
An AP2 Transcription Factor
Current Biology 23, 2215–2223, November 18, 2013 ª2013 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.09.028
Article
Is Required

for a Sleep-Active Neuron to Induce
Sleep-like Quiescence in C. elegans
Michal Turek,1 Ines Lewandrowski,1

and Henrik Bringmann1,*
1Max Planck Institute for Biophysical Chemistry,
Am Fassberg 11, 37077 Goettingen, Germany

Summary

Background: Sleep is an essential behavior that is found in all
animals that have a nervous system. Neural activity is thought
to control sleep, but little is known about the identity and the
function of neural circuits underlying sleep. Lethargus is a
developmentally regulated period of behavioral quiescence
in C. elegans larvae that has sleep-like properties.
Results: We studied sleep-like behavior in C. elegans larvae
and found that it requires a highly conserved AP2 transcription
factor, aptf-1, which was expressed strongly in only five inter-
neurons in the head. Expression of aptf-1 in one of these neu-
rons, the GABAergic neuron RIS, was required for quiescence.
RIS was strongly and acutely activated at the transition from
wake-like to sleep-like behavior. Optogenetic activation of
aptf-1-expressing neurons ectopically induced acute behav-
ioral quiescence in an aptf-1-dependent manner. RIS ablation
caused a dramatic reduction of quiescence. RIS-dependent
quiescence, however, does not require GABA but requires
neuropeptide signaling.
Conclusions: We conclude that RIS acts as a sleep-active,
sleep-promoting neuron that requires aptf-1 to induce sleep-
like behavior through neuropeptide signaling. Sleep-promot-
ing GABAergic-peptidergic neurons have also been identified
in vertebrate brains, suggesting that common circuit principles
exist between sleep in vertebrates and sleep-like behavior in
invertebrates.

Introduction

Sleep or sleep-like behavior is found in all animals that have
a nervous system and have been studied carefully [1].
It is characterized by periods of quiescence. Sleep thus
appears essential for animals that have a nervous system,
and it may be evolutionarily conserved [2, 3]. Sleep and
wake are controlled by the activity of neural circuits, but
little is known about how neuronal activity controls sleep
and wake, and it is unclear whether neural circuitry prin-
ciples underlying sleep and wake are conserved. It has
been proposed that sleep and wake are controlled by
wake-active, wake-promoting neurons and sleep-active,
sleep-promoting neurons, both of which are found in verte-
brate brains [4, 5].

Sleep- and wake-controlling neurons have also been found
in Drosophila, indicating some similarity between circuitry
principles in vertebrates and invertebrates, but sleep-active
neurons have not yet been described in invertebrates [6–9].
Thus, it is unclear whether, at least in some systems, sleep is
induced by the absence of wake-promoting neural activity or
*Correspondence: henrik.bringmann@mpibpc.mpg.de
whether sleep generally is actively induced by the neural activ-
ity of sleep-active neurons.
Quiescence behavior is also found in C. elegans larvae,

where it is coupled to development: prior to each of the four
molts, larvae go through a phase of behavioral quiescence
called lethargus that has long been known but has recently
been shown to have properties that define sleep in higher or-
ganisms, such as an absence of voluntary movement, revers-
ibility, reduced responsiveness to stimulation, homeostatic
regulation, a relaxed body posture, and reduced neuronal
activity. Because quiescence in C. elegans larvae fulfills all
behavioral criteria that define sleep in higher organisms, we
call it sleep-like behavior [10–15]. In other systems, sleep is
typically controlled by a circadian rhythm. Sleep-like behavior
in C. elegans is controlled by a molting rhythm that is faster
than the circadian rhythm. Interestingly, genes that control
the circadian rhythm in other animals have homologs in
C. elegans that control the molting rhythm [16, 17]. Thus, the
biological context in which sleep-like behavior occurs differs
in C. elegans, and it is unclear whether sleep-like behavior in
C. elegans and sleep in higher organisms have amonophyletic
origin and share common molecular mechanisms and neural
circuit principles.
Studying sleep-like behavior in C. elegans is attractive

