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Abstract

Phononic crystals, capable to block or direct the propagation of elastic/acoustic

waves, have attracted increasing interdisciplinary interest across condensed matter

physics and materials science. As of today, no generalized full description of elas-

tic wave propagation in phononic structures is available, mainly due to the large

number of variables determining the band diagram. Therefore, this thesis aims

for a deeper understanding of the fundamental concepts governing wave propaga-

tion in mesoscopic structures by investigation of appropriate model systems. The

phononic dispersion relation at hypersonic frequencies is directly investigated by the

non-destructive technique of high-resolution spontaneous Brillouin light scattering

(BLS) combined with computational methods.

Due to the vector nature of the elastic wave propagation, we first studied the

hypersonic band structure of hybrid superlattices. These 1D phononic crystals com-

posed of alternating layers of hard and soft materials feature large Bragg gaps. BLS

spectra are sensitive probes of the moduli, photo-elastic constants and structural

parameters of the constituent components. Engineering of the band structure can

be realized by introduction of defects. Here, cavity layers are employed to launch

additional modes that modify the dispersion of the undisturbed superlattice, with

extraordinary implications to the band gap region. Density of states calculations in

conjunction with the associated deformation allow for unambiguous identification of

surface and cavity modes, as well as their interaction with adjacent defects.

Next, the role of local resonances in phononic systems is explored in 3D structures

based on colloidal particles. In turbid media BLS records the particle vibration spec-

trum comprising resonant modes due to the spatial confinement of elastic energy.

Here, the frequency and lineshapes of the particle eigenmodes are discussed as func-

tion of increased interaction and departure from spherical symmetry. The latter is

realized by uniaxial stretching of polystyrene spheres, that can be aligned in an al-

ternating electric field. The resulting spheroidal crystals clearly exhibit anisotropic

phononic properties.

Establishing reliable predictions of acoustic wave propagation, necessary to ad-

vance, e.g., optomechanics and phononic devices is the ultimate aim of this thesis.
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Zusammenfassung

Phononische Kristalle, welche die Ausbreitung elastischer/akustischer Wellen kon-

trollieren können, stoßen auf ein immer größeres interdisziplinäres Interesse, sowohl

in der Festkörperphysik als auch in den Materialwissenschaften. Eine allumfassen-

de Beschreibung der Wellenausbreitung in phononischen Strukturen ist bis heute

nicht vorhanden, vor allem aufgrund der vielen Einflussgrößen des Banddiagramms.

Ziel dieser Arbeit ist es daher, durch die Untersuchung geeigneter Modellsysteme,

ein tieferes Verständnis der fundamentalen Zusammenhänge zu erhalten. Die Di-

spersionsrelation im GHz-Band (Hyperschall) kann mittels zerstörungsfreier und

hochauflösender Brillouin Lichtstreuung (BLS) direkt bestimmt werden.

Die Vektoreigenschaften elastischer Wellen legen die Untersuchung vereinfach-

ter Bandstrukturen nahe, z.B. die von (hybriden) Übergittern. Diese eindimensio-

nalen phononischen Kristalle bestehen aus wechselnden Lagen eines harten bzw.

weichen Materials und zeigen große akustische Bandlücken. BLS-Spektren geben

Aufschluss über elastische Moduln, photo-elastische Konstanten und strukturelle

Parameter der einzelnen Komponenten. Schichten abweichender Dicke (Kavitäten)

können zusätzliche Moden erzeugen, welche die Dispersion des perfekten Übergitters

modifizieren, insbesondere im Bereich der Bandlücke. Deformations- und Zustands-

dichteberechnungen erlauben die Identifizierung von Oberflächen- und Kavitäten-

moden, sowie ihrer Wechselwirkung mit benachbarten Defekten.

Des Weiteren betrachten wir lokale Resonanzen in 3D-phononischen Strukturen,

basierend auf kolloidalen Partikeln. In nicht-transparenten Medien misst die BLS

das Spektrum resonanter Moden aufgrund der Lokalisierung von elastischer Ener-

gie (Partikeleigenschwingungen). Die Form und Lage der Spektrallinien sind unter-

sucht als Funktion zunehmender interpartikulärer Wechselwirkung und abnehmen-

der Symmetrie. Letztere wurde durch Verstreckung von Polystyrolkugeln realisiert,

die zudem im elektrischen Wechselfeld ausgerichtet werden können. Die erhaltenen

sphäroidalen Kristalle haben eindeutig anisotrope phononische Eigenschaften.

Diese Arbeit ist Teil der Bemühungen die Vorhersagbarkeit der Ausbreitung elas-

tischer Wellen zu verbessern, welche ein integraler Bestandteil für die Weiterent-

wicklung von z.B. optomechanischen und phononischen Komponenten ist.
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Part I.

Introduction

5





1. Hypersonic Phononics

This Chapter contains an introduction to the field of hypersonic phononics. A short

historical outline is sketched to reenact the development until today. Finally, the

current challenges are addressed and the motivation is pointed out.

Λ
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1 Hypersonic Phononics

1.1. Historical Sketch

The urge for a deeper understanding of their environment has driven humanity from

the dawn of time and culminated in the modern natural sciences. Many phenomena

in nature such as the red color of sunsets, lightning or earthquakes have been long

unexplained but are well-understood, today. The interaction between energy and

matter determines our daily life, to such an extent that no living organism and no

machine is conceivable without this fundamental feature.

All of the aforementioned natural events involve energy in form of electromagnetic

and elastic waves interacting with small molecules or condensed matter, respectively.

Wave phenomena are of striking importance as within a specific wavelength range

they can be directly perceived as light and sound. Their interaction with matter

(e.g., in a scattering experiment) gives insight to the materials inner structure, hence

plays a pivotal role for the measurement of physical quantities.

We should acknowledge that the wave formalism for light and sound is only one

way to account for the observations. In the late 17th century, Huygens [1] and New-

ton laid the foundations for two competing theories for the description of light.

While the scientific community was in favor of Newtons corpuscular picture [2] in the

18th century, the close of the 19th century brought the breakthrough of the wave

view based on the experiments on interference (Young and Fresnel), [3] polarization

(Arago) and Maxwell’s [4] and Hertz’ [5] works on electromagnetic fields. At the turn

of the 20th century, Planck realized that the energy emitted or absorbed by matter

is an integer multiple of hf , [6] with h being a constant named after him and f being

the frequency of the wave (i.e., the color). In 1905, Einstein postulated that light

consists of “light quanta” to explain the photoelectric effect [7] which is considered

as one of the foundations of modern quantum physics.

