẽsp,max|2
(

e−
(ω−ωX)2

Ω2 + e−
(ω+ωX)2

Ω2

)
. (B.6)
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B Partial coherence method

The average spectral intensity, however, does not provide any information about the spectral
phase of the pulse. In analogy to the phase retrieval in x-ray crystallography [88], the knowledge
of the spectral amplitude is not sufficient to completely determine the temporal shape of the
pulse via inverse Fourier transform. In the PCM approximate phase retrieval is achieved by
assuming initially a random frequency-dependent spectral phase varying in [−π, π[.

We define a discrete spectral component of the electric field Ẽ(ωi) = |Ẽ(ωi)| e−iφi , with a
sampling interval |ωi+1 − ωi| � ∆ωSASE. φi are random numbers in [−π, π[. The discrete
inverse Fourier transform of Ẽ(ωi) provides the time-dependent discrete field R(tj).
The complex function R(t), obtained by interpolating R(tj), spans an infinitely long interval

in time because of the fluctuating φi. To generate SASE pulses of finite duration, we multiply
R(t) by a temporal filter function f(t). This function is nonzero only in a finite domain and
the FWHM duration of |f(t)|2 is τenv. The finite duration of FEL pulses is determined by the
electron bunch duration [227] and is usually measured. All together, we approximate the complex
electric field by

Ẽ(t) =
1

2
E0(t) e−iϕX(t) = R(t)f(t). (B.7)

Along the way, we notice that the inverse Fourier transform of R(t)f(t) is given by the convo-
lution of the respective inverse Fourier transforms Ẽ(ω) and f̃(ω). Ẽ(ω) has a random fluctuating
phase φ(ω), whereas |f̃(ω)|2 has a spectral FWHM ∆ωenv related to the inverse of τenv. Hence,
the spectral amplitude of a single pulse generated with the PCM also displays a spiky structure,
where the average FWHM frequency of each spike is about ∆ωenv [227]. In addition, since the
average value of φ(ω) is 0, the average spectral amplitude results from the convolution of |Ẽ(ω)|
and f̃(ω) and, because τenv � τSASE, the width of f̃(ω) is much narrower than the width of
|Ẽ(ω)|. Consequently, the convolution∫ +∞

−∞
|Ẽ(ω − ω′)|f̃(ω′) dω′ ≈ |Ẽ(ω)|,

i.e., the multiplication by the envelope function f(t) does not affect significantly the average
spectral intensity of Ẽ(t).
To generate SASE pulses [Fig. 3.9] we use the envelope function

f(t) =

{
f0 cos2(πt/T ) ; if |t| ≤ T/2
0 ; if |t| > T/2

(B.8)

with T = πτenv/(2 arccos 4
√

1/2) [190]. The Fourier transform of f(t) is

f̃(ω) =
T

2
f0

sinc
(
ωT
2

)
1−

(
ωT
2π

)2 . (B.9)

Then, ∆ωenv ≈ 2.41/τenv is the FWHM of |f̃(ω)|2. One notices that, for τenv = 6.5 fs and
∆ωSASE = 6 eV, one has ∆ωenv = 0.24 eV� ∆ωSASE = 6 eV.
Alternative approaches have also been developed and adopted, e.g., in [113, 228]. In these

cases, the electric field is written as a Fourier series in time domain

E(t) =
∞∑

k=−∞
ak cos(ωkt) + bk sin(ωkt), (B.10)

where the real coefficients ak and bk are independent zero-mean Gaussian random variables.
Basically, this represents only a different description of Ẽ(ω) compared with the PCM.
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C Mathematical details about hypergeometric
functions

C.1 The hypergeometric differential equation

In the present Section we focus on the mathematical details of the solution of the set of two
second-order differential equations