because it allows the combination of behavioral analysis with
genetics and functional neural imaging in a small nervous sys-
temcontaining only about 300 neurons. Using a genetic screen
in C. elegans larvae, we have found that the AP2 transcription
factor aptf-1 is required for sleep-like behavioral quiescence.
aptf-1 is expressed in only a few interneurons, and expression
in RIS is required for quiescence. Using calcium imaging,
we found that RIS is active specifically at the transition
from wake-like to sleep-like behavior. Using optogenetics,
we show that aptf-1-expressing neurons can induce sleep-
like quiescence. The ability to induce quiescence is conferred
by aptf-1. Ablation of RIS caused a dramatic reduction in
quiescence. RIS-dependent quiescence requires not GABA
but neuropeptide signaling.
Thus, sleep-promoting neurons are an important circuit

principle that governs sleep-like quiescence of C. elegans.
Sleep-like behavior in C. elegans and sleep in higher organ-
isms thus both use common circuit principles to achieve
quiescence.

Results

aptf-1 Is Required for Locomotion Quiescence
As a starting point to understanding sleep-like behavior in
C. elegans larvae, we wanted to identify genes that control
this process. We thus performed a genetic screen to identify
mutants that lack sleep-like behavior. Publicly available
mutants covered about 4,000 genes, which was about 20%
of C. elegans open reading frames [18]. We obtained these
mutant strains, grew populations of 400–600 animals of mixed
developmental stages for each mutant, and visually inspected
these populations for the absence of immobile larvae. We
found one homozygous viable mutant strain, VC1669, which
completely lacked immobile larvae. VC1669 contained a
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Figure 1. aptf-1 Is Required for Behavioral Quiescence

Error bars are SEM.

(A and B) Nose speed during sleep-like and wake-like behavior in an individual wild-type (A) and aptf-1mutant (B). The red arrow indicates the shedding of

the cuticle.

(C–E) Probability distribution of nose speeds during wake-like and sleep-like behavior in wild-type (C), aptf-1(gk795) (D), and aptf-1(tm3287) (E).

(F–I) aptf-1 rescue experiments. Probability distribution of nose speeds using endogenous promoter expression (F), AIB expression (G), RIB expression (H),

and RIS expression (I) are shown. Nose speed during the wake-like feeding period is displayed in red; nose speed during the nonfeeding sleep-like period is

displayed in blue. The wake-like period used was 2 hr before the onset of sleep-like behavior.

(J and K) aptf-1mutants lack shutdown of command interneuron activity. Shown are AVA/AVE calcium transient frequency (J) and intensity (K) for wild-type

and aptf-1 mutants. ** denotes statistical significance with p < 0.01, Wilcoxon signed-rank test.
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deletion in a homolog of AP2 transcription factor genes,
AP2 transcription factor 1, aptf-1(gk794). We then cultured
individual aptf-1 mutant L1 larvae inside microfluidic micro-
compartments and observed their behavior across the sleep/
wake-like cycle using long-term imaging [19]. aptf-1(gk794)
mutants developed with normal speed and went normally
through the molt. Mutants still stopped feeding for a normal
time before each molt, which allowed us to clearly identify
the developmental time during which sleep-like behavior
should occur. During sleep-like behavior, wild-type larvae
showed bouts of complete immobility and an average reduc-
tion of nose speed of about 60%. aptf-1 mutants moved with
a normal speed during wake-like behavior. During nonfeeding
behavior, however, average nose speed was reduced by only
about 10%, and worms were never immobile (Figures 1A–1D;
see alsoMovie S1 available online). We next wanted to confirm
that the lack of behavioral quiescence was caused by deletion
of aptf-1. A second deletion allele, aptf-1(tm3287), showed a



Figure 2. aptf-1 Expresses Strongly in Only Five

Interneurons, AIB, RIB, and RIS

Error bars are SEM.