The consequences of the apparent contradiction of the two views have been heavily

debated and gave rise to the Copenhagen interpretation of quantum mechanics, that

essentially favors a probabilistic description of nature, in the 1920s. [8] In the due

course the terms “photon” [9] and “phonon” [10] for quantums of electromagnetic and

elastic waves were established. Today, the wave-particle duality is widely accepted

and readily applicable to practical cases where particles have low masses or waves

have high energies, respectively. In 1924, de Broglie extended the duality to particles

and allocated them a wavelength λ = h/p, [11] with p being the momentum. His

8



Historical Sketch 1.1

postulate has been proven by diffraction experiments ranging from small particles

like electrons [12] up to large particles like fullerenes (C60), [13] in 1999. With the

development of quantum field theory in the second half of the 20thcentury, the

distinction between particles and waves became obsolete as all (quasi-)particles can

be described as excited states in an underlying physical field.

The generated knowledge facilitated the analysis of scattering experiments that

used small particles and electromagnetic waves. A few examples are the (Rutherford)

scattering of α-particles on gold atoms leading to the planetary model for atoms [14]

or the electron spin discovered by the deflection of silver atoms under an magnetic

field in the Stern-Gerlach experiment. [15,16] X-ray diffraction became important for

the analysis of crystal structures [17] and inelastic light scattering (Raman) [18] can be

used to probe the vibrational states of small molecules or the high frequency phonons

and magnons (spin waves) in condensed matter. Ultrasonic waves are utilized, e.g.,

for medical imaging and submarine navigation (sonar).

Today, numerous methods are known to investigate the inner structure of ma-

terials, their chemical composition, phase transitions etc.. A wide range of physi-

cal/chemical quantities can be accessed by appropriate methods (e.g., chromatogra-

phy, spectroscopy). The surge of industrial production required material charac-

terization to become a routinely performed task on a commercial basis. However,

it has remained a challenge to artificially design materials with predictable prop-

erties and characteristic responses to external stimuli. While design is possible on

a large scale (architecture, craftsmanship) and on molecular scale (in-/organic syn-

thesis), the field of nanofabrication (10 nm–10 µm) is not even seventy years old.

Our world would look entirely different without the transistor revolution invoked by

the advent of integrated circuits. [19] Semiconductor industry has pushed growth and

etching processes to ever smaller scales and can be considered as one of the driving

forces in nanotechnology. This progress is entirely built on the growing knowledge

about the inherent processes attained by critical experimental and theoretical work.

Electrons treated as waves in the periodic potential of a (semiconductor) crystal

lattice are not scattered from the nuclei if they meet certain criteria. An exception

is the scattering from defects or grain boundaries that break the symmetry of the

crystal. The degenerated energy states of separated single atoms split infinitesi-

mally to form the quasi-continuous valence and conduction bands when organized

in a macroscopic solid. For electrical conduction electrons must be excited into

9



1 Hypersonic Phononics

Figure 1.1: A male indian peafowl (Pavo cristatus) displaying. The interference color
of the feathers is an example for a natural photonic crystal formed by regular inclusions
of air. Reducing the optical mismatch by filling the interstices would result in a pale gray
appearance. (adapted from Wikimedia Commons)

free states above the Fermi energy that is a measure of the filling level of the en-

ergy states. Valence and conduction bands overlap in metals (conductors) and are

well separated in isolators, with the Fermi level between these two bands causing

the electrical resistance as no electrons can be excited into the conduction band.

The tiny energetic separation in semiconductors (0.1 ≤ 4 eV) mainly causes their

electronic resistance often referred to as “band gap”. The dispersion relation ω(k)

reflects the electronic band structure by relating energy with (quasi-)momentum of

the electrons. Doping with auxiliary elements alters the band structure, such that

electronic conduction can be individually tailored.

In a similar way, the introduced concepts are applicable to electro-magnetic waves,

as well. No doubt, one of the most spectacular developments in the past decades

is the field of photonic crystals (PhC’s). [20,21] Characteristic for these systems is a

periodic variation of the dielectric constant ε along at least one axis of periodicity.

A prominent exponent is the feathering of peacocks, whose colors are purely due to

interference from the regular pattern of air inclusions (Fig. 1.1). The most striking

feature is the so called “photonic band gap”, observed when the structure period

a is in the order of magnitude of visible light. Light of a particular wavelength

10



Historical Sketch 1.1

periodic in
two directions

2D 3D1D

periodic in
one direction

periodic in
three directions

Figure 1.2: Schematic view of one-, two-, and three-dimensional photonic or phononic
crystals. Different colors represent the two composing materials that have different dielec-
tric constants or elastic impedance, respectively. Such crystal are predominantly defined
is the periodicity of along one or more axes.

(frequency) cannot traverse the crystal as its amplitude decays evanescently into the

PhC due to multiple destructive interferences of the incident and reflected beams.

Hence, these photons are (Bragg) reflected and give rise to the iridescent colors.

For the simplest case of one-dimensional (1D) structures the lattice period should

be half the wavelength a = λ/2 to maximize this effect. The figure of merit is the

width of the band gap ∆f/f discernible in the photonic dispersion relation and is

determined by the relative thickness and the mismatch of refractive indices of the two

composing materials. [22] As the periodicity is in the range of the wavelength of visible

light (400–780 nm), the structures can be artificially created using nanofabrication

techniques. Adjusting the geometrical parameters to tailor the propagation of light

holds a wealth of applications. Instead of using light as probe for the purpose of

analysis, the specific modification of the sample is employed to shape the properties

of the probe beam after the interaction. Of course, the interplay of structure creation

and subsequent analysis will play a paramount role in practice.

Photonic structures can be periodic in one, two, or three dimensions (Fig. 1.2),

which is the fundamental difference to atomic lattices, that are inherently three-

dimensional. 3D structures allow to observe complete photonic band gaps, i.e.

an electromagnetic wave cannot pass the photonic crystal regardless of their an-

gle of incidence. Prominent examples are the inverse opals, [23] and woodpile struc-

tures. [24,25] Two-dimensional structures, such as arrays of rods or holes (with dif-

11



1 Hypersonic Phononics

ferent lattice symmetries) can be used for wave guiding along high curvatures in

various ways. [26,27] The confinement of distinct modes in photonic crystal fibers

with a hexagonal structure surrounding a hollow core is basically a 2D PhC. [28,29]

Especially, one-dimensional photonic crystals find wide application due to the ease

of fabrication. Few examples are dichroic mirrors and anti reflective coatings, with

tunable passing bands. Also, the development of lasers hugely benefits from 1D

PhC’s that increase the reflectivity of the resonators and allow the single-mode op-

eration by placing a Fabry-Pérot etalon inside the resonator. Even quasi-crystalline

materials were shown to possess photonic band gaps. [30] The tunability of the pho-

tonic band structure and accelerated fabrication [31] opens pathways for application

in data processing, i.e. integrated circuits that are switched by photons rather than

electrons.