∂2%̄12

∂t2
−
(

1

ΩR

∂ΩR

∂t
+ i∆+

Γ2 − Γ3

2

)
∂%̄12

∂t
+
Ω2

R

4
%̄12 = 0,

∂2%̄13

∂t2
−
(

1

ΩR

∂ΩR

∂t
− i∆− Γ2 − Γ3

2

)
∂%̄13

∂t
+
Ω2

R

4
%̄13 = 0,

(C.1)

when
ΩR(t) = A sech[γ(t− t0)]. (C.2)

First of all, we introduce the variable

z(t) =
tanh [γ(t− t0)] + 1

2
(C.3)

and observe that, from Eqs. (C.2) and (C.3), the following identities can be derived,

1

ΩR

∂ΩR

∂t
= −γ tanh [γ(t− t0)] = −γ(2z − 1), (C.4a)

Ω2
R = A2{1− tanh2 [γ(t− t0)]} = 4A2z(1− z), (C.4b)

∂z

∂t
=
γ

2
sech2[γ(t− t0)] =

γ

2A2
Ω2

R, (C.4c)

∂2z

∂t2
=

γ

A2
ΩR

∂ΩR

∂t
= − γ

2

A2
Ω2

R(2z − 1), (C.4d)

such that
∂%̄12

∂t
=
∂z

∂t

∂%̄12

∂z
=

γ

2A2
Ω2

R

∂%̄12

∂z
, (C.5a)

∂2%̄12

∂t2
=
∂2z

∂t2
∂%̄12

∂z
+

(
∂z

∂t

)2 ∂2%̄12

∂z2
= − γ

2

A2
Ω2

R(2z − 1)
∂%̄12

∂z
+

γ2

4A4
Ω4

R

∂2%̄12

∂z2
. (C.5b)

These equalities can be used to write the differential equations (C.1) in terms of the new variable
z [Eq. (C.3)], i.e.,

z(1− z)∂
2%̄12

∂z2
+

(
1

2
− i

∆

2γ
− Γ2 − Γ3

4γ
− z
)
∂%̄12

∂z
+
A2

4γ2
%̄12 = 0, (C.6a)

z(1− z)∂
2%̄13

∂z2
+

(
1

2
+ i

∆

2γ
+
Γ2 − Γ3

4γ
− z
)
∂%̄13

∂z
+
A2

4γ2
%̄13 = 0. (C.6b)
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By introducing

a = −b =
A

2γ
, (C.7a)

c =
1

2
− i

∆

2γ
− Γ2 − Γ3

4γ
, (C.7b)

the previous equations (C.6) can be written in the standard form of a hypergeometric differential
equation [216–218]

z(1− z)∂
2%̄12

∂z2
+ [c− (a+ b+ 1)z]

∂%̄12

∂z
− ab%̄12 = 0, (C.8a)

z(1− z)∂
2%̄13

∂z2
+ [1− c− (a+ b+ 1)z]

∂%̄13

∂z
− ab%̄13 = 0, (C.8b)

whose general solution is [68–71,73,163,216–218]

%̄12(z) = B1 2F1(a, b; c; z) +B2 z
1−c

2F1(a+ 1− c, b+ 1− c; 2− c; z), (C.9a)

%̄13(z) = B3 2F1(a, b; 1− c; z) +B4 z
c

2F1(a+ c, b+ c; 1 + c; z), (C.9b)

where 2F1(a, b; c; z) is the Gaussian hypergeometric function [216–218]

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (C.10)

and

(q)n =

{
1 if n = 0,

q(q + 1) · · · (q + n− 1) = Γ(q+n)
Γ(q) if n > 0.

(C.11)

We have also introduced the Gamma function Γ(z) [216–218], defined in the complex plane
except for negative integers z = −n, with n = 0, 1, 2, . . ., as the function satisfying the identity

Γ(z) =
Γ(z + 1)

z
. (C.12)

Negative integers are poles of the function, with residue (−1)n/(n!). For complex numbers with
positive real part, i.e., Re(z) > 0, the Gamma function can be defined from the absolutely
convergent series

Γ(z) =

∫ ∞
0

tz−1 e−t dt. (C.13)

From the definition (C.10) of the hypergeometric function 2F1(a, b; c; z) we can see that, if
either a or b is a nonpositive integer, the series terminates. In other words, if a = −m, where
m = 0, 1, 2, . . ., then (a)n = (−m)n = 0 for all n > m and the series in (C.10) reduces to the
finite sum

2F1(a, b; c; z) =
m∑
n=0

(−m)n(b)n
(c)n

zn

n!
.

