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Erzeugung von Neutrinomassen in Konform Invarianten Theorien:

Das Ziel dieser Arbeit ist es einen systematischen Überblick zu geben, wie Neutrino-

massen in konform invarianten Theorien erzeugt werden können. Dabei werden bekan-

nte Szenarien zur Erzeugung von Neutrinomassen wiederholt und hiervon konform in-

variante Theorien abgeleitet, wobei Unterschiede im notwendigen Teilcheninhalt und in

den physikalischen Auswirkungen hervorgehoben werden. In diesem Zusammenhang

werden sowohl Regeln, welche bei der Konstruktion von Neutrinomassen in konfor-

men Theorien berücksichtigt werden müssen, als auch topologische Möglichkeiten und

Unmöglichkeiten, unter relativ allgemeinen Annahmen, ausgearbeitet.

Die Struktur dieser Arbeit ist bestimmt durch die Massenmatrix für Neutrinos M,

welche die Eigenschaften eines Mechanismus zur Neutrinomassenerzeugung zusammen-

fasst. Die Modelle werden durch ihren Einfluss auf die Massenmatrix und durch ihren

Teilcheninhalt unterschieden. Da zusätzliche Symmetrien die allgemeine Form und

da Tree-Level und radiative Szenarien die Skala der Einträge von M unterschiedlich

beeinflussen, spielen beide Kriterien eine wichtige Rolle bei der Unterscheidung von

Modellen.

Für ein einfaches konformes Modell mit sterilen Neutrinos wird eine phänomenologische

Untersuchung durchgeführt, welche die zulässigen Bereiche im Parameterraum der Ko-

pllungskonstanten darstellt.

Neutrino Mass Generation in Conformally Invariant Theories:

The aim of this thesis is to give a systematic overview of how neutrino masses can

be generated in conformally invariant theories. This is done by revisiting well-known

scenarios of neutrino mass generation and deducing conformally invariant realizations,

where differences in the necessary particle content and the physical implications are

highlighted. In this context rules that have to be obeyed when building neutrino masses

in conformal theories as well as topological possibilities and impossibilities under rela-

tively general assumptions are elaborated.

In this work we systematically analyze the neutrino mass matrixM, which summarizes

the properties of a mass generation mechanism. Models are distinguished by their im-

plications on the mass matrix and by their particle content. As additional symmetries

have influence on the general form of M and tree-level and radiative scenarios affect

the scale of its entries differently, both criteria play a crucial role in the distinction of

models.

For a simple conformal model containing sterile neutrinos a phenomenological study is

performed showing the viable areas in parameter space of the coupling constants.
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Chapter 1

Introduction

It is a final tribute to the success of the Standard Model of Particle Physics (SM) that

in 2013 the Nobel Prize in physics has been awarded to Peter Higgs and François En-

glert for the discovery of a mechanism of spontaneous symmetry breaking. Even the

last particle predicted by the SM, the Higgs particle, which is related to this mechanism

responsible for the masses of all elementary particles, has been found in the year 2012

at CERN’s Large Hadron Collider (LHC). Within the last decades the SM has proven

to be capable of describing almost all phenomena in particle physics upto energy scales

that have been tested on earth with very high precision.

At the same time the discovery of the Higgs particle concludes one chapter in the history

of physics to finally open the door to the era of Beyond the Standard Model physics.

For though the SM has been successful we know that it is not complete.

First of all the SM only describes three elementary forces. There is still no satisfying

quantum theory for gravitation and thus at the Planck scale, where the gravitational

force becomes important, the SM has to break down. Secondly oscillation experiments

give rise to small neutrino masses, which are, due to the absence of right-handed neu-

trinos in the SM, not immediately implicated. Furthermore, there are more aesthetical

shortcomings like the Hierarchy Problem, which refers to the Higgs mass not being sta-

ble towards radiative corrections. Beyond that problems like the Strong CP Problem or

the unknown nature of Dark Matter are still unsolved. The possibility of simultaneously

solving the Hierarchy Problem and generating neutrino masses will be discussed in the

course of this thesis.

To provide an alternative solution to the Hierarchy Problem besides Supersymmetry, W.

A. Bardeen suggested that conformal invariance could solve this problem. He argued

that the quadratic divergences arising in radiative corrections to the Higgs mass are a

relict of the choice of the regularization procedure only and can thus not be considered

as a naturalness problem. Once accepting this argument and introducing conformal

1



Introduction 2

invariance as a fundamental property of the classical Lagrangian two questions arise.

The first and more general question is how conformally invariant theories can bear any

mass scale at all, especially in a way that the masses of the SM particles are repro-

duced. The second question is how small neutrino masses can be generated in a natural

way. The first question can partly be answered by the work done by S. Coleman and

E. Weinberg who suggested a mechanism of radiative symmetry breaking [1]. Unfor-

tunately simply making the SM conformally invariant by dismissing the negative mass

term in the Higgs potential and applying the Coleman-Weinberg (CW) mechanism does

not yield the right Higgs and top quark masses. The second question, however, might

be immediately connected to this problem. H. Nicolai and K.A. Meissner for example

suggested an extension of the Standard Model by three right-handed neutrinos and a

singlet scalar [2]. In this way they showed that they could generate the right Higgs and

top quark masses and at the same time small neutrino masses.

Motivated by those findings this work will give a systematic overview of how neutrino

masses can be generated in conformally invariant theories. Well-known mechanisms

for the generation of neutrino masses in non-conformal theories will be reviewed and

compared to known and new conformally invariant theories yielding neutrino masses.

Different theories will be organized by their underlying symmetries, their particle con-

tent and their phenomenology.

To have a first criterion for the phenomenological viability and the organization of several

theories, a phenomenological study for the introduction of right-handed sterile neutrinos

in a conformally invariant way will be performed.

The thesis is structured as follows. The second chapter deals with the theory of scale

and conformal transformations and how conformal invariance can solve the Hierarchy

Problem. Furthermore it will be shown how the effective potential can be calculated and

the symmetry of a theory can be broken radiatively according to the CW mechanism.

In chapter 3 the physics of neutrinos will be discussed. Phenomenological properties

deduced from oscillation experiments and the distinction between Dirac and Majorana

neutrinos will be outlined. Beyond that useful technicalities and a first example of

neutrino mass generation will be presented.

In chapter 4 a conformally invariant theory containing sterile neutrinos, the Meissner-

Nicolai model, will be phenomenologically analysed by scanning the parameter space of

Dirac and Majorana Yukawa coupling constants showing phenomenological viable areas

in a coloured 2D map.

Chapter 5 collects conformally invariant models for the generation of neutrino masses.

In the first section, having the one-flavour 2 × 2 mass matrix as a guiding principle,

conformally invariant theories will be investigated that affect the diagonal entries of the

mass matrix.
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In the second section an additional U(1) symmetry will be introduced that separates a

Hidden Sector (HS) from the Standard Model. Within this symmetry a further sterile

neutrino with HS charge is introduced that extends the one-flavour mass matrix to

3 × 3. Different models will be investigated that influence the diagonal entries of the

mass matrix.





Chapter 2

Scale and Conformal Symmetry

2.1 The Hierarchy Problem

One of the most important shortcomings of the Standard Model of Particle Physics

(SM) is the Hierarchy Problem. It arises when considering the SM as an effective theory

assuming that it is valid upto a characteristic scale Λ and taking this scale as the

physical cut-off of the theory. Thus all physics below this scale is determined by the

well-known rules of quantum field theory and all loop integrals have to be evaluated

upto the momentum cut-off Λ. This scale of new physics may lie somewhere between

the electroweak scale ∼ 100 GeV and the Planck scale ∼ 1019 GeV. Motivated by the

observation that all three couplings strengths, i.e. of QCD, the weak interaction and

hypercharge, meet approximately in one point at around 1015 GeV, this value is often

taken as the scale where new physics has to be introduced unifying all three forces in a

so called Grand Unified Theory (GUT) [3]. Calculating now the radiative corrections to

the Higgs mass mH we have to take into account the following diagrams:

H H + H H

where the dashed line represents the Higgs particle and the double line in the loops

represents any particle that couples to the Higgs particle in the corresponding way. From

that we can find the radiative corrections to be quadratic in the cut-off and the relation

5



Scale and Conformal Symmetry 6

between bare mass and physical mass is given by

m2
H = m2

0 + Cg2Λ2, (2.1)

where m0 is the bare mass, g represents a corresponding coupling constant and C is a

constant. For a pragmatist this does not yield a problem in the first place as within

the idea of renormalization we can only gain knowledge from the observable Higgs mass

mH , whereas the bare mass m0 is a free parameter of the theory and can be chosen such

that eq. (2.1) yields the right mass. It is thus not a technical shortcoming but rather

a matter of aesthetics when considering the degree of necessary fine-tuning of m0. The

physical Higgs mass is of electroweak scale, i.e. ∼ 100 GeV, while choosing Λ to be of

GUT scale yields Λ ∼ 1015 GeV. This means that m0 has to be chosen such that

m2
0 ∝ −1030GeV2 + 104GeV2. (2.2)

As we can see the bare mass has to be chosen of GUT scale as well, however, has to

be fine-tuned such that after radiative corrections a small rest, namely the Higgs mass,

remains. Thus the degree of fine-tuning necessary to achieve that can be expressed by

the ratio
104GeV2

1030GeV2 = 10−26. (2.3)

The huge degree of fine-tuning necessary for the Higgs mass to be of the right scale in

the SM is referred to as the Hierarchy Problem.1

It generally occurs for scalar corrections which are not protected by a symmetry. The

same does not appear for fermionic corrections as those are protected by the approxi-

mate chiral symmetry at high energies. This is because exact chiral symmetry would

forbid mass terms for fermions at tree-level as well as their radiative generation. For high

energies masses can be neglected and chiral symmetry can approximately be restored.

In this way chiral symmetry, even if not an exact symmetry, only allows fermion masses

to be logarithmically divergent.

In the same way supersymmetric models avoid scalar quadratic divergences by intro-

ducing a boson-fermion symmetry [4]. The quadratic divergence of the Higgs particle is

cancelled by its supersymmetric fermionic partner, assuming that the cut-off for fermions

and bosons is chosen alike.

Beyond other attempts, like the introduction of extra dimensions resulting in a shift of

the Planck scale down to the electroweak scale (see e.g. [5]), conformal symmetry can

be argued to avoid the Hierarchy Problem as discussed in the following.

1Strictly speaking the SM for itself does not have a Hierarchy Problem. It is rather the assumption
of new physics at a higher scale that causes the problem.
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2.2 Conformal Symmetry and Related Issues

2.2.1 Symmetries in Classical and Quantum Field Theories

In classical field theories the dynamics of the fields are determined by the variational

principle, i.e. by the variation of the action given by [6]

δS = δ

∫
d4x L = 0 , (2.4)

where L = L (φ, ∂µφ) is the Lagrangian in dependence of the collection of fields φ =

(φ1, φ2, ...) and their derivatives, which includes all kinds of fields, not only scalars. The

dependence of the fields on the space-time vector x was and will be suppressed in the

following unless it is necessary for the sake of comprehensibility.

If now under the transformation of the fields, given by

φ→ φ+ δφ (2.5)

the action transforms like

δS =

∫
d4x ∆ , (2.6)

then the current

jµ =
∂L

∂(∂µφ)
δφ (2.7)

fulfils the equation

∂µj
µ = ∆. (2.8)

If ∆ = 0 we say that classically the theory has a symmetry and the current jµ is

conserved.2

In a quantum field theory dynamics are not any more determined by the variational

principle. Even the objects of interest are not the fields themselves but rather their

expectation values. The central object that determines the physics of a quantum field

theory is the partition function

Z(J) =

∫
Dφ ei[S+

∫
d4y Jaφa] , (2.9)

where the right-hand side of the equation is a path integral over all fields φa and Ja are

external fields.

2We also say that the theory has a symmetry if ∆ is a total four divergence ∂µf
µ for arbitrary fµ.

We can then redefine the current as jµ′ = jµ − fµ such that we get the conservation law ∂µj
µ′ = 0.
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Under a transformation like in eq. (2.5) we find for the current of eq. (2.7) the relation

∂µ〈0|Tjµ(x)φa1(x1)...φan(xn)|0〉 = 〈0|∆(x)φa1(x1)...φan(xn)|0〉

−
n∑
j=1

〈0|Tφa1(x1)...δφaj (x)δ4(x− xj)...φan(xn)|0〉 ,
(2.10)

which is called the Ward-Takahashi identity. If ∆ = 0 the Ward-Takahashi identity tells

us that the current jµ is conserved in a correlation function up to contact terms.

Note that this statement is true only under the assumption that the measure Dφ is

invariant under the given transformation of the fields. If it is not the Ward-Takahashi

identity is not fulfilled an we say that the symmetry is anomalous.

2.2.2 Scale Transformations

Instead of directly defining conformal transformations and how they apply to fields

we want to start with scale transformations which are more intuitive and easier to

handle. It is the next section where we will properly define conformal transformations

and relate those to scale transformations within the conformal group. In this context we

will also find the conditions under which conformal invariance leads to scale invariance

and conditions under which scale invariance leads to conformal invariance. For a more

detailed discussion of scale and conformal transformations see ref. [7] and [8].

Scale transformations are space-time transformations defined by

α : x→ eαx , (2.11)

where α is a real number. The corresponding transformations of the fields are given by

α : φ(x)→ eαdφ(eαx) , (2.12)

where the different fields were summarized in the vector φ like before and d is a matrix

in this field space, which is diagonal and carries the corresponding mass dimensions as

diagonal entries. In 4 dimensions this is one for bosons and 3/2 for fermions.

The infinitesimal form of this is thus given by3

δφ = (d+ xµ∂µ)φ , (2.13)

3From eq. (2.11) we find δx = (eα − 1)x ≈ αx.
Using then eq. (2.12) we get δφ = (∂µφ)δxµ + ∆φ = αxµ∂µφ+ eαdφ− φ ≈ α(d+ xµ∂µ)φ.
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where the global factor α was absorbed in a redefinition of δφ but has to be restored

when necessary. We thus say that a theory is scale invariant if it is the total divergence

δL = 4L + xµ∂µL = ∂µ (xµL ) . (2.14)

According to eq. (2.6) ∆ is given by ∆ = ∂µ (xµL ). Thus we redefine the current jµ

such that for Jµ = jµ − xµL we find the conservation law ∂µJ
µ = 0. This current is

explicitly given by

Jµ = Πµδφ− xµL

= Πµdφ+ Πµxλ∂λφ− xµL

= Πµdφ+ xλT
µλ ,

(2.15)

where Tµλ is the canonical energy-momentum tensor given by

Tµλ = Πµ∂λφ− gµλL (2.16)

and

Πµ =
∂L

∂ (∂µφ)
. (2.17)

After this short introduction to scale invariance we want to investigate which theories are

scale invariant and which terms break it. In order to do so we consider the most general

renormalizable Lorentz invariant theory in 4 dimensions containing scalars, fermions

and gauge bosons and do not specialize it by imposing any gauge symmetry. It can be

decomposed into

L = L0 + LI , (2.18)

where

L0 =
1

2
∂µφ

a∂µφa − 1

2

(
µ2

0

)a
φaφa + ψ

a
(i∂µγµ −ma

0)ψa

−1

4

(
∂µA

a
ν − ∂νAaµ

)2
+

1

2

(
M2

0

)a
AaµA

µa
(2.19)

and

LI = αaφa + βabcφaφbφc + λabcdφaφbφcφd

+ gabcψ
a
ψbφc + ihabcψ

a
γ5ψ

bφc + eabcψ
a
γµψbAcµ

+ 2fabc (∂µφa)φbAcµ + fabcfadeφbφdAcµA
µe.

(2.20)

Here φ denote scalars, ψ fermions and A represent the gauge bosons, where its Latin

indices distinguish between different fields respectively and have to be summed over. All

the α, β, λ, g, h denote self-coupling and Yukawa coupling constants, whereas all e and
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f are gauge coupling constants. The form of the gauge couplings can be deduced from

taking the most general covariant derivative and multiplying it out.

For this Lagrangian we find the scale breaking terms

∆ =
(
µ2

0

)a
φaφa +ma

0ψ
a
ψa +

(
M2

0

)a
AaµA

µa − βabcφaφbφc − 3αaφa , (2.21)

such that ∂µJ
µ = ∆. We immediately see that all terms with dimensionful coupling

constants and all mass terms break scale invariance. We can therefore formulate the

important rule:

Any renormalizable theory in 4 dimensions is scale invariant if and only if it

contains no dimensionful coupling constants or masses.

2.2.3 Improved Energy-Momentum Tensor

The canonical energy-momentum tensor defined in (2.16) does not have to be symmetric

in general. Furthermore, usually it is not found to be renormalizable. Callan et al.,

however, proved that an energy-momentum tensor can always be defined such that it is

symmetric and renormalizable to all orders in perturbation theory [7]. Generally this

tensor is of the form [9]

θµν = Tµν + ∂λΓµνλ , (2.22)

where Γµνλ is antisymmetric under interchange of µ and λ. It also fulfils energy-

momentum conservation and yields the same conserved charge as the canonical energy-

momentum tensor.4 This improved energy-momentum tensor plays a crucial role for

scale invariance.

Under certain circumstances the scale current Jµ can be written as

Jµ = xλθ
µλ, (2.23)

where θµλ is the new energy-momentum tensor introduced by Callan et al. This is

possible for all theories obeying the condition

Πµdφ+ ΠλΣµλφ = ∂λσ
µλ, (2.24)

4Energy-momentum conservation is fulfilled because of the antisymmetry of Γµνλ such that
∂µ∂λΓµνλ = 0. That θ yields the same conserved charge can be seen from

∫
d3x θ0ν =

∫
d3x T 0ν +∫

d3x ∂λΓ0νλ =
∫
d3x T 0ν +

∫
d3x ∂0Γ0ν0 +

∫
d3x ∂iΓ

0νi =
∫
d3x T 0ν , where the second term vanishes

because of antisymmetry and the third term because the spacial integral over the divergence vanishes.
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where Σµλ is the spin matrix which is defined by the transformation law of the fields

under Lorentz transformations via

δµνφ = [xµ∂ν − xν∂µ + Σµν ]φ (2.25)

and σµλ is an arbitrary tensor. This condition is indeed fulfilled by the most general

renormalizable Lagrangian given in eq. (2.18), where

σµλ =
1

2
gµλφaφa. (2.26)

It has to be emphasized that this current does not exactly coincide with the one defined

in eq. (2.15), but it yields the same spacial integral of its time component as well as the

relation ∂µJ
µ = ∆.

From eq. (2.23) we then find

∂µJ
µ = ∂µ (xνθ

µν) = gµνθ
µν + xν∂µθ

µν = θµµ = ∆ , (2.27)

because ∂µθ
µν = ∂µT

µν = 0, which expresses energy-momentum conservation.

Eq. (2.27) can be summarized in the following way: The scale symmetry breaking part

of the Lagrangian is given by the trace of the energy-momentum tensor introduced by

Callan et al.

2.2.4 Conformal Transformations

We started studying scale transformations and its properties postponing the introduction

of conformal transformations. We are now going to define them and then relate them

to scale transformations.

Conformal transformations are space-time transformations as well and are defined as

a : xµ → xµ − aµx2

1− 2aλxλ + aλaλx2
, (2.28)

where a is a four-vector of real numbers, such that their infinitesimal form is given by5

δνc x
µ = −2xµxν + gµνx2 , (2.29)

which yields four conserved Noether currents given by

Jµν =
(

2xµxλ − gµλx2
)
θνλ. (2.30)

5This can be obtained from a first order Taylor expansion of the right-hand side of eq. (2.28) around
a = 0.
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Applied to fields the infinitesimal conformal transformations given in eq. (2.29) lead to

δµc φ =
(
2xµxν − gµνx2

)
∂νφ+ 2xµdφ+ 2xνΣµνφ. (2.31)

Infinitesimal conformal and infinitesimal scale transformations are both part of a 15

dimensional Lie algebra which is closed under commutation. Besides one scale and four

conformal transformations this Lie algebra further consists of six Lorentz transforma-

tions and 4 translations. This means that the commutators of the elements of this

algebra are a linear combination of other elements of this algebra. The corresponding

group we get when exponentiating the algebra is called the conformal group. The group

structure is such that all Lorentz invariant theories holding conformal invariance are

automatically scale invariant as well. There is, however, no group theoretical argument

for the opposite.

Though, it is possible to find a sufficient condition for a scale invariant theory to be

conformally invariant. In the following we will show that, if a theory is scale invariant,

the condition given in eq. (2.24) will inevitably lead to four further conserved currents

which will be associated with conformal symmetry.

As mentioned before, if eq. (2.24) and scale invariance holds we can find a conserved

current Jµ and an energy-momentum tensor such that

Jµ = xνθ
µν . (2.32)

In this case scale invariance implies θµµ = 0. We can then find four other conserved

currents given by

Jµν =
(

2xµxλ − gµλx2
)
θνλ , (2.33)

because

∂νJ
µν =

(
2δµνx

λ + 2xµδλν − gµλ2xν

)
θνλ +

(
2xµxλ − gµλx2

)
∂νθ

ν
λ

= 2xλθµλ + 2xµθνν − 2xνθ
νµ

= 0 .

These currents are identical to the conformal currents given in eq. (2.30). We can

therefore conclude that a theory which is scale invariant and implements condition (2.24)

is also conformally invariant. This result is very important for this work. As we are only

dealing with renormalizable theories, which generally fulfil this condition, we only have

to show that a theory is scale invariant in order to show that it is conformally invariant.

We can thus generalize the result from before and say:
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Any renormalizable theory in 4 dimensions is conformally invariant if and

only if it contains no dimensionful coupling constants or masses.

2.3 The Trace Anomaly

It is now clear under which circumstances a renormalizable theory is conformally in-

variant from a classical point of view. In a quantum field theory, however, quantum

corrections have to be taken into account. We have mentioned that in certain cases

classical symmetries can be broken by radiative corrections. These are called anomalies

and the Ward-Takahashi identity is not obeyed.

We have worked out that conformal symmetry is strongly coupled to the existence of

massive coupling constants and masses. This relation can be understood very intuitively.

All massive constants in the theory set a scale and it is therefore comprehensible that

the theory is not scale independent. When renormalizing a theory, in any scheme we

have to introduce a dimensional quantity as a renormalization scale. Assuming that at

this scale all massive terms vanish and the theory is thus classically scale invariant, the

quantum induced running of a coupling g causes a shift in the coupling when settling

the theory at a different scale. If we shift the renormalization scale by M →Meα such

that δM = αM , then the shift in the coupling is given by

g → g +
∂g

∂M
δM = g +

1

M

∂g

∂(lnM)
· αM = g + αβ(g) (2.34)

where β is the beta function and describes the running of the coupling. This shift in

turn generates the change in the Lagrangian

αβ(g)
∂

∂g
L . (2.35)

Thus scale invariance is broken on quantum level such that

∂µJ
µ = θµµ = β(g)

∂

∂g
L . (2.36)

As this anomaly is given by the trace of the energy-momentum tensor it is called trace

anomaly.