(A) Spinning-disk and differential interference

contrast images of transgenic animals expressing

a destabilized version of GFP under the control of

the aptf-1 promoter show that aptf-1 is expressed

in AIB, RIB, and RIS. Scale bar represents 10 mm.

(B) aptf-1 limits its own expression. Expression

quantification from embryo until adult stage

showed that aptf-1 promoter activity was stron-

gest during embryogenesis and early larval

development and decreased until the adult stage.

In aptf-1 mutants, promoter activity did not

decrease during larval development indicating

that aptf-1 controlled its own expression.
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phenotype that was identical to aptf-1(gk794) (Figure 1E). Both
deletion alleles removed large portions of the aptf-1 gene and
were likely molecular null alleles. A transgene containing wild-
type aptf-1 rescued the aptf-1(gk794) phenotype (Figure 1F).
Thus, aptf-1 deletion did not abolish cessation of feeding dur-
ing sleep-like behavior but severely compromised reduction of
locomotion, causing a complete absence of immobility.

The continuous locomotion activity in aptf-1 mutants sug-
gested that the neural circuits underlying locomotion were
not shut down during sleep-like behavior. The command inter-
neurons control coordinated locomotion, and the command
interneurons AVA and AVE control backward movement [20].
AVA and AVE activate during reversal from forward to back-
ward locomotion, and their activity is reduced during sleep-
like behavior [14, 21]. We measured the activity of AVA and
AVE during sleep-like and wake-like behavior with calcium
imaging using transgenic animals expressing GCaMP3.35 in
this neuron. We cultured individual animals in microcompart-
ments and filmed them every 30 min for 100 s. We then quan-
tified AVA/AVE calcium transients. In wild-type, the frequency
of AVA/AVE calcium transients was reduced during sleep-like
behavior by about 60%. In aptf-1 mutants, the frequency of
AVA/AVE transients was generally slightly higher than in
wild-type and, importantly, was reduced by only 15% during
sleep-like behavior (Figures 1J and 1K; Movie S2). Under all
conditions, AVA/AVE transients correlated with backward
movements in both wild-type and aptf-1 mutants. Thus,
aptf-1 deletion prevented a normal AVA/AVE shutdown during
sleep-like behavior and allowedmutants to move coordinately
and continuously during sleep-like behavior.

aptf-1 Is Expressed in AIB, RIB, and RIS

AP2 transcription factors are highly conserved. In other sys-
tems, they control developmental processes in neurons and
other tissues [22–25]. There are four genes encoding tran-
scription factors that are homologous to vertebrate AP2 in
C. elegans, aptf-1 to aptf-4, but their functions are unknown.
Of those four aptf genes, aptf-1 is most similar to vertebrate
AP2 genes (Figure S1A). To find out where and when aptf-1
acts, we looked at the expression of aptf-1. We used an
aptf-1 promoter fusion with a destabilized version of GFP,
d1GFP [26, 27], to monitor aptf-1 promoter activity. aptf-1
was expressed strongly during late embryogenesis and early
larval development in three types of interneurons, the paired
neurons AIB and RIB and the unpaired
neuron RIS. The expression in RIS
was the strongest. Expression after
embryonic development decreased until the adult stage (Fig-
ure 2). Expression of a GFP-tagged fosmid confirmed the
expression in these neurons and showed that APTF-1::GFP
was present until the adult stage (Figure S1B). In aptf-1 mu-
tants, AIB, RIB, and RIS appeared morphologically normal.
Expression from the aptf-1 promoter, however, did not
decrease after embryonic development but continued until
the adult stage (Figure 2). Thus, aptf-1 was expressed most
highly during early development in only five interneurons
where it limited its own expression.

aptf-1 Is Required in RIS for Locomotion Quiescence

aptf-1 expressed in three types of interneurons. In which of
these neurons is aptf-1 required? We used three different pro-
moters that expressed either in AIB, RIB, or RIS, but not in the
other aptf-1-expressing neurons, to drive expression of an
aptf-1 rescue transgene in each of these types of neurons.
aptf-1 expression in AIB or RIB caused a difference of nose
speed duringwake- and sleep-like behavior but did not restore
quiescence (Figures 1G and 1H). aptf-1 expression in RIS,
however, restored quiescence to almost wild-type levels (Fig-
ure 1I). Thus, aptf-1 appears to play its most important role in
quiescence in RIS.