For c = −l, with l = 0, 1, 2, . . ., the series is indeterminate if neither a nor b is a negative integer
−m, with m < l. For all other cases the convergence of the series is guaranteed for all z such that
|z| < 1. For |z| = 1, the series (C.10) (i) converges absolutely if Re(a+ b− c) < 0, (ii) converges
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C.1 The hypergeometric differential equation

conditionally when z 6= 1 and 0 ≤ Re(a+ b− c) < 1, and (iii) diverges when 1 ≤ Re(a+ b− c).
We also notice that (i) for z = 0 we have

2F1(α, β; γ; 0) = 1, (C.14)

whereas (ii) for z → 1 we find

2F1(α, β; γ; 1) =
Γ(γ) Γ(γ − α− β)

Γ(γ − α) Γ(γ − β)
if Re(γ) > Re(α+ β). (C.15)

The hypergeometric function 2F1(a, b; c; z) satisfies the following identities [216–218]:

2F1(b, a; c; z) = 2F1(a, b; c; z), (C.16a)

2F1(c− a, c− b; c; z) = (1− z)a+b−c
2F1(a, b; c; z), (C.16b)

∂ 2F1(a, b; c; z)

∂z
=
ab

c
2F1(1 + a, 1 + b; 1 + c; z), (C.16c)

abz 2F1(a+ 1, b+ 1; γ + 2; z) = γ(γ + 1) 2F1(a, b; γ; z)− γ(γ + 1) 2F1(a, b; γ + 1; z), (C.16d)

(1− z) 2F1(a+ 1, b+ 1; γ + 1; z) =
γ

b
2F1(a, b; γ; z) +

b− γ
b

2F1(a+ 1, b; γ + 1; z)

=
γ

a
2F1(a, b; γ; z) +

a− γ
a

2F1(a, b+ 1; γ + 1; z),
(C.16e)

γ 2F1(a, b; γ; z) = (γ − b) 2F1(a, b; γ + 1; z) + b 2F1(a, b+ 1; γ + 1; z)

= (γ − a) 2F1(a, b; γ + 1; z) + a 2F1(a+ 1, b; γ + 1; z).
(C.16f)

whereby, by using Eqs. (6.12), (C.4b) (C.5a), (C.7), and (C.16c), we can rewrite %̄13 as

%̄13 = − 2i

ΩR
e2γ(c− 1

2)(t−T0) γ

2A2
Ω2

R

∂%̄12

∂z

= − i

a
(1− z)

1
2 z

1
2 e2γ(c− 1

2)(t−T0)

[
B1

ab

c
2F1(1 + a, 1 + b; 1 + c; z)

+B2 (1− c) z−c 2F1(a+ 1− c, b+ 1− c; 2− c; z)

+B2
(a+ 1− c)(b+ 1− c)

2− c
z1−c

2F1(a+ 2− c, b+ 2− c; 3− c; z)
]
.

(C.17)

We also observe that

t(z) = t0 +
1

2γ
log

z

1− z
⇒ e2γ(c− 1

2)(t−T0) =

(
z

1− z

)c− 1
2

e2γ(c− 1
2)(t0−T0) (C.18)

such that, by exploiting Eq. (C.18) in Eq. (C.17), one has

%̄13 = − i e2γ(c− 1
2)(t0−T0) (1− z)1−c

[
B1

b

c
zc 2F1(1 + a, 1 + b; 1 + c; z)

+B2

(
1− c
a

2F1(a+ 1− c, b+ 1− c; 2− c; z)

+
(a+ 1− c)(b+ 1− c)

a(2− c)
z 2F1(a+ 2− c, b+ 2− c; 3− c; z)

)]
.