After all this anomaly is necessary for classically conformally invariant theories to make

sense as the world as we know it contains massive particles and scales. It is an interesting

idea that all scales in our world are the consequence of radiative breaking of conformal

symmetry.
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2.4 Bardeen’s Argument

In this section we will examine Bardeen’s argument for conformally invariant theories to

solve the Hierarchy Problem [10]. It provides an alternative to Supersymmetry as the

most common solution to the Hierarchy Problem. This feature is the main motivation

and the attractiveness of these kind of theories.

To understand Bardeen’s argument we first summarize two results concerning conformal

symmetry that we obtained before. The first one is that on tree-level conformal invari-

ance for the most general renormalizable theory containing scalars, fermions and gauge

bosons is broken by so-called soft terms. These are terms that have mass dimension

less than 4 when neglecting coupling constants. The second result is that on loop-level

conformal invariance is broken by the beta- function such that

θµµ = β(gi)Oi , (2.37)

where Oi are dimension 4 operators. Thus the breaking of conformal invariance, namely

the conformal anomaly, is accompanied by terms which are not soft and therefore have

a different nature. When calculating radiative corrections to the Higgs potential using

a cut-off regularization scheme the scale breaking part is given by

θµµ = β(g)
∂

∂g
L + soft terms involving Λ2 , (2.38)

where Λ is the chosen cut-off. The first term on the r.h.s. can be associated with the

anomalous breaking of conformal invariance on loop-level. The second term is also a soft

term like the terms that classically forbid conformal symmetry. It is therefore argued

not to be a radiative effect but to be already there on tree-level. However, we chose

the Lagrangian classically scale invariant. Thus there has to be a different explanation

for this term. These terms involving the cut-off are indeed the terms responsible for

the quadratic divergences of the Higgs mass. Bardeen argues that these terms are a

relict of the cut-off regularization scheme which breaks scale invariance by hand. In

contrast using dimensional regularization does not yield these quadratic divergences.

Thus in order not to spoil scale invariance by the regularization scheme we have to

choose counter-terms such that scale invariance is restored in all orders of perturbation

theory and the anomalous Ward identity of the theory (eq. (2.36)) is obeyed.

For the solution of the Hierarchy Problem considered from an effective field theoretical

point of view see [11]. A consideration involving gravitational couplings can be found in

[12].
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2.5 Effective Potential and the Coleman-Weinberg Mech-

anism

Another reason for the attractiveness of the concept of conformal symmetry is the fact

that the Standard Model is virtually conformally invariant except for the negative mass

term in the Higgs potential

V = −µ2φ†φ+ λ
(
φ†φ
)2
, (2.39)

where φ is the Higgs doublet, µ is the massive parameter breaking conformal invariance

and λ is the self-coupling constant. Thus we can simply make the Standard Model

conformally invariant by forbidding the first term in the potential. It is very intuitive,

however, that taking away this only scale of the Standard Model classically avoids elec-

troweak symmetry breaking as the potential does not have a minimum for a non-zero

field value. S. Coleman and E. Weinberg, however, showed that for scalar electrodynam-

ics, which does not yield symmetry breaking on tree-level, radiative corrections to the

scalar potential indeed shape the effective potential such that it gains a minimum for a

non-zero field value and thus leads to spontaneous symmetry breaking [1]. In this sec-

tion we study the effective potential and its properties as a method to describe radiative

corrections in a convenient way. It will be the instrument to investigate if a conformal

theory bears radiative symmetry breaking or not.

2.5.1 The Effective Action

There are two ways how the effective action, sometimes called the quantum action or

the quantum effective action can be defined. The more demonstrative way of both is by

writing it as [6]

Γ(φ) ≡− 1

2

∫
ddk

(2π)d
φ̃(−k)

(
k2 −m2 −Π(k2)

)
φ̃(k)

+

∞∑
n=3

∫
ddk1

(2π)d
...
ddkn
(2π)d

(2π)dδd(k1 + ...kn)

×Vn(k1, ..., kn)φ̃(k1)...φ̃(kn),

(2.40)

where φ is a scalar field and φ̃(k) =
∫

ddx eikxφ(x).6 Π(k2) is the loop correction to

the scalar propagator consisting of a sum of one-particle irreducible (1PI) diagrams, i.e.

diagrams that are still connected if any one line is cut. Similarly the Vn denote the 1PI

n-point vertex functions.

6Note that for convenience we consider the one-scalar case only
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The term ”Effective Action” stems from the fact, that including it in the partition func-

tion, the generated tree-level diagrams give the full transition amplitude, implying all

loop corrections induced by the classical action. There are now vertices connecting ar-

bitrarily many external lines.

The second more formal way is by defining the effective action as the Legendre trans-

formation [8]

Γ[φ] ≡ −
∫

d4xφ(x)Jφ(x) +W [Jφ], (2.41)

which is a functional of the classical field φ. To understand this definition properly one

first has to explain the meaning of Jφ. To do so let us first make the definition

φJ(x) ≡ 〈Ω|Φ(x)|Ω〉J
〈Ω|Ω〉J

= − i

Z[J ]

δ

δJ(x)
Z[J ], (2.42)

where Φ is the field operator, |Ω〉 represents the vacuum state of the interacting theory

and the lower J denotes the presence of an external field J . Z[J ] is the generating

functional of the theory

Z[J ] ≡ 〈Ω|Ω〉J =

∫
Dφ exp

[
iS[φ] + i

∫
d4xφ(x)J(x)

]
, (2.43)

where S[φ] is the classical action. Z[J ] is the sum of all diagrams in the presence of

the external field J(x), including connected as well as disconnected diagrams. It can be

seen that this can be written as

Z[J ] =
∞∑
N=0

1

N !
(iW [J ])N = exp (iW [J ]), (2.44)

where iW [J ] is the sum of all connected diagrams excluding vacuum diagrams.

Having this relation at hand the definition of φJ can now be written as

φJ(x) =
δ

δJ(x)
W [J ]. (2.45)

The current Jφ(x) from eq. (2.41) can now be understood in the following way: For

a given field φ(x), Jφ(x) is the current in dependence of φ(x) such that eq. (2.45) is

fulfilled. Thus Γ[φ] is a functional of φ(x).

From the formal definition of the effective action (2.41) we can now derive an important

property:

δΓ[φ]

δφ(y)
=−

∫
d4xφ(x)

δJφ(x)

δφ(y)
− Jφ(y)

+

∫
d4x

[
δW [J ]

δJ(x)

]
J=Jφ

δJφ(x)

δφ(y)
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Using eq. (2.45) we obtain
δΓ[φ]

δφ(y)
= −Jφ(y). (2.46)

For a vanishing external current this leads to an effective equation of motion for the

vacuum field expectation values
δΓ[φ]

δφ(y)
= 0. (2.47)

We now have an explanation for the name ”Effective Action” in the context of the

definition by the Legendre transformation. The solutions for the vacuum expectation

values of the fields are given by the stationary points of the effective action. This is

exactly the same in classical field theory where solutions for classical fields are given by

the stationary points of the classical action S[φ]. The effective action, however, includes

all quantum corrections.

Our next task is now to show that both definitions given above are really equivalent.

This will be done by showing that the tree-level diagrams generated by the effective

action defined by eq. (2.41) give the full scattering amplitude, just like the effective

action defined by eq. (2.40) does.

Let us first define the sum of all connected diagrams using the action g−1Γ[φ] instead of

the classical action

exp (iWΓ[J, g]) ≡
∫
Dφ(x) exp

[
ig−1

(
Γ[φ] +

∫
d4xφ(x)J(x)

)]
, (2.48)

where g is a constant. All propagators P thus contribute a factor g and all vertices V

(including external fields) a factor g−1 to give the diagram an overall factor of gP−V .

For all connected diagrams the number of loops is given by L = P − V + 1. So we can

write

WΓ[J, g] =
∞∑
L=0

gL−1W
(L)
Γ [J ], (2.49)

where W
(L)
Γ [J ] is the sum of all connected diagrams with L loops and g = 1. In the

limit g → 0, which corresponds to the transition to purely classical solutions, the path

integral is dominated by the point of stationary phase and we obtain the relation

lim
g→0

exp (iWΓ[J, g]) ∝ exp

[
ig−1

(
Γ[φJ ] +

∫
d4xφJ(x)J(x)

)]
, (2.50)

where φJ is given by the classical relation

δΓ[φ]

δφ(x)

∣∣∣∣
φ=φJ

= −J(x) (2.51)

or equivalently by eq. (2.45).

Taking the logarithm of both sides of eq. (2.50) and comparing terms proportional to
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g−1 we find

W
(0)
Γ [J ] = Γ[φJ ] +

∫
d4xφJ(x)J(x), (2.52)

where W
(0)
Γ [J ] are the 0-loop diagrams, i.e. tree-level diagrams, if we used Γ[φ] as the

action. Comparing the right-hand side of this equation with the definition of the effective

action (2.41), we get

W
(0)
Γ [J ] = W [J ]. (2.53)

This is exactly what we wanted to show. The sum of all tree-level diagrams taken from

the effective action is the same as the sum of all diagrams with arbitrarily many loops

taken from the classical action. For more details on the effective action and related

subjects see e.g. [13, 14].

2.5.2 The Effective Potential

As we want to use the effective action to understand spontaneous symmetry breaking,

which is the case if the vacuum expectation value (vev) of the field is non-zero, we are

interested in cases where the vev is constant in space and time as this would otherwise

correspond to spontaneous breakdown of momentum conservation. It is then convenient

to expand the effective action in powers of momentum

Γ[φ] =

∫
d4x

[
−Veff(φ) +

1

2
(∂µφ)2Z(φ) + ...

]
. (2.54)

Veff is called effective potential. Taking φ constant, we get

Veff(φ0) = −Γ[φ0]

V4
, (2.55)

where V4 is the integral over space and time
∫

d4x . In the case of constant fields the

solution for the vacuum expectation value in the absence of an external field is thus

given by
dVeff

dφ0
= 0. (2.56)

Furthermore we can expand the effective action in terms of φ

Γ[φ] =
∑
n

1

n!

∫
d4x1...d

4xn Γ(n)(x1, ..., xn)φ(x1)...φ(xn). (2.57)

Comparing this expression with eq. (2.40) we see that the coefficients Γ(n)(x1, ..., xn)

are just the 1PI Green’s functions in position space. With the definition

(2π)4δ(k1 + ...+kn)Γ̃(n)(k1, ..., kn) =

∫
d4x1...d

4xn Γ
(n)

(x1, ..., xn)ek1x1+...+knxn , (2.58)
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Figure 2.1: One-loop contributions to the effective potential

which are the 1PI Green’s functions in momentum space, one can see that the effective

potential is given by

Veff(φ0) = −
∞∑
n=0

1

n!
(φ0)(n)Γ̃(n)(0, ..., 0) (2.59)

as the factor V4 is cancelled by (2π)4δ(0).

2.5.3 Calculation Example for φ4 Theory

We will now have a closer look at how to actually calculate the effective potential to

one loop order. It is clear from eq. (2.59) that considering tree-level Green’s functions

simply reproduces the classical potential. Our sample computation will be based on a

theory of a scalar field with arbitrary potential

L =
1

2
(∂µφ)2 − V (φ). (2.60)

Note that also the mass term was absorbed by the potential V , which means that we

consider propagators without mass in the denominator. All one-loop diagrams with

arbitrary number of external lines are given by the diagrams in fig. 2.1.

The external lines will later represent a plug-in for fields at tree-level and thus contribute

a factor φ0, while the fields in the loop will be integrated out. So we see that the vertices

are given by

i
d2V

dφ2

∣∣∣∣
φ=φ0

= iV ′′(φ0), (2.61)

thus summarizing all different vertices of the theory into one. Every line in the loop has

the propagator
i

k2 + iε
, (2.62)
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where k is the momentum in the loop, which has to be integrated over.

So we can add up all diagrams in fig. 2.1 to get

Veff = V + i

∫
d4k

(2π)4

∞∑
n=1

1

2n

(
V ′′(φ0)

k2 + iε

)n
, (2.63)

where the factor 1
2n accounts for the internal symmetry of the corresponding diagrams.

Evaluating this sum leads to the effective potential

Veff = V + i

∫
d4k

(2π)4
ln

(
1 +

V ′′(φ0)

k2

)
, (2.64)

where the integral has been rotated into Euclidean space. This integral is evidently

divergent which is no surprise as it is the sum over loop diagrams and we have not yet

renormalized the theory. By doing so we first regularize the theory by a momentum

cut-off at k2 = Λ2 such that the effective potential converges but depends on Λ. We

therefore introduce counter-terms which cancel these dependences. In our case we choose

a renormalization scheme called the on-shell scheme which ensures that the parameters in

the Lagrangian are given by the physical observables, like the physical mass for example.

Furthermore the fields are renormalized such that the residue of the propagator is one,

i.e. such that the simple Feynman rules for vertices and propagators can be applied

without having to correct for the residue when calculating amplitudes.

Thus including counter-terms and evaluating the effective potential for massless φ4-

theory, i.e. for the potential

V =
λ

4!
φ4 , (2.65)

we find

Veff =
λ

4!
φ4

0 +
1

2
Bφ2

0 +
1

4!
Cφ4

0 +
λΛ2

64π2
φ2

0 +
λ2φ4

0

256π2

(
ln
λφ2

0

2Λ2
− 1

2

)
(2.66)

in the approximation Λ2 � φ2, where the second and third term are counter-terms.

We now adjust the counter-term parameters B and C according to the on-shell scheme

renormalization conditions. In this scheme we want the renormalized mass of the effec-

tive potential to vanish. The physical mass is defined as the pole of the propagator and

can thus be deduced from eq. (2.59) to be given by

d2Veff

dφ2
0

∣∣∣∣
φ0=0

= 0 , (2.67)

which implies

B = − λΛ2

32π2
. (2.68)
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Furthermore we renormalize the coupling λ as follows

d4Veff

dφ4
0

∣∣∣∣
φ0=M

= λ, (2.69)

thus introducing the arbitrary parameter M . We did not renormalize with respect to

φ0 = 0 because the fourth derivative of Veff does not exist at the origin of field space.

As a consequence we find

C = − 3λ2

32π2

(
ln
λM2

2Λ2
+

11

3

)
, (2.70)

which finally yields

Veff =
λ

4!
φ4

0 +
λ2φ4

0

256π2

(
ln

φ2
0

M2
− 25

6

)
. (2.71)

Like mentioned above the parameter M is arbitrary and λ can be defined with respect

to any other parameter M ′. We can use the effective potential in the form of eq. (2.71)

to get a relation between the old coupling constant λ and the new one λ′ in dependence

of M ′

λ′ =
d4Veff

dφ4
0

∣∣∣∣
φ=M ′

= λ+
3λ2

32π2
ln
M ′2

M2
. (2.72)

φ4-theory may be the simplest example to demonstrate how to find the effective poten-

tial, unfortunately it is not the best example to demonstrate how radiative corrections

can induce spontaneous symmetry breaking. When analysing the shape of the effective

potential we actually find that the minimum has moved away from zero. A closer look,

however, reveals that for field values around the vacuum expectation value, i.e. for values

of high interest when talking about symmetry breaking, the perturbation series cannot

be trusted as the actual perturbation coefficient is bigger than one. For a more detailed

discussion and a way to handle radiative corrections in this case, namely the renormal-

ization group improved effective potential, see appendix A. A more rewarding theory for

the demonstration of radiative symmetry breaking is massless scalar electrodynamics

which will be discussed in the next section.

2.5.4 The Coleman-Weinberg Mechanism

Coleman and Weinberg showed that for massless scalar electrodynamics which is de-

scribed by the Lagrangian [1]

L = −1

4
FµνF

µν + (Dµφ)∗Dµφ− λ

6
|φ|4 , (2.73)
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where Fµν = ∂µAν − ∂νAµ is the electromagnetic field-strength tensor, Dµ = ∂µ − ieAµ
is the gauge covariant derivative and Aµ denotes the electromagnetic field, that radia-

tive corrections induce an effective potential which indeed yields spontaneous symmetry

breaking and generates massive photons. Furthermore they showed by a renormaliza-

tion group analysis that the renormalization point can be chosen such that the scalar

coupling λ is of order e4. This ensures that the perturbation coefficient is smaller than

one and the perturbation series can actually be trusted.

In order to calculate the effective potential, not only scalar loops but also gauge boson

loops have to be taken into account. For a derivation of an arbitrary effective potential

and the effective potential of massless scalar electrodynamics see appendix B. It is given

by

Veff =
λ

6
|φ|4 +

1

16π2

(
5λ2

18
+ 3e4

)
|φ|4

(
ln
|φ|2

M2
− 25

6

)
. (2.74)

It is the fact that the renormalization point can be chosen such that λ ∝ e4 which allows

us to neglect the scalar one-loop contribution as it is of order λ2 ∝ e8. In the follwoing

we thus want to minimize the potential

Veff =
λ

6
|φ|4 +

3e4

16π2
|φ|4

(
ln
|φ|2

M2
− 25

6

)
. (2.75)

Doing this yields the relation

λ(〈φ〉) =
33

8π2
e(〈φ〉)4, (2.76)

where it has to be pointed out that this relation only holds at the renormalization point

M = 〈φ〉. Plugging this relation into the effective potential gives

Veff =
3e4

16π2
|φ|4

(
ln
|φ|2

〈φ〉2
− 1

2

)
. (2.77)

At the first glance we see that the dimensionless parameter λ was removed from the

effective potential. Naively one could assume that the number of degrees of freedom

was reduced. But this is not true. λ was exchanged by the dimensionful parameter 〈φ〉.
Replacing a dimensionless by a dimensionful parameter is generally called dimensional

transmutation and is a consequence of the conformal anomaly.

The mass of the scalar can now be deduced from

m2
S =

d2

dφdφ∗
Veff

∣∣∣∣
φ=〈φ〉

=
3e4

4π2
〈φ〉2. (2.78)

The boson mass is given by

m2
A = 2e2〈φ〉2, (2.79)
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which yields
m2
S

m2
A

=
3e2

8π
. (2.80)

2.5.5 CW Mechanism and the Standard Model

As mentioned before, in order to make the Standard Model scale invariant, we only have

to forbid the negative mass term in the Higgs potential. After having done that the

SU(2)L×U(1)Y symmetry is no more broken on classical level. We can now test if it is

broken radiatively. Indeed we find that this is the case under the condition that the Higgs

particle has a mass of around 10 GeV and the top mass is smaller than approximately

83 GeV [14]. The latter condition has definitely been ruled out by experiments which

reveal the top quark to have a mass of roughly 173 GeV [15]. The former condition

is ruled out if the scalar particle found at the LHC at around 125 GeV is indeed the

Higgs particle. In any case it is clear that the Standard Model has to be extended by

at least one scalar degree of freedom. There have been many attempts to make the SM

conformally invariant in a phenomenological acceptable way (see e.g. [16–20]) such that

at the same time further problems of physics are addressed. This thesis is supposed

to merge the issue of conformal symmetry as a solution to the Hierarchy Problem and

the issue of neutrino masses by investigating scenarios that generate neutrino masses

in a conformally invariant way and have a particle content such that phenomenological

requirements are met.





Chapter 3

The Nature of Neutrinos

For several decades the nature of neutrino masses is an outstanding problem of particle

physics. For a very long time neutrinos were assumed to be massless and even today

neutrino masses have not been measured directly. However, there is compelling experi-

mental evidence that they must exist. This is implicated by neutrino oscillations, i.e. the

observation that neutrinos produced with a certain flavour can transform into a neutrino

of different flavour. This is only possible if neutrinos are massive as massless particles

do not experience eigentime and can thus not experience intrinsic flavour changes.

In the Standard Model, however, neutrino masses are absent. They cannot be gener-

ated like the masses of the charged leptons are as there are no right-handed neutrinos.

Furthermore, it is not possible to generate Majorana mass terms for the left-handed

neutrinos as there are no lepton number violating couplings. In any case the SM has to

be extended to describe the generation of neutrino masses.

This chapter deals with the main properties of neutrinos and how they can be described

mathematically in a quantum field theory. The topic of this chapter will be the distinc-

tion of Dirac and Majorana neutrinos. It will collect all tools necessary to work with

neutrinos and to generate their masses. The explicit formulation of scenarios for neu-

trino mass generation will be postponed to the next chapters where it will serve as an

orientation and comparison for conformally invariant scenarios. Only the most famous

mechanism will be discussed as an example.

3.1 Neutrino Oscillations

In this section we will discuss the most important properties of neutrinos, namely the

fact that they can oscillate from one into another flavour. It serves as a proof for the

existence of small neutrino masses.

25
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Our discussion will be based on the assumption of the existence of sterile neutrinos.

This, however, does not limit the generality of the phenomenological considerations.