RIS Is a Sleep-Active Neuron
How do aptf-1-expressing neurons control sleep-like
behavior? We measured the activity of aptf-1-expressing cells
during wake-like and sleep-like behavior using calcium imag-
ing [12, 28, 29]. We imaged individual larvae for short intervals
(2 min) every 30 min across the sleep/wake-like cycle and
quantified calcium transients. The frequency of spontaneous
calcium transients was reduced during sleep-like behavior in
AIB and RIB (Figures 3A and 3B; Figures S2A and S2B). RIS
showed activity transients only occasionally during wake-like
behavior. Around the onset of sleep-like behavior, however,
RIS showed a strong increase in calcium activity. Around the
time when larvae stopped feeding, average RIS activity rose
sharply within 15 min to a maximum (Figure 3C; Figures
S2C–S2E). During this time, short bouts of reduced behavioral
activity coincided with RIS activity transients (Movie S3).
Average RIS activity then decreased during the course of the
sleep-like phase. During the sleep-like phase, RIS showed
periods during which activation transients occurred that alter-
nated with periods during which RIS did not show activation



Figure 3. The AIB and RIB Neurons Are Active during Wake-like Behavior, and RIS Is Most Active at the Beginning of Sleep-like Behavior

Error bars are SEM.

(A) Calcium transient frequency and intensity in AIB showed reduced activity in this neuron during sleep-like behavior that depended on aptf-1.

(B) Calcium transient frequency and intensity in RIB showed reduced activity during sleep-like behavior that depended on aptf-1.

(C) Averaged calcium activity of RIS across time showed that RIS wasmost active during the transition fromwake-like (red) to sleep-like (blue) behavior. RIS

still activated at the onset of the sleep-like period in aptf-1 mutant worms.

(legend continued on next page)
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Figure 4. Activating aptf-1-Expressing Neurons

during Wake-like Behavior Causes Reversible

Behavioral Quiescence

Error bars are SEM.

(A) Channelrhodopsin activation of aptf-1-

expressing neurons during wake-like behavior

caused acute immobility.

(B) This immobility depended on aptf-1, because

blue-light stimulation in aptf-1 mutants did not

cause quiescence but caused an increase in

movement instead.

(C and D) Control experiment without all-trans

retinal (ATR) for wild-type (C) and aptf-1 mutant

worms (D).

(E and F) Quiescence caused by channelrho-

dopsin-based activation of aptf-1-expressing

neurons is reversible. A dish-tapping stimulus

(dark gray) delivered during ChR2 activation

(light gray) causes resumption of movement (E).

Control experiment without ATR is shown in (F).

*** denotes statistical significance with p <

0.001, Wilcoxon signed-rank test.
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transients. We then changed the behavioral state of the larvae
from sleep-like towake-like to seewhether RIS activity reacted
to these changes. Strong mechanical stimulation has been
shown to revert sleep-like behavior [11]. Strong mechanical
stimulation during wake-like behavior caused an escape
response and slightly inhibited RIS activity. Mechanical stimu-
lation during the early phase of sleep-like behavior, when RIS
activity was high, reverted the behavioral quiescence, caused
locomotion activity, and caused an acute inhibition of RIS ac-
tivity. Eventually, RIS became active again and worms slowed
down again. Mechanical stimulation during the late phase of
sleep-like behavior, when RIS activity was low, was less effec-
tive in causing a behavioral response compared with the first
phase of sleep-like behavior, but it also reverted the behavioral
quiescence and caused locomotion activity. After stimulation,
RIS was quickly and strongly activated, andworms returned to
quiescence (Figure 3D). Thus, the calcium imaging showed
that AIB and RIB behaved similarly to AVA and AVE and are
wake-active neurons. RIS activity, however, suggested that it
might be a quiescence-inducing neuron: RIS activation always
correlated with an induction of behavioral quiescence.