The concepts found for PhC’s can be transferred to phononic crystals (PnC’s) by

replacing the relevant parameters, as theorized in 1993. [32,33] Instead of variations in

the dielectric constant the variations of the acoustic impedance Z (= ρcL) becomes

important, that is the product of mass density ρ and (longitudinal) sound velocity

cL. The higher Z (or the proportional elastic moduli) the stiffer is the material and

the faster travels an acoustic wave through the structure. At boundaries between

two materials of different Z, elastic waves are reflected and can destructively inter-

fere at frequencies of the phononic band gap. One of the first PnC’s identified as

such is the meter-sized sculpture “Organo” by E. Sempere (on display at the Juan

March Foundation in Madrid), with an acoustic band gap at 1.67 Hz. [34] In princi-

ple, all effects found in PhC’s are also present in PnC’s, but now more materials

parameters are involved as phonons propagate as full vector waves, and consequently

require a higher (computational) effort to be correctly described by theory. Other

than their electromagnetic analogs, elastic waves require a medium for propagation

and in general one distinguishes between longitudinal and transverse polarization.

Longitudinal waves, or pressure waves, with displacement of atoms (or volume el-

ements) along the axis of propagation are basically pressure fluctuations and are

supported by both solids and fluids. Transverse (or shear) waves, with displacement

perpendicular to the propagation direction can only be observed in solids, as they

need a non-zero shear modulus as the restoring force.

The realization of a PnC in the ultrasonic regime was first presented in 2D, [35]

followed by a 3D example with a band gap at audible frequencies. [36] Shortly af-

12



Historical Sketch 1.1

ter this, absolute band gaps, i.e. independent of the direction of propagation were

reported in two-dimensional structures. [37] Also, first evidence for hypersonic band

gaps was found in two- and three-dimensional systems. [38,39] In 2006, the first hyper-

sonic Bragg-type band gap was observed in self-assembled colloidal crystals made

from polystyrene beads infiltrated with silicon oil. [40] Few years later, a second type

of band gap was reported in a similar system. [41] The so called hybridization gaps

arise from the anticrossing interaction of a localized mode (particle eigenvibration,

cf. Section 1.3) with the longitudinal acoustic branch. [42] Hybridization due to lo-

calized modes stemming from the built-in resonant units were observed in dense-

packed multiple-scattering colloidal suspensions. [43] Being an integral part of this

thesis, one-dimensional phononic crystals are treated in Section 1.2.

The state-of-the-art techniques to determine the mechanical properties mainly

rely on deformation, e.g. rheology (sub Hz to kHz regime) or nanoindentation.

Higher frequencies (created by piezoelectric actuators [44]) are measured by ultra-

sound transmission experiments, with great success in studying the dispersion re-

lation of mm-sized structures. [45] In pump-probe experiments the band structure is

probed in the time-domain, either by reflectivity measurements or (superconducting)

bolometers. [46] Today, the hypersonic (GHz) phononic dispersion relation of trans-

parent dielectric materials is best measured using the non-destructive technique of

Brillouin light scattering. This technique was largely used in this thesis and will be

discussed in Chapter 2.3. A strong advantage of light scattering methods is their

non-contact nature, which require no special sample preparation, hence have the

potential to be used as in-line detection techniques. Photoelastic interaction allows

to probe thermally activated phonons in transparent dielectric media. In opaque

samples, the surface band structure can be measured in reflection. [47]

Recently, many exciting developments have boosted the role of high-frequency

acoustics, yet hold plenty of space for further research. Few of them are highlighted

in following lines, but the potential applications of phononic crystals are by far not

yet fully explored. While this thesis might be a modest contribution to the study

of their fundamentals, a lot more research from an engineering point of view is

necessary to unveil possible new devices.

Alongside the further development of nanofabrication and based on theoretical

studies started in 1960’s, [48] so called acoustic metamaterials have evolved as an

interesting new field. [49] With structural features smaller than the observed wave-
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1 Hypersonic Phononics

lengths these structures can have negative effective masses or moduli, which opens an

entirely new perspective on materials science. [50,51] Peculiar phenomena are noticed,

such as negative refraction by acoustic superlenses, [52,53] or acoustic cloaks [54,55] ca-

pable of hiding submarines from sonar. Squeezing the powerful functionality into

micro-phononic crytals is the basis of a number of applications in the fields of wireless

telecommunications or microelectromechanical systems (MEMS). [56]

Optomechanics are an interesting new development that exploit the advantages

of interaction between electromagnetic and elastic energy. [57] A crystal that has

the ability to mold the flow of light and sound simultaneously is often referred to as

phoxonic crystal (PxC). [58–60] As the length scale of periodicity is fixed to the visible

or near infrared wavelengths, PxC’s are inherently hypersonic. Optomechanical

coupling is reported in planar microcavities. [61–63] Laser cooling of mechanical motion

into its quantum ground state has been exemplified in a nanoscaled oscillator [64,65]

and whispering gallery resonators. [66] Further methods to interact with the acoustic

field are provided by magnetostriction [67] or electrostriction using the electric field of

high-power lasers. Recent works on stimulated coherent phonon emission aimed for

the realization of the acoustic analog of a laser, sometimes referred to as saser. [68,69]

Heat conductivity in dielectrics is mainly based on phonons. However, a full un-

derstanding of the heat capacity of disordered systems (e.g., liquids and glasses)

remains an unsolved problem. The characteristic discontinuities of the specific heat

at the glass transition temperature is due to rearrangements that occur in the dis-

tribution of atoms. [70] The study of the dependence of glass transition on anneal-

ing, structure formation and geometry, enjoyed continuous interest, during the past

decades. [71–77]

Control over (directionally unspecified) heat diffusion lies at the heart of the re-

search on thermoelectric devices, that turn a temperature gradient into a potential

gradient and vice versa. Suppressed heat conductance at constantly high electrical

conductance, will increase their figure of merit ZT and will allow for a better con-

version efficiency. 1D PnC’s with a band gap in the frequency regime of thermal

phonons were shown to reduce the thermal conductivity. [78–81] There’s no doubt that

PnC’s will play a key role in thermal management, in the next years.

In the following two sections, I will provide a deeper insight into this thesis’

subjects.
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One-dimensional Phononics 1.2

1.2. One-dimensional Phononics

Phononic crystals with periodicity along a single axis, sometimes called superlat-

tices, have a long history. The term “superlattice” arises from the fact that similar

rules apply as for crystal lattices. Here, a single layer (several nanometers thick)

corresponds to an atomic layer (few Ångström thick) of a, e.g., fcc-crystal.