The interaction and mass Lagrangian relevant for neutrino oscillations in the flavour

basis is given by

−LW+m =
g√
2
l′L,αγ

µν ′L,αW
−
µ + (ml)αβl

′
L,αl

′
R,β + (mD)αβν

′
L,αν

′
R,β + h.c. , (3.1)

where l denotes charged leptons, ν neutrinos of different chirality and W− the W−-

boson. We can then find biunitary transformations to diagonalize ml and mD, i.e. such

that

V †LmlVR = md
l , U †LmDUR = md

D . (3.2)

The mass eigenstates are thus defined by

l′L = VLlL, l′R = VRlR, ν ′L = ULνL, ν′R = URνR . (3.3)

Consequently the neutrino interaction and mass Lagrangian in the mass basis is given

by

−LW+m =
g√
2
lL,iγ

µ(V †LUL)ijνL,jW
−
µ + (md

l )iilL,ilR,i + (md
D)iiνL,iνR,i + h.c. (3.4)

The matrix U = V †LUL is called the lepton mixing matrix. In terms of this matrix we

can define a slightly different flavour basis in which unlike above the charged lepton

flavour eigenstates and mass eigenstates are identical. This can be achieved by absorb-

ing the charged leptons transformation matrix in a redefinition of the neutrino flavour

eigenstates. Thus the new flavour basis eigenstates of the neutrinos can be related to

its mass basis via

|ν ′α〉 = U∗αi|νi〉 . (3.5)

Let us now have a flavour eigenstate |νa〉 at t = 0, i.e.

|ν(0)〉 = |νa〉 = U∗aj |νj〉 (3.6)

such that we have the time evolution

|ν(t)〉 = U∗aje
−iEjt|νj〉 , (3.7)
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where Ej is the energy of the corresponding mass eigenstate. The amplitude for finding

the neutrino at time t in the flavour eigenstate |νb〉 is then given by

A(νa → νb; t) = 〈νb|ν(t)〉 = U∗aje
−iEjt〈νb|νj〉 = UbiU

∗
aje
−iEjt〈νi|νj〉 = Ubje

−iEjtU∗aj

(3.8)

and thus the according probability reads

P (νa → νb; t) = |A(νa → νb; t)|2 = |Ubje−iEjtU∗aj |2 . (3.9)

To understand the principle properly we first consider the 2 flavour case with the two

flavour eigenstates νe and νµ. The transformation matrix U can then be parametrized

in the following way  cos θ0 sin θ0

− sin θ0 cos θ0

 , (3.10)

where θ0 is the so-called mixing angle, such that we get

|νe〉 = cos θ0 · |ν1〉+ sin θ0 · |ν2〉

|νµ〉 = − sin θ0 · |ν1〉+ cos θ0 · |ν2〉
(3.11)

For relativistic neutrinos of momentum p it holds

Ei =
√
p2 +m2

i ≈ p+
m2
i

2p
≈ p+

m2
i

2E
. (3.12)

In this approximation eq. (3.9) yields

P (νe → νµ; t) = P (νµ → νe; t) = sin2(2θ0) sin2

(
∆m2

4E
t

)
, (3.13)

where ∆m2 = m2
2 −m2

1. Rewriting it in terms of the travelled distance of the neutrinos

we get

P (νe → νµ; t) = sin2 2θ0 sin2

(
π
L

losc

)
, (3.14)

where

losc =
4πE

∆m2
' 2.48km

E(GeV )

∆m2(eV 2)
. (3.15)

If we now consider the three flavour case, we have a 3 × 3 transformation matrix U .

In the case of Dirac neutrinos this matrix can be parametrized in dependence of three
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Figure 3.1: Normal
Hierarchy

Figure 3.2: Inverted
Hierarchy

mixing angles θ12, θ13, θ23 and one CP-violating phase δ in the following way

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (3.16)

where sij and cij denote sin θij and cos θij respectively. Unlike in the two flavour case

it is not possible to deduce a simple rule for the transition probability unless we make

appropriate assumptions. We will limit ourselves to the consideration of a case that is

based on the assumption

|∆m2
21| � |∆m2

31| ≈ |∆m2
32| , (3.17)

where ∆m2
ij = m2

i − m2
j . As a matter of fact, this assumption has been found to be

correct. As it only refers to the absolute values we can have different possible hierarchies.

The first one is the Normal Hierarchy (3.1), i.e. m1 � (.) m2 � m3 and the second

one is the Inverted Hierarchy (3.1), i.e. m3 � m1 ≈ m2 (see fig. 3.1 and 3.2). If all

neutrinos have a mass much larger than the mass differences we speak of the Quasi-

Degenerate Hierarchy. In addition to this assumption we further assume small base

lines and thus the relation
∆m2

21
2E L � 1 holds. In this limit we find for the transition

probability between two flavour eigenstates a and b

P (νa → νb;L) = 4|Ua3|2|Ub3|2 sin2

(
∆m2

31

4E
L

)
. (3.18)

From several oscillation experiments we gain the following mass squared differences (see

e.g. [21, 22])

∆m2
21 ≈ 7.9 · 10−5eV 2 , ∆m2

32 ≈ 2.7 · 10−3eV 2 . (3.19)
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For a more detailed introduction to neutrino oscillations and matter effects see [23].

There is one thing remaining to be discussed in more detail. The parametrization of U

used above was based on the assumption of Dirac neutrinos and we could reduce the

physical parameters to three mixing angles and one CP-violating phase. We will now

see how many physical parameters occur in the transformation matrix in different cases.

A unitary n×n matrix depends on n(n−1)/2 angles and n(n+1)/2 phases. In the Dirac

case 2n − 1 phases can be removed by rephasing the left-handed fields, absorbing the

effects in the lepton mass terms by corresponding rephasing of the right-handed fields.

Hence (n− 1)(n− 2)/2 physical phases remain.

In the Majorana case only n phases can be absorbed such that n(n−1)/2 physical phases

remain. (n− 1)(n− 2)/2 of those are the Dirac phases. The remaining n− 1 phases are

the so called Majorana phases. For the special case of three flavours we thus have two

additional Majorana phases. However, we know nothing about theses phases as we do

not even know if neutrinos are of Dirac or Majorana type.

3.2 Dirac and Majorana Neutrinos

3.2.1 Quantum Field Theoretical Description

If we consider electrons for example we observe particles as well as antiparticles of two

different helicities. This means that there are 4 degrees of freedom. In a certain reference

frame we can describe these particles by a quantum field of the following form

ψ(x) =

∫
d3p√

(2π)32Ep

∑
s=± 1

2

(
as(p)us(p)e−ipx + b†s(p)vs(p)eipx

)
, (3.20)

where its dynamics are classically determined by the Dirac equation and we call these

particles Dirac particles. us and vs describe the 4 different helicity states, as(p) and bs(p)

are annihilation operators for particles and antiparticles of momentum p respectively,

where their daggered form are the corresponding creation operators.

For neutrinos the situation is different. We only observe particles of left and antiparticles

of right helicity. Assuming neutrinos are completely massless there are no questions left

and we have two degrees of freedom. The issue of right helicity of neutrinos does not

occur as massless particles are moving at the speed of light and there is no boost to turn

around helicity. Furthermore, in this case helicity and chirality are identical and thus

only neutrinos of left helicity are produced. But as mentioned before, there is strong

evidence for neutrino masses and we could assume that neutrinos are just like all other

fermions of Dirac type. There is, however, another possibility. E. Majorana suggested
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that neutrinos might be there own antiparticles (upto a phase factor) and thus the

right-handed neutrino is just the known right-handed antineutrino and the left-handed

antineutrino is the left-handed neutrino. In this way we could describe neutrino masses

in a Lorentz invariant way with just two degrees of freedom. Thus the corresponding

field can be written as

ψ(x) =

∫
d3p√

(2π)32Ep

∑
s=± 1

2

(
as(p)us(p)e−ipx + λa†s(p)vs(p)eipx

)
, (3.21)

where λ is a phase factor. The Majorana condition can be formulated for fields in the

following way

ψc(x) ≡ γ0Cψ
∗(x) = e−iθψ, (3.22)

where θ is a phase and C has to be chosen such that the equation is Lorentz invariant

and yields the relations

γ0Cu
∗
s(p) = vs(p) (3.23a)

γ0Cv
∗
s(p) = us(p). (3.23b)

Indeed eq. (3.21) fulfils the Majorana condition with the identification λ = eiθ.

3.2.2 Form and Properties of the C Operator

The form of C depends on the representation we choose for the matrices γµ, which have

to fulfil the anticommutation relation

{γµ, γν} = 2gµν , (3.24)

which is called the Clifford Algebra. Before we can find an explicit representation of C

we have to work out the properties it has to meet. First in order to ensure that ψc is

normalized we have to demand

C† = C−1. (3.25)

For eq. (3.22) to be Lorentz invariant it has to be

Cσ∗µνC
−1 = −γ0σµνγ0, (3.26)

where σµν = i
2 [σµ, σν ] and σµ are the Pauli matrices. From this we find the condition

C−1γµC = −γTµ . (3.27)
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From demanding

(ψc)c = ψ (3.28)

and equations (3.25) and (3.27) we get

CT = −C. (3.29)

Together with eqs. (3.23) these conditions uniquely determine the matrix C. Choosing

the Dirac representation for the γ matrices

γ0 =

0 1

1 0

 , γi =

 0 σi

−σi 0

 , (3.30)

we find

C = iγ2γ0. (3.31)

We see that in this representation the operator C is completely real which yields further

useful relations. We thus find

C† = CT = C−1 = −C (3.32)

and

ψc = ψTC−1, ψLψR = (ψc)L(ψc)R = (ψR)c(ψL)c (3.33)

There are other representations but we will use the Dirac representation throughout this

work.

3.2.3 Neutrinos under Charge Conjugation C

The charge conjugation operation C is defined by its action on the fields

Cψ(x, t)C−1 = η∗cγ0Cψ
∗(x, t) = η∗cψ

c(x, t), (3.34)

where ηc is a phase factor. This applies for general fermions. For Majorana fields it can

be simplified to

Cψ(x, t)C−1 = (ηcλ)∗ψ(x, t). (3.35)

Thus we find

Cas(p)C−1 = (ηcλ)∗as(p)

Ca†s(p)C−1 = (ηcλ)∗a†s(p),
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which yields

(ηcλ)∗ = ηcλ = ±1 ,

because ηc as well as λ and consequently ηcλ are mere phase factors. Furthermore, this

means that

C|p, s〉 = ηcλ|p, s〉 ≡ η̃c|p, s〉,

where |p, s〉 = a†s(p)|0〉, because C|0〉 = |0〉, i.e. because the vacuum is invariant under

charge conjugation.

We conclude that a free Majorana particle is an eigenstate of the charge conjugation

operator with eigenvalues +1 or −1. The physical Majorana neutrino, however, is not

as the interactions violate C.

3.3 Technicalities and Tools

3.3.1 Majorana Basis

A way of expressing the mass terms of a Lagrangian is by writing it as

−Lm =
1

2

∑
a,b

ψaLMab(ψ
c
b)R + h.c. , (3.36)

where Mab is the mass matrix and the ψa are 2-component Majorana fields and ψca are

their conjugates. The indices L and R denote left and right chirality respectively. As

seen before Majorana particles have 2 degrees of freedom whereas Dirac type particles

have twice as many. We will indeed show that a Dirac field can be expressed by 2

Majorana particles and can thus be expressed in the form of eq. (3.36).

Assume we have two Majorana particles ψ and χ and that there are only cross terms of

the form
1

2
mψL(χc)R +

1

2
m′χL(ψc)R + h.c. (3.37)

We can then write

−Lm =
1

2

(
ψL, χL

) 0 m

m′ 0


(ψc)R

(χc)R

+ h.c. (3.38)

If we now set m′ = m and make the identification

ψL → ΨL, (χc)R → ΨR,

(ψc)R → (Ψc)R, χL → (Ψc)L,
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and consider Ψ as a 4-component Dirac field, we get

−Lm =
1

2
m
(

ΨLΨR + (Ψc)L(Ψc)R

)
+ h.c. = mΨLΨR + h.c. , (3.39)

which is the mass term for a Dirac field, where we have used the third identity of eq.

(3.33). We learn that in this basis Dirac masses are the off-diagonal entries of the mass

matrix.

If we now go backwards and diagonalize the mass matrix from eq. (3.38) we find the

mass eigenstates

χ1 =
1√
2

(ψL + (ψR)c) +
1√
2

((ψL)c + ψR)

χ2 =
1√
2

(ψL − (ψR)c)− 1√
2

((ψL)c − ψR) ,

(3.40)

which are both Majorana neutrinos, where χ1 has phase λ = +1 and χ2 has phase

λ = −1. Thus a Dirac field is the sum of two Majorana fields of opposite phase

ψ =
1√
2

(χ1 + χ2) . (3.41)

3.3.2 Feynman Rules

When we derive the Feynman rules for Dirac fermions rigorously we find the following

results. The free field propagator for an incoming particle and an outgoing particle or

equivalently for an incoming antiparticle and an outgoing antiparticle is given by

〈0|T
(
ψA(x)ψB(y)

)
|0〉 =

∫
d4p

(2π)4
eip(x−y) [iSF (p)]AB , (3.42)

where SF (p) =
6 p+m

p2 −m2 + iε
.

For an incoming particle and an outgoing antiparticle and vice versa we find

〈0|T (ψA(x)ψB(y)) |0〉 = 〈0|T
(
ψA(x)ψB(y)

)
|0〉 = 0. (3.43)

For Majorana fermions the case is slightly different. While the propagator in eq. (3.42)

is the same for Majorana particles, the propagators in eq. (3.43) are non-zero. That this

is true can be seen when considering ψ = λψc = λψTC−1. From this we find ψT = λ∗ψC

and thus

〈0|T (ψA(x)ψB(y)) |0〉 = λ∗CDB〈0|T ψA(x)ψD(y)|0〉

= λ∗
∫

d4p

(2π)4
eip(x−y) [iSF (p)C]AB

(3.44)
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or in momentum space

Sψψ = λ∗SF (p)C. (3.45)

Furthermore, we find for the free-field propagator of the antiparticle to particle transition

〈0|T
(
ψA(x)ψB(y)

)
|0〉 = λ(C−1)DA〈0|T ψD(x)ψB(y)|0〉

= λ

∫
d4p

(2π)4
eip(x−y)

[
iC−1SF (p)

]
AB

(3.46)

or

Sψ̄ψ̄ = λC−1SF (p). (3.47)

This finding coincides with the picture of particles and antiparticles being the same.

For a more detailed discussion of the mathematical issues of neutrino physics see e.g.

[24, 25].

3.4 Neutrino Mass Generation

In the Standard Model neutrinos are massless as there are neither right-handed neutrinos

nor lepton-violating terms. The simplest way to induce neutrino masses is thus to

introduce right-handed neutrinos. As a consequence the SM symmetries allow us to

write down a Majorana mass term for them. Depending on this newly introduced mass

scale, which can be chosen arbitrarily as a priori there is no physical mechanism to fix

it, different phenomenological scenarios arise where one of those is the famous type I

seesaw mechanism [26–30]. This will be discussed in the following.

In this case the Standard Model is extended by 3 right-handed sterile neutrinos. Sterile

means that they are singlets under the SM gauge group and thus do not interact via

any gauge bosons. The corresponding part of the Lagrangian reads1

−LY = gH,ijLiH̃νR,j +
1

2
MR,ijϕνR,iν

c
R,j + h.c. , (3.48)

where the Li are the 3 Lepton doublets, H̃ = iσ2H
∗ and H is the Higgs doublet and the

νR,i are the sterile neutrinos, i.e.

Li =

νL,i
eL,i

 , H =

H+

H0

 . (3.49)

1Note that from now on we will use νcR = (νR)c = (νc)L
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After spontaneous symmetry breaking we find the mass part of the Lagrangian for

neutrino masses

−Lm = mD,ijνL,iνR,j +
1

2
MR,ijνR,iν

c
R,j + h.c. , (3.50)

where

mD,ij = gH,ij · 〈H〉. (3.51)

For reasons of convenience we will from now on consider the one flavour case, while the

3 flavour case will be discussed in detail later.

In the Majorana basis the Lagrangian can then be written as

−Lm =
1

2
nLMncL + h.c. , (3.52)

where nL =

νL
νcR

 and the mass matrix M is given by

M =

 0 mD

mD MR

 . (3.53)

In order to study the most general case of this matrix we restore the left-handed Majo-

rana entry and thus it reads

M =

ML mD

mD MR

 . (3.54)

This matrix is symmetric and can thus be diagonalized by a unitary transformation

yielding the mass eigenvalues

m1,2 =
mR +mL

2
±

√(
mR −mL

2

)2

+m2
D . (3.55)

Defining

nL =

νL
νcR

 =

 cos θ sin θ

− sin θ cosθ


︸ ︷︷ ︸

U

χ1L

χ2L

 (3.56)
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where U is the orthogonal matrix which diagonalizes M, i.e. UTMU =Md and

tan 2θ = 2mD/(mR −mL), we can write

−Lm =
1

2
nLMncL + h.c. =

1

2
(m1χ1Lχ

c
1L +m2χ2Lχ

c
2L) + h.c.

=
1

2
(|m1|χ1χ1 + |m2|χ2χ2)

(3.57)

with the definitions

χ1 = χ1L + η1χ
c
1L

χ2 = χ2L + η2χ
c
2L ,

(3.58)

where η1,2 = 1 or − 1 for m1,2 > 0 or < 0 respectively. These are both Majorana

particles.

We can now distinguish between several cases in dependence of the entries of the mass

matrix M.

case 1: ML = MR = 0, i.e. the case of pure Dirac neutrinos.

The mass eigenvalues are thus given by

m1 = mD and m2 = −mD. (3.59)

We get χ1L

χ2L

 =
1√
2

νL + νcR

νL − νcR

 (3.60)

and thus

χ1 =
1√
2

(νL + νcR) +
1√
2

(νcL + νR)

χ2 =
1√
2

(νL − νcR)− 1√
2

(νcL − νR)

(3.61)

and |m1| = |m2| = mD.

Like discussed before a Dirac neutrino can be considered as 2 Majorana neutrinos

with mass mD.

case 2: ML = 0 ; MR 6= 0.

case 2.1: MR � mD

⇒ m1 ≈ −
m2
D

MR
and m2 ≈MR.

This is the well-known seesaw mechanism. The largeness of the Majorana
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mass of the right handed neutrino suppresses the mass of one of the mass

eignestates.

case 2.2: MR = ε� mD

⇒ m1 ≈ mD +
1

2
ε and m2 ≈ −mD +

1

2
ε.

We see that if MR 6= 0 the mass spectrum is degenerated and the two Majo-

rana fields cannot be combined to a Dirac neutrino. As in this case, however,

ε is small, this splitting is small and they still have Dirac properties, e.g. a

small contribution to the neutrinoless double β decay. We will call this setup

the Pseudo-Dirac scenario.





Chapter 4

Phenomenological Study of

Sterile Neutrinos in a

Conformally Invariant Theory

In chapter 2 we found that conformal symmetry can be argued to solve the Hierarchy

Problem. We then raised the question how theories without explicit mass scale in the

Lagrangian can bear massive particles. We found that the quantum induced breaking

of conformal invariance, called the conformal or trace anomaly, introduces a scale via

dimensional transmutation. This in turn can cause electroweak symmetry breaking

which provides a mechanism for the generation of masses in the SM. We encountered

the problem that the particle content of the conformal SM does not yield the proper

Higgs and top quark mass. The conclusion was that the particle content has to be

extended by at least one scalar degree of freedom.

In chapter 3 on the other hand we dealt with the physics of neutrinos and found a

phenomenological necessity for an extension of the Standard Model, namely the existence

of neutrino masses.

This chapter has two intentions. On the one hand it is supposed to introduce the first

conformally invariant way of generating neutrino masses by introducing three right-

handed neutrinos and a singlet scalar. On the other hand it has the much more important

task to give an overview of the phenomenological implications of the introduction of three

sterile neutrinos. Therefore a parameter scan of the involved Yukawa couplings has been

performed using different parametrizations and electroweak observables to find viable

and excluded regions in this space. The allowed regions will be distinguished by their

phenomenological implications. This part is one of the main achievements performed in

this work.

39
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4.1 Introduction of the 6 × 6 Mass Matrix in Conformal

Theories

Introducing the 6 × 6 mass matrix basically means introducing 3 sterile right-handed

neutrinos. We studied the effects of the introduction of a sterile neutrino for the one

flavour case in the previous chapter. This analysis is now generalized by the extension to

the three flavour case and performed within the conformally invariant framework. The

situation is complicated by the fact that different flavours can mix among each other.

To control these 6× 6 matrices different parametrizations can be applied. Two of them

will be discussed in this section. Furthermore, the phenomenology of sterile neutrinos

will be discussed and a parameter scan for different energy scales of sterile neutrinos will

be performed. The results will be summarized.

Before, however, we have to point out the effects of conformal invariance. As conformal

symmetry forbids all direct mass terms we are not allowed to write down Majorna mass

terms for the right-handed neutrinos

MRνRν
c
R. (4.1)

Thus if we only have three right-handed neutrinos in addition to the Standard Model

particle content the mass matrix has the following form 0 mD

mT
D 0

 (4.2)

and we have the simple case of Dirac neutrinos. In non-conformal theories this would

be possible in general if one is willing to accept Yukawa couplings for neutrinos of the

order 10−11. The theory SM + νR
1 , however, is not an acceptable conformal theory.

We need an additional scalar for the Higgs particle to have the right mass.

4.2 The Meissner-Nicolai Model

K.A. Meissner and H. Nicolai introduced a singlet scalar ϕ and showed that this is

enough to break electroweak symmetry radiatively and that it allows for the correct

phenomenology [2]. Their model can be summarized in the following way

Particle content2: L : (2,−1); H : (2, 1); νR : (1, 0); ϕ : (1, 0) ,

1This theory extends the Standard Model particle content by three right-handed neutrinos.
2Note that only particles and couplings relevant for the generation of neutrino masses are mentioned.
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where the first number in brackets denotes the transformation behaviour under the

SU(2)L gauge group, e.g. ’2’ stands for a SU(2)L doublet. The second number is the

U(1)Y quantum number. With this particle content we get the

Yukawa Lagrangian: −LY = gH,ijLiH̃νR,j + 1
2gϕ,iiϕνR,iν

c
R,i + h.c. ,

where gH and gϕ are 3 × 3 matrices and gϕ was chosen diagonal which can generally

be done as the flavour of the three right-handed neutrinos is not coupled to any gauge

bosons and can thus be freely redefined. The relevant potential is given by

V = λH(H†H)2 + λϕ(ϕ†ϕ)2 + λHϕ(ϕ†ϕ)(H†H) ,

where the λ are the corresponding non-dimensional coupling constants. If we now assume

that the potential yields a non-zero vev for H as well as for ϕ, i.e.

H −→

 0

〈H〉

 , ϕ −→ 〈ϕ〉 , (4.3)

then we obtain from the Yukawa Lagrangian the neutrino mass part of the Lagrangian

reading

−Lm = mD,ij · νL,iνR,j +
1

2
MR,ii · νR,iν

c
R,i + h.c. , (4.4)

where

mD,ij = gH,ij · 〈H〉 , MR,ij = gϕ,ij · 〈ϕ〉 . (4.5)

Expressing this transition with the Majorana basis matrices we get 0 gH〈H〉

gTH〈H〉 gϕ〈ϕ〉

 −−−−→

 0 mD

mT
D MR

 . (4.6)

We can also move into a picture where we integrate out the sterile neutrinos and thus

get an effective left-handed Majorana neutrino mass. Translated into diagrammatic
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language this scenario is described by

νR

νR

〈H〉 〈ϕ〉 〈H〉

L L

We see that by introducing a singlet scalar which gains a vev via radiative symmetry

breaking, the right-handed Majorana entry of the mass matrix can be restored in a con-

formally invariant way. In the Meissner-Nicolai model the masses of the active neutrinos

depend on the values of gH , gϕ and 〈ϕ〉. In dependence of the scales of the Yukawa cou-

plings we can make different approximations and thus choose different parametrizations

to describe the diagonalization of the mass matrix.