(C.19)
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The first addend on the first line in the sum on the right-hand side of Eq. (C.19) can be alter-
natively written by using the relation

(1− z)1+a′+b′−c′
2F1(1 + a′, 1 + b′; 1 + c′; z) = 2F1(c′ − a′, c′ − b′; 1 + c′; z), (C.20)

where we have used the substitution c = 1 + c′, a = 1 + a′, and b = 1 + b′ in Eq. (C.16b). To
rewrite the other two terms in the second and third lines of Eq. (C.19), one has to employ the
identities in Eq. (C.16). By substituting c = 2− c′, a = 1− a′, and b = 1− b′ in Eq. (C.16b) and
then γ = 1− c′, a = −a′, b = −b′ in Eqs. (C.16e) and (C.16f), one finds

1− c′

a′
(1− z)1+a′+b′−c′

2F1(a′ + 1− c′, b′ + 1− c′; 2− c′; z)

=
1− c′

a′
(1− z) 2F1(1− a′, 1− b′; 2− c′; z)

=
1− c′

a′

[
−1− c′

b′
2F1(−a′,−b′; 1− c′; z) +

1− c′ + b′

b′
2F1(1− a′,−b′; 2− c′; z)

]
=

1− c′

a′

[
−1− c′

a′b′
(1− c′ + a′ + b′) 2F1(−a′,−b′; 1− c′; z)

+
(1− c′ + b′)(1− c′ + a′)

a′b′
2F1(−a′,−b′; 2− c′; z)

]
.

(C.21)

Similarly, we use c = 3 − c′, a = 1 − a′, and b = 1 − b′ in Eq. (C.16b) and then γ = 1 − c′,
a = −a′, b = −b′ in Eqs. (C.16d) to show that

(a′ + 1− c′)(b′ + 1− c′)
a′(2− c′)

z (1− z)1+a′+b′−c′
2F1(a′ + 2− c′, b′ + 2− c′; 3− c′; z)

=
(a′ + 1− c′)(b′ + 1− c′)

a′(2− c′)
z 2F1(1− a′, 1− b′; 3− c′; z)

=
(1− c′)
a′

(a′ + 1− c′)(b′ + 1− c′)
a′b′

[
2F1(−a′,−b′; 1− c′; z)− 2F1(−a′,−b′; 2− c′; z)

]
.

(C.22)

We further notice that, for a = −b, from (C.16a) it follows that

2F1(−a,−b; c; z) = 2F1(a, b; c; z) when a = −b. (C.23)

The sum of the last two terms in the second and third lines on the right-hand side of Eq. (C.19) is
proportional to the sum of Eqs. (C.21) and (C.22). By using a = −b and, therefore, Eq. (C.23),
we observe that the coefficient multiplying 2F1(a, b; 1− c; z) is related to the following sum,

(1− c)
a

[
−1− c

ab
(1− c+ a+ b) +

(a+ 1− c)(b+ 1− c)
ab

]
=

(1− c)
a

[
(1− c)2 − [(1− c+ a)(1− c− a)]

a2

]
=

(1− c)
a

,

(C.24)

whereas the coefficient multiplying 2F1(a, b; 2− c; z) is 0, such that

(1− z)1−c
[1− c

a
2F1(a+ 1− c, b+ 1− c; 2− c; z)

+
(a+ 1− c)(b+ 1− c)

a(2− c)
z 2F1(a+ 2− c, b+ 2− c; 3− c; z)

]
=

1− c
a

2F1(a, b; 1− c; z).

(C.25)
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In conclusion,

%̄13 = − i e2γ(c− 1
2)(t0−T0)

[
B1

b

c
zc 2F1(a+ c, b+ c; 1 + c; z) +B2

1− c
a

2F1(a, b; 1− c; z)
]
,

(C.26)

whereby a general relationship among the coefficients Bis is obtained:

B3 = −i e2γ(c− 1
2)(t0−T0)B2

1− c
a

,

B4 = −i e2γ(c− 1
2)(t0−T0)B1

b

c
.