The theoretical foundations for the description of periodic systems laid by Floquet

date back to the year 1883. [82] In 1928, based on Floquet’s theorem, Bloch described

the wave function of electrons ψ(x) in periodic potentials as represented by crystal

lattices. [83] His general solution to Schrödinger’s stationary equation [84] reads

ψnk(x) = eik·x · unk(x), (1.1)

with k being the wave vector and n the band index. Eq. (1.1) is essentially the

product of a plane wave and a periodic function uk(x) = uk(x + a) of period a. It

yields the frequency eigenvalues ωn(k) = ωn(k + G), with G being the reciprocal

lattice vector. The so called band structure ω(k) is then a collection of n energy

eigenstates in the first Brillouin zone (BZ). This result is fundamental to any theory

of periodic systems. A simple model applicable to the one-dimensional case was

developed by Kronig and Penney, in 1931. [85] Initially set up for the energy of po-

tential wells V (x) representing a line of atoms, it can be used in a similar fashion to

account for the spatially periodic fluctuation of the refractive index n(x) or acoustic

impedance Z(x) in 1D photonic or phononic crystals, respectively (Fig. 1.3). A

wave propagating perpendicular to the 1D structure will turn into a standing wave

as k⊥ approaches the edge of the 1st BZ. At this point (k = G/2), the group velocity

being the slope of the dispersion curves, vanishes and a frequency gap opens up. At

V(x), n(x), Z(x)

x

d1 d2

a

Figure 1.3: Illustration of the Kronig-Penney model, [85] a simplified description of the
change of potential, refractive index or acoustic impedance in one-dimensional crystals.
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Figure 1.4: Phononic dispersion relation for an arbitrary one-dimensional crystal. Due
to the uniaxial symmetry, the dispersion folds back into the 1stBrillouin zone.

higher k, the branches fold back to the 1st BZ due to momentum conservation as

illustrated by the red lines in Fig. 1.4. The flat edge modes surrounding the band

gap denote standing waves with amplitudes centered at regions of either high or low

potential energy (or refractive index, acoustic impedance).

Due to the manifold of works published on (mostly semiconductor) superlattices

(SLs), the following will be limited to elastic wave propagation in SLs. Layered

media has long been of great interest, [86,87] often driven by the need to understand

the propagation of seismic waves, up to these days. [88] With the miniaturization of

artificially created structures this interest was renewed and experimental physics

conquered ever higher frequency regimes. In the late 1970’s, the existence of zone-

folded phonons in semiconductor SLs was reported, [89–91] which stimulated further

research in this growing field. [92–94] SLs became a widely used model system as the

reduced dimensionality facilitates investigation of new phonon states and manipu-

lation of phonon propagation in periodic structures.

Part II of this thesis is devoted to establish the use of soft matter for phononic

devices, due to various advantages. PnC’s made from polymers are light-weight

and easily tunable by adapted chemistry. While classical growth techniques (e.g.,

molecular beam epitaxy) require clean-room facilities, polymer SLs can be rapidly
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Figure 1.5: Hybrid superlattices are prepared by subsequent spincoating of a soft
poly(methyl methacrylate) layer and a hard silica layer. After each coating cycle the
whole stack was annealed until the finalized transparent stack with uniform lattice spac-
ing is obtained.

produced at low costs using dip- or spincoating techniques (Fig. 1.5). [95–97] First

steps onto this path were the observation of zone-folded phonons and in-plane layer

excitations in porous silicon [98,99] and polymer [100,101] SLs using Brillouin and pump-

probe time resolved spectroscopy. Triggered by the first direct observation of a size-

able hypersonic phononic band gap in hybrid SLs made from silica and poly(methyl

methacrylate), [95] I want to expand my research based on that system.

In Chapter 3 the possibilities to engineer the phononic dispersion relation are

highlighted. The gap size ∆f/f and its absolute position is adjusted by control-

ling the thicknesses of the composing layers. Density of states calculations provide

full theoretical description of Brillouin spectra and dispersion relation yielding a

unique estimation of elastic moduli. Although one-dimensional, the structures were

designed in a 3D world, hence it is worthwhile to study the changes to the phononic

dispersion as the propagation direction deviates from the normal axis. At oblique

angles longitudinal and transverse modes interact with each other. Due to the mix-

ing of polarization the bands shift, possibly closing or widening the band gap as a

function of the angle of incidence.

SLs with embedded defect layers can be used to tailor the band structure ac-

cording to specific requirements. Depending on their size and position additional

modes will show up in the dispersion with their maximum displacement localized

at characteristic positions in the SL. Defect modes either inside the frequency gaps
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of the zone-folded phonons [102–105] or with wave vectors in the vicinity of the cen-

ter and edge of the BZ [106,107] have been revealed in semiconductors SLs. The in-

terest in defect doped SLs is based on their role in applications such as coherent

phonon generation and transmission, [69,94,108–110] concurrent modulation of light and

sound, [58,61,111,112] acoustic diodes, [113] and reduction of heat conductivity. [114,115]

By exploiting the advantages of the proposed soft matter based platform we will

be able to shed some light on the phonon dispersion in defected structures (Chap-

ter 4). Due to the finite character of hybrid SLs, defect layers are in close vicinity

and can “see” each other. Here, the first unambiguous evidence for the interaction

of surface and cavity modes is reported. This analysis is powered by a Green’s

function formalism that allows for direct access to the density of states. The vi-

sualization of the displacement field enables the identification of the modes inside

and near the edges of the 1st BZ that are activated through breaking of the high

symmetry of undefected SLs. The insight gained with these fundamental studies is

a precondition for reliable predictions of phonon propagation in periodic composite

structures. New designs of nanostructures are anticipated to serve the demand for

direction dependent propagation of elastic waves and optomechanical interactions

at visible/hypersonic wavelengths.

1.3. Colloidal Systems

Colloidal science is a huge interdisciplinary field dealing with particles at the border

between the nanoscopic and macroscopic world. In general, colloids are dispersed

particles or droplets that scatter visible light, hence are of typical sizes between

10 nm and 10 µm. Due to their high surface/volume ratio, these particles can re-

sist gravity and form stable suspensions. Popular examples are blood (erythrocytes

dispersed in serum), milk (fat droplets dispersed in water) or fume (small particles

dispersed in air). Today, the synthesis and functionalization of colloidal particles

with desired properties and low size dispersion is well controlled. In principal, there

is no limit in the choice of shape and materials (polymers, metals, oxides). Although

harder to control, non-spherical shapes, e.g., rods, [116] cubes, [117] octahedrons [118]

or ellipsoids [119] were successfully realized. Hierarchichally structured colloids, e.g.

core-shell [120,121] or raspberry particles, [122] allow further control over the interac-
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tion with solvents or neighboring particles. Adjustment of surface charge, shape

and size determines the inter-particle forces that are responsible for self-assembly.

