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Abstract

Pathological gambling (PG) shares clinical characteristics with substance-use disorders and is thus discussed as a
behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the
mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior,
whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this
question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based
functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based
morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and
right ventral striatum). PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right
striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness,
smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the
right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated
increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared
to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our
results provide further evidence for alterations in functional connectivity in PG with increased connectivity between
prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.
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Introduction

Pathological gambling (PG) is a psychiatric disorder
characterized by persistent and recurrent maladaptive
gambling behavior. It is considered as a behavioral addiction
since it shares clinical characteristics such as craving and loss
of control with substance use disorders [1]. In the DSM-5 [2],
PG has been included along with substance use disorders in
the diagnostic category of ‘Substance Use and Addictive
Disorders’.

A core component of addiction is diminished self-regulation,
i.e. the impaired capacity to control and stop substance-taking

behavior. Diminished self-regulation can be further described
as a behavioral bias towards the pursuit of immediate rewards
instead of the accomplishment of long-term goals [3,4].
Executive functions, which enable abdication of the immediate
satisfaction of needs, have been related to the activity of the
prefrontal cortex (PFC) [5]. Immediate reward seeking behavior
has been linked to regions of the mesolimbic system, since
subcortical areas such as the ventral striatum (including the
nucleus accumbens) are highly active during reward
processing [6]. Studies using functional magnetic resonance
imaging (fMRI) report a functional connection between ventral
striatum and medial parts of PFC [7-9]. Recently, Diekhof and
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Gruber [3] demonstrated a negative correlation in brain
responses between the PFC and areas of the reward system
(i.e., nucleus accumbens and ventral tegmental area) when
subjects were in conflict between a long-term goal and an
immediate reward. Furthermore, successful abdication of the
immediate reward was accompanied by an increased degree of
negative coupling between PFC and reward areas. Taken
together, the finding of Diekhof and Gruber suggests that the
ability to inhibit the behavioral bias towards immediate pleasure
is related to the interaction between PFC and the reward
system.

In line with the above-mentioned findings, fMRI studies found
functional alterations in the PFC as well as in the mesolimbic
system in substance dependence. Drug-addicted individuals
show a PFC dysfunction with a related decrease in
performance during executive function tasks [10]. Within the
reward system, an excessive sensitivity (i.e., enhanced brain
responses) to drug-related stimuli [11-13] and reduced brain
activity to non-drug rewards [13-16] has been described in
individuals with alcohol and nicotine dependence, and
increased brain activity in response to non-drug rewards has
been found in individuals with cocaine dependence [17]. Taking
these alterations into account, an imbalance between prefrontal
brain activity and mesolimbic function has been suggested to
contribute to addictive behavior [18,19].

Functional changes in the PFC and mesolimbic reward
system have also been reported in PG. Patients with PG have
demonstrated decreased ventromedial prefrontal activation
during an inhibition task [20], which indicates a frontal lobe
dysfunction, and is in line with previous behavioral studies on
executive function and decision-making in PG [21-24].
Moreover, PG patients displayed decreased prefrontal
activation when obtaining monetary reward [25-27], and
increased dorsolateral prefrontal activation in response to
videos and pictures with gambling scenes [28,29], suggesting
changes in the processing of reward-indicating stimuli.
Accordingly, studies using event-related potentials suggest a
medial frontal hypersensitivity to reward in problem gamblers
[30,31]. Alterations in reward processing have also been found
in the ventral striatum: PG patients showed blunted activation
during anticipation of monetary reward [25,32], whereas
increased activity was reported for problem gamblers [33]. PG
patients also demonstrated decreased activation when
obtaining a monetary reward [27], and an increased activation
in response to pictures with gambling scenes [29], indicating
altered brain responses within the reward system for gambling-
related stimuli. These findings suggest that PG patients show
dysfunctional changes independently in prefrontal as well as
mesolimbic brain structures.