(C.27)

Owing to Eq. (C.14) and to the fact that c 6= 1, c 6= 0, one finds from Eq. (C.9) that

B1 = %̄12(z = 0) = %̄12,in, (C.28a)

B3 = %̄13(z = 0) = %̄13,in, (C.28b)

B2 = i
a

1− c
e2γ( 1

2
−c)(t0−T0) %̄13,in, (C.28c)

B4 = i
a

c
e2γ(c− 1

2)(t0−T0) %̄12,in. (C.28d)

By further using Eq. (C.20) to obtain

zc 2F1(a+ c,−a+ c; 1 + c; z) = zc(1− z)1−c
2F1(1− a, 1 + a; 1 + c; z), (C.29a)

z1−c
2F1(a+ 1− c,−a+ 1− c; 2− c; z) = z1−c(1− z)c 2F1(1− a, 1 + a; 2− c; z), (C.29b)

one can employ the just found relations to go from Eq. (C.9) to

%̄12(z) = %̄12,in 2F1(a,−a; c; z)

+ i %̄13,in
a

1− c
e2γ( 1

2
−c)(t0−T0) z1−c (1− z)c 2F1(1− a, 1 + a; 2− c; z),

(C.30a)

%̄13(z) = %̄13,in 2F1(a,−a; 1− c; z)

+ i %̄12,in
a

c
e2γ(c− 1

2)(t0−T0) zc (1− z)1−c
2F1(1− a, 1 + a; 1 + c; z).

(C.30b)

Notice that the hypergeometric functions in (C.30), because of the divergence of 2F1 (α, β; γ; z)
for z = 1 if Re(α+ β − γ) > 0, do diverge at z = 1, unless a ∈ N0. The function %̄12(t) [%̄13(t)]
remains, nonetheless, finite because of the presence of the factor (1 − z)c [(1 − z)1−c]. When
a ∈ N0, however, the hypergeometric function is a finite polynomial in z and the factor (1− z)c
[(1 − z)1−c] is responsible not only for making %̄12(t) [%̄13(t)] finite, but to make it actually
vanish. In this case, i.e., for those parameters a and c which render the hypergeometric function
2F1 (α, β; γ; z) a finite polynomial, it is useful to exploit the following identities:

z1−c(1− z)c =

{
1 + tanh [γ(t− t0)]

1− tanh [γ(t− t0)]

} 1
2
−c
√

1− tanh2 [γ(t− t0)]

4

=
1

2
sech[γ(t− t0)] e2γ( 1

2
−c)(t−t0),

(C.31a)
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zc(1− z)1−c =

{
1 + tanh [γ(t− t0)]

1− tanh [γ(t− t0)]

}c− 1
2

√
1− tanh2 [γ(t− t0)]

4

=
1

2
sech[γ(t− t0)] e2γ(c− 1

2
)(t−t0),

(C.31b)

in order to write

%̄12(z) = %̄12,in 2F1(a,−a; c; z)

+ i %̄13,in
a

2(1− c)
sech[γ(t− t0)] e2γ( 1

2
−c)(t−T0)

2F1(1− a, 1 + a; 2− c; z), (C.32a)

%̄13(z) = %̄13,in 2F1(a,−a; 1− c; z)

+ i %̄12,in
a

2c
sech[γ(t− t0)] e2γ(c− 1

2
)(t−T0)

2F1(1− a, 1 + a; 1 + c; z).
(C.32b)

C.2 Particular solution

By assuming that a = n
2 , and c = 1

2 , the solution (C.30) reads

%̄12(t) = ei∆X(t−T0)
[
%̄12,in 2F1

(
n
2 ,−

n
2 ; 1

2 ; z(t)
)

+ i %̄13,in n
√
z(t) (1− z(t)) 2F1

(
1− n

2 , 1 + n
2 ; 3

2 ; z(t)
)]
,

(C.33a)

%̄13(t) = ei∆X(t−T0)
[
%̄13,in 2F1

(
n
2 ,−

n
2 ; 1

2 ; z(t)
)

+ in %̄12,in

√
z(t) (1− z(t)) 2F1(1− n

2 , 1 + n
2 ; 3

2 ; z(t))
]
.