With their tunable properties, colloids provide a wide range of applications such as

their uses in cosmetics, drug delivery or surface finishing. The particles used here

were all artificially created by the mature methods of polymer science and material

chemistry. [119,123–126]

From the perspective of elasticity isolated colloids are nanomechanical resonators

that can store mechanical energy. Their shape fluctuations are described by eigen-

modes with particular quantum numbers in analogy to molecular vibrations. [127]

Brillouin light scattering (BLS) is a powerful tool to study the vibration dynamics,

the “music”, of submicron particles. The frequency of the resolved eigenmodes is

independent of the exchanged scattering vector q, due to their resonant character.

However, BLS selects a specific q, but due to multiple Mie scattering all wave vec-

tors corresponding to angles from zero to backscattering contribute to the spectra.

Hence, several modes are probed at once, only the number of resolved modes de-

pends on the particle diameter. While for small particles (d ≤ 100 nm) only the first

few fundamental vibrations are observed, larger particles have rich spectra. In case

of the latter, and in general at higher frequency, BLS peaks will be a sum of several

contributions, therefore a profound theoretical description is needed. Calculations

based on the eigenfunctions of freely vibrating homogenous spheres gave good agree-

ment with experimental findings. [127,128] The assumption of no interaction is valid,

as long as the contact area is negligible compared to the whole surface, as proven

by related experiments on single spheres. [129] This model ceases to reflect the truth,

if the contact of particles is increased.

In Chapter 5 we investigate the multiple processes affecting the eigenmode spectra

using an adapted model, that allows interaction. At low particle diameter there is

more contact area per total volume, which has effects on the sound velocity in

clusters of particles and gives rise to a translational band not discernible in the

spectra of large particles. Another way to increase the adhesion between particles is

the thermal annealing around the glass temperature, which also increases the sound

velocity due to the strengthened network.

Ordered assemblies of colloids are essentially 3D PnC’s, however due to multiple

scattering their phononic dispersion relation cannot be measured by light scattering.

Infiltration of the systems with a liquid of similar refractive index suppresses the
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Figure 1.6: Artistic representation of colloidal vibration illustrated as the color-coded
displacement calculated by finite elements method. (Soft Matter 9/2013, back cover)

perturbing scattering. [40,41] As the change of the matrix induces also an altered

acoustic mismatch, as well as increased interaction through the stiffer medium, the

obtained results are precious information for the analysis of phononic systems.

Quite infrequently, the building blocks of 3D PnC’s are cubes arranged in a bcc-

lattice, as suggested by Fig. 1.2. Rather, they are composed of a periodic network

of beams [130] or (mostly spherical) particles forming fcc of random close packed lat-

tices. Non-spherical particles bear the potential to construct anisotropic PnC’s with

unprecedented sound transmission characteristics. Obviously, the easiest way to re-

duce the crystals symmetry is to stretch it. This means the building units are no

longer spherical but elongated (Figure 1.6), with severe consequences for the particle

resonances. The evolution of resonance frequencies upon increased elongation can

be tracked by Brillouin spectroscopy (Chapter 6). Due to the reduced symmetry the

degeneracy of eigenmodes will be lifted and a multiple of eigenmodes can contribute

to the spectra, thus hampering the identification of the individual modes. Never-

theless, it’s worth to gather a solid knowledge of the non-spherical colloids, because

it’s them determining the macroscopic acoustic properties of a fused crystal.
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1.4. Aims and Motivation

This work focuses on the propagation and localization of hypersound in soft periodic

structures. A challenging aim is the mating of polymer science and condensed matter

physics. While many concepts of phonon interaction have been studied theoretically

in-depth by solid state physicists, the experimental demonstration has mostly been

limited to well-controlled systems, such as the already mentioned semiconductor

superlattices. On the other side, there are modern polymer and colloidal sciences

providing a zoo of tunable materials with unprecedented properties.

Colloidal science succeeded to create regular nanostructured patterns from soft

matter building units that was expectedly followed by the study of their hypersonic

acoustic properties. [41,131] However, the manipulation of the phononic dispersion

relation involves complex theoretic description and remains non-trivial for three-

dimensional fcc colloidal crystals, let alone more exotic patterns. Hence, this work

pursues a one-dimensional approach by using hybrid (soft matter composite) 1D

phononic crystals to elucidate the response of the dispersion relation to the variation

of mechanical properties, oblique incidence and introduction of defects. [96] The latter

in particular has the potential to fortify the role of GHz acoustics, as it allows

facile engineering of the phononic band structure by structural design, as will be

demonstrated. [132]

Another motivation is the localization of sound in small objects. Due to the large

elastic mismatch between nanoparticles and the surrounding air, elastic energy can

be stored as resonant modes being confined in the particles. Their frequency and

quality factor is intimately connected to the size, [127] shape, [133] interaction with

neighboring spheres, [134] and surrounding matrix. [43] Furthermore, these eigenmodes

can interact with the acoustic field of the effective medium and give rise to hybridiza-

tion band gaps. Therefore, the study of non-spherical particles and the evolution of

eigenmode spectra with increased aspect ratio is studied [135] with pertinent results

being used to create anisotropic phononic crystals.

The strength of this interesting, yet not fully explored field lies also in the discovery

of applications to control the flow of elastic energy. For example, miniaturized heat-

guiding devices might change our everyday-life if waste heat could be efficiently

recovered. The present contribution is also driven by the desire to advance this

exciting evolution.
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1.5. Outline of this Thesis

The thesis consists of three main parts as follows.

Part I contains the introduction to hypersonic phononics, peculiarities associated

with and motivation for this work (this Chapter). An introduction to the theoret-

ical details and the experimental and computational methods used is presented in

Chapter 2.

Part II is dedicated to one-dimensional phononics. The phononic dispersion of hy-

brid superlattices as function of the lattice parameter and the direction of the probed

wave vector is investigated in Chapter 3. The control over the band gap region by in-

troduction of defect layers in finite superlattices and the interaction of defect modes

is reported in Chapter 4.

Part III comprises the study of the mechanical properties of colloidal particles. The

frequency and lineshapes of the particle eigenmodes are discussed as function of

increased interaction in Chapter 5. The mode frequencies scale with the inverse

diameter and the departure from spherical symmetry results in a complicated par-

ticle vibration spectrum. Chapter 6 addresses the lifting of mode degeneracy in

uniaxially stretched polystyrene spheres. These particle have shown the ability to

align in an AC field. The resulting spheroidal crystals exhibit anisotropic phononic

properties, as highlighted in Chapter 7.

The epilog (Part IV) contains concluding remarks on the achieved results and the

perspectives ahead.
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2. Theory and Methods

This chapter presents a concise insight to the theoretical background needed to

understand the results in chapter 3–7. At first the characteristics of elastic waves and

their propagation will be outlined, followed by an introduction to some experimental

and theoretical details.