The functional interaction between the prefrontal and
mesolimbic system can be explored using resting-state
functional connectivity – i.e., the temporal correlation of
spontaneous blood oxygenation level-dependent (BOLD) fMRI
signal between brain areas. Patterns of intrinsic functional
connectivity are correlated with similar patterns to those
activated during tasks-related activity [34,35]. Resting-state
fMRI has the additional advantage for a clinical population of
not requiring task performance and a relatively short scanning

duration (< 10 minutes) [36]. Recently, resting-state fMRI
studies reported changes in functional connectivity in
substance use disorders [37-47]. Some of these studies
suggest patterns of altered connectivity between cognitive
control nodes such as lateral PFC, anterior cingulate cortex
and parietal areas [39,41,46], and alterations in connectivity
from the ventral striatum [38,41,43-45] with mixed results
regarding the connectivity patterns of PFC and ventral striatum.
Increased functional connectivity between ventral striatum and
orbitofrontal PFC was found in chronic heroin users [41]. In
contrast, another study with opioid dependent individuals [44]
observed reduced functional connectivity between nucleus
accumbens and orbitofrontal PFC. Moreover, studies on
cocaine abuse / dependence demonstrated increased
functional connectivity between ventral striatum and
ventromedial PFC [45] and reduced prefrontal interhemispheric
connectivity [39]. Together, these resting-state studies
demonstrate that the interaction between PFC and the
mesolimbic reward system is altered in patients with substance
use disorders.

To date, little is know about functional connectivity alterations
in a behavioral addiction such as PG. A first indication for an
altered fronto-striatal functional connectivity in PG was found in
an exploratory resting-state study by Tschernegg et al. [48]. By
using a graph-theoretical approach, they observed increased
functional connectivity between caudate and anterior cingulate
in PG patients as compared to controls. However, it remains
unclear whether PG patients demonstrate similar alterations in
the interaction between PFC and the core structure of the
reward system (i.e., ventral striatum) as reflected by functional
connectivity findings in substance-related addictions. To the
best of our knowledge, no such study on PG has yet been
published. Therefore, the present study examines patterns of
functional connectivity in the prefrontal and the mesolimbic
system in patients with symptoms of PG. Functional
connectivity analysis was based on externally defined regions-
of-interests (“seeds”) located in the middle frontal gyrus and
ventral striatum, which were based on the results of a previous
voxel-based morphometry (VBM) study [49]. Since activation
studies of PG found an association between symptom severity
[27] as well as impulsiveness [25] and evidence of brain
functional alteration, we assumed that these behavioral
measures as well as smoking behavior as an additional marker
for addictive behavior would be related to functional alteration
of the relevant networks in the PG group.

Materials and Methods

Ethics Statement
The study was performed in accordance with the Declaration

of Helsinki and approved by the Ethics Committee of the
Charité - Universitätsmedizin Berlin. All participants gave
written informed consent prior to participation.

Participants
Data from 19 PG patients (mean age 32.79 years ± 9.85)

and 19 controls (mean age 37.05 years ± 10.19), who
participated in an fMRI study at the Charité -
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Universitätsmedizin Berlin (see Supplementary Methods in File
S1), were used for resting-state fMRI analysis. PG patients
were recruited through Internet advertisement and notices in
casinos. They were neither in an abstinent state nor treatment
seeking. Diagnosis for PG was based on a German
questionnaire for gambling behavior (“Kurzfragebogen zum
Glücksspielverhalten”, KFG) [50]. The questionnaire contains
20 items and is based on the DSM-IV / ICD-10 diagnosis
criteria for PG. The cut-off for PG is set to 16 points. We also
applied the Gambling Symptom Assessment Scale (G-SAS)
[51] as an additional measure of symptom severity. None of the
PG patients or controls had a known history of any neurological
disorder or current psychiatric Axis-I disorder including drug or
alcohol dependence as verified by an interview according to
the Structured Clinical Interview for DSM-IV Axis I Disorder
(SCID-I) [52]. Controls did not show any severe gambling
symptoms as confirmed by the KFG.

Handedness was measured by the Edinburgh Handedness
Inventory [53]. We collected information about years of school
education, number of cigarettes per day, alcohol per month in
grams, and fluid intelligence assessed with the matrices test of
the Wechsler Intelligence test for adults [54]. Smokers were not
allowed to smoke for 30 minutes prior to the scan session.