4.3 Parametrizations

4.3.1 Casas-Ibarra Parametrization

Independent of any scales we can always find a unitary 6 × 6 matrix U such that the

mass matrix3 is block-diagonalized

UT

ML mD

mT
D MR

U =

Ml 0

0 Mh

 , (4.7)

where Ml and Mh are 3× 3 matrices and the corresponding basis of the matrix on the

right-hand side of the equation is given byνl
νh

 = U†

νL
νcR

 . (4.8)

3Note that we reintroduce the left-handed Majorana masses in order to consider the most general
case for the Casas-Ibarra parametrization. How this can be realized in a conformally invariant theory
will be shown later.
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The Casas-Ibarra parametrization [31] is based on the assumption that the scale of MR

is much bigger than the scale of mD, while the one of ML is much smaller, i.e.

mD

MR
� 1� mD

ML
. (4.9)

An adequate parametrization for U is therefore given by

U =


√

1−RR† R

−R†
√

1−R†R

 , (4.10)

where R is a 3 × 3 matrix and is treated as a small perturbation. The square root is

defined by its Taylor expansion, i.e.
√

1−RR† ≈ 1 − 1
2RR

† + ... . To first order R is

found to read

R ≈
(
M−1
R mD

)†
, (4.11)

where the light masses are thus given by

Ml = ML −mT
DM

−1
R mD (4.12)

and for the heavy masses we approximately find Mh = MR. This is the seesaw scenario

for three flavours as indicated by the assumption (4.9).

The mass matrix Ml, however, is not diagonalized yet. We can find a unitary matrix U

such that

UTMlU = Dl , (4.13)

where Dl is now diagonal and carries the active neutrino masses. The PMNS matrix is

therefore given by

UPMNS =
√

1−RR† · U ≈
(

1− 1

2
RR†

)
U. (4.14)

We see that the PMNS matrix lost its unitarity due to additional sterile neutrinos and

RR† can be interpreted as its unitarity violating part. Although this non-unitarity is

restricted by oscillation experiments to be very small, it yields phenomenological effects

that will be discussed later on. From eq. (4.8) we further find the composition of νL,

νL =
√

1−RR† · νl +R · νh (4.15)

and conclude that the active-sterile mixing is proportional to R.

Observations show that this active-sterile mixing is very small and hence from eq. (4.14)

we deduce that U can be approximated by UPMNS. The PMNS matrix will therefore
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from now on be denoted by U . If we further set ML = 0 we get

Dl = −UTmT
DM

−1
R mDU = −UTmT

D

√
M−1
R

√
M−1
R mDU , (4.16)

where again it has to be noted thatMR was chosen diagonal such that
√
M−1
R is naturally

defined as the diagonal matrix with the inverse square roots of the MR entries. We

further conclude

1 =

[
i
√
M−1
R mDU

√
D−1
l

]T [
i
√
M−1
R mDU

√
D−1
l

]
︸ ︷︷ ︸

O

, (4.17)

where this equation is solved for any orthogonal matrix O. In dependence of this matrix,

the Dirac matrix can be expressed as

mD = i
√
MRO

√
DlU

†. (4.18)

The advantage of this parametrization is that the theoretical parameters are split up into

the phenomenological, i.e. the light neutrino masses in Dl and the mixing angles in the

PMNS matrix U , left over theoretical, i.e. the right-handed masses in MR, and 6 param-

eters contained in O. These latter 6 parameters are said to have no phenomenological

relevance. We can, however, find the relation

R =
(
M−1
R mD

)†
= −iU

√
DlO

†
√
M−1
R , (4.19)

which establishes a connection between O and the active-sterile mixing R.

Within this parametrization it is easy to scan the space of theoretical parameters such

that only the subspace that yields the right masses and mixing angles is considered.

4.3.2 Parametrization for the Pseudo-Dirac Case

In the limit of ML,MR � mD, where this inequality refers to the scales of the matrices,

we generate Pseudo-Dirac neutrinos. The phenomenology of these kind of neutrinos will

be discussed in this section. In this case we cannot use the Casas-Ibarra parametrization

and we have to proceed differently. The parametrization presented here is based on ref.

[32]

First of all we do not diagonalize the mass matrix itself but rather

M†M≈

m†DmD m†DMR

MRmD m∗Dm
T
D

 , (4.20)
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where we already neglected higher order terms like e.g. M2
R. Note that M†M is her-

mitian by construction. We go on by first diagonalizing the Dirac matrix md which can

be performed as usual by a biunitary transformation such that

U †RmDUL = m̂D , (4.21)

where m̂D is diagonal. Thus the basis of the diagonal matrix is given by

ν̂L = U †LνL . (4.22)

UL can be considered as the PMNS matrix and will be called U in the following. We

now define the unitary matrix

V =

U 0

0 U∗R

 , (4.23)

which, if the neutrinos were purely Dirac fermions, would completely diagonalize the

matrix M†M. In our case, however, we find

V †(M†M)V =

 m̂2
D m̂DU

†
RMRU

∗
R

UTRMRURm̂D m̂2
D

 . (4.24)

Although the non-diagonal entries are very small compared to the diagonal block-entries,

we cannot simply neglect them as these are responsible for breaking the degeneration

of the mass eigenvalues. To find the mass eigenvalues we only have to consider the

elements of the matrix in eq. (4.24) which connect the initially degenerated couples of

mass eigenvalues. These are just the diagonal entries of the off-diagonal blocks. We

therefore effectively find three 2× 2 matrices of the form m2
i miε

∗
i

miεi m2
i

 , (4.25)

where the mi are the diagonal entries of the matrix m̂D and εi ≡ (UTRMRUR)ii. Note

that |εi| � mi. These 3 matrices yield 3 pairs of mass eigenstates given by

νS,i ≡
1√
2

(
νL,i + eiφiνcL,i

)
, νA,i ≡

1√
2i

(
νL,i − eiφiνcL,i

)
, (4.26)

where eiφi = εi
|εi| . The corresponding mass eigenvalues read

m2
S,i = m2

i +mi|εi|, m2
A,i = m2

i −mi|εi|. (4.27)
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Figure 4.1: Seesaw
mass spectrum in con-

formal framework.

Figure 4.2: Pseudo-
Dirac mass spectrum.

This is the main characteristic of Pseudo-Dirac neutrinos. The masses of a pair are

slightly different such that they cannot be combined to a Dirac neutrino. The full

unitary matrix V̂ which fulfils the relation

V̂ †
(
M†M

)
V̂ = M2

d , (4.28)

where M2
d is the fully diagonalized 6× 6 mass matrix is thus given by

V̂ =

U 0

0 U∗R

 · 1√
2

1 i · 1

D −iD

 =
1√
2

 U iU

U∗RD −iU∗RD

 , (4.29)

where D = diag(e−iφ1 , e−iφ2 , e−iφ3). From eq. (4.28) we then find

M†M = V̂ M2
DV̂
†. (4.30)

Evaluating the right-hand side and comparing the upper left blocks gives the approxi-

mation

m2
D = Um̂2

DU
†. (4.31)

This result can immediately be derived from eq. (4.21). We see that in the Pseudo-Dirac

case, the scale of the mass eigenstates comprised of mainly active neutrino states does

not depend on the right-handed masses MR. The Dirac masses rather determine the

central mass of the mass eigenvalue pairs while MR decides how big the splitting between

the members of this pair is. For a distinction of the seesaw and the Pseudo-Dirac mass

spectrum see fig. (4.1) and (4.2).
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4.4 Phenomenology of Heavy Sterile Neutrinos

Introducing new particles to the Standard Model is always accompanied by a change of

the expected phenomenology. Consequently the predictions of the extended theory have

to be compared with observations. In this section we describe the phenomenological con-

sequences of the introduction of sterile right-handed neutrinos in a non-conformal way

or equivalently in a conformal way like done within this chapter. These phenomenolog-

ical findings are confronted with experimental results which in our parameter scan will

serve as boundaries for viable regions in parameter space. Basically there are two main

properties of theories including right-handed neutrinos. One is based on the Majorana

character of right-handed neutrinos and one is the non-unitarity of the resulting effec-

tive Lagrangian for active neutrinos. Further phenomenological implications of sterile

neutrinos can be found in [33–35].

Neutrinoless Double Beta Decay

In contrast to the neutrinoless double beta decay (2β0ν) there is the double beta decay

2β2ν which is allowed in the Standard Model. There two neutrons or two protons in the

nucleus decay into two protons or neutrons, two electrons or positrons and two neutrinos

or antineutrinos respectively, resulting in the atomic transition

A(Z,N) −→ A(Z ± 2, N ∓ 2) + 2e∓ + 2νe(2νe) , (4.32)

where A denotes the nucleus, Z is the proton number and N is the number of neutrons.

The double neutron decay is described by the diagram

W

W

dL

dL

uL

eL

νL

νL

eL

uL

This process, however, is found to have a lifetime of T & 1019 years.

The neutrinoless double beta decay on the other hand is not possible within the SM
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as it violates lepton number conservation. Roughly speaking, in this process a neutrino

produced in one decay can be absorbed as an antineutrino in the other decay. The decay

is defined by

A(Z,N) −→ A(Z ± 2, N ∓ 2) + 2e∓ (4.33)

and is described by the diagram

W

νL

νL

W

dL

dL

uL

eL

eL

uL

M

As the nucleus is very heavy compared to the electrons, its recoil can be neglected and

the total energy is absorbed by the electrons. Thus the energy profile of the electrons is

a discrete line which is searched for in experiments like GERDA [36].

The amplitude of this process is found to be proportional to the effective mass of the

electron-neutrino which is defined by

〈mee〉 ≡
∑

iU
2
eimi , (4.34)

where mi denotes the mass eigenvalues and Uei are the corresponding entries of the full

6× 6 matrix which transforms between flavour and mass eigenstates.

In general the mass parameters can be positive or negative. Dirac pairs consist of mass

degenerate Majorana particles with opposite phases such that their contributions to the

effective mass cancel exactly and the amplitude is zero as expected. Similarly, in the

Pseudo-Dirac case the terms almost cancel and the neutrinoless double beta decay is

very much suppressed. The upper bound of the effective mass has been placed at around

0.2 eV [36].

In the special case of heavy sterile neutrinos we find the approximation [37]

〈mee〉 ≈
∑3

i=1U
2
eimi −

∑6
i=4F (A,mi)U

2
eimi . (4.35)

For TeV neutrinos we can use F (A,mi) ≈ (ma/mi)
2f(A), where ma ≈ 0.9 GeV and

f(A) depends on the isotope [38, 39].
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Non-Unitarity of the PMNS Matrix

Due to the introduction of sterile neutrinos the PMNS matrix becomes non-unitary as

it has been explained before. The relevant part of the effective interaction Lagrangian

in the mass basis reads

Lint = − e

2cwsw
Zµ

3∑
i,j=1

∑
α=e,µ,τ

νL,iU
†
iαγ

µUαjνL,j

− e√
2sw

Wµ

3∑
i=1

∑
α=e,µ,τ

νL,iU
†
iαγ

µlL,α + h.c. . (4.36)

where U is the non-unitary PMNS matrix, lL are the charged leptons, cw and sw stand

for cos θw and sin θw respectively, θw is the Weinberg angle and Z and W denote Z-

and W-Boson respectively. The heavy right-handed neutrinos have been integrated out.

From this Lagrangian we can calculate the decay widths for the W -bosons into charged

leptons and neutrinos

Γ(W → lανα) =
GFM

3
W

6
√

2π
(UU †)αα ≈

GFM
3
W

6
√

2π
(1−RR†)αα , (4.37)

where GF =
√

2g2

8M2
W

and MW is the W -mass. The measurements of these decays give

information about the diagonal entries of the non-unitarity of the PMNS matrix.

Furthermore, there is missing energy in the decay of the Z-boson. This energy is carried

by neutrinos being produced in a Z decay. These are called invisible Z decays and the

amplitude is given by

Γ(Z → invisible) =
∑
i,j

Γ(Z → νiνj) =
GFM

3
Z

12
√

2π
(1 + ρt)

∑
i,j

|(U †U)ij |2 , (4.38)

where the factor ρt ≈ 0.008 accounts for radiative corrections.

Another implication of heavy sterile neutrinos are lepton universality violations. To

describe what this means we define a measure for the non-unitarity of the PMNS matrix

by

εα ≡
3∑
i=1

|Rαi|2. (4.39)

The values for α = e, µ, τ theoretically do not have to be the same. If they are not we

say that lepton universality is violated. There are several universality tests, e.g. the

ratio
Γ(τ → ντµνµ)

Γ(τ → ντeνe)
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compares two tau-decays into lepton pairs of different flavour. From this ratio we can

deduce
(UU †)µµ
(UU †)ee

=
εµ
εe

= 0.9999± 0.0020 .

From a collection of these kind of ratios the following universality bounds can be found

[40]

εe − εµ = 0.0022± 0.0025 , (4.40a)

εµ − ετ = 0.0017± 0.0038 , (4.40b)

εe − ετ = 0.0039± 0.0040 . (4.40c)

The last implication of sterile neutrinos we want to consider are rare charged lepton

flavour violating decays lα → lβγ :

νi

W−

W−

lα lβ

γ

Nαi N †iβ

The branching ratio between this decay and the lepton number conserving decay lα →
ναlβνβ is given by

BR(lα → lβγ) =
Γ(lα → lβγ)

Γ(lα → ναlβνβ)
=

3α

32π

|(UU †)αβ|2

(UU †)αα(UU †)ββ
. (4.41)

This decay gives delivers information about the non-diagonal entries of the non-unitarity.

For the parameter scan, however, we will use the full formula, which takes into account

the propagation of the heavy states in the loop. It then reads especially for the transition

µ→ eγ [41]

BR(µ→ eγ) =
3α

32π
|δν |2 , (4.42)

where

δν = 2
∑
i

U∗eiUµi g
(
m2
i /M

2
W

)
≈ 2

∑6
i=4U

∗
eiUµi

[
g
(
m2
i /M

2
W

)
− 5/3

]
, (4.43)

where U is now the full unitary transformation matrix and g(x) is the so called loop

function

g(x) =

∫ 1

0

(1− α)dα

(1− α) + αx
[2(1− α)(2− α) + α(1 + α)x] . (4.44)
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In the last step we used that for the light eigenstates we find
m2
i

M2
W
� 1 and hence we

used g(m2
i /M

2
W ) ≈ g(0) = 5/3. Beyond that we used that the unitarity of U yields∑6

i=1U
∗
eiUµi = 0.

4.5 Parameter Scan for Sub TeV Neutrinos

The attractiveness of the Meissner-Nicolai model lies in the fact that we do not have to

introduce a new mass scale. We rather generate the right-handed Majorana masses via

electroweak symmetry breaking which can be considered more natural. In this way we

set an upper limit to the mass of the heavy sterile neutrinos which will be of electroweak

scale. This means that we consider maximally TeV neutrinos. This is because radiative

symmetry breaking naturally generates vevs of similar scales such that we assume the

vev of the singlet scalar to be around 1 TeV. As we further assume the theory to be

perturbative the coupling constants may not be much bigger than 1. Thus the scale

of the heavy neutrinos is around 1 TeV maximally. The only relevant parameters for

neutrino masses are thus given by the vacuum expectation values of the Higgs field and

the newly introduced singlet scalar and the Yukawa couplings of Dirac and Majorana

type.

If we considered only Pseudo-Dirac neutrinos, current upper limits for neutrino masses

would require the corresponding Yukawa couplings to be below 10−11. It is a common

opinion to consider this fact as unnatural. In the framework of the Meissner-Nicolai

model we therefore ask the question which regions of parameter space of Dirac and

Majorana Yukawa couplings are phenomenologically allowed and how these couplings

can be arranged such that they are as close as possible to 1 and approach each other

maximally. We will see how this approach happens at the cost of non-unitarity of the

PMNS matrix. Furthermore, we will show how experimental bounds set limits to the

viable regions in parameter space. The experimental results taken into account are the

bounds on the branching ratio of the µ→ eγ decay, the effective electron neutrino mass

and lepton universality bounds. Assumed neutrino masses for different hierarchy models

and mixing angles have been implemented within the parametrization.

We saw that for heavy sterile neutrinos the Casas-Ibarra parametrization is advantageous

as it separates the phenomenological degrees of freedom, i.e. neutrino masses and mixing

angles, obtained from oscillation experiments. In the Meissner-Nicolai scenario eq. (4.18)

can be written as

YD = i

√
〈ϕ〉
〈H〉

√
YMO

√
DlU

† , (4.45)

which now provides a relation between the matrix of Dirac Yukawa couplings YD and

the matrix of Majorana Yukawa couplings YM . This relation, however, is not unique
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because of the 6 free parameters in O. These can be parametrized by three complex

angles each being associated to a rotation matrix. The product of these three rotation

matrices then forms O. With eq. (4.19) we obtain

R =
−i√
〈ϕ〉

U
√
DlO

†
√
Y −1
M . (4.46)

Based on this our C++ program produced 100,000 random values for the six free pa-

rameters of the orthogonal matrix and for the right-handed Majorana masses in certain

intervals and calculated the corresponding Dirac Yukawa matrix YD and active-sterile

mixing R. From the active-sterile mixing it then determined the measure for the non-

unitarity given by the quadratic sum of all entries of R. The real parameters of O were

randomly chosen between 0 and 2π, whereas the complex parameters lie between −16

and 16. The values are distributed linearly over the intervals. For the right-handed

masses we chose a logarithmic distribution between 10−2.5 and 103.5 GeV, where they

were chosen not to differ by more than one order of magnitude among each other. We

arbitrarily chose the vev of the singlet scalar ϕ to be 1 TeV which translates for the

possible Majorana Yukawa couplings to lie between 10−5.5 and 100.5. The particular

Yukawa couplings haven then been averaged over to yield one average number for the

Dirac couplings and one for the Majorana couplings. This averaging has been done as

we are most interested in how the scale of Majorana and Dirac coupling constants are

related to each other. We are not interested in detailed information about the biggest

or the smallest value of the couplings. Furthermore the relation between right-handed

masses has been chosen such that there will be no large gaps between smallest and

biggest values. These two numbers then have been plotted in a 2D map together with

their respective value of non-unitarity which is expressed by a color scheme. The entries

of U which can, to first order, be identified with the PMNS matrix, are determined by

oscillation experiments and their best fit values and 1σ ranges are given by [42]

sin2 θ12 = 0.30± 0.013 (4.47a)

sin2 θ23 = 0.41+0.037
−0.025 (4.47b)

sin2 θ13 = 0.023± 0.0023 (4.47c)

δCP = 300+66
−138 , (4.47d)

where the θij denote the mixing angles and δCP denotes the CP-phase. The two Ma-

jorana phases have been set to zero as these are unknown. The neutrino masses are

not known exactly but only the mass squared differences. Therefore we examine three

different mass hierarchy models namely the Normal Hierarchy with the mass values

m1 ≈ 0eV; m2 = 8.660 · 10−3eV; m3 = 4.97 · 10−3eV , (4.48)



Phenomenological Study 53

the Inverted Hierarchy, where

m1 = 4.85 · 10−2eV; m2 = 4.93 · 10−2eV; m3 ≈ 0eV , (4.49)

and the Quasi-Degenerate Hierarchy given by

m1 ≈ 0.1eV; m2 ≈ 0.1eV; m3 ≈ 0.1eV . (4.50)

Until now our map would show 100,000 coloured points all yielding the right active neu-

trino masses, mixing angles and CP-phase. These points, however, are reduced by the

requirements shown in the previous section. We will only accept points which yield the

right effective electron neutrino mass, lepton universality bounds and µ→ eγ branching

ratio. All other points are dismissed.

In figures 4.3, 4.4 and 4.5 we show the results of the parameter scan for Normal, Inverted

and Quasi -Degenerate Hierarchy. First of all we observe that there is no fundamen-
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Figure 4.3: Phenomenological viable points in the space of Dirac and Majorana
Yukawa couplings for the Normal Hierarchy. The colour of the points represents the
corresponding degree of non-unitarity of the PMNS matrix. The lines describe the

borders to forbidden regions set by different phenomenological bounds.

tal difference between the three cases. Scales, the shape of the allowed region and the

boundaries are all qualitatively identical.

Basically it is evident that there is no unique relation between Majorana and Dirac

couplings. The bigger e.g. the Majorana coupling the broader is the interval of possible

Dirac couplings. This in turn means that there is a minimum in the Majorana and Dirac
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Figure 4.4: Phenomenological viable points in the space of Dirac and Majorana
Yukawa couplings for the Inverted Hierarchy. The colour of the points represents the
corresponding degree of non-unitarity of the PMNS matrix. The lines describe the

borders to forbidden regions set by different phenomenological bounds.
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Figure 4.5: Phenomenological viable points in the space of Dirac and Majorana
Yukawa couplings for the Quasi Degenerate Hierarchy. The colour of the points repre-
sents the corresponding degree of non-unitarity of the PMNS matrix. The lines describe

the borders to forbidden regions set by different phenomenological bounds.
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couplings. We can say that the Dirac coupling will not be smaller than 10−9 and the Ma-

jorana coupling not smaller than 10−5. The broadening of the allowed region for bigger

couplings and the non-uniqueness can be explained by a change in the non-unitarity or

equivalently in the active-sterile mixing. For a fixed Majorana coupling the active-sterile

mixing grows with increasing Dirac coupling. The observation of non-uniqueness is in

accordance with eq. (4.45). If we look at areas of fixed colour we find almost straight

lines where lines of different colours lie parallel to each other.

Considering the different boundaries we see that the effective mass sets the most im-

portant limits in the relevant energy scales. The bounds set by the branching ratio of

the µ → eγ decay becomes important at the TeV scale of the heavy neutrinos. Lepton

universality does not play a role at all. These constraints all have in common that they

set upper bounds to the non-unitarity or active-sterile mixing. The smaller the couplings

the smaller is the maximally allowed active-sterile mixing.

Note that these boundaries cannot be expected to be exact as the process of averaging

smears out these borders. Since the boundaries have been determined by fitting the

outermost points of the prohibited regions, there are some viable points slightly below

the border. As the mathematical shape of these borders is not known exactly, polyno-

mials of convenient order have been used as fitting functions. Therefore, the shape of

the borders especially at the end of the lines may not be taken as imperative. It is the

approximate curvature and position of the lines that is of importance.

Note as well that all viable points lie well above the line which represents the ratio of

10−2 between Dirac and Majorana masses and can thus according to eq. (4.9) be trusted

(see fig. 4.9).

The region of viable points is limited from the left by the value of minimal active-sterile

mixing. This line is given by eq. (4.45), where O is set to 1, i.e. by

YD = i

√
〈ϕ〉
〈H〉

√
YM
√
DlU

† . (4.51)

That means that in a logarithmic plot this relation is represented by a straight line with

gradient 2.