aptf-1 deletion caused an absence of locomotion quies-
cence. Does aptf-1 act by affecting the calcium activity of
(D) Manipulation of the behavioral state also changed RIS activity. When RIS activity was high and the wor

caused a reversal of the sleep-like behavior and an acute inhibition of RIS. When RIS activity was low and

reversal of sleep-like behavior and an activation of RIS activity that coincided with a restoration of quie

* denotes statistical significance with p < 0.05, *** denotes statistical significance with p < 0.001, Wilcox
aptf-1-expressing neurons? To test this
hypothesis, wemeasured calcium activ-
ity of aptf-1-expressing neurons in aptf-
1 mutants. In aptf-1 mutants, both AIB
and RIB activity was not downregulated
during sleep-like behavior (Figures 3A
and 3B). AIB and RIB were thus affected
by aptf-1 deletion in a manner similar to
AVA and AVE. RIS activity, however, was
reduced only by 15% and still strongly
increased at the beginning of the non-
feeding period in aptf-1 mutants (Fig-
ure 3C; Figure S2C). Thus, aptf-1 likely
does not act by causing RIS calcium transients, and, at least
in aptf-1 mutant worms, RIS activation is not sufficient to
trigger quiescence. Thus, aptf-1may exert its most prominent
effect downstream of RIS calcium transients.

aptf-1-Expressing Neurons Can Induce Quiescence

The activity pattern of aptf-1-expressing neurons suggested
that RIS actively induces behavioral quiescence. To test this
hypothesis, we optogenetically activated aptf-1-expressing
neurons using channelrhodopsin2 (ChR2) and quantified the
behavior of the worms. We generated transgenic worms ex-
pressing ChR2 under the control of the aptf-1 promoter and
activated aptf-1-expressing neurons using blue light [30–32].
Optogenetic activation of aptf-1-expressing neurons inwake-

likeL1 larvae inducedquiescencewithinsecondsof illumination:
worms reduced their movement until they were virtually immo-
bile and stopped pumping. After the end of optogenetic activa-
tion, worms increased their movement again (Figure 4; Movie
S4). Illuminating only RIS also caused quiescence (Figure S3).
RIS is directly and strongly connected via synapses to AVE,

which in turn is strongly connected via gap junctions to the
command interneuron AVA [33]. RIS may thus directly inhibit
command interneurons required for locomotion. To test this
mswere immobile, strongmechanical stimulation

the worms were immobile, stimulation caused a

scence. The stimulation period is shown in gray.

on signed-rank test.



Figure 5. Ablation of a Single Neuron, RIS,

Strongly Impairs Behavioral Quiescence

Probability distributions of nose speed during

wake-like and sleep-like behavior are shown.Wil-

coxon signed-rank test was used.

(A) Mock-ablated worms.

(B) RIS ablation.

(C) AIB ablation.

(D) RIB ablation.
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hypothesis, we activated ChR2 in aptf-1-expressing neurons
and simultaneously imaged neural activity in the command in-
terneurons AVA and AVE using calcium imaging. During ChR2
activation, the frequency of transients in AVA and AVE was
reduced by 70% (Figure S4). Thus, ChR2 activation of aptf-1-
expressing neurons inhibits command interneuron activity.

By definition, sleep is reversible and thus different from pa-
ralysis [1]. Is quiescence caused by ChR2 activation of aptf-1-
expressing neurons also reversible? We immobilized worms
using ChR2 expressed in aptf-1-expressing neurons again
for 20 s using blue light. Ten seconds after the onset of blue-
light illumination, when worms were already immobilized, we
stimulated themwith dish tapping. Immobilized worms quickly
responded to dish tapping by increasing their movement.
Thus, quiescence induced by ChR2 activation of aptf-1 ex-
pressing neurons is reversible (Figure 4).