Impulsiveness was measured using the German version of
the Barratt Impulsiveness Scale-Version 10 (BIS-10) [55],
which contains 34 items subdivided into three impulsiveness
subscores: nonplanning, motor and cognitive impulsiveness.
After the fMRI scan, the desire for gambling (craving) was
measured by a visual analog scale (VAS), in which participants
answered five craving-related questions (e.g., ”How strong is
your intention to gamble?”) by marking a line between a 0 (‘‘not
at all’’) to 100 % (‘‘extremely strong’’).

For the functional connectivity analysis of the middle frontal
seed region, all 38 subjects were analyzed. Groups did not

differ in education, fluid intelligence, smoking habits, alcohol
intake nor handedness (Table 1). In terms of gambling habits,
17 PG patients mainly used slot machines and two PG patients
were bettors.

For the functional connectivity analysis of the ventral striatal
seed region, we had to exclude five PG patients and one
control subject due to lack of complete brain coverage in that
area (see fMRI data analysis); these subgroups consist of 14
PG patients (mean age 31.29 years ± 9.09) and 18 controls
(mean age 36.50 years ± 10.19). Groups did not differ in
education, fluid intelligence, smoking habits, alcohol intake nor
handedness (Table 1). Thirteen PG patients mainly used slot
machines and one PG patient was bettor.

MRI acquisition
Imaging was performed on a 3 Tesla Siemens Magnetom

Tim Trio (Siemens, Erlangen, Germany) at the Charité -
Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin,
Germany. For the functional imaging session, the following
scanning parameters were used: repetition time (TR) = 2500
ms, echo time (TE) = 35 ms, flip = 80°, matrix = 64 * 64, field of
view (FOV) = 224 mm, voxel size = 3.5 * 3.5 * 3.0, 39 slices,
120 volumes.

For the purpose of anatomical registration of the functional
data, we acquired an anatomical scan using a three-
dimensional magnetization prepared rapid gradient echo (3D
MPRAGE) with the following parameters: TR = 1570 ms, TE =
2.74 ms, flip = 15°, matrix = 256 * 256, FOV = 256 mm, voxel
size = 1 * 1 * 1 mm3, 176 slices.

fMRI data analysis
Images were preprocessed and analyzed using both FMRIB

Software Library (FSL, http://www.fmrib.ax.ac.uk/fsl) and

Table 1. Socio-demographic, clinical and psychometric data for the whole sample and for the subsample used for ventral
striatal seed analysis.

 PG patients (N = 19) controls (N = 19)   PG patients (N = 14) controls (N = 18)   
 Mean (SD) Mean (SD) t-value p-value Mean (SD) Mean (SD) t-value p-value
age in years 32.79 (9.85) 37.05 (10.19) 1.31 .20 31.29 (9.09) 36.50 (10.19) 1.50 .14
number of cigarettes per day 5.11 (7.23) 6.79 (8.39) 0.66 .51 5.43 (8.15) 6.06 (7.98) 0.22 .83
alcohol intake in grams 128.74 (210.89) 161.19 (184.38)1 0.50 .62 153.00 (236.28) 167.74 (187.89)2 0.19 .85
years of school education 10.82 (1.95) 11.32 (1.57) 0.87 .39 11.32 (1.75) 11.39 (1.58) 0.11 .91
fluid intelligence (matrices test) 17.42 (4.22) 19.21 (3.66) 1.40 .17 18.36 (3.69) 19.17 (3.76) 0.61 .55
handedness (EHI) 65.34 (66.60) 81.03 (38.19) 0.89 .38 54.39 (75.01) 82.90 (38.39) 1.40 .17
BIS-10 total 2.38 (0.41) 1.96 (0.27) 3.73 .001 2.42 (0.44) 1.97 (0.27) 3.54 .001
BIS-10 cognitive 2.30 (0.39) 1.85 (0.33) 3.88 < .001 2.34 (0.45) 1.86 (0.34) 3.49 .002
BIS-10 motor 2.33 (0.56) 1.86 (0.36) 3.08 .004 2.38 (0.55) 1.85 (0.36) 3.31 .002
BIS-10 nonplanning 2.52 (0.38) 2.18 (0.38) 2.76 .009 2.54 (0.38) 2.21 (0.35) 2.48 .019
KFG 32.95 (10.23) 1.42 (2.32) 13.10 < .001 34.21 (10.81) 1.50 (2.36) 12.52 < .001
G-SAS 21.05 (9.37) 1.94 (2.90)1 8.28 < .001 22.14 (10.11) 2.00 (2.98)2 7.84 < .001
VAS craving in % 34.62 (29.80) 17.19 (16.77) 2.22 .033 33.41 (29.32) 16.97 (17.23) 1.99 .056