2.1. Basics of Elasticity Theory

The first Section lays the foundation for the theoretical description of elasticity and

wave propagation. The following excerpt sticks closely to the textbook by Landau

and Lifshitz, [136] to be as concise as possible. The basic equation presented here

were established by Cauchy and Poisson, already in the 1820’s. [137–139]

2.1.1. Stress and strain

The theory of elasticity comprises the mechanics of solid bodies, which are regarded

as continuous media (in that sense also liquids can be considered “solid”). Under

an external force any solid body deforms to a certain extent. Hence, a convenient

way to study elasticity is to look at this change of shape and/or volume. If we pick

a particular point with position vector x, we can allocate another vector x′ after

deformation. Then the displacement u is simply given by the difference of these

two:

ui = x′i − xi. (2.1)

The distance between two arbitrary points in close vicinity is

dl =
√

dx2
1 + dx2

2 + dx2
3 =

√
dx2

i . (2.2)

For convenience, the Einstein summation convention (right side of Eq. 2.2) is used.

The distance after deformation can be expressed likewise and by the displacement
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from the initial position:

dl′ =

√
dx′i

2 =
√

dxi2 + dui2 (2.3)

After elimination of the square root and by using the substitution dui = (∂ui/∂xk)dxk

we obtain

dl
′2 = dl2 + 2

∂ui
∂xk

dxidxk +
∂ui
∂xk

∂ui
∂xl

dxkdxl. (2.4)

The second term of Eq. 2.4 has its summation taken over both indices, therefore

can be replaced by the symmetrical form
(
∂ui
∂xk

+ ∂ui
∂xk

)
dxidxk. If the indices i and l

in the third term are interchanged we obtain for dl
′2:

dl
′2 = dl2 + 2uikdxidxk, (2.5)

with uik being the strain tensor defined as

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xk

∂ul
∂xi

)
. (2.6)

The last term of higher order can be neglected in case of small deformation (∂ul/∂x),

typically applicable for two adjacent points (x,x′). As can be seen from its definition,

the strain tensor is symmetrical (uik = uki), hence can be diagonalized with only

the components u11, u22, and u33 being non-zero along the three axes, denoted by

u(i) for simplicity. As the strain tensor can be diagonalized at any given point the

length element dl′ around this point can be expressed as

dl
′2 = (δik + 2uik)dxidxk, (2.7)

= (1 + 2u(i))dx2
i . (2.8)

Each of the (independent) strains is simply an extension or compression along the

corresponding axis. Therefore, the relative extension is defined as

dx′i − dxi
dxi

=
√

1 + 2u(i) − 1 ≈ u(i), (2.9)

while the approximation is valid in almost all cases, as the change of distances in

the body is typically small versus the distance itself.
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Speaking about the forces being active during deformation of a body we first

need to define a volume element before (dV ) and after deformation (dV ′). The

deformation can be expressed in terms of the sum of the diagonal components uii =

u11 + u22 + u33:

dV ′ = dV (1 + uii). (2.10)

Thus the relative volume change (dV ′ − dV )/dV is simply the trace of the strain

tensor tr(u).

A non-deformed body in thermal equilibrium possesses no resulting forces in the

volume dV . If this state is disturbed, forces arise which are generally referred to

as internal stresses. The total force is equal to the sum of all forces on all volume

elements of a selected portion and is expressed as the volume integral
∫

FdV , with

F being the force per unit volume. According to Newton’s third law, any forces

inside the volume element act on one another and are canceled out. Hence, only

the forces on the surface of dV become important. The integral of the vector Fi

(element of F) is a second rank tensor, namely the stress tensor σik. Hence Fi can

be written as the divergence of σik

Fi =
∂σik
∂xk

. (2.11)

The transformation from volume to surface integral reads

∫
FidV =

∫
∂σik
∂xk

dV =

∮
σikdSk, (2.12)

whereas σikdSk denotes the ith component of the force on the surface dS. The surface

elements that enclose the volume dV are defined by the normal vector along the xk-

axis. In a cartesian coordinate system σxx is the force on the surface perpendicular to

the area, while σyx and σzx are tangential forces along the y- and z-axes, respectively

(Fig. 2.1).

Stress and strain are always interconnected. From a thermodynamic point of view,

the work dW done by internal stresses can be expressed in terms of the change in

the strain tensor

dW = −σikduik. (2.13)

Infinitesimal change of the internal energy dU is equal to the difference between

acquired heat (TdS) and the work performed by internal stresses (dW ). Thus we
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Figure 2.1: Schematic of the components of the stress tensor acting on the surface
of the volume element dV . Normal and tangential forces are denoted in blue and red,
respectively.

obtain the fundamental thermodynamic relation for deformed bodies

dU = TdS + σikduik. (2.14)

For hydrostatic compression the stress tensor is simply defined by σik = −pδik, with

p being the pressure and δik, the Kronecker delta. As the volume change is the trace

of uik (Eq. 2.10) the expression for the internal energy takes the usual form

dU = TdS − pdV. (2.15)

Due to the relations between the thermodynamic quantities stress and strain tensors

can be written as derivatives of internal, Helmholtz free (A) and Gibbs free energy

(G)

σik =

(
∂U

∂uik

)

S

=

(
∂A

∂uik

)

T

, (2.16)

uik = −
(
∂G

∂σik

)

T

. (2.17)

2.1.2. Hooke’s law

Under sufficiently small stresses the amount of strain induced is proportional to the

magnitude of the stress, and vice versa. For the simplest case of a bar under pure

tensile stress the following identities represent Hooke’s law,

σ = Cu; u = sσ, (2.18)
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whereas C denotes the elastic stiffness constant, while the inverse (s = 1/C) is

the elastic compliance constant. In the aforementioned case C is equal to Young’s

modulus E and all following elucidation will be limited to C (the inverse results

apply for s). In a more generalized approach for Eq. (2.18) C becomes a fourth rank

tensor that relates the second rank tensors of stress and strain:

σij = Cijklukl, (2.19)

with Cijkl comprising 81 elements (i,j,k,l = {1, 2, 3} → 34 = 81) representing all

stiffness constants of an arbitrary homogenous body. From the symmetry consid-

erations of the stress and strain tensors found in section 2.1.1 (e.g., σ12 = σ21) the

following properties are deduced

Cijkl = Cjikl, (2.20)

and

Cijkl = Cijlk. (2.21)

The abundance of equal elastic constants decreases the number of independent com-

ponents from 81 to only 36. Furthermore, it allows the use of the more convenient

matrix notation of the cumbersome fourth-rank tensor by using the substitution

Cmn = Cijkl according to the rules given below. [140]

tensor indices (ij,kl) 11 22 33 23, 32 31, 13 21, 12

matrix indices (m,n) 1 2 3 4 5 6
with

Cmn = Cijkl, if m AND n are 1,2 or 3,

Cmn = 1
2
Cijkl, if either m OR n is 4,5 or 6,

Cmn = 1
4
Cijkl, if both m AND n are 4,5 or 6.