At the top the region is limited by the requirement of the theory to be perturbative, i.e.

by the limit of the Majorana coupling constant to be roughly below 1.

The general result obtained by this scan is that for the Meissner-Nicolai scenario Majo-

rana and Dirac couplings can be approached upto a ratio of almost 10−2 within current

experimental bounds. This happens at the cost of non-unitarity which is bounded from

above by phenomenological requirements. Thus we do not have to introduce an arbitrary

mass scale for the right-handed neutrinos and we can even bring the Dirac coupling upto

approximately 10−2 at a Majorana coupling of order 1. In this case there is no reason

to talk about unnaturally small Yukawa couplings.
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Figure 4.6: Small εi. Figure 4.7: Big εi.

4.6 Parameter Scan for Pseudo-Dirac Neutrinos

In the case of Pseudo-Dirac neutrinos, i.e. if the right-handed Majorana scale is much

smaller than the Dirac scale, we saw that we have to use a different parametrization.

From eq. (4.31) we get

Y 2
D =

1

〈H〉2
Um̂2

DU
† , (4.52)

where m̂D is the diagonal matrix with the central masses of neutrino pairs as entries and

U is the PMNS matrix. This means that the Dirac Yukawa couplings do not depend on

the small numbers εi which are now given by

εi = (UTRYM 〈ϕ〉UR)ii (4.53)

and thus not on the Majorana Yukawa coupling constants. As before we average over

all entries of the Dirac and Majorana matrices. Therefore we should find a straight line

at a discrete value of the averaged Dirac Yukawa couplings degenerated in the Majorana

Yukawa coupling down to the pure Dirac neutrino case.

We now have to ask the question which are the experimental bounds imposed on Pseudo-

Dirac neutrinos. Like seen before the right-handed masses lead to a small splitting of the

squared masses of the Pseudo-Dirac pairs of 2εimi. This splitting, however, cannot be

detected as long as it lies within the accuracy of the values for neutrino masses obtained

from the measurement of mass squared differences within a certain hierarchy model. In

dependency of how the scale of the Majorana couplings is chosen the central masses can

be shifted more or less by a value δ without the actual mass eigenvalues exceeding or

going below the accuracy limits of the neutrino masses (see fig. 4.6 and 4.7).

In our computation we therefore generated 50,000 random values for the right-handed

masses where we roughly assumed the relation

εi = MR,i , (4.54)

and for the deviations δ of the central masses. The εi were generated relative to the cen-

tral mass by logarithmically generating a number between 10−6 and 1 and multiplying
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this number with the corresponding central mass, obtained from m̂D. The shift of the

central mass is performed logarithmically as well within an interval of 50% below and

above the assumed mass. These large deviations have been chosen to run well beyond

the borders of phenomenological viability and thus to avoid the risk of influencing the

border’s shape by the choice of a possibly too small deviation interval. From that we

then calculated the six mass eigenvalues and checked if they deviate by more than 5%

from the assumed active neutrino masses. For the Pseudo-Dirac scenario we only inves-

tigated the Quasi-Degenerate Hierarchy mass spectrum. The assumed active neutrino

masses are therefore given by eq. (4.50).

In fig. 4.8 we show the results of this scan where the colour in this case represents the

effective electron neutrino mass. The viable region tapers at the top. This is something
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Figure 4.8: Parameter scan for Pseudo-Dirac neutrinos. The colour scheme represents
the effective electron neutrino mass. The width of the viable region is determined by
the current uncertainty of the active neutrino masses within the Quasi Degenerate

Hierarchy.

we expected as with growing Majorana coupling the mass splitting of two neighboured

mass eigenstates grows and the allowed deviation of the central mass has to decrease

such that the splitting from the central value does not exceed or undercut the accuracy

limit (see fig. 4.6 and 4.7). As soon as the right-handed couplings are under a certain

limit they do not restrict the deviation of the central mass value and the width of the

viable region becomes independent of the scale of the Majorana couplings.
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The line has to go down to complete vanishing of the Majorana couplings which corre-

sponds to the case of Dirac neutrinos. This, however, is not possible to be displayed in

a logarithmic plot.

The colour scheme indicates that the effective electron neutrino mass is even for the

values at the top one order of magnitude below the experimental bounds. Other bounds

investigated for heavy sterile neutrinos do not play a role for Pseudo-Dirac neutrinos.



Phenomenological Study 59

4.7 Summary of the Results

In the framework of conformal invariance we introduced 3 right-handed sterile neutrinos.

The right-handed Majorana masses are most easily generated by introducing a singlet

scalar which replaces the non-dynamical Majorana mass and equipping it with a vev.

Within this model we found two regions in the parameter space of Dirac and Majorana

Yukawa coupling constants that imply the correct phenomenology. These two regions

are presented in fig. 4.9. The first region at Dirac couplings between 10−13 and 10−12 is

called the Pseudo-Dirac region. It is a narrow band whose width is determined by the

accuracy of the measured mass squared differences of the different neutrino mass states.

The horizontal red line represents the limit of the effective electron neutrino mass given

by 0.2 eV. For the Pseudo-Dirac case we find for the effective mass

|〈mee〉| = |
6∑
i=1

miU ei| ≈ ∆m|
3∑
i=1

U ei| ≈ ∆m, (4.55)

where ∆m is the average Pseudo-Dirac splitting of the mass eigenstates. This splitting

corresponds to the average right-handed Majorana mass. This means that the borderline

for an effective mass of 0.2 eV lies at a Majorana Yukawa coupling of about 2 · 10−13.

The second region between Dirac couplings of 10−9 and 10−1 is called the sub TeV

region because the Majorana mass of the right-handed neutrinos is maximally of TeV

scale. It is mainly limited from the right by the constraints on the effective electron

neutrino mass obtained from measurements of the neutrinoless double beta decay. This

boundary is represented by the red line. From the left it is limited by the boundary of

smallest active-sterile mixing given by eq. (4.51) and is represented by the green line.

Beyond that there are general constraints on the non-unitarity obtained from global fits.

It is known that the non-unitarity has to be below a value of 10−2. This boundary is

represented by the brown line. As the non-unitarity is proportional to RR† where R is

given by eq. (4.46), we can deduce that in a logarithmic plot this boundary is given by

a straight line with gradient 1. The line of smallest active-sterile mixing is given by a

straight line of gradient 2. This leaves us with the triangular structure in the Yukawa

space.

Finally it has to be emphasized that although this parameter scan has been explicitly

performed for the Meissner-Nicolai model, the results can still be used for all theories

yielding Majorana masses for the right-handed neutrinos. In this case the upper limit

of the sub TeV region given by the requirement of the theory to be perturbative, is less

compelling. Generally the triangle representing the sub TeV region can be continued to

a Dirac coupling of 1.
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Chapter 5

Neutrino Mass Generation in

Conformally Invariant Theories

5.1 Conformal Models of Neutrino Mass Generation within

the SM Gauge Group

In this section we want to learn how extensions of the Standard Model could be per-

formed in a conformally invariant way such that neutrino masses are generated. We

will not yet extend the Standard Model gauge group but only study particle extensions

taking the 6 × 6 mass matrix in the Majorana basis as a guidance. I.e. we assume the

Standard Model to be at least extended by three right-handed neutrinos.

In the first subsection we will put together some topological building rules to see what is

the basic shape of a conformal neutrino mass generation diagram. These rules will later

help us to deduce more subtle topological lemmata for conformally invariant theories in

subsection 3 and 4.

We will then study different possibilities to conformally influence different parts of the

one-flavour 2× 2 mass matrix taking non-conformal neutrino mass models as a guiding

principle. Therefore, in the second subsection, we will study how to affect the left-

handed Majorana entry of the mass matrix. This subsection is also supposed to show

how conformal neutrino mass building works in general.

The fifth section will deal with models which influence the right-handed Majorana entry.

5.1.1 General Conformal Building Rules

After studying the phenomenological requirements for the introduction of right-handed

neutrinos we now want to see how we can build neutrino masses in conformally invariant

61
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theories from a diagrammatic point of view. In this section we want to show what are

general topological building rules imposed by conformal invariance. The idea behind

this diagrammatic approach is that we want to construct an effective Majorana mass

term of the form

MLνLν
c
L . (5.1)

It is clear that this picture cannot cover the generation of pure Dirac neutrinos. Further-

more, we will generally use these diagrams to construct Majorana mass terms for other

entries of the mass matrix in order to find possible corrections to the diagonal entries.

It is part of the idea to integrate out several particles and it is important to make clear

which particles are integrated out and which particles will stay in the theory.

Generally we will have an incoming particle of certain chirality, e.g. the left-handed

neutrino νL and its antiparticle of opposite chirality as an outgoing particle, e.g. νcL

which is right-handed. In between we assume the fermions only to couple via Yukawa

couplings of the form

ψLψRϕ and ψRψLϕ , (5.2)

where the ψ are fermions and ϕ represents a scalar. Therefore, the coupling of the

incoming fermion line results in an outgoing fermion line. As fermions cannot have a

vev the result is a connected fermion line between incoming and outgoing fermion.

Mass terms are forbidden in the Lagrangian, i.e. no diagrams containing parts like

are allowed. Instead we need scalar insertions obtained from eq. (5.2) which are

represented by the diagram

We will call these kind of insertions ’mass insertions’. Each diagram needs an odd number

of mass insertions for the following reason. For the generation of Majorana masses we

need an incoming particle and its outgoing antiparticle with opposite chirality. The

Yukawa couplings given by eq. (5.2) interchange chirality of the fermion. Consequently

we need an odd number of these couplings, i.e. mass insertions, such that incoming and

outgoing fermion have opposite chirality.
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For the scalars the following rules hold. Conformal invariance only allows for potential

couplings which connect 4 scalars, i.e. diagrams of the form

Note that we work within the flavour basis, i.e. we use fields that appear in the unbroken

Lagrangian. The breaking of the symmetry will be denoted by the insertion of a scalar

vev which will look like

〈ϕ〉

These most general rules will be used throughout this work and will later serve to derive

more special topological rules with regard to certain questions.

5.1.2 Modifying the Left-Handed Majorana Entry

In this section we want to see which models influence the left-handed Majorana entry of

the mass matrix. This task is special insofar as generating left-handed Majorana masses

suffices to explain the currently known neutrino phenomenology. Thus we would not even

need right-handed neutrinos. On the other hand, if they exist we can also generate an

effective left-handed Majorana mass term by integrating them out. This was implicated

in the Meissner-Nicolai model when we described the mass generation by a diagram. But

there is a conceptual difference between the diagrammatic approach and calculating mass

eigenvalues. In the former case we integrated out the right-handed neutrinos and find

an effective Majorana mass term for the left-handed neutrinos, whereas in the latter

case we build a Majorana neutrino out of left- and right-handed neutrinos such that the

mass matrix is diagonal. These two pictures can only be compared if the active-sterile

mixing is small enough. We will sometimes mix these two pictures assuming that this

is the case. Therefore, we will sometimes not only affect the left-handed entry but also

integrate the right-handed neutrinos out like we did in the Meissner-Nicolai model.

We will approach this subject by considering the non-conformal motivation and then
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finding conformal models which have tree-level diagrams as main contributions. Still we

will add higher order terms to see what topologies are in principle admissible. From there

we will then derive two topological lemmata, one dealing with radiative mass generation.

Non-Conformal Motivation

If we want to generate left-handed Majorana masses and do not necessarily want to

introduce right-handed neutrinos we can ask how the scalar sector can be expanded

such that left-handed neutrinos couple to those. We therefore couple the SU(2)L doublet

containing the left-handed neutrino L to its antiparticle doublet defined by

Lc = γ0Ciσ2L
∗ , (5.3)

where γ0C acts on the Dirac space like in chapter 3, whereas the σ2 acts on the SU(2)

space. Doing this we find

LLc ∼ (2, 1)× (2, 1) = (1, 2) + (3, 2) , (5.4)

where the brackets denote the quantum numbers (SU(2)L × U(1)Y ). Thus the group

theoretical analysis shows that L and Lc can be combined to a SU(2) singlet or a SU(2)

triplet with hypercharge Y = 2. Therefore we can extend the scalar sector by either

a triplet ∆ : (3,−2) or by a singlet δ : (1,−2) to form a SM singlet from a Yukawa

coupling. For both cases we will see examples how neutrino masses can be generated.

In the case of the scalar triplet the most famous non-conformal mechanism is the type

II seesaw mechanism [43–46], while for the extension by a scalar singlet the Zee-Babu

model will be presented [47, 48]. We will see both models in slightly varied form when

investigating conformally invariant models.

Beyond expanding the scalar sector or adding singlet right-handed neutrinos, there is a

third way of extending the SM particle content that will lead to neutrino masses. This

is we can introduce a fermionic triplet Σ : (3, 0). This particle content yields the type

III seesaw mechanism which will be discussed as well [49–51].

• Type II Seesaw Mechanism

Introducing a triplet scalar like described above yields the additional Yukawa term1

−LY = g∆L̄~σ∆Lc + h.c. , (5.5)

1Note that from now on we will only consider the one-flavour case.
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where g∆ is a coupling constant. We define the 2× 2 matrix

∆ = ~σ∆ =

 1√
2
∆− ∆0

∆−−
1√
2
∆−

 , (5.6)

which transforms under the SU(2)L group like

∆→ U∆U † , (5.7)

where U is the normal transformation matrix for SU(2) doublets.

Beyond that there are additional terms in the potential involving the triplet. Rel-

evant for the type II seesaw mechanism is the term

µ[HT iσ2∆H + h.c.] , (5.8)

where µ is a coupling constant with mass dimension 1. This means that this term

would not be allowed in a conformally invariant theory.

Using these couplings we can construct the diagram

∆

H H

L L

If we then integrate out the scalar triplet, this diagram leads to the effective

dimension 5 operator
1

2Λ

(
L̄cH̃∗

)(
H̃†L

)
+ h.c. , (5.9)

which is called the Weinberg Operator [52]. Λ includes the mass of the scalar

triplet and the corresponding couplings. Eq. (5.9) then yields after spontaneous

symmetry breaking the left-handed Majorana mass term

−Lm =
1

2
MLνLν

c
L + h.c. , (5.10)

where ML is given by

ML =
〈H〉2

Λ2
µ . (5.11)
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We see that the bigger the mass scale of the triplet the smaller the neutrino mass.

In this way the mass of the triplet suppresses the mass of the neutrinos which

explains the name seesaw mechanism.

• The Zee-Babu Model

The Zee-Babu model introduces a singlet scalar δ− which has a single negative

electric charge and a doubly charged singlet scalar ε++. The new part of the

Yukawa Lagrangian induced by these scalars is given by

−LY = gδL̄L
cδ− + gεlcRlRε++ + LHlR + h.c. , (5.12)

where lR is the charged right-handed lepton. The relevant extension of the poten-

tial is given by the term

µδ−δ−ε++ + h.c. , (5.13)

where µ is a coupling constant with mass dimension 1. With these couplings we

can construct the following diagram:

δ−

L lR

lR

ε++

L

δ−

L L

〈H〉 〈H〉

In the Zee-Babu model the left-handed Majorana masses are generated radiatively.

It has the advantage that for each loop the mass is suppressed by a factor of

1/(16π2) ≈ 10−2 and could thus give a very natural explanation for the smallness

of neutrino masses. Evaluating this diagram yields the neutrino mass

ML = 8µm2
l g

2
δgεI , (5.14)

where ml is the mass of the charged lepton and

I =

∫
d4p

(2π)4

∫
d4q

(2π)4

1

p2 −m2
l

1

q2 −m2
l

1

p2 −m2
δ

1

q2 −m2
δ

1

(p− q)2 −m2
ε

.

(5.15)
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• Type III Seesaw Mechanism

Expanding the SM particle content by a fermionic triplet yields the following

additional terms in the mass Lagrangian

−Lm = MΣ Tr
[
ΣcΣ

]
+ h.c. (5.16)

and in the Yukawa Lagrangian

−LY = gΣH̃
†ΣL+ h.c. , (5.17)

where in this case the fermionic triplet is already in its 2× 2 representation

Σ =

 1√
2
Σ0 Σ+

Σ−
1√
2
Σ0

 (5.18)

and it transforms under the SU(2) gauge group exactly the way the 2×2 represen-

tation of the scalar triplet does. Note as well that MΣ and gΣ are pure numbers.

Generally these two objects could be matrices, but for simplicity we do not con-

sider such a case. With these new terms we can build the diagram

Σ

Σ
L L

〈H〉 〈H〉

MΣ

In this case the neutrino mass is proportional to the inverse mass of the fermionic

triplet, i.e.

ML ∝
〈H〉2

MΣ
. (5.19)

Thus for the same reason, namely that the neutrino mass is suppressed by the

large mass of a different particle, this is called seesaw mechanism.

Conformal Tree-Level Models

With the different particle contents suggested by the non-conformal analysis we can now

look for conformally invariant models with similar particle content. It will be very im-

portant in this section to point out which particles have been integrated out and which
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picture of neutrino mass generation we are considering. It will become clear in this

section how the two pictures explained before are related to each other. To do so and

for the sake of completeness we will come back to the already known Meissner-Nicolai

model. Note again that for the rest of this work we will only consider the one-flavour case.

• SM + νR +ϕ

Particle content: L : (2,−1); H : (2, 1); νR : (1, 0); ϕ : (1, 0),

Yukawa Lagrangian: −LY = gHLH̃νR + 1
2gϕϕν

c
RνR + h.c.

Potential: VI = λH(H†H)2 + λϕ(ϕ†ϕ)2 + λHϕ(ϕ†ϕ)(H†H)

With this we find the diagrams

νR

νR

〈H〉 〈ϕ〉 〈H〉

L L +
νR νR

H H

〈H〉 〈H〉

〈ϕ〉

L L

+
νR νR

H ϕ

〈H〉 〈ϕ〉 〈H〉

L L +
νR

νR

ϕ H

〈H〉 〈ϕ〉 〈H〉

L L

We have already seen the first diagram while the other three are new. They are

one-loop corrections to the first diagram and have thus a smaller contribution to

the total neutrino mass. Further contributions have either at least two loops or 9

mass insertions. However, these diagrams have even smaller contributions.

It is now important to note that by integrating out the right-handed neutrinos we

reduce the 2× 2 matrix to a 1× 1 matrix, i.e. to a real number. In this way it is

not only a correction to the left-handed Majorana mass term in the 2× 2 matrix

but rather the reduction of the whole matrix.
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We therefore want to consider now a real correction of the left-handed Majorana

entry without integrating out the right-handed neutrinos. We do this by introduc-

ing a scalar triplet.

• SM + ∆

Particle content: L : (2,−1); H : (2, 1); ∆ : (3,−2)

Yukawa Lagrangian: −LY = g∆L̄~σ∆Lc + h.c. = g∆(L̄~σ∆Lc + L̄c~σ∆∗L)

Potential:

VII.0 = λH(H†H)2 + λ∆T Tr (∆†∆)2 + λT∆(Tr ∆†∆)2

+λH∆,1(H†H) Tr ∆†∆ + λH∆,2H
†∆∆†H ,

All diagrams with upto 3 mass insertions and one loop are given by

L L

〈∆〉

+
L

L
L L

〈∆〉 〈∆〉 〈∆〉

+

∆

L L

∆

L L

〈∆〉, 〈H〉 〈∆〉, 〈H〉 〈∆〉

+

same diagram closing the

loop between 2nd and 3rd

insertion



Neutrino Mass Generation in Conformally Invariant Theories 70

+

∆

L L

∆

L L

〈∆〉 〈∆〉

〈∆〉

If we consider the second, third and fourth diagram, we note that these are not

1-Particle-Irreducible (1PI) diagrams. I.e. we include radiative corrections to the

external line which we should not do when calculating mass corrections. Thus

these kind of diagrams have to be dismissed. However, as our way of finding all

relevant diagrams up to a certain number of mass insertions and involved loops

is based on a topological approach, we will further display these diagrams but

mention if they have to be dismissed. Consequently in this theory only the first

and the fifth diagram are viable.

The first diagram yields a left-handed Majorana mass term given by

−Lm =
1

2
MLνcLνL , (5.20)

where

ML = 2g∆〈∆0〉 . (5.21)

Note that the vev 〈∆0〉 couples to the W- and Z-bosons and thus influences its

masses. Experimental bounds on the ’ρ-parameter’, which is in this case given by

ρ =
1 + 2〈H〉2/〈∆0〉2

1 + 4〈H〉2/〈∆0〉2
, (5.22)

require the ratio
〈∆0〉
〈H〉

< 0.07 . (5.23)

In contrast to non-confromal theories the potential term

µ[HT iσ2∆H + h.c.] , (5.24)

is forbidden as it would spoil conformal invariance. Therefore, if we assume that
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there are no right-handed neutrinos in the theory, the neutrino mass is not affected

by the Higgs vev but only by the triplet vev. Therefore, in this conformally

invariant theory the smallness of the neutrino masses could be explained by the

smallness of the triplet vev, which is, as mentioned, phenomenologically implied.

If, however, the triplet is the only extension of the scalar particle content, then

this conformally invariant theory is not able to explain the scale of the Higgs mass

as the correction due to the triplet vev is too small. Consequently this theory

alone is phenomenologically not viable. The situation changes if we additionally

introduce a singlet scalar ϕ.

• SM + ∆ + ϕ

Particle content: L : (2,−1); H : (2, 1); ∆ : (3,−2); ϕ : (1, 0)

Yukawa Lagrangian: −LY = g∆L̄~σ∆Lc + h.c. = g∆(L̄~σ∆Lc + L̄c~σ∆∗L)

Potential:

VII.1 = VII.0 + λϕ(ϕ†ϕ)2 + λHϕ(ϕ†ϕ)(H†H) + λϕ∆(ϕ†ϕ) Tr ∆†∆

+ λϕ∆H [ϕHT iσ2∆H + h.c.]

This theory yields the following diagrams in addition to those of the previous the-

ory:

∆

L L

〈H〉 〈ϕ〉 〈H〉

+

∆

L L

ϕ

∆

L L

〈H〉 〈H〉 〈H〉 〈H〉 〈∆〉

These are all diagrams with upto three mass insertions and one loop except for a

third diagram that is identical to the third diagram but closes the loop between

second and third mass insertion. Like before the second diagram is topologically

possible but has to be dismissed as it is not a 1PI diagram.

The theory at hand is the conformal analogon of the type II seesaw mechanism. If

we forbid the vev 〈∆0〉, than the main contribution comes from the first diagram

which yields the neutrino mass

ML = 2g∆
λϕ∆H

M2
∆

〈ϕ〉〈H〉2 , (5.25)
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where M∆ is the physical mass of the scalar triplet.