Note: Two sample t-test (two-tailed) with df = 36 (1Ncontrols = 18, df = 35) for the whole sample and df = 30 (2Ncontrols = 17, df = 29) for the subsample. EHI, Edinburgh
Handedness Inventory; BIS-10, Barratt Impulsiveness Scale-Version 10; KFG, “Kurzfragebogen zum Glücksspielverhalten” (gambling questionnaire); G-SAS, Gambling
Symptom Assessment Scale; VAS, visual analog scale.
doi: 10.1371/journal.pone.0084565.t001
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Analysis of Functional Neuroimages (AFNI, http://
afni.nimh.nih.gov/afni/). Preprocessing was based on the 1000
Functional Connectomes scripts (www.nitrc.org/projects/
fcon_1000). The following preprocessing steps were
performed: slice-time correction, motion correction, spatial
smoothing with a 6 mm full-width at half maximum Gaussian
spatial filter, band pass filtering (0.009 - 0.1 Hz) and
normalization to the 2 * 2 * 2 mm3 Montreal Neurological
Institute (MNI)-152 brain template. Signal from regions of no-
interest: white matter and cerebrospinal fluid signal were
removed using regression. Global signal was not removed as it
has recently been shown that this preprocessing step can
induce false-positive group differences [56].

Seed regions for functional connectivity analysis were
defined based on the results of a previous VBM study using the
participants' structural data from the current study [49]. In this
study, PG patients demonstrated an increase in local gray
matter centered in right middle frontal gyrus (x = 44, y = 48, z =
7, 945 mm3) and right ventral striatum (x = 5, y = 6, z = -12, 135
mm3). In the functional connectivity analysis, spheres were
defined at the peak points of the gray matter differences
(Figure 1). Sphere radii were chosen such that the significant
area from the VBM analysis would correspond to the size of the
sphere. For the prefrontal seed, we used a radius of 6 mm (880
mm3, 110 voxels). For the ventral striatal seed, we used a
radius of 4 mm (224 mm3, 28 voxels). Due to signal loss in the
orbitofrontal cortex and adjacent subcortical structures we had
to exclude six subjects from the functional connectivity analysis
for the ventral striatal seed (Figure S1). A subject was excluded
if there were less than 50% of voxels within the seed region.

We conducted a voxel-wise functional connectivity analysis
for each seed region. Averaged time courses were extracted
from each seed region for each subject, and linear correlation

Figure 1.  Location of seed regions for functional
connectivity analysis.  Right middle frontal gyrus: x = 44, y =
48, z = 7, radius of 6 mm. Right ventral striatal seed: x = 5, y =
6, z = -12, radius of 4 mm.
doi: 10.1371/journal.pone.0084565.g001

coefficients between the seed region time course and the time
course for all other voxels in the brain was computed using the
3dFIM+ AFNI command. Correlation coefficients were then
transformed to z-values using the Fisher r-to-z transformation.
The z-values were used for the within and between group
analyses. For each group, one-sample t-tests were carried out
for each seed region in order to provide correlation maps within
each group. Group comparisons for each seed region were
performed using two-sample t-tests. To account for gray
matter-related differences in functional connectivity, which
might be due to using seed regions based on the VBM results,
we used the individual gray matter volume as a voxel-wise
covariate (see Supplementary Results in File S1 and Table S1
for the results of the functional connectivity analysis without
gray matter regression, and Figure S2 and Figure S3 for an
illustration of both the analysis with and the analysis without
gray matter regression). Group level results for connectivity
maps were thresholded at a z-score > 2.3, corresponding to p
< .01. To account for the problem of multiple comparisons, we
performed a cluster-wise correction using Gaussian random
field theory implemented in FSL, and a Bonferroni correction
for the number of seeds.