The (second rank) stress tensor is transformed as follows



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


→



σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3


 , (2.22)
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whereas the strain tensor can be transformed in the same manner. Consequently,

the stiffness tensor can be transformed to a 6× 6 matrix Cmn

Cijkl → Cmn =




C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




(2.23)

The stiffness matrix (2.23), depending on the crystal’s symmetry, can be simplified.

For the simplest isotropic case, applicable to many polymers, Hooke’s law (2.19)

reads: [140] 


σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44







u1

u2

u3

u4

u5

u6




(2.24)

Here, only three elastic constants are necessary to represent the stiffness tensor.

These are interconnected by the following equation:

C11 = C12 + 2C44, (2.25)

or

M = λ+ 2G. (2.26)

The two independent components C12 and C44 turn out to be the first (λ) and sec-

ond (µ = G) Lamé parameters, widely used in the theory of elasticity of isotropic

materials. M is the longitudinal or P-wave modulus. Other frequently used param-

eters are Young’s modulus E (cf. (2.18)), the bulk modulus K (= p, the pressure in

ideal fluids) and the Poisson’s ratio ν. The latter is defined by the length changes

(transverse vs. axial) of a cube under axial strain (Fig. 2.2):

ν = −dutrans

duaxial

≈ ∆L′

∆L
. (2.27)
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Figure 2.2: Schematic illustration of the definition of the Poisson ratio.

Any two of these elastic constants completely define a body’s elastic properties.

Hence, the conversion between them is frequently exercised and a summary of the

respective relations is given in Tab. 2.1.

Table 2.1: Selection of frequently used conversion formulae of elastic parameters valid
for homogenous linear elastic materials.

f(a, b) λ,G λ, ν E,G E, ν G, ν G,M

λ λ λ G(E−2G)
3G−E

Eν
(1+ν)(1−2ν)

2Gν
1−2ν

M − 2G

G G λ(1−2ν)
2ν

G E
2(1+ν)

G G

K λ+ 2G
3

λ(1+ν)
3ν

EG
3(3G−E)

E
3(1−2ν)

2G(1+ν)
3(1−2ν)

M − 4G
3

E G(3λ+2G)
λ+G

λ(1+ν)(1−2ν)
ν

E E 2G(1 + ν) G(3M−4G)
M−G

M λ+ 2G λ(1−ν)
ν

G(4G−E)
3G−E

E(1−ν)
(1+ν)(1−2ν)

2G(1−ν)
(1−2ν)

M

ν λ
2(λ+G)

ν E
2G
− 1 ν ν M−2G

2M−2G

2.2. Propagation of Elastic Waves

2.2.1. Elastic waves in isotropic media

The propagation of elastic waves is described by the equation of motion, that relates

the internal stress force ∂σik
∂xk

to the product of the acceleration ∂2ui
∂t2

and the mass
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density ρ:

ρ
∂2ui
∂t2

=
∂σik
∂xk

(2.28)

This general equation of motion is valid under the assumption that the velocity v of a

point in the medium is equal to the derivative of its displacement ∂ui
∂t

. Furthermore,

any heat exchange due to transient density changes is neglected as the oscillatory

motion is regarded fast (here, GHz) compared to heat diffusion. Hence, all elastic

parameters must be replaced by their adiabatic values, [136] and one can write:

ρ
∂2u

∂t2
= G∇2u +Mgrad div u. (2.29)

If we consider a plane wave traveling trough an isotropic medium, the deformation u

will only be a function of x, and all off-x-axis derivatives will be zero. With that, we

obtain for the axial and transverse components of the displacement u the following

equations

∂2ux
∂x2

− 1

c2
L

∂2ux
∂t2

= 0,
∂2uy,z

∂(y,z)2 −
1

c2
T

∂2uy,z
∂t2

= 0. (2.30)

Here, we have introduced the longitudinal cL and transverse cT sound velocities:

cL =

√
M

ρ
, cT =

√
G

ρ
. (2.31)

An elastic wave (2.29) is essentially composed of two independently propagating

waves. The one with displacement only along the direction of propagation is the

longitudinal wave, that involves compression and expansions of the body. Transverse

waves have their displacement perpendicular to the direction of propagation and

involve no change of volume. With this separation in longitudinal and transverse

components the displacement reads

u = uL + uT , (2.32)

with the following properties, as discussed above

div uT = 0, curl uL = 0. (2.33)
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Finally, in the general case of an arbitrary elastic wave (not just plane) in an infinite

medium (2.30) can be expressed as function of the sound velocities

∂2u

∂t2
= c2

T∇2u + (c2
L − c2

T)grad div u. (2.34)

2.2.2. Elastic waves in structured media

In arbitrarily structured media with anisotropic elastic properties, e.g. crystals, it

is more complicated to derive the equation of motion. If we get back to (2.19)

and (2.28) we obtain with some symmetry consideration the generalized equation of

motion

ρ
∂2ui
∂t2

= Cijkl
∂2um
∂xk∂xl

. (2.35)

To find a solution we use the wave equation of the form

ui = u0i e
i(k·r−ωt), (2.36)

where the wave vector k and frequency ω are related such that (2.35) is satisfied.

The spatial and temporal derivative results in multiplication with the factors ixk,l

and −iω, respectively. With ui = δimum (2.35) can be written after differentiation

as

ρω2δimum = Cijkl kkklum. (2.37)

Rearrangement of (2.37) yields a set of homogenous equations with the three un-

knowns ux, uy, uz, whose non-zero solutions can be found if the determinant is set

zero: ∣∣Cijkl kkkl − ρω2δim
∣∣ = 0. (2.38)

As (2.38) determines the relation between ω and k, it is called “dispersion relation”.

The equation is cubic in ω2 with the three roots ω2 = ω2
j (k) being different in

the general 3D case and are often referred to as “branches”. If these roots are

substituted back into (2.37) one can obtain the polarization directions of the three

waves. These polarizations are mutually perpendicular and in the special case of

an isotropic body they fall together with the longitudinal wave (ω = cLk) and two

independent transverse waves (ω = cTk). The propagation velocity of the waves,
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i.e., the velocity of a wave packet (group velocity) is given by

vgroup =
∂ω

∂k
. (2.39)

The direction of propagation is in general different from k. Only along the symmetry

axes of a crystalline body one can find v and k pointing in the same direction. In

the isotropic case ω(k) is always linear and the velocities (cL, cT) parallel to k.

To be concise we will limit the discussion of wave propagation in non-isotropic

materials to the one-dimensional case.