This theory influences only the left-handed Majorana entry without integrating

out the right-handed neutrinos. Thus if we further consider the theory to have

right-handed neutrinos we get back the full mass matrix

M =

ML mD

mD MR

 . (5.26)

Like shown we can then find the eigenvalues and the eigenbasis of this matrix. On

the other hand we can move into the picture where we integrate the right-handed

neutrinos out.

• SM+νR+ϕ +∆

Particle content: L : (2,−1); H : (2, 1); ∆ : (3,−2); ϕ : (1, 0); νR : (1, 0)

Yukawa Lagrangian: −LY = gHL̄H̃νR + gϕϕν̄
c
RνR + g∆L̄~σ∆Lc + h.c.

Potential: V = VII.1

The following two diagrams are additional to those of the ’SM + νR + ϕ - theory’

and the ’SM + ∆ + ϕ - theory’:

νR

νR

H ϕ

〈H〉 〈∆〉 〈H〉

L L +
same diagram where the loop is

closed between ϕ and right H

We saw that two left-handed SU(2) doublets can be combined to a triplet or a

singlet. Another possibility is therefore to couple this singlet combination to a

scalar SU(2) singlet.

• SM + δ−

Particle content: L : (2,−1); H : (2, 1); δ− : (1,−2)

Yukawa Lagrangian: −LY = gδL̄L
cδ− + h.c. = gδ(L̄L

cδ− + L̄cLδ†−)

Potential:

VIII = λH(H†H)2 + λδ(δ
†
−δ−)2 + λHδ(H

†H)(δ†−δ−)
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This theory alone cannot generate a left-handed Majorana mass as the singlet

scalar has electric charge −1. We need an odd number of mass insertions and

thus, as the δ is our only connection to the fermion line, we need an odd number

of δ insertions. Consequently there has to be a net electric charge flowing into

or out of the fermion line. As we have a neutrino, i.e. a neutral particle, as the

incoming and a neutrino as the outgoing particle, however, there may not be a

net electric charge flow from or to the fermion line. This contradiction prevails as

long as there is not an additional scalar with a charged component that couples to

the fermion line. A different argumentation is based on the fact that conformally

invariant theories containing upto SU(2) triplets need a triplet or a singlet scalar

vev to yield neutrino masses, which will be seen in the next section (Lemma 1.1).

Hence, as δ can not gain a vev and as there are no further singlet or triplet scalars

in the theory, neutrino masses cannot be generated.

Therefore, we extend this theory by the scalar triplet examined before.

• SM + ∆ + δ−

Particle content: L : (2,−1); H : (2, 1); ∆ : (3,−2); δ− : (1,−2)

Yukawa Lagrangian: −LY = g∆L̄~σ∆Lc + gδL̄L
cδ− + h.c.

Potential: V = VII.0 + VIII + λδ∆(δ†−δ−) Tr ∆†∆

The diagrams we get in addition to those of the ’SM + ∆ ’- theory are given by

δ

L

L

δ

L L

〈∆〉, 〈H〉 〈∆〉, 〈H〉 〈∆〉

+
same diagram reflected on

a vertical axes.

Unfortunately both diagrams have to be dismissed for the same reason like other

diagrams above. This theory can also be extended by an uncharged singlet scalar

and we can integrate out the right-handed neutrinos. This, however, would be

beyond the scope.

Like seen in the non-conformal case it is also possible to introduce a triplet fermion

to couple to the left-handed doublet. Unlike in the non-conformal scenario we now

have to introduce an uncharged singlet scalar to generate neutrino masses.
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• SM + Σ +ϕ

Particle content: L : (2,−1); H : (2, 1); Σ : (3, 0); ϕ : (1, 0),

Yukawa Lagrangian: −LY = gΣH̃
†ΣL+ gϕϕTr

[
ΣcΣ

]
+ h.c.

Potential: V = VI

The main contribution to the neutrino mass is given by

Σ

Σ
L L

〈H〉 〈ϕ〉 〈H〉

This diagram yields the mass

ML = g2
Σ

〈H〉2

gϕ〈ϕ〉
. (5.27)

5.1.3 Topological Lemma 1 - Weinberg Operator

After having investigated several models we observe that all diagrams so far involve at

least one vacuum expectation value other than the Higgs vev. We will argue that this

is not a coincidence but rather a topological necessity of conformally invariant theories

including upto SU(2) triplets.

To prove this we first note that any diagram has an even number of doublet scalar

mass insertions. This is because all diagrams generating left-handed Majorana masses

have the left-handed doublet as the incoming and the outgoing particle, i.e. we have to

start and end up with a doublet. If we assume that the theory has only upto SU(2)

triplet scalars and fermions, the only possibilities to connect two fermionic doublets are

Yukawa couplings with a scalar triplet or singlet. Connecting a doublet fermion to a sin-

glet fermion involves a doublet scalar. Equivalently a doublet and a triplet fermion are

connected via a scalar doublet. Furthermore, two fermion singlets connect to a singlet

scalar, two fermion triplets to a singlet scalar as well and a triplet and singlet fermion

to a triplet scalar (see Table 5.1). Thus scalar doublets occur if and only if we connect

a fermionic doublet to a fermionic non-doublet. Therefore in order to start and end

up with a fermion doublet we necessarily have an even number of scalar doublet mass

insertions.

Secondly note that in any theory including upto SU(2) triplets there are only potential
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S D T

S ϕSS Dφ̃S Tr [T∆S]

D DDcϕ , D∆Dc φ̃†TL

T Tr [ϕT cT ]

Table 5.1: Possible dimension 4 Yukawa coupling terms. S, D and T denote singlet,
doublet and triplet fermions respectively. ϕ, φ and ∆ denote singlet, doublet and triplet

scalars respectively.

couplings possible that involve an even number of SU(2) doublets. Therefore, each dou-

blet line will couple to an odd number of doublet lines. As the product of an even and

an odd number is an even number there will be left an even number of doublet lines.

Connecting some of these lines and producing a loop will not change this fact as this

closing reduces the number of external doublet lines by an even number.

On the other hand two fundamental building rules for conformally invariant neutrino

mass generation say that firstly there is always an odd number of mass insertions and

secondly potential couplings always connect four lines. Both together yield that there

has to be left an odd number of scalar external lines. Consequently as there has to be an

odd number of vevs but an even number of doublet vevs, there has to remain a singlet

or a triplet vev. Note, however, that this proof is based on the assumption that there

are no fermion or gauge boson loops involved. This finding can be summarized in two

lemmata.

Lemma 1.1: If there are no gauge boson or fermion loops possible, a conformally in-

variant theory with upto SU(2) triplet scalars and fermions needs a singlet or triplet

scalar vacuum expectation value to generate left-handed Majorana neutrino masses.

Lemma 1.2: In a conformally invariant theory with upto SU(2) triplet scalars and

fermions and without fermion or gauge boson loops, left-handed Majorana neutrino

masses cannot be generated via Weinberg’s dimension 5 operator.

The second lemma is true as Weinberg’s dimension 5 operator generates left-handed

Majorana neutrino masses by only the Higgs doublet getting a vev.

5.1.4 Topological Lemma 2 - Radiative Models

In this section we deal with the question if it is possible to choose the particle content and

the vev structure of a theory such that the lowest order contribution to the left-handed
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Majorana masses is fully radiative, i.e. that all scalar lines serving as mass insertions to

the fermion line have to be connected in a loop. This is an attractive aim because, as

mentioned before, every loop suppresses the contribution of a diagram by the kinematic

factor of 1/(16π2).

To guarantee this we first have to forbid vacuum expectation values for all scalars which

can generally connect to the fermion line. We then have to examine under which circum-

stances these scalars can be coupled in loops in such a way that all final vev insertions

are scalars different from those coupling to the fermion line.

Assume first that there may be no fermion or gauge boson loops and that the particle

content is chosen such that the potential has only terms coupling particles pairwise, i.e.

coupling two of the same particles to a total singlet and coupling this to another singlet

produced in the same way. In this case all scalars connected to the fermion line can only

be coupled in such a way that they either produce one scalar of the own kind and two of

another or couple to a particle of the own kind coming from the fermion line and thus

reducing the number of its species by an even number. So either the number of a species

stays the same or reduces by an even number. As there has to be an odd number of

mass insertions to the fermion line it is thus impossible to combine all scalars connected

to the fermion line in a loop without producing at least one external line that already

couples to the fermion line.

We have to note that there is always a scalar that can couple to the fermion line namely

the Higgs doublet connecting left-handed and right-handed charged lepton. We will,

however, consider these kind of mass insertions simply as the masses of the charged lep-

tons. As there has to be an even number of doublet insertions, an odd number of total

mass insertions and thus an odd number of non-doublet insertions the argumentation

from above stays unaffected. We can summarize this result in a lemma.

Lemma 2: In a conformally invariant theory without fermion or gauge boson loops it

is impossible to generate left-handed Majorana neutrino masses in a fully radiative way

if the potential contains only terms coupling scalars pairwise.

Consequently there are five possibilities left that might circumvent Lemma 2 and ulti-

mately yield fully radiative left-handed neutrino masses.

• Possibility 1: We can introduce a potential coupling of four different SU(2) sin-

glet scalars such that their hypercharges add up to zero. In this case one SU(2)

singlet with vanishing hypercharge has to be included as we need an electrically

neutral scalar to gain a vev.

With this kind of coupling it is indeed possible to construct a theory that gener-

ates neutrino masses fully radiatively. Consider as an example the following theory
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which includes the right-handed charged lepton lR and is extended by the singly

charged scalar δ− and the doubly charged scalar ε++:

Particle content: L : (2,−1); lR : (1,−2)

H1 : (2, 1); δ− : (1,−2); ε++ : (1, 4)

Yukawa Lagrangian: −LY = gδL̄L
cδ− + gεlcRlRε++ + LHlR + h.c.

Potential: V = λϕδ−δ−ε++ + h.c.+ ...

For this theory we find the radiative generation of neutrino masses represented by

the diagram

δ−

L lR

lR

ε++

L

δ−

L L

〈ϕ〉

The crosses denote the insertion of a Higgs vev, i.e. they represent the mass of the

charged lepton. This theory is the conformally invariant analogon to the Zee-Babu

model. The corresponding left-handed neutrino mass is given by

ML = 8λ〈ϕ〉m2
l g

2
δgεI , (5.28)

where I is given by eq. (5.15).

• Possibility 2: We can introduce a potential coupling of 4 different SU(2) doublets

such that their hypercharges add up to zero in the following structure(
φ†1φ2

)(
φ†3φ4

)
. (5.29)

However, this term alone cannot change the situation described above as there

is always an even number of doublet insertions leaving an odd number of singlet

and triplet insertions. The argumentation of pairwise potential couplings can now

be used for the triplet and singlet mass insertions without being affected by this

doublet term.

• Possibility 3: A potential term coupling 4 different SU(2) triplets such that their

hypercharges add up to zero in the following way(
∆†1∆2

)(
∆†3∆4

)
. (5.30)
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It is beyond the scope of this work to show an explicit example for the radiative

generation of neutrino masses using a potential term like this.

• Possibility 4: A further term that can be introduced is given by the coupling

ϕHT
i iσ2∆

†Hj , (5.31)

where ϕ is a SU(2) singlet, Hi and Hj are doublets and ∆ is a SU(2) triplet with

hypercharges such that they add up to zero in this term. That with the help of

such a coupling the fully radiative generation of neutrino masses is possible can

be seen in the following theory:

Particle content: L1 : (2,−1); L2 : (2,−3); L3 : (2, 0)

∆1 : (3,−4); ∆2 : (3,−3); ∆3 : (3,−1)

H1 : (2, 1); H2 : (2,−3); H3 : (2, 0)

ϕ : (1, 0)

Note that all L are fermions and all ∆, H and ϕ are scalars.

Yukawa Lagrangian: −LY = gaL̄1~σ∆1L
c
2 + gbL̄2~σ∆2L

c
3 + gcL̄3~σ∆3L

c
1 + h.c.

Potential:

V =
[
λaϕH̃

T
1 iσ2∆

†
1H2 + λbϕH

T
2 iσ2∆

†
2H3 + λcϕH

T
3 iσ2∆

†
3H̃1 + h.c.

]
+ ...

If we forbid the vevs 〈∆1〉, 〈∆2〉, 〈∆3〉, 〈H2〉 and 〈H3〉, then the following diagram

describes the radiative generation of neutrino masses:

∆1

L2

L3

∆3

H2

∆2

H3

L1 L1

〈ϕ〉
〈H1〉 〈ϕ〉 〈H1〉 〈ϕ〉

Admittedly this theory is phenomenologically problematic. But it is intended

to show that it is possible to generate neutrino masses fully radiatively from a

topological and gauge invariant point of view.

• Possibility 5: Furthermore we can allow fermion loops. However, an explicit

example will not be presented.
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5.1.5 Modifying the Right-Handed Majorana Entry

After having studied how the left-handed Majorana entries of the mass matrix M can

be generated, we are now going to investigate how the right-handed Majorana entries,

i.e. the right-handed neutrino masses can be produced. In the previous section we

sometimes integrated out the right-handed neutrinos. In this picture the corrections to

the right-handed neutrino masses would be collected in diagrams with a higher number

of mass insertions. We already saw one way how to generate right-handed masses in a

conformally invariant theory. By introducing a total singlet scalar ϕ we obtained the

term

gϕνRν
c
R + h.c. , (5.32)

which after spontaneous symmetry breaking leads to the right-handed mass

MR = 2g〈ϕ〉 , (5.33)

which is represented by the diagram

νR νR

〈ϕ〉

There are, however, further ways to influence the right-handed Majorana mass. The

first possibility we want to study is to introduce a scalar and a fermion triplet and a

scalar singlet.

Introduction of a Scalar and a Fermion Triplet

Particle content: νR : (1, 0); Σ : (3, 0); H : (2, 1); ∆ : (3, 0); ϕ : (1, 0)

With this particle content we can write down the following terms:

Yukawa Lagrangian: −LY = g∆ Tr [Σ∆νR] + gϕ,1 Tr [ϕΣcΣ] + gϕ,2ϕνRν
c
R + h.c.

The relevant potential coupling that can be written down is given by

Potential: V = λϕHT iσ2∆
†H̃ + h.c.

Furthermore we forbid the vev of ∆. In addition to the diagram obtained from eq. (5.32)

we get the diagram
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Σ

Σ
∆ ∆

νR νR

〈H〉 〈ϕ〉 〈H〉 〈H〉 〈ϕ〉 〈H〉

〈ϕ〉

Note that the scalar triplet ∆ cannot be used to generate left-handed Majorana masses

as it has the wrong hypercharge. From both diagrams the right-handed mass is found

to be given by

MR = 2gϕ,2〈ϕ〉+ 2λ2g2
∆

〈H〉4〈ϕ〉2

2gϕ,1〈ϕ〉 ·M4
∆

=

(
2gϕ,2 +

λ2g2
∆

gϕ,1

(
〈H〉
M∆

)4
)
〈ϕ〉

, (5.34)

where M∆ is the physical mass of ∆ after symmetry breaking. We see that there is a

lot of potential in the second term to make the right-handed scale very big. The factor(
〈H〉
M∆

)4
will lift the scale of MR 4 orders of magnitude above the electroweak scale if

we make the reasonable assumptions that all couplings are of order 1, the vev of ϕ is

of electroweak scale and the scale of M∆ is one order of magnitude below the one of

〈H〉. This lift in MR allows for an increased scale of the Dirac masses in a seesaw type I

scenario. Within the picture of integrating out the right-handed neutrinos the diagram

above would be represented by a diagram with 5 mass insertions.

Introduction of a Further Sterile Neutrino

A further possibility to influence the right-handed neutrino masses is to introduce an-

other sterile neutrino.2 We choose this one to be right-handed as well. Furthermore, we

introduce a singlet scalar to get the following relevant terms in the Yukawa Lagrangian:

−LY = gRRϕνRν
c
R + gxxϕνxν

c
x + gRxϕνRν

c
x + h.c. (5.35)

Besides the diagram induced by eq. (5.32) this theory yields the diagram

2Note that we work with one flavour only. Therefore we add only one further sterile neutrino and
not three.
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νx

νx
νR νR

〈ϕ〉 〈ϕ〉 〈ϕ〉

Both diagrams together yield the mass

MR = 2gRR〈ϕ〉+ 2g2
Rx

〈ϕ〉2

2gxx〈ϕ〉

= 2〈ϕ〉
(
gRR +

g2
Rx

gxx

) . (5.36)

We see that both diagrams have similar contributions. Furthermore there is no way

to distinguish between νR and νx but by their masses. In other words νR and νx are

different only in their flavour. By changing from the flavour to the mass basis of the

right-handed neutrinos the diagram above becomes obsolete.

The situation becomes much more interesting when we introduce a new symmetry that

distinguishes both particles.

5.2 Conformal Models of Neutrino Mass Generation with

an Additional Hidden Sector Symmetry

In the last chapter we studied conformally invariant theories that yield neutrino masses

within the SM gauge group. As an orientation we used the one-flavour 2×2 mass matrix

in the basis (νL, ν
c
R), where we also sometimes considered the picture of integrated out

right-handed neutrinos. At the end of this chapter we investigated how the right-handed

Majorana entry of the 2× 2 matrix can be affected. One possibility we examined was to

introduce a further sterile right-handed neutrino νx. We came to the conclusion that the

introduction of such a particle is especially interesting if we introduce a new symmetry

that distinguishes it from the original right-handed neutrino νR.

In this chapter we will extend the SM gauge group in the simplest possible way, i.e.

by introducing an additional U(1) symmetry which will be called the Hidden Sector

symmetry as it is supposed to be carried only by particles not belonging to the SM and

thus almost completely decouples those particles from the SM particles. Exceptions that

do couple the SM sector and the Hidden Sector will be essential in this work as they are

necessary to have an effect on the active neutrino masses. The Hidden Sector symmetry
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will be denoted by U(1)H .

Adding νx requires the mass matrix to be extended. The guiding line of this chapter

will be the 3× 3 matrix

M =


ML mD 0

mD MR MRx

0 MRx Mx

 . (5.37)

The according basis is given by (νL, ν
c
R, ν

c
x) such that we obtain the neutrino mass

Lagrangian

−Lm =
1

2
nLMncL + h.c. . (5.38)

In this way the diagonal entries give the corresponding Majorana masses, while like

before mD denotes the Dirac mass and MRx gives the coupling between both sterile

neutrinos. The element in the upper right and lower left corner describes the mixing

between left-handed neutrino and νx. We already set it equal to zero as νx is supposed

to have Hidden Sector (HS) charge while the Higgs doublet and the left-handed doublet

does not. Thus there is no way to couple νx to the left-handed neutrinos as we do not

intend to introduce a scalar SU(2) doublet equipped with a HS charge.

Like in the chapter before we sometimes consider the picture that integrates out νx to

yield an effective mass MR.

In this chapter we are going to investigate how the Majorana entries MR and Mx can

be influenced and how this naturally leads to well-known mass matrix structures that

describe e.g. the double seesaw mechanism and the inverted seesaw mechanism in a

conformally invariant way.

Before studying how to affect the Majorana entries of the mass matrix we want to

consider the case of the right-handed neutrino νR having a HS charge. In such a theory

the term

gLH̃νR (5.39)

would be forbidden by HS symmetry and no Dirac masses are possible. Therefore the

most general mass matrix would look like

M =


ML 0 0

0 MR MRx

0 MRx Mx

 . (5.40)

This matrix is already block-diagonal and the lower right 2× 2 matrix will play no role

for the left-handed masses. If furthermore ML = 0 like it is in the SM, there will be
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no active neutrino masses, neither of the Dirac nor the Majorana type. In the picture

of integrated out right-handed neutrinos there is no way to connect the left-handed

doublets via νR or νx in the fermion line. In the following we therefore set the HS

charge of νR to zero.

5.2.1 Modifying the νR Majorana Mass

As we are studying conformally invariant theories and we decided that the νR does not

carry a HS charge, the mass matrix for the conformal standard model would look like

M =


0 mD 0

mD 0 0

0 0 0

 . (5.41)

Like, however, argued in the chapter before such a theory is phenomenologically in-

adequate. The easiest way to generate νR Majorana masses besides introducing an

appropriate scalar that directly replaces MR is to integrate out the sterile neutrino νx

like done at the end of the previous chapter. In this case, however, we construct the

theory such that the direct term

gϕνRν
c
R (5.42)

is forbidden by symmetry.

• Particle content: νR : (1, 0, 0); νx : (1, 0, 1); ϕ1 : (1, 0, 1); ϕ2 : (1, 0, 2),

where the third number in brackets denotes the HS charge. This particle content

yields the additional terms

Yukawa Lagrangian: −LY = g1ϕ1νRν
c
x + g2ϕ2νxν

c
x + h.c.

If ϕ1 and ϕ2 get a vev this theory yields the mass matrix

M =


0 mD 0

mD 0 MRx

0 MRx Mx

 . (5.43)

This mass matrix represents the double seesaw mechanism. The HS charges of

the SM singlet scalars were chosen such that the νR Majorana mass cannot be

generated directly. We can now integrate out νx in the following way:
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νx

νx
νR νR

〈ϕ1〉 〈ϕ2〉 〈ϕ1〉

Having done this we obtain an effective mass MR and find the contracted mass

matrix

M =

 0 mD

mD MR

 , (5.44)

where MR can be calculated from the diagram and is given by

MR =
g2

1

g2

〈ϕ1〉2

〈ϕ2〉
. (5.45)

With ϕ1 and ϕ2 being approximately of the electroweak scale, MR will roughly

be of electroweak scale as well. This case has been phenomenologically analysed

in section 4.5. However, via choosing the coupling constants accordingly, MR can

be tuned to any scale, thus yielding e.g. the Pseudo-Dirac scenario or multi TeV

neutrinos, i.e. sterile neutrinos with a mass larger than 1 TeV.

A phenomenologically different scenario occurs if we forbid the vev 〈ϕ1〉. Consider the

following theory.

• Particle content: νR : (1, 0, 0); νx : (1, 0, 1); ϕ1 : (1, 0, 1); ϕ2 : (1, 0, 2);

ϕ3 : (1, 0,−4),

Note that the newly introduced SM singlet scalar ϕ3 does not change the Yukawa

Lagrangian. There is, however, an additional potential term.

Potential: V = λϕ2
1ϕ2ϕ3 + h.c.