In order to examine whether changes in functional
connectivity within the PG group were related to impulsivity,
symptom severity and smoking habits, we extracted the mean
z-value for the significant, thresholded clusters (two clusters for
right middle frontal seed and two clusters for right ventral
striatal seed) for each of the PG patients. Then, the z-values
were correlated with the self-report measures of interest
(BIS-10 total and subscores, KFG, G-SAS, VAS craving,
number of cigarettes per day).

Finally, we tested for the correlation between both seeds for
the subsample by computing the Pearson’s correlation
between the extracted time courses.

Behavioral data analysis
Clinical, socio-demographic and psychometric data, as well

as the association between z-values and self-report measures
of interest, were analyzed using SPSS Statistics 19 (IBM
Corporation, Armonk, NY, USA). Group comparisons were
carried out using two-sample t-test (two-tailed). Correlations
were computed using the Pearson’s and Spearman’s
correlation coefficients. An alpha error probability of < .05 was
used.

Results

Clinical and psychometric data
We Found Significantly Higher Scores for Gambling Severity

(KFG, G-SAS), Craving for Gambling (VAS) and Impulsiveness
(BIS-10) in PG Patients as Compared to Controls (Table 1).

Connectivity from the right middle frontal gyrus (Ncontrols
= 19, NPGpatients = 19)

Across both groups (Figure 2 and Table 2), maximal
connectivity from the right middle frontal gyrus was found to the
right hemisphere around the seed, which extended to the right
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PFC as well as right insula, striatum, angular gyrus, lateral
occipital cortex and supramarginal gyrus. Moreover, significant
positive connectivity from the right middle frontal gyrus was
found to its contralateral homologue region (left lateral PFC)
extending to the left insula. Negative connectivity was found to
the left posterior cingulate gyrus extending to left temporal
pole, and regions in both hemispheres such as lingual gyrus,
intracalcarine cortex, occipital pole, precuneus, pre- and
postcentral gyrus, superior frontal gyrus, thalamus, bilateral
cingulate gyrus, and cerebellum.

Group contrasts (Figure 2, Figure 3A and Table 2) revealed
increased connectivity from the right middle frontal gyrus to the
right striatum for PG patients as compared to controls. The
peak voxel of this contrast is in the putamen with the cluster
extending into the globus pallidus, dorsal caudate, insula and
thalamus. Decreased connectivity was found to the right
anterior cingulate cortex extending to the bilateral superior
frontal and paracingulate gyrus in PG patients as compared to
controls.

The group differences remained consistent using subgroups
that included only individuals with full striatal coverage (Ncontrols

= 18, NPGpatients = 14; results not shown).
Connectivity from the right ventral striatum (Ncontrols = 18,

NPGpatients = 14)
Across both groups (Figure 4 and Table 2), the maximal

connectivity from the right ventral striatum was found
surrounding the seed and in the contralateral homologue
region, including bilateral nucleus accumbens and subcallosal
gyrus, and extending to bilateral caudate, putamen, amygdala,
ventromedial PFC, and the frontal and temporal poles.
Negative connectivity was found in the right precentral gyrus
extending to bilateral paracingulate, middle frontal, inferior
frontal and superior frontal gyrus, right postcentral gyrus, and
left hemispheric areas such as frontal pole, insula and the
frontal and central operculum. Negative connectivity was also
found in the left lingual gyrus extending to the right lingual
gyrus and regions in bilateral cerebellum, and bilateral occipital
fusiform gyrus, and in the bilateral supramarginal gyrus
extending to superior parietal lobule, bilateral lateral occipital
cortex, precuneus and angular gyrus.