Optogenetic activation of aptf-1-expressing neurons
caused acute, reversible behavioral quiescence and inhibited
the activity of the command interneurons AVA and AVE.
Together with calcium imaging, which showed an activation
of RIS at the sleep/wake-like transition, this suggested that
the dominant principle of sleep-like behavior control by aptf-
1-expressing neurons was active suppression of behavioral
activity—probably through RIS activation.

What is the role of aptf-1 in sleep-controlling neurons? In
aptf-1 mutants, RIS still activated at the onset of nonfeeding
behavior but did not cause quiescence. Thus, aptf-1 may act
downstream of RIS activation. We tested this idea by ChR2
activation of aptf-1-neurons in aptf-1 mutants. Unlike in
wild-type, in aptf-1 mutants, activation of aptf-1-expressing
neurons caused not quiescence but an increase in activity (Fig-
ure 4;Movie S4). Thus, aptf-1was required for active and acute
optogenetic induction of behavioral quiescence, suggesting
that aptf-1 may act downstream of RIS calcium transients.

RIS Is Required for Quiescence
Our results suggested a role for RIS in quiescence induction
that may be similar to sleep-active, sleep-promoting neurons
in the ventral lateral preoptic area (VLPO) in mammals. Lesion
of the VLPO causes a reduction in sleep
[4]. We wanted to test whether ablation
of RIS causes impairments in quies-
cence. We ablated RIS with a focused
UV laser beam [34] and measured nose
speed during wake- and sleep-like
behavior as before (Figure 5). After RIS
ablation, quiescence was substantially
reduced. While RIS-ablated worms
slowed down measurably during sleep-
like behavior, they were immobile only
5% of the lethargus period, whereas
mock-ablated worms were quiescent
for 65%of the lethargus period. Ablation
of the pair of AIB or the pair of RIB neurons, however, did not
cause a detectable quiescence defect. Thus, we could not
detect an important role for AIB and RIB in wake- and sleep-
like behavior. RIS, however, appears to be crucially required
for sleep-like quiescence during lethargus.

Neuropeptide, Not GABA, Signaling Is Important for

Quiescence
Sleep-active, sleep-promoting neurons in the VLPO express
GABA and neuropeptides as neurotransmitters [4]. RIS
also is GABAergic [35]. Is GABA required for quiescence in
C. elegans? To answer this question we looked at a GABA null
mutant and tested the requirement of GABA for optogenetic in-
duction of quiescence. unc-25 encodes a glutamic acid decar-
boxylase and null mutants of unc-25 completely lack GABA
[35]. We quantified nose speed during wake- and sleep-like
behavior in an unc-25 null mutant and found that it had normal
sleep-like quiescence (Figure 6A).We then activated aptf-1-ex-
pressing neurons usingChR2 in unc-25mutants and found that
quiescence induction was normal (Figures 6B and 6C).
Thus, we did not find evidence for a role of GABA in quies-

cence during lethargus. If GABA is dispensable for quies-
cence, then neuropeptides may play a role. We tested this
idea by looking at a mutant with impaired neuropeptide func-
tion. egl-3 encodes a proprotein convertase that is expressed
in most neurons and is required for function of many neuro-
peptides [36, 37]. egl-3 mutant worms showed reduced nose
speed during sleep-like behavior but showed quiescence dur-
ing only 5% of the lethargus period. ChR2 activation of aptf-1-
expressing neurons in egl-3mutants did not cause quiescence
but caused an increase in activity (Figures 6D–6F). Thus, while
we could not detect a role for GABA in quiescence, our results
suggest that neuropeptide signaling plays a crucial role in RIS-
dependent quiescence.

Discussion

The activity of several neurons was previously analyzed during
sleep-like behavior, and in all cases, a reduction of activity was



Figure 6. Neuropeptide Signaling, but Not GABA, Is Essential for Sleep-like Quiescence

Error bars are SEM.