2.2.3. The one-dimensional phononic crystal

More than half of this thesis deals with elastic wave propagation in one-dimensional

composites. Here, we lay the theoretical foundation by looking at the simplest model

system: a linear monatomic chain (Fig. 2.3). The position of the atoms is simply

given by r = na and their displacement by u(na), with n being an integer. With

the constraint that only neighboring atoms can interact the harmonic potential is

given by: [141]

Uharm =
1

2
K
∑

n

[u(na)− ([n+ 1]a)]2, (2.40)

whereas K denotes the spring constant. With the mass m we can write the equation

of motion

m
∂2u(na)

∂t2
= −∂U

harm

∂u(na)
= −K [2u(na)− u([n− 1]a)− u([n+ 1]a)] . (2.41)

na (n+1)a (n+2)a(n-1)a(n-2)a

u(na)

Figure 2.3: Linear chain of atoms connected by springs. The displacement from equilib-
rium position is given by u(na).
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Solving this equation with the Ansatz outlined in Section 2.2.2, the dispersion rela-

tion of the linear chain becomes

ω(k) = 2

√
K

m

∣∣∣∣sin
ka

2

∣∣∣∣ . (2.42)

The periodic boundary condition u(0) = u(Na) requires k to have the form

k =
2π

a

n

N
, (2.43)

with N being the total number of atoms. Thus we have N distinct values for k

and (2.36) yields N independent solutions (modes). Hence, an arbitrary motion of

the chain is completely determined by a set of N initial positions and N intitial

velocities. Figure 2.4 illustrates the size effect. For a low number of chain atoms

discrete values are found (red dots) while at high numbers the dispersion relation

forms a continuous band. If the wavelength λ (= 2π/k) is large compared to the

spacing a, ω is linear in k just as in the isotropic case.

-π/a 0 π/a
0

N = infinity
N = 8
N = 3

Fr
eq

ue
nc

y
 ω

wave vector k

2

√
K

m

Figure 2.4: Dispersion relation for a monatomic chain in the 1st Brillouin zone.

Apart from the acoustic phonons discussed above, also optical phonons exist in

crystals that are composed of two and more different kinds of atoms. The name of

these modes is due to the fact that the frequencies in ordinary ternary crystals is in

the near infrared and hence readily measured by Raman spectroscopy. In principle,

they can be described as two sublattices vibrating out-of-phase (cf. Fig. 2.3 with two

different atoms and/or spring constants). Optical branches show up with non-zero

33



2 Theory and Methods

frequency at the zone-center, i.e. these modes are non-propagating excitations. For

the systems studied in this thesis they play no important role.

2.2.4. The theory of interface response

The propagation of elastic waves in one-dimensional layered structures can be cal-

culated using a Green’s function formalism in the frame of elasticity theory. This

allows to compute the phononic dispersion relation and density of states, whose

knowledge is vital for the evaluation of the experimental results presented in Chap-

ters 3 and 4. The theoretical framework needed, first presented by Green in 1828, [142]

provides an important tool to solve inhomogeneous differential equations. Essen-

tially, a Green’s function describes the response to an external perturbation of a

(quantum-) mechanical system, that is defined by initial and boundary conditions.

In the interface response theory, the formalism is used for the solution of a set of

linear inhomogeneous differential equations that represent the mechanical properties

of (one-dimensional) composite materials. [143,144]

A composite system is described by several homogeneous parts joined together

through their interfaces. A discrete infinite material i can be defined in the whole

space D∞ (Fig. 2.5a) and is composed of N homogeneous pieces situated in their

respective domains Di (1 ≤ i ≤ N). The interface of such a piece is denoted by Mi

which can be bound to interface elements from an adjacent domain Mj (1 ≤ j ≤ J)

through the sub-interface domains Mij. Thus the interface area Mi is generally an

element of J sub-interfaces (Fig. 2.5b). and their sum forms the interface space M .

A homogenous infinite material i is described by its dynamical matrix

Hi = [(ω2 + iξ)I −H], (2.44)

with ω being the eigenfrequency, i =
√
−1, ξ an infinitesimally small positive num-

ber, I the identity matrix, and H denotes the classical Hamiltonian. The inverse of

this matrix is the corresponding Green’s response function Gi

HiGi = I. (2.45)

The operators may be written as a matrix Hi(X,X
′) whose elements are taken

between different points in space X and X ′.
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To form a composite system, a small part is carved out of the infinite material.

The corresponding subsystem Di (Fig. 2.5b) is bound by the free surface space Mij

and with the cleavage operator Vsi we can write

hsi = Hi + Vsi. (2.46)

The corresponding response function of the subsystem gsi is defined as

hsi gsi = I. (2.47)

The corresponding bulk response function Gsi of the truncated part is

HsiGsi = I. (2.48)

The ideal-surface response operator is then defined as Asi = VsiGsi and As will be

the surface response operator of a composite system created from all independent

blocks Asi. In a similar way, we can define the operator hs formed out of every hsi of

the independent subsystems with ideally cleaved free surfaces (and correspondingly

hsgs = I). The independent parts are joined to become the composite system

DiDi

D∞

Di

D1

D2

D3

D4

{Hi ; Gi} {hsi ; gsi} {h; g}

a) b) c)

Mi1

Mi2 Mi3

Mi3

Mi1
Mi2 Mi4

Mi3

M12

M11

M41

M32

M13

M31 M33

M21

Figure 2.5: Schematic view of the formation of a composite system. a) From an infinite
homogenous material i defined in D∞ a finite piece is cut in its space Di. b) This is
bound by free interfaces described by sub-interface domains Mij . c) After joining multiple
subsystems, the whole composite system is obtained and characterized by the operator h
and the response function g.
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(Fig. 2.5c) by the coupling operator VI and its operator h becomes

h = hs + VI . (2.49)

The corresponding response function g of the composite system is related to the

block diagonal reference response function G by

g(I + A) = G, (2.50)

with A = As + VIG. The interface response operator A has non-zero elements only

between the points X of the interface space M and any point X ′ in the whole space

D. Defining a rectangular matrix using the notation A(MD) we can write (2.50) as

g(DD) + g(DM)A(MD) = G(DD). (2.51)

If the interface coupling operator VI vanishes this equation becomes

gs(DiDi) + gs(DiMi)As(MiDi) = G(DiDi), (2.52)

enabling the calculation of the response function of all independent subsystems

gs(DiDi). In a more explicit form (2.51) reads

gsi(X,X
′) + gsi(X,X

′′)Asi(X
′′, X ′) = Gi(X,X

′), (2.53)

with {X,X ′} ∈ Di and {X ′′} ∈ Mi. The matrices gsi(X,X
′) defined in interface

space {X,X ′} ∈