Group contrasts (Figure 4, Figure 3B and Table 2) revealed
increased connectivity from the right ventral striatum to the left
cerebellum as well as to the right superior frontal gyrus,
extending to the right middle frontal gyrus and bilateral
paracingulate gyrus in PG patients as compared to controls.

Correlation with self-report measures
The mean z-values in clusters of significant difference

between the two groups were used to test for correlations with
behavioral measures within the PG group (4 clusters). Positive
correlations were found for connectivity between the right
middle frontal seed and the striatum (for the PG > controls
contrast) and the nonplanning BIS-10 subscale, smoking habits
(number of cigarettes per day) and craving scores (Figure 5A).
We also found a positive correlation for connectivity between
the right ventral striatal seed and cerebellum (for the PG >
controls contrast) and smoking habits (Figure 5B). Since
smoking habits were not normally distributed, we also

computed Spearman’s correlation coefficient for this variable.
For the right middle frontal seed mean z-score the correlation
was still significant, rS = .52, p = .021. For the right ventral
striatal seed mean z-score, we got a marginal significant result,
rS = .51, p = .06. We did not find any significant correlation for
the other BIS-10 subscales and BIS-10 total and for KFG and
G-SAS.

Correlation between the right middle frontal gyrus and
right ventral striatum (Ncontrols = 18, NPGpatients = 14)

Groups did not significantly differ in the correlation values
between the prefrontal and ventral striatal seeds.

Discussion

We found that PG patients demonstrate increased functional
connectivity between regions of the PFC and mesolimbic
reward system, as well as reduced connectivity in the area of
the PFC. Specifically, PG patients demonstrated increased
connectivity between the right middle frontal gyrus and the right
striatum as compared to controls, which was positively
correlated with the nonplanning BIS subscale, smoking and
craving scores. Reduction in connectivity was found in PG
patients from the right middle frontal gyrus to other prefrontal
areas. Importantly, on the group level we observed functional
connectivity from the ventral striatum to parts of the orbital
PFC, which replicate previously reported connectivity patterns
[7,8,57].

An imbalance between prefrontal function and the
mesolimbic reward system has been suggested to contribute to
addictive behavior [18,19] based on studies in patients
reporting altered function of the PFC [10], as well as functional
changes in areas of the reward system such as the ventral
striatum [11-16]. Similar to our finding of an increased
functional connectivity between PFC and striatum, Tschernegg
et al. [48] observed increased fronto-striatal functional
connectivity in PG patients as compared to controls using a
graph-theoretical approach. Altered intrinsic functional
connectivity between the PFC and the reward system was also
reported for substance use disorder [41,44,45,58]. An
increased connectivity between the ventromedial / orbitofrontal
PFC and ventral striatum has been found in chronic heroin
users [41] and abstinent cocaine users [45]. The altered
interaction between prefrontal structures and the mesolimbic
reward system in PG shares similar functional organization to
these substance-related addictions, suggesting a more general
pathomechanism for disorders related to an increase in
habitual pathological behavior.

In addition, we found a decrease in functional connectivity
between the right middle frontal gyrus and other prefrontal
areas (i.e., right anterior cingulate cortex extending to the
bilateral superior frontal and paracingulate gyrus) in PG
patients as compared to controls. Together with the results of
imaging and behavioral studies on PG that report diminished
ventromedial PFC activity [20,59] and impaired executive
function and decision-making [21-24], our finding suggests an
alteration in the functional organization of the PFC. However,
we did not find any differences between PG patients and
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Figure 2.  Functional connectivity of right middle frontal seed.  Patterns of significantly positive (red spectrum) and negative
(blue spectrum) correlations with the right middle frontal gyrus (seed depicted in green) within all subjects and within the groups.
Group comparison for significant correlations: PG patients < controls and PG patients > controls (violet spectrum). All maps are
thresholded at a z-score > |2.3| (cluster-wise corrected using Gaussian random field theory and Bonferroni corrected for the number
of seeds). Ncontrols = 19, NPGpatients = 19.
doi: 10.1371/journal.pone.0084565.g002
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controls for fluid intelligence, a construct which has been
associated with frontal lobe function [60], suggesting that the
observed alteration in connectivity does not effect overall
cognitive capacity, and may rather be specific to the underlying
disease process. Altered connectivity within the PFC is in line
with prefrontal abnormalities reported in task activation [10] and
resting-state fMRI studies on substance use disorder [39,41]
and PG [48]. Moreover, it might contribute to the altered
interaction between PFC and a core area of the brain reward
system, the ventral striatum, and may influence prefrontal top-
down modulation of reward-related brain areas.