(C.33b)

We use the relations

2F1

(
1− n

2 , 1 + n
2 ; 3

2 ; z
)

=
sin(n arcsin

√
z)

n
√
z(1− z)

, (C.34a)

2F1

(
n
2 ,−

n
2 ; 1

2 ; z
)

= cos(n arcsin
√
z), (C.34b)

arcsin
√
z = arccos

√
1− z =

arccos (1− 2z)

2
=

arccos {− tanh [γ(t− t0)]}
2

, (C.34c)

to find

%̄12(t) = ei∆X(t−T0)
[
%̄12,in cos

(
n
2 arccos {− tanh [γ(t− t0)]}

)
+ i %̄13,in sin

(
n
2 arccos {− tanh [γ(t− t0)]}

)]
,

(C.35a)

%̄13(t) = ei∆X(t−T0)
[
%̄13,in cos

(
n
2 arccos {− tanh [γ(t− t0)]}

)
+ i %̄12,in sin

(
n
2 arccos {− tanh [γ(t− t0)]}

)]
,

(C.35b)

i.e., the general solution can be written in terms of Chebyshev polynomials.

C.3 Fourier transforms for the calculation of the absorption
spectrum

In the present Section we provide the details for the calculation of the Fourier transforms of the
two functions

f1(z) = 2F1(a,−a; c; z) − 1, (C.36a)
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f2(z) = z1−c (1− z)c 2F1(1− a, 1 + a; 2− c; z). (C.36b)

We notice that the two functions fi(z(t)) depend on time via z(t) [Eq. (C.3)]. By observing
that

z(t) =
tanh (γ(t− t0) + 1)

2
⇒ t(z) = t0 +

1

2γ
log

z

1− z
∂t

∂z
=

1

2γ

1

z(1− z)
, (C.37)

we write

Fi($) =

∫ ∞
−∞

fi(z(t)) e−i$(t−T0) dt =
e−i$(t0−T0)

2γ

∫ 1

0
fi(z)

z
−i $

2γ
−1

(1− z)−i $
2γ

+1
dz. (C.38)

Furthermore [216],∫ 1

0
2F1(α, β; γ; z)

zρ−1

(1− z)1−σ dz =
Γ(ρ) Γ(σ)

Γ(ρ+ σ)
3F2 (α, β, ρ; γ, ρ+ σ; 1) (C.39)

for Re(ρ) > 0, Re(σ) > 0, and Re(γ + σ − α− β) > 0, where 3F2 (a1, a2, a3; b1, b2; z) is the
generalized hypergeometric function [216–218]

3F2(a1, a2, a3; b1, b2; z) =

∞∑
n=0

(a1)n(a2)n(a3)n
(b1)n(b2)n

zn

n!
. (C.40)

3F2(a1, a2, a3; b1, b2; z) has convergence properties similar to those described for 2F1(a, b; c; z),
namely, if at least one of the as is a nonpositive integer, ai = −m, m = 0, 1, 2, . . ., then the
series terminates. If one of the bs is a nonpositive integer, bi = −l, l = 0, 1, 2, . . ., the series
is indeterminate if none of the as is a negative integer −m, with m < l. For all other cases
the convergence of the series is guaranteed for all z such that |z| < 1. For |z| = 1, the series
(i) converges if Re(a1 + a2 + a3 − b1 − b2) < 0, (ii) converges conditionally for z 6= 1 and 0 ≤
Re(a1 + a2 + a3 − b1 − b2) < 1, and (iii) diverges if 1 ≤ Re(a1 + a2 + a3 − b1 − b2). The condi-
tion Re(γ + σ − α− β) > 0, therefore, guarantees the convergence of 3F2 (α, β, ρ; γ, ρ+ σ; 1).
In order to calculate F1($), we observe from Eq. (C.16c) that

∂f1(z)

∂z
= −a

2

c
2F1(1 + a, 1− a; 1 + c, z)

and that
∂

∂z

zφ

(1− z)φ
= φ

zφ−1

(1− z)1+φ
.