Thus if we forbid, as mentioned, the vev of ϕ1, the diagram with the main contri-

bution to MR is given by
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ϕ1

νx

νx

ϕ1

νR νR

〈ϕ2〉 〈ϕ3〉

〈ϕ2〉

As ϕ1 does not get a vev, the original uncontracted mass matrix looks like

M =


0 mD 0

mD 0 0

0 0 Mx

 (5.46)

After integrating out νx like described in the diagram above, the right-handed

neutrino νR gains a Majorana mass term and the 3× 3 mass matrix is contracted

to the form

M =

 0 mD

mD MR

 . (5.47)

To approximate the scale of MR we use the following assumptions. A loop built out

of particles with masses of electroweak scale, which only involves coupling constants

of order 1, will contribute a factor of 1/(16π2) ≈ 10−2, whereas every particle

propagator whose scale is by a factor k smaller or bigger than the electroweak

scale will contribute a factor 1/k if it is a fermion and 1/k2 if it is a scalar.

Equivalently external lines with a vev contribute a factor k with respect to the

vev’s relation to electroweak scale. The overall factor for each diagram is the

electroweak scale (EWS) itself. Therefore the mass MR implied by the diagram

above is approximately given by

MR ∼ 10−2 · λg
2
1

g2

k2k3

k4
1k2
· EWS = 10−2 · λg

2
1

g2

k3

k4
1

· EWS , (5.48)

where ki is the factor described above for the corresponding vev or propagator

contribution of ϕi. If we now assume that 〈ϕ3〉 is of electroweak scale, i.e. k3 = 1

and the mass scale of ϕ1 is one order of magnitude above EWS, i.e. k1 = 10 and
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all couplings are of the order 1, we obtain

MR ∼ 10−6 · EWS . (5.49)

In our phenomenological analysis of sterile neutrinos we saw that this lies within

the non-viable region in parameter space. The aim of this theory, however, is

to produce Pseudo-Dirac neutrinos. We saw that the viable region for Pseudo-

Dirac neutrinos begins at approximately 10−14 · EWS. Before we assumed that

all couplings are proportional to 1. Tuning those can help further suppressing the

scale. Consider the following reasonable assumptions:

Like before k3 is assumed to be 1, whereas now we take k1 = 101.5 which is

still realistic. Furthermore we require all couplings to be of the same scale, but

this time ∼ 10−3. In this case we reach MR ∼ 10−14 · EWS. We see that it is

indeed possible within this theory to generate Pseudo-Dirac neutrinos. Coupling

constants smaller than one are the reason for perturbation theory to work and

another reason why loop diagrams are suppressed with respect to tree-diagrams.

It is therefore understandable that by decreasing the coupling constants the mass

MR can be further suppressed in this theory.

We succeeded in modifying the right-handed neutrino mass by integrating out the other

sterile neutrino. In that sense we did not really simply modify the νR Majorana entry

of the 3 × 3 matrix but rather contracted it down to a 2 × 2 matrix. In the following

we want to find theories that actually maintain the original shape of the mass matrix

but still generate the νR mass. The next theory we want to consider achieves this by

introducing a scalar and a fermion triplet.

• Particle content: νR : (1, 0, 0); νx : (1, 0, 1); Σ : (3, 0, 1); ∆ : (3, 0, 1); H : (2, 1, 0);

ϕ1 : (1, 0, 1); ϕ2 : (1, 0, 2)

Yukawa Lagrangian: −LY = g∆ Tr [Σ∆νR] + gΣ Tr [ϕ2ΣcΣ] + h.c.

Potential: V = λϕ1H
T iσ2∆

†H̃ + h.c.

Note that we only displayed terms in the Yukawa Lagrangian and the potential

that are relevant for the lowest order diagram of right-handed neutrino mass gen-

eration. This diagram is given by
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Σ

Σ
∆ ∆

νR νR

〈H〉 〈ϕ1〉 〈H〉 〈H〉 〈ϕ1〉 〈H〉

〈ϕ2〉

This is basically the same theory as in section 5.1.5. The difference, however, is

that this is the only tree-level diagram if ∆ does not get a vev as the term ϕνRν
c
R

does not exist. The right-handed mass MR is therefore to first order given by

MR =
λ2g2

∆

gΣ

(
〈H〉
M∆

)4 〈ϕ1〉2

〈ϕ2〉
. (5.50)

Unlike in section 5.1.5 the factor
(
〈H〉
M∆

)4
can now be the reason for the suppression

of the right-handed neutrino mass. The aim as before is to generate Pseudo-Dirac

neutrinos. If we choose the mass of ∆ to be one order of magnitude below the

electroweak scale, all occurring couplings of the order 10−3 and 〈ϕ1〉 one order

of magnitude below EWS and 〈ϕ2〉 of electroweak scale, we obtain for the right-

handed mass

MR ∼ 10−15 · EWS . (5.51)

This lies in the range of Pseudo-Dirac neutrinos.

We have to note that M∆ itself is not independent of the vacuum expectation

values and the couplings. The propagator displayed in the diagram above gets its

mass through potential couplings given by

V = λ∆H(∆†∆)(H†H) + λ∆ϕ1(∆†∆)(ϕ†1ϕ1)

+λ∆ϕ2(∆†∆)(ϕ†2ϕ2)
. (5.52)

To first order M∆ is therefore given by

M∆ = 2λ∆H〈H〉2 + 2λ∆ϕ1〈ϕ1〉2 + 2λ∆ϕ2〈ϕ2〉2 . (5.53)

If we assumed that all couplings are of order 10−3 and the vevs are like given

above the mass would be well below EWS. Therefore some degree of fine-tuning
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is necessary in the sense that potential coupling constants have to differ by three

orders of magnitude with respect to Yukawa couplings. We can only achieve the

scale of M∆ to be bigger than that of 〈H〉 if at least one potential coupling constant

is of the order 1 and the corresponding vev is bigger than that of 〈H〉. Ideally in

our example we take all potential coupling constants of the order 1, the vev of ϕ2

one order above electroweak scale and the rest like before. We took all potential

coupling constants of the order 1 to avoid another fine-tuning. In this case we

obtain

MR ∼
(
10−13 − 10−14

)
· EWS . (5.54)

Although we did not write it down explicitly in the Yukawa Lagrangian the theory

contains the mixing term ϕ1νRν
c
x and the term ϕ2νxν

c
x. This means that the mass

matrix is given by

M =


0 mD 0

mD MR MRx

0 MRx Mx

 . (5.55)

As seen before radiative generation of masses has the feature of naturally being sup-

pressed by a common factor of 1/(16π2) per loop and a bigger number of couplings

constants being involved. We will therefore modify the previous theory such that the

lowest order contributing diagram is a one-loop diagram. First of all we forbid the vev

of ϕ1.

• Particle content: νR : (1, 0, 0); Σ : (3, 0, 1); ∆ : (3, 0, 1); H : (2, 1, 0);

ϕ1 : (1, 0, 1); ϕ2 : (1, 0, 2); ϕ3 : (1, 0,−4)

The Yukawa Lagrangian is the same as in the previous theory, while we get an

additional potential term.

Potential: V = λϕ1H
T iσ2∆

†H̃ + λ′ϕ2
1ϕ2ϕ3 + h.c.+ ...

Forbidding 〈ϕ1〉 like mentioned the lowest order diagram contributing to the right-

handed neutrino mass is given by
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Σ

Σ
∆

ϕ1 ϕ1

∆

νR νR

〈H〉 〈H〉

〈ϕ2〉

〈ϕ2〉 〈ϕ3〉 〈H〉 〈H〉

Taking the approximations for the evaluation of loop diagrams described before,

we find the approximate mass

MR ∼ 10−2 ·
g2

∆λ
2λ′

gΣ

k3

k4
1k

4
∆

· EWS (5.56)

Assuming that all potential coupling constants are of order 1, 〈ϕ1〉 is one order

above EWS and 〈ϕ3〉 is of electroweak scale, we find

MR ∼
g2

∆

gΣ
· 10−10 · EWS , (5.57)

where we have used that k1 and k∆ have to be of the same order because all

potential coupling constants have been chosen to be of the order 1 and thus the

mass of ∆ is mainly determined by 〈ϕ1〉 which is one order of magnitude above

EWS. Yukawa couplings of the order 10−4 or smaller yield again Pseudo-Dirac

neutrinos. Note furthermore that the factors to the power 4 in the denominator

are very sensitive to changes and can make MR very quickly even smaller.

As a consequence of ϕ1 not getting a vev, there is no term ϕ1νRν
c
x and thus the

mass matrix is given by

M =


0 mD 0

mD MR 0

0 0 Mx

 . (5.58)

In this case, however, this does not mean that there is no connection between

SM sector and Hidden Sector as ϕ1 can form a loop and connect via a potential
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coupling to vevs of different scalars just like in the second theory of this section.

5.2.2 Modifying the νx Majorana Mass

The last task is see how other theoretical extensions influence the νx Majorana mass.

We want to do this in a way such that the right-handed neutrino mass of νR stays zero

such that we get the following mass matrix structure

M =


0 mD 0

mD 0 MRx

0 MRx Mx

 . (5.59)

We already generated this structure before where the Majorana mass of νx was generated

via the simple Yukawa term

gϕνxν
c
x . (5.60)

There a Majorana mass term is created by ϕ getting a vev. Our aim in this section,

however, is to forbid this kind of term and generate naturally small νx Majorana masses.

In this case the mass matrix in eq. (5.59) yields an inverse seesaw mechanism. The

theories we consider here are very similar to those of the previous section.

• Particle content: νx : (1, 0, 1); Σ : (3, 0,−2); H : (2, 1, 0); ϕ1 : (1, 0,−3);

ϕ2 : (1, 0,−4); ∆ : (3, 0,−3)

Yukawa Lagrangian: −LY = g∆ Tr [Σ∆νx] + gΣ Tr [ϕ2ΣcΣ] + h.c.

Potential: V = λϕ1H
T iσ2∆

†H̃ + h.c.+ ...

From this we can build the following diagram

Σ

Σ
∆ ∆

νx νx

〈H〉 〈ϕ1〉 〈H〉 〈H〉 〈ϕ1〉 〈H〉

〈ϕ〉
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Note that as required the coupling ϕνxν
c
x is forbidden and there is no direct or

effective right-handed neutrino mass for νR possible as there are no appropriate

Yukawa couplings. Note furthermore, so far the term ϕνRν
c
x is not possible as well

and thus the mass matrix until now reads

M =


0 mD 0

mD 0 0

0 0 Mx

 . (5.61)

There is no connection between Hidden Sector and SM sector. Thus there is no

way to influence the active neutrino mass via the Hidden Sector. This is not what

we are aiming for. We therefore have to introduce another scalar ϕ4 with HS

charge 1 such that we obtain the connecting Yukawa term gRxϕ4νRν
c
x and the

mass matrix is actually given by eq. (5.59).

Like seen in the section before the Majorana mass of νx is given by

Mx =
λ2g2

∆

gΣ

(
〈H〉
M∆

)4 〈ϕ1〉2

〈ϕ2〉
,

where the parameters can be tuned such that the mass becomes very small and

the requirements for the inverse seesaw mechanism are indeed fulfilled. On the

other hand we can tune parameters such that Mx becomes very big. This in turn

yields that if ϕ4 gets a vev, via a seesaw mechansim the mass MR is very much

suppressed and we find again the scenario of Pseudo-Dirac neutrinos.

Like before we want to try to find a theory that generates the νx Majorana masses

radiatively. We do this by forbidding the vev of ϕ1 and introducing a further scalar ϕ3

and adjusting the HS charges.

• Particle content: νx : (1, 0, 1); Σ : (3, 0,−2); H : (2, 1, 0); ϕ1 : (1, 0,−3);

ϕ2 : (1, 0,−4); ϕ3 : (1, 0, 10); ∆ : (3, 0,−3)

Note that with this choice of HS charges we meet the requirements of zero right-

handed Majorana mass and non-direct generation of the νx mass. The Yukawa

Lagrangian is the same as in the theory before. The potential, however, is ex-

tended.

Potential: V = λϕ2
1ϕ2ϕ3 + h.c.

We obtain the following diagram
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Σ

Σ
∆

ϕ1 ϕ1

∆

νx νx

〈H〉 〈H〉

〈ϕ2〉

〈ϕ2〉 〈ϕ3〉 〈H〉 〈H〉

As before the Majorana mass of νx can be approximated by

MR ∼ 10−2 ·
g2

∆λ
2λ′

gΣ

k3

k4
1k

4
∆

· EWS . (5.62)

We see that in this setup the νx mass is naturally small when the couplings are of

order 1. Note that as before we need another scalar ϕ4 for the connection between

SM sector and Hidden Sector.

5.3 Summary of the Models and Phenomenological Dis-

cussion

Tables 5.2 and 5.3 summarize the conformally invariant models that have been discussed

in this chapter. The first table refers to models within the SM gauge group and displays

the corresponding particle content and the non-conformal motivations. Furthermore, it

is indicated which models yield neutrino masses and if they can imply the right Higgs

mass. Beyond that the most important phenomenological properties are mentioned.

Models modifying the left-handed Majorana masses are presented in table 5.2 and models

modifying the right-handed Majorana masses are presented in table 5.3.

The second table refers to conformal models with an additional U(1) symmetry. For

these theories the particle content with their U(1) charge was displayed. In addition

the vev structure of the different models has been highlighted. Like before the most

important phenomenological properties are mentioned.
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Phenomenological Discussion

In order to study the experimental verifiability of the discussed models we will arrange

them in four phenomenological classes. These are given by

• the sub TeV seesaw scenario

• the Pseudo-Dirac scenario

• the case of pure left-handed Majorana neutrinos

• the multi TeV seesaw scenario.

The sub TeV seesaw scenario refers to the regions in parameter space of Dirac and

Yukawa couplings given in figures 4.3, 4.4 and 4.5, while the Pseudo-Dirac scenario

refers to the region given in fig. 4.8 in the same parameter space.

The case of pure left-handed Majorana neutrinos would be at the origin of this parameter

space. It implies that no right-handed neutrinos are involved.

The multi TeV seesaw scenario lies in the continuation of the viable regions in figures

4.3, 4.4 and 4.5 to higher Yukawa couplings with Majorana masses bigger than 1 TeV.

Of course the assignment of theories to the different groups is not always unique and

depends on the actual choice of the coupling constants. The assignments of the different

theories are summarized in tables 5.2 and 5.3.

We will see which observations can dismiss or favour a certain phenomenological class.

This analysis is based on the occurrence of the neutrinoless double beta decay (0νββ)

and of lepton flavour violating (LFV) processes of charged leptons and on the non-

unitarity of the PMNS matrix.

We saw that for sub TeV neutrinos all three effects can play a role. In our parameter scan

in section 4.5 we found out that at the moment the effective mass of the electron neutrino

is the most limiting one. Improving the constraints on the effective mass might push

this line over the perturbative boundary and the line of smallest possible active-sterile

mixing given by eq. (4.51) and would thus exclude sub TeV scenarios. However, the

upper bound for the effective electron neutrino mass would have to be placed below 10−10

eV which will not be experimentally realized within the near future. Furthermore, the

smallest values for the non-unitarity in figures 4.3, 4.4 and 4.5 are around 10−10 to 10−12.

Therefore, if experiments set an upper limit for non-unitarity below this threshold, this

scenario could be excluded as well. Accordingly, better experimental bounds on LFV

processes can achieve the same. Thus the Meissner-Nicolai model which is part of this

group could be mostly excluded. However, we found that it still yields a further viable

region which represents the Pseudo-Dirac scenario.
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This region might finally be excluded if we found the neutrinoless double beta decay

with an effective electron neutrino mass that is roughly bigger than 10−2 eV. On the

other hand a paper by P.C. Holanda and A.Yu. Smirnov explains how an additional

very light sterile neutrino can influence the energy spectra of the solar neutrino events

[53]. They argue that this can explain recent results from the SNO, Super-Kamiokande

and Borexino experiments which do not show the expected upturn of events at low

energies. In the same way the Pseudo-Dirac scenario which includes 3 additional light

neutrino states can be tested. The general effect of additional light neutrino states close

to the active states is the oscillation into these light states, which results in small wiggles

around the basic probability oscillation curve.

The third group refers to the case of pure left-handed Majorana neutrinos. This group is

characterized by the fact that it does not yield LFV processes and non-unitarity effects.

This means that if any LFV process or a non-unitarity effect could be measured with

high accuracy this scenario could be excluded. The conformal form of the type II seesaw

mechanism and of the Zee-Babu model would thus be excluded.

The fourth group is the multi TeV seesaw scenario. Large parts of this region, however,

can be excluded as they are not consistent with electroweak observables. This is the

case for the region in parameter space with a high degree of non-unitarity.

A certain realization of this multi TeV scenario is the inverse seesaw mechanism that

has been realized by theory 5 and 6 of table 5.3. It has to be noted that this scenario

naturally yields large non-unitarity η which is given by ([54])

η =
1

2
m†D

(
M−1
Rx

)∗ (
M−1
Rx

)T
mD . (5.63)

This means that if the scale of the mixing MRx is one order of magnitude above elec-

troweak scale the mixing is of order 10−2 which is at the boundary of allowed non-

unitarity.

Although it is experimentally almost impossible to exclude certain regions completely,

improvements in ongoing and future experiments will more and more shape the regions

of viable phenomenology. After all it is still possible that non-unitarity effects or the

Majorana character of neutrinos can be detected. In this case a large class of theories

will have to be dismissed. In so far neutrino physics is on the borderline of detecting

new physics.

Beyond testing the properties of the different groups the theories themselves can be

tested by looking for corresponding additional particles. In a conformally invariant

framework like presented in this work, this becomes especially fruitful as the mass scales

of the particles have to lie in the TeV range. This is because conformal invariance forbids

the introduction of arbitrary scales. Instead these have to be generated by the vevs of

scalars. As this vevs in turn are generated radiatively it is reasonable to assume that all
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vevs are approximately of the same scale, i.e. that there are no unnatural hierarchies.

Hence, all vevs should be approximately of TeV scale. Current collider experiments

are on the borderline of testing these energy ranges and could thus be able to detect

particles of this scale.

For each phenomenological class there are some theories that are very promising and

should be further studied regarding the viability of radiative symmetry breaking and the

phenomenological properties. E.g. the easiest model realizing the sub TeV conditions

is the Meissner-Nicolai model. Theory 2 of table 5.3 yields conditions for the Pseudo-

Dirac scenario in a very natural way by loop suppression. It has to be investigated if the

suggested vev structure can indeed be realized by radiative symmetry breaking. A very

interesting model for the case of pure left-handed Majorana neutrinos is the conformally

invariant Zee-Babu model as it suppresses the neutrino masses by two loops. Finally

the first theory modifying the right-handed Majorana masses in table 5.2 is the simplest

way to generate multi TeV neutrinos. It has to be checked if the suggested scales can

be realized by radiative symmetry breaking.
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Conformal Mass Models within the SM Gauge Group

particle content
non-conformal

motivation
neutrino
masses

correct
Higgs
mass

phenomenological note

Left-Handed Majorana Masses

Conformal SM
(CSM)

� No No
This theory does not yield neutrino

masses.

CSM + νR : (1, 0) Seesaw type I Yes No
Neutrinos in this theory are of

Dirac type.

CSM + νR : (1, 0) +
ϕ : (1, 0)

Seesaw type I Yes Yes
In dependence of the coupling

constants this theory can yield Sub
TeV or Pseudo-Dirac neutrinos.

CSM + ∆ : (3,−2) Seesaw type II Yes No
This theory yields pure left-handed

Majorana neutrinos.

CSM + ∆ : (3,−2)
+ ϕ : (1, 0)

Seesaw type II Yes Yes
This theory yields pure left-handed

Majorana neutrinos as well.

CSM + νR : (1, 0) +
ϕ : (1, 0) +
∆ : (3,−2)

Seesaw type I/II Yes Yes
Sub TeV and Pseudo-Dirac

neutrinos are possible.

CSM + δ− : (1,−2) � No No Neutrinos remain massless.

CSM + δ− : (1,−2)
+ ∆ : (3,−2)

� Yes No
The additional δ− only contributes

corrections to the masses.

CSM + Σ : (3, 0) Seesaw type III No No Neutrinos remain massless.

CSM + Σ : (3, 0) +
ϕ : (1, 0)

Seesaw type III Yes Yes
This theory yields the same

neutrino phenomenology like the
conformal Seesaw type I.

CSM + δ− : (1,−2)
+ ε++ : (1, 4) +

ϕ : (1, 0)
Zee-Babu Yes Yes

Pure left-handed Majorana
neutrino masses suppressed by 2

loops.

Right-Handed Majorana Masses

CSM + νR : (1, 0) +
Σ : (3, 0) + ∆ : (3, 0)

+ ϕ : (1, 0)
� Yes Yes

This theory can generate conditions
for the Pseudo-Dirac, the Sub TeV
but also for the multi TeV scenario.

CSM + νR : (1, 0) +
νx : (1, 0) +
ϕ : (1, 0)

� Yes Yes

The extension by further sterile
neutrinos is trivial if they cannot
be distinguished from the original

sterile neutrinos.

Table 5.2: Summary of different conformally invariant models for the generation of
neutrino masses within the SM gauge group.
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Conformal Mass Models with Additional U(1) Symmetry

# particle content U(1)H vev structure phenomenological note

νR Majorana Masses

νR : (1, 0) 0
The double seesaw mass

structure is implied.

1 νx : (1, 0) 1 all scalars get a vev Pseudo-Dirac, sub TeV and

ϕ1 : (1, 0) 1 multi TeV scenarios

ϕ2 : (1, 0) 2 are possible.

2 theory 1 + theory 1 ϕ1 gets no vev radiative model,

ϕ3 : (1, 0) -4
implies Pseudo-Dirac

scenario

νR : (1, 0) 0

Σ : (3, 0) 1 Pseudo-Dirac, sub TeV and

3 ∆ : (3, 0) 1 all scalars get a vev multi TeV scenarios

ϕ1 : (1, 0) 1 are possible.

ϕ2 : (1, 0) 2

4 theory 3 + theory 3 ϕ1 gets no vev radiative model,

ϕ3 : (1, 0) -4
implies Pseudo-Dirac

scenario

νx Majorana Masses

νR : (1, 0) 0

νx : (1, 0) 1

5 Σ : (3, 0) -2 all scalars get a vev generates small νx mass,

∆ : (3, 0) -3
implies the inverse seesaw

scenario

ϕ1 : (1, 0) -3

ϕ2 : (1, 0) -4

6 theory 5 + theory 5 ϕ1 gets no vev radiative model,

ϕ3 : (1, 0) 10
implies the inverse seesaw

scenario

Table 5.3: Summary of different conformally invariant models for the generation of
neutrino masses with an additional HS symmetry.





Chapter 6

Conclusion

With a huge number of ongoing experiments around the world and many theorists be-

ing involved neutrino physics may be one of the most active research fields in physics.