In order to examine whether connectivity-based findings in
PG patients are associated with behavioral measures, we
explored the correlation between functional connectivity of the
relevant networks and impulsiveness, symptom severity and
smoking within the PG group. We found positive correlations
between right middle frontal gyrus and right striatum
connectivity and the nonplanning impulsiveness subscore and
craving for gambling. In addition, the number of cigarettes per
day positively correlated with the strengths of connectivity
between right middle frontal seed and right striatum and with
the strengths of connectivity between right ventral striatal seed
and cerebellum. The positive correlations suggest that the
alterations in functional connectivity are related not only to
craving, but also to an indicator of the ability to plan for the
future − for example, orientation to present goals and pleasures
− and substance use behavior such as smoking. While Reuter
et al. [27] showed that ventral striatal and ventromedial
prefrontal activity during obtaining monetary gain in PG
predicted gambling severity measured by the KFG, we did not

find any correlation between KFG and G-SAS scores and
alterations in functional connectivity between PFC and
striatum. Thus, the observed changes in functional connectivity
might reflect underlying mechanisms that increase the
probability of developing gambling behavior rather than the
symptom severity of PG itself.

The seed regions used here for the functional connectivity
analysis were lateralized to the right hemisphere. This is due to
fact that they were based on the results of our previous VBM
study [49] showing a significant difference in local gray matter
volume centered in right PFC and right striatum between PG
patients versus matched controls. The right lateralization is
consistent with previous evidence showing that the prefrontal
executive functions, such as inhibitory control, are mainly
situated in the right hemisphere [61-63]. Moreover, the
involvement of right PFC has also been shown for self-
regulation [64-67]. With respect to the reward system, imaging
studies on PG reported right lateralized changes during reward
processing: Alterations only in right ventral striatum have been
found in response to gambling stimuli [29] as well as during the
processing of monetary reward [27].

As PG patients were not abstinent nor in therapy, the current
study is limited in its generalizability. Comparison to other
studies on substance dependence is difficult, as they have
been largely performed on patients in an abstinent state
[39,45]. In addition, the data acquired do not allow for the
investigation of causal relationships between the connectivity
networks [68], which would otherwise provide further
understanding of the directional interaction between PFC and
mesolimbic reward system.

Table 2. Brain regions exhibiting significant connectivity across both groups and for the group contrasts.

Seed Contrast Anatomical region Side
Cluster-level p-value
(corrected)

Cluster
size(voxels)

Voxel-level z-
value MNI coordinates at peak voxel

       x y z

Right middle
frontal gyrus

mean positive frontal pole R < .0001 26241 10.4 46 48 10

 mean negative
posterior cingulate
gyrus

L < .0001 50437 7.18 -14 -50 32

 PG < controls cingulate gyrus R .0015 508 3.65 18 20 30

 PG > controls putamen R .0026 668 3.47 26 0 -2

Right ventral
striatum

mean positive nucleus accumbens R < .0001 9025 8.93 8 6 -10

 mean negative precentral gyrus L < .0001 17987 5.22 -50 2 20

  lingual gyrus L < .0001 2362 4.7 -10 -80 -12

 PG < controls   not significant      

 PG > controls cerebellum L .0026 670 4.31 -32 -52 -38

  superior frontal gyrus R .0101 543 3.92 26 26 50

Note: Two sample t-test (two-tailed) with df = 36 (1Ncontrols = 18, df = 35) for the whole sample and df = 30 (2Ncontrols = 17, df = 29) for the subsample. EHI, Edinburgh
Handedness Inventory; BIS-10, Barratt Impulsiveness Scale-Version 10; KFG, “Kurzfragebogen zum Glücksspielverhalten” (gambling questionnaire); G-SAS, Gambling
Symptom Assessment Scale; VAS, visual analog scale.
doi: 10.1371/journal.pone.0084565.t002
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In conclusion, our results demonstrate alterations in
functional connectivity in PG with increased connectivity
between regions of the reward system and the PFC, similar to
those reported in substance use disorders. An imbalance
between prefrontal function and the mesolimbic reward system