For −1 < Reφ < 1, by using an integration by parts, we can write∫ 1

0
f1(z)

zφ−1

(1− z)1+φ
dz =

∫ 1

0

a2

c
2F1(1 + a, 1− a; 1 + c, z)

zφ

φ (1− z)φ
dz, (C.41)

which, since the conditions for the application of Eq. (C.39) are fulfilled, brings to the result∫ 1

0
f1(z)

zφ−1

(1− z)1+φ
dz =

a2

c

Γ(1 + φ) Γ(1− φ)

φΓ(2)
3F2 (1 + a, 1− a, 1 + φ; 1 + c, 2; 1) . (C.42)

By applying this result with φ = −i$2γ and observing that [216]

Γ (1 + ix) Γ (1− ix) = π x csch(πx), (C.43)
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we obtain that

F1($) =
e−i$(t0−T0)

2γ

a2

c
iπ csch

(
π$
2γ

)
3F2

(
1 + a, 1− a, 1− i$2γ ; 1 + c, 2; 1

)
. (C.44)

The hypergeometric function 3F2

(
1 + a, 1− a, 1− i$2γ ; 1 + c, 2; 1

)
is finite, since the condition of

convergence at z = 1, namely, Re
(
−i$2γ − c

)
> 0, is satisfied. The hyperbolic cosecant function,

however, diverges at $ = 0. This divergence is here avoided because of the imaginary part of
$, guaranteeing that, for any ω, the condition $ = 0 is never met. If Γ2 was equal to 0, then
the function f1(t), after the excitation due to the pulse, would reach a stationary value, which
would produce a Dirac delta contribution in its Fourier transform, related to the just discussed
divergence of the hyperbolic cosecant in F1($).

The calculation of F2($) is a direct consequence of Eq. (C.39). Using the fact that [216]

Γ
(

1
2 + ix

)
Γ
(

1
2 − ix

)
= π sech(π x), (C.45)

we find

F2($) =
e−i$(t0−T0)

2γ

∫ 1

0
2F1(1− a, 1 + a; 2− c; z(t)) z

−i $
2γ

+1−c−1

(1− z)1−i $
2γ
−c dz

=
e−i$(t0−T0)

2γ
Γ
(
−i$2γ + 1− c

)
Γ
(

i$2γ + c
)

3F2

(
1− a, 1 + a,−i $2γ + 1− c; 2− c, 1; 1

)
=

e−i$(t0−T0)

2γ
π sech

(
π$
2γ + iπ

(
1
2 − c

))
3F2

(
1− a, 1 + a,−i$2γ + 1− c; 2− c, 1; 1

)
.

(C.46)

The integral in z in the previous equation can be solved with Eq. (C.39) because $ has a negative
complex part −iΓ2

2 which is due to the exponential decay in (6.19). As a result, the series which

defines the generalized hypergeometric function 3F2

(
1− a, 1 + a,−i$2γ + 1− c; 2− c, 1; 1

)
con-

verges, since Re(1− a+ 1 + a− i$2γ + 1− c− (2− c+ 1)) = Re(−i$2γ ) = Im($2γ ) < 0.
If such an exponential decay was not present, then the Fourier transform (C.46) would generally

diverge, unless a = 1 +m, m = 0, 1, 2, . . .. From Eq.(6.36b), these are the only values for which
limt→∞ %12(t) = 0, i.e., for which, even without the exponential decay included in the imaginary
part of $, the function would have finite support and the Fourier transform would be well
defined. In all other cases, if the exponential decay of %12(t) is not present, then the nonzero
limit that %12(t) reaches at t → ∞ implies the presence of a Dirac-delta contribution in the
Fourier transform, i.e., the divergence of Eq. (C.46).
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