The reason for its popularity might be the fact that it is very promising to shed light

on fundamental principles of nature that lie beyond the predictions of the Standard

Model. In the upcoming years, thanks to a vast experimental commitment, we can be

optimistic to learn more about the nature of neutrinos which concerns questions like:

”Are neutrinos of Dirac or Majorana type?”, and: ”Which is the true secret behind the

smallness of neutrino masses?” Better and better experimental results will give theorists

a clue which of their ideas has to be given up and which might lead to a more profound

understanding of nature. Thus, neutrino physics may not only be a research field for

itself but might deliver insight into other unsolved questions in physics.

In this way the issue of conformal invariance as the solution to the Hierarchy Problem

could be considered from a different perspective. If we found a conformally invariant

theory that generated neutrino masses with their required smallness in a very natural

way and that led rather automatically to the precisely known SM phenomenology, fur-

ther yielding a very characteristic Beyond the Standard Model phenomenology that can

be tested in future experiments, then the discussions about conformal invariance would

take a completely new direction, as after all nature would be described by a conformally

invariant theory.

In this sense several conformally invariant models were presented that can lead to small

neutrino masses. We began by reviewing the principles of scale and conformal trans-

formations and the argument of conformally invariant theories solving the Hierarchy

Problem. We continued by showing that conformally invariant theories can indeed yield

massive particles and introduced the effective potential for this purpose.

After revisiting general subjects of neutrino physics, we introduced the Meissner-Nicolai

99
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model in chapter 4, which extended the SM particle content by three right-handed neu-

trinos and one scalar singlet. In this context we performed a parameter scan of the

involved Dirac and Majorana coupling constants yielding three results. First of all it

was generally possible with the vev of the singlet scalar being of electroweak scale to

choose the coupling constants smaller than 1 such that neutrino masses could be gener-

ated in a phenomenologically acceptable way. Secondly we could even within the regions

of phenomenological viability approach Majorana and Dirac coupling constants to a ra-

tio of approximately 10−2 with respect to each other. Last we also saw that there are

basically 2 viable regions in parameter space. The first one corresponds to sub TeV

neutrinos, the other to Pseudo-Dirac neutrinos.

In the first section of chapter 5 we initially investigated several models to modify the

left-handed Majorana entries of the one-flavour 2× 2 mass matrix. We saw that terms

which were possible in the non-conformal case could not be introduced in the conformal

case. Thus mass terms possible in non-conformal theories were only there if we adjusted

the particle content appropriately. This shows a feature of non-conformal theories that

the origin and the scale of neutrino masses can be influenced very strongly by the intro-

duction of a singlet scalar replacing the non-dynamical masses.

After we got to know the general way how to build neutrino masses in conformally

invariant theories, we used general conformal building rules to deduce two topological

lemmata, one concerning the vev structure of conformal diagrams and one concerning

the possibility or impossibility of fully radiative diagrams.

Afterwards we attended the modification of the right-handed Majorana masses. We

discussed two ways to do that. One of them introduces a triplet fermion and it was

shown that with natural assumptions the scale of MR can easily be pushed 4 orders of

magnitude above electroweak scale and thus a natural origin of the seesaw mechanism

is implied.

In the second section of chapter 5 an additional U(1) symmetry was introduced, hence

creating a Hidden Sector separated from the SM. A further sterile right-handed neutrino

with HS charge 1 was introduced extending the mass matrix to a 3×3 shape. With this

additional symmetry and the right choice of the particle content and the vev structure

we were able to naturally generate mass structures that yielded the double seesaw mech-

anism and the inverse seesaw mechanism. Partly this was achieved by choosing the vev

structure and the particle content such that neutrino masses were generated radiatively.

To conclude, conformal symmetry forbids a large number of neutrino mass models. It is

not allowed to arbitrarily introduce new mass scales. All masses in the theory are deter-

mined by the running of the couplings and boundary conditions, e.g. at the Planck scale.

Accepting conformal symmetry as a fundamental law of nature changes the way how we

find neutrino mass models. Instead of adapting the mass parameters arbitrarily and thus
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inducing seesaw conditions we have to choose the particle content and the couplings in

a way that naturally implies such scales. Thus, in a way, conformal symmetric theories

are more compelling. Assuming that from phenomenological observations one neutrino

mass mechanism suggests itself, a certain particle content will be implied which would be

very characteristic for a theory. I.e. in conformally invariant theories phenomenological

constrictions call for a dynamical explanation rather than a mere introduction of new

scales.

The other way round, the identification of a certain neutrino mass mechanism as the

truth and the detection of certain particles could hint at a conformally invariant theory

as the underlying theory of nature.

Beyond that, replacing masses of a non-conformal theory by dynamical fields yields two

further features. On the one hand dynamical fields can carry charges. Thus, by in-

troducing an additional symmetry, certain coupling and mass terms can be argued to

be existent or non-existent based on symmetry arguments. On the other hand the vev

structure can be used to forbid or allow mass terms and to influence the topologies of

diagrams.

This work presented a collection of conformally invariant theories that generate neutrino

masses. It has, however, not been shown how the effective potential of the different the-

ories would look like, if these potentials would indeed yield radiative symmetry breaking

and if the suggested vev structure can be realized such that the proper Higgs mass is

implied. Furthermore, in future works it could be investigated how different Planck scale

boundary conditions influence the vev structure.

On the other hand detailed phenomenological implications of the different theories have

to be elaborated in order to test if they have indeed the potential to describe nature

properly.

Conformally invariant neutrino mass models were investigated within the SM gauge

group and with an additional Hidden Sector which exists almost independent of the

SM. We did not study neutrino mass models in conformally invariant theories within

gauge group extension that embed the SM. E.g. to find conformal neutrino mass mod-

els within the left-right symmetric model, which extends the SM gauge group by an

additional SU(2)R, would be an interesting task for future works.





Appendix A

Renormalization Group Improved

Effective Potential

This chapter deals with the renormalization group improved effective potential and its

necessity in scalar φ4-theory concerning radiative symmetry breaking. In chapter 2 we

saw that the effective potential for φ4-theory was given by eq. (2.71). Thus differen-

tiating eq. (2.71) once with respect to φ0 and setting it equal to 0 yields the extrema

φ0 = 0 and λlnφ0

M ∼ −16
3 π

2, where the extremum at the origin, however, is now a

maximum, while the other one really is a minimum. Naively we could say that the

symmetry is indeed radiatively broken. But we should be aware that this result is a

one-loop approximation. To do things properly we should first have a closer look at the

structure of higher order loop corrections. It becomes clear that every additional loop

also contributes an additional factor [ln
(
φ2

0
M2

)
] and thus the n-loop contributions to the

effective potential have a factor λn+1[ln
(
φ2

0
M2

)
]n. As we found out, λ ln φ0

M ∼ −
16
3 π

2 at

the minimum, and its absolute value is bigger than 1. It is now evident that perturba-

tion theory breaks down if we are interested in field values that are of the order of the

symmetry breaking scale. The effective potential to one-loop order or any other order

in perturbation theory is thus not reliable and fails to describe spontaneous symmetry

breakdown.

A second flaw of the one-loop approximation of the effective potential becomes apparent

when analyzing the dependence of the effective potential on the arbitrary parameter M .

Due to its arbitrariness the effective potential may not depend on it. Investigating eq.

(2.71), however, shows that this requirement is not satisfied. To meet this requirement

we have to impose the condition

M
dVeff

dM
=

[
M

∂

∂M
+ β

∂

∂λ
− γφ ∂

∂φ

]
Veff = 0, (A.1)
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which is called the Renormalization Group Equation (RGE), where

β = M
dλ

dM
(A.2)

and

γ
φ

M
= − dφ

dM
(A.3)

are called the beta function and the anomalous dimension of the wave function, respec-

tively. If we knew both exactly, the solution of the RGE would be the exact effective

potential. However, we do not know them exactly, but to a certain order in perturbation

theory. Unlike the effective potential, which is really a power series in λ ln φ0

M , the beta

function and the anomalous dimension are simply expansions in the coupling. As the

coupling can be guaranteed to be small, perturabation theory is indeed valid. In so

far the effective potential obtained by the RGE would really be an improvement of the

former result. By considering the running of the parameters we thus can also get rid

of the first flaw, the breakdown of perturbation theory. The result of the RGE will be

called renormalization group improved effective potential.

In order ro really appreciate the RGE’s and to understand the result in eq. (2.71) in

the context of the RGE’s we will try to evaluate them for the potential V = λ
4!φ

4. For

dimensional reasons the effective potential has to have the form

Veff = Y (λ, t)φ4
0, (A.4)

where t = ln φ0

M . In terms of this the RGE’s can be rewritten in the form(
− ∂

∂t
+ β̄

∂

∂λ
− 4γ̄

)
Y (λ, t) = 0, (A.5)

where

β̄ =
β

1 + γ
and γ̄ =

γ

1 + γ
.

The solution is given by

Y (λ, t) = f(λ′(t, λ)) exp

−4

t∫
0

dt′ γ̄(λ′(λ, t))

, (A.6)

where f is an arbitrary function depending on λ′ and λ′(λ, t) is given by the solution of

the equation
dλ′

dt
= β̄(λ′) (A.7)
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and by the boundary condition λ′(λ, 0) = λ. The same renormalization condition fixes

the function f and yields

Y (λ, t) =
1

4!
λ′(λ, t) exp

−4

t∫
0

dt′ γ̄(λ′(λ, t))

. (A.8)

It is now convenient to rederive the effective potential given by eq. (2.71) using this

result. Assuming β = const. and γ = 0, we find

Veff =
φ4

0

4!

[
β ln

φ0

M
+ const.

]
, (A.9)

which structurally is the result from eq. (2.71). We now see that when calculating the

effective potential to one-loop order and renormalizing it, we implicitly assume that the

beta function of the coupling λ is constant and that the anomalous dimension of the

wave function γ = 0. In the case of small excursions around M in field space, this

result is perfectly fine. This claim is supported by the fact that dealing with field values

φ0 ∼M gives values around 0 for ln φ0

M and perturbation theory works out well, restoring

the significance of the one-loop result of eq. (2.71).

We proceed in finding the renormalization group improved effective potential. To do

so we first have to find an expression for the anomalous dimension. The dependence of

φ0 on M lies completely in the field renormalization factor Z, which is defined in the

following way

(∂µφ
′
0)2 = (∂µφ0)2Z(ln (M ′/M), λ), (A.10)

where φ′0 is the new renormalized field. From this we find

φ′0 = φ0Z(ln (M ′/M), λ)1/2. (A.11)

With the definition of the anomalous dimension (A.3) we finally get

γ(λ) = −d ln
√
Z

dM
. (A.12)

Next, from eq. (2.72), we can calculate the beta function, which is defined in eq. (A.2),

β =
3λ2

16π2
. (A.13)

To one-loop order the anomalous dimension of the wave function is found to be equal to

1. Plugging both into eq. (A.7) yields the differential equation

dλ′

dt
=

9λ′2

8π2
(A.14)
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which has the solution

λ′ =
λ

1− 3λt/16π2
, (A.15)

already reflecting the correct renormalization for t = 0, which becomes clear when

writing down the final result

Veff =
1

4!

(
λ

1− 3λt/16π2

)
φ4

0. (A.16)

This is called the renormalization group improved effective potential. It is valid for all

t = ln φ0

M and thus also priviledged to describe the possible breakdown of symmetry. For

small values of t it reproduces eq. (2.71). As a matter of fact the former maximum

of the one-loop result at the origin has become a minimum and the minimum of the

one-loop result has vanished. Consequently there is no radiative symmetry breaking in

φ4-theory. Apparently it was an error generated by the inaccurate loop expansion.



Appendix B

The Coleman-Weinberg and the

General Effective Potential

In the follwing we want to calculate the Coleman-Weinberg (CW) potential for scalar

electrodynamics rather explicitly. To do so first the effective potential is derived for the

most general theory containing a collection of scalars and vector bosons. This is enough

to derive the explicit form of the CW potential. To conclude we will also introduce

a collection of fermions and calculate the general non-renormalized effective potential

depending on those, although this is not needed for scalar electrodynamics.

Let us begin with the scalar contribution to the effective potential. The scalars will be

denoted by φa where the index a stands for the a-th scalar. For reasons of convenience

we will sometimes refer to the vector φ when talking about the whole collection of

scalars, which is really only a notation. In fig. B.1 all relevant diagrams are shown. The

propagators in the loops wear internal indices a and the external fields have vanishing

momentum each. The vertices in fig. B.1 are given by

− iWab(φ) = −i ∂2V

∂φa∂φb
, (B.1)

Figure B.1: Scalar one-loop contributions to the effective potential
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which connects the two fields a and b, running in the loops, and the corresponding

external fields.

The inner propagators contribute a factor

i

k2 + iε
, (B.2)

where k is the momentum running in the loop which has to be integrated over.

We then have to sum over all internal field configurations, i.e. we have to multiply the

matrices an then take the trace. Summing all diagrams then yields the scalar one-loop

contribution to the effective potential

Vs = i

∫
d4k

(2π)4

∞∑
n=1

1

2n
Tr

[(
W (φ)

k2 + iε

)]n
= Tr

[
i

∫
d4k

(2π)4

∞∑
n=1

1

2n

(
W

k2 + iε

)n]

= Tr
1

2

∫
d4k

(2π)4
ln (k2 +W ),

(B.3)

where the 0-component of k has been Wick rotated into the complex plane like already

done before.

This integral is again divergent. We choose an ultraviolet cut-off Λ to regularize. As

the integrand depends only on the absolute value of the 4 dimensional euclidean vector

k, we choose polar coordinates to evaluate the integral. The differential thus transforms

like

d4k → Ω4k; (B.4)

where the Ω4 denotes the area of the unit sphere in 4 dimensional euclidean space and

the k on the right hand side represents the absolute value of the euclidean vector. The

unit sphere in d dimensions is given by

Ωd =
2πd/2

Γ(1
2d)

, (B.5)
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where Γ is the gamma function. Thus for 4 dimensions we obtain Ω4 = 2π2 and we get

1

2

∫
d4k

(2π)4
ln (k2 +W ) =

2π2

2(2π)4

Λ∫
0

dk k3 ln k2 +W

=
1

16π2

1

8

[
−Λ4 + 2Λ2W + 2W 2 lnW + 2(Λ4 −W 2) ln (Λ2 +W )

]
=

1

64π2

[
Λ2W +W 2 lnW + (Λ4 −W 2)

(
ln

(
1 +

W

Λ2

)
+ ln Λ2

)]
≈ 1

64π2

[
Λ2W +W 2 lnW + (Λ4 −W 2)

(
W

Λ2
+ ln Λ2

)]
=

1

64π2

[
Λ2W +W 2 lnW + Λ2W + Λ4 ln Λ2 − W 3

Λ2
−W 2 ln Λ2

]
=

1

64π2

[
2Λ2W +W 2 ln

W

Λ2

]
=

Λ2

32π2
W +

W 2

64π2
ln
W

Λ2
.

(B.6)

We neglected all infinite but irrelevant constants like −Λ4 in line 2 and Λ4 ln Λ2 in line

5. Furthermore we took into account that Λ is supposed to be huge compared to all

other scales and will later even be approached to infinity. Thus the factor −W 3

Λ2 in line

5 was neglected afterwards. A further result of this consideration of large Λ is getting

important in line 3 where the term ln (1 + W
Λ2 ) was expanded to linear order around 1

and can thus be approached by W
Λ2 .

Our result for the general scalar contribution to the effective potential to one-loop order

is now given by

Vs = Tr

[
Λ2

32π2
W (φ) +

W (φ)2

64π2
ln
W (φ)

Λ2

]
. (B.7)

For individual classical potentials this has to be evaluated and renormalized by adding a

finite number of counter terms. Assuming that we are treating renormalizable theories,

we can neglect the terms depending on Λ indicating that we can absorb them in the

counter terms. Not writing them down explicitly, but having in mind that they have to

be taken into account when renormalizing, we can write the scalar one-loop potential in

the rather abstract form

Vs = Tr

[
W (φ)2

64π2
lnW (φ)

]
. (B.8)

Again, it has to be emphasized that this expression does not represent a certain renor-

malization scheme but is an abstract expression to remember it more easily. Reinforcing

the counter terms will also take care of the wrong dimensionality in the logarithm.

As the intention of this chapter is to derive the Coleman-Weinberg potential, we will

now apply this result explicitly to massless scalar electrodynamics. Its Lagrangian reads

L = −1

4
FµνF

µν + (Dµφ)∗Dµφ− λ

6
|φ|4 , (B.9)
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where Dµ = ∂µ + ieAµ and φ is a complex scalar field

φ =
1√
2

(φ1 + iφ2). (B.10)

The classical potential can thus be obtained from the Lagrangian

V =
λ

6
|φ|4 =

1

4!
(φ1 + φ2)2. (B.11)

Using this and the definition eq. (B.1), the matrix elements of W (φ) can be calculated.

Thus

W11 =
λ

6
(3φ2

1 + φ2
2)

W22 =
λ

6
(3φ2

2 + φ2
1)

W12 = W21 =
λ

3
φ1φ2.

(B.12)

To make life easier, we diagonalize this matrix, i.e. we want to find unitary matrices

such that W = U †WDU , where WD is a diagonal matrix. Writing W in this way, we

find that

lnW = U † lnWDU, (B.13)

which becomes apparent when writing the logarithm in its expansion series. It then

becomes clear that we can write

Tr

[
W 2

64π2
lnW

]
= Tr

[
W 2
D

64π2
lnWD

]
=
∑
i

α2
i

64π2
lnαi, (B.14)

where the αi are the eigenvalues of W . We find

α1 = λ |φ|2 and α2 =
1

3
λ |φ|2 . (B.15)

As a consequence we get

Vs =
1

64π2

[
λ2 |φ|4 ln

(
λ |φ|2

)
+
λ2

9
|φ|4 ln

(
1

3
|φ|2

)]
=

1

64π2

[
λ2 |φ|4

(
10

9
ln
(
λ |φ|2

)
− 1

9
ln 3

)]
=

1

16π2

[
5λ2

18
|φ|4

(
ln
(
λ |φ|2

)
− 1

10
ln 3

)]
=

1

16π2

[
5λ2

18
|φ|4

(
ln
(
λ |φ|2

))
− δ1

]
,

(B.16)

where δ1 = 1
10 ln 3. This is the non-renormalized scalar one-loop contribution to the

effective potential. The next step will be to calculate the vector boson contribution.
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To do so let us first get back to the most general case in order to find a solution beyond

the special case of massless scalar electrodynamics. Like before we define a matrix in

the following way

L = ...− 1

2

∑
a,b

M2
ab(φ)AµaA

µ
B + ..., (B.17)

which is quadratic in φ and describes the interactions between scalars and vector bosons.

The Aµa are the vector fields, where the greek indices are like always the Lorentz indices

and the a’s refer to the numeration of the fields. The diagrams of interest are basically

those from fig. B.1 except for the fact that the propagators in the loops are not scalar

but vector propagators. Beyond that the vertices can be read off the Lagrangian and

are given by

iM2gµν . (B.18)

The vector propagators in Landau gauge contribute a factor

− igµν − kµkν/k
2

k2 + iε
. (B.19)

With the new vertices and propagators and the argumentation from before, we get the

vector one-loop contribution to the effective potential

Vv = i

∫
d4k

(2π)4

∞∑
n=1

3

2n
Tr

[(
M2(φ)

k2 + iε

)n]
, (B.20)

where the factor of 3 emerges when contracting the vertices with the propagators. Per-

forming the same calculation like before, we find

Vv = 3 Tr

[
Λ2

32π2
M(φ)2 +

M(φ)4

64π2
ln
M(φ)2

Λ

]
(B.21)

and in the more abstract form

Vv =
3

64π2
Tr
[
M(φ)4 lnM(φ)2

]
. (B.22)

Equipped with this finding we can go back to massless scalar electrodynamics and apply

it. There we have only one vector boson, let us call it photon, and our matrix M is only

a number, which reads

M2 = 2e2 |φ|2 = e2(φ2
1 + φ2

2). (B.23)

Plugging this into the general formula, yields

Vv =
3

64π2

[
4e4 |φ|4 ln

(
2e2 |φ|2

)]
=

3

16π2

[
e4 |φ|4

(
ln
(
e2 |φ|2

))
− δ2

]
,

(B.24)
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where δ2 = − ln 2.

Now summing the tree-level potential and the scalar and vector one-loop contribution

to the effective potential, yields

Veff =
λ

6
|φ|4 +

1

16π2

(
5λ2

18
+ 3e4

)
|φ|4 ln |φ|2 − (δ1λ

2 + δ2e
4) |φ|4 , (B.25)

where δ1 and δ2 were redefined accordingly. We will see later that the exact form of

these factors is not important. To make it complete we reenact the counter terms

Veff =
λ

6
|φ|4+

1

16π2

(
5λ2

18
+ 3e4

)
|φ|4 ln |φ|2−(δ1λ

2+δ2e
4) |φ|4+B |φ|2+C |φ|4 . (B.26)

We are now in the position to impose renormalization conditions. Like before we renor-

malize according to the on-shell scheme. I.e.

d2Veff

d |φ|2

∣∣∣∣
|φ|=0

!
= 0 (B.27)

and
d4Veff

d |φ|4

∣∣∣∣
|φ|=M

!
= 4λ, (B.28)

where the factor 4 comes from the normalization of φ.

The first condition yields

d2Veff

d |φ|2

∣∣∣∣
|φ|=0

= 2B
!

= 0

⇒ B = 0.

(B.29)

The second condition yields

d4Veff

d |φ|4

∣∣∣∣
|φ|=M

= 4λ− 4!(δ1λ
2 + δ2e

4) + 4!C +
1

16π2

(
5λ2

18
+ 3e4

)
4!

(
lnM2 +

25

6

)
!

= 4λ

⇒ C =(δ1λ
2 + δ2e

4)− 1

16π2

(
5λ2

18
+ 3e4

)
|φ|4 ln

(
ln
|φ|2

M2
− 25

6

)
.

(B.30)

Finally we arrive at the result, the Coleman-Weinberg potential

Veff =
λ

6
|φ|4 +

1

16π2

(
5λ2

18
+ 3e4

)
|φ|4

(
ln
|φ|2

M2
− 25

6

)
. (B.31)
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As long as λ ∝ e4 one can ensure that ln |φ|
2

M2 does not have to be large and the loop

expansion is valid. The conceptual difference to simple scalar field theory is that in scalar

field theory the tree-level potential can be cancelled by the photon one-loop potential to

reach the minimum. That the condition λ ∝ e4 can indeed be realized can be seen by a

renormalization group analysis of the parameters λ and e.
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