in PG, and more generally in addiction, might benefit from both
biological and psychotherapeutic interventions, such as a
specialized cognitive behavioral [69] or euthymic therapy [70]
that focus on normalizing network interactions related to reward
processing.

Figure 3.  Group differences in functional connectivity of the seeds.  Plots show z-values for the significant clusters of
difference (encircled in yellow). Number of subjects for right middle frontal gyrus seed region A): Ncontrols = 19, NPGpatients = 19, and for
right ventral striatal seed region B): Ncontrols = 18, NPGpatients = 14.
doi: 10.1371/journal.pone.0084565.g003
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Figure 4.  Functional connectivity of right ventral striatal seed.  Patterns of significantly positive (red spectrum) and negative
(blue spectrum) correlations with the right ventral striatum (seed depicted in green) within all subjects and within the groups. Group
comparison for significant correlations: PG patients > controls (violet spectrum). Please note that the contrast controls > PG patients
was not significant. All maps are thresholded at a z-score > |2.3| (cluster-wise corrected using Gaussian random field theory and
Bonferroni corrected for the number of seeds). Ncontrols = 18, NPGpatients = 14.
doi: 10.1371/journal.pone.0084565.g004
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Figure 5.  Significant positive correlations for connectivity patterns.  Scatter plots show significant correlations between the
mean z-values of the thresholded clusters of the group contrasts PG patients > controls and smoking habits (number of cigarettes
per day [cig/d]), the nonplanning BIS subscale and the VAS for craving. Number of PG patients for right middle frontal gyrus seed
region A): NPGpatients = 19, and for right ventral striatal seed region B): NPGpatients= 14.
doi: 10.1371/journal.pone.0084565.g005
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Supporting Information

File S1.  Supplementary Methods and Supplementary
Results.
(PDF)

Figure S1.  Signal loss in orbitofrontal cortex / ventral
striatum : One control subject (1002) and five PG patients
(2011, 2019, 2044, 2048, 2061) had less than 50 % of voxels
with signal within the right ventral striatal seed (green).
Exemplary, subject 1001 had signal in every voxel within the
seed.
(TIF)

Figure S2.  Functional connectivity of right middle frontal
seed is not driven by gray matter volume differences :
Functional connectivity analysis with and without gray matter
as covariate results in almost the same significant voxels
(overlap shown in yellow). Voxels demonstrating significant
correlations for the analysis with gray matter as covariate are
shown in red. Voxels demonstrating significant correlations for
the analysis without any covariate are shown in blue. Seed is
depicted in green. A) Significantly positive correlations across
both groups, B) significantly negative correlations across both
groups, C) and D) group contrasts for significant correlations.
Ncontrols = 19, NPGsubjects = 19.
(TIF)

Figure S3.  Functional connectivity of right ventral striatal
seed is not driven by gray matter volume differences :
Functional connectivity analysis with and without gray matter
as covariate results in almost the same significant voxels

(overlap shown in yellow). Voxels demonstrating significant
correlations for the analysis with gray matter as covariate are
shown in red. Voxels demonstrating significant correlations for
the analysis without any covariate are shown in blue. Seed is
depicted in green. A) Significantly positive correlations across
both groups, B) significantly negative correlations across both
groups, C) group contrast for significant correlations: PG
patients > controls. Please note that the group contrast controls
> PG patients was not significant. Ncontrols = 18, NPGsubjects = 14.
(TIF)

Table S1.  Brain regions exhibiting significant connectivity
across both groups and for the group contrasts in the
functional connectivity analysis without gray matter
regression.
(PDF)
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