(A–C) The GABA null mutant unc-25(e156) shows quiescence.

(A) Probability distribution of nose speeds.

(B) Induction of quiescence by channelrhodopsin-based activation of aptf-1-expressing neurons.

(C) Control without ATR.

(D–F) The neuropeptide proprotein convertase mutant egl-3(gk238) shows quiescence defects. Wilcoxon signed-rank test was used.

(D) Probability distribution of nose speeds shows a strong reduction of quiescence.

(E) No induction of quiescence by channelrhodopsin-based activation of aptf-1-expressing neurons

(F) Control without ATR.
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found. These neurons include the sensory neuron ALM, the
interneuron AVA, and D-type motor neurons [12, 14, 38]. The
ALA interneuron has been found to modulate sleep-like
behavior through EGF signaling, but it is unclear whether its
calcium activity is increased during sleep-like behavior [39].
While AIB, RIB, AVA, and other neurons in C. elegans appear
to be wake-active, RIS appeared to be a sleep-active and
sleep-promoting neuron. RIS is a GABAergic interneuron
[35].We found that RIS-induced quiescence requires peptider-
gic signaling rather than GABAergic signaling. RIS activity dif-
fers from other GABAergic neurons, such as motor neurons,
which have reduced activity during sleep-like behavior [38].
RIS has properties that are rather similar to vertebrate sleep-
active neurons found in the VLPO that are also GABAergic
and peptidergic [4]. Thus, active induction of sleep or sleep-
like behavior through activation of sleep-inducing GABAergic
peptidergic neurons appears to be a common principle found
in vertebrates and invertebrates.

We did not find a role for GABA in controlling sleep-like
behavior. GABAergic cell fate, however, appears to be a
conserved feature of sleep-active, sleep-promoting neurons.
It is thus likely that GABA does play an important role in these
neurons. It may be that GABA serves a rather subtle role in
sleep regulation in C. elegans that we have not detected in
our assays.

Neuropeptidergic signaling appears to play an important
role in sleep regulation in various organisms, including
C. elegans [40]. Hypothetically, aptf-1may be required for neu-
ropeptidergic cell fate of RIS, and it will be important to identify
the neuropeptide that mediates RIS-dependent quiescence.
Disturbing C. elegans physically during sleep-like behavior
has been shown to be injurious and to cause molting defects
and even death [15]. aptf-1mutants move continuously during
lethargus; however, they do not show obvious defects in
viability or molting. This suggests that physical disturbance
is different from genetic ablation of locomotor quiescence.
The evolutionary origin of sleep-like lethargus behavior in

C. elegans and sleep in vertebrates is still unclear. Conserved
cyclic nucleotide, TGF-b, and EGF signaling pathways have
been found to modulate sleep-like behavior in C. elegans
and other organisms, showing some similarity in the control
of sleep-like behavior in different systems [11, 39, 41]. In
some cases, the identification of transcription factors has
been crucial in resolving controversies regarding evolutionary
relationships. A famous example was the discovery that the
transcription factor pax6 is required for eye development in
all vertebrates and invertebrates that have been studied and
thus showed that eyes have a common evolutionary origin,
which revised the 150-year long view that eyes have evolved
multiple times [42]. It would therefore be intriguing to know
whether ap2 mutation actually causes sleep disorders in
humans, and whether it controls sleep-promoting circuits.
In humans, mutations in ap2b are linked to Char disease,

which is characterized by defects in heart, face, and limb
development [24]. In two families in which Char disease
occurred, sleep disorders were found. Individuals suffering
from Char were sleepwalking or were sleeping less than half
the normal time [43]. The common circuit principle of sleep in-
duction by GABAergic-peptidergic neurons and the similar-
ities in phenotypes of ap2mutations inC. elegans and humans
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suffering from Char disease support the view that sleep-like
behavior in C. elegans and sleep in humans share a common
evolutionary origin.
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Supplemental Information includes three figures, Supplemental Experi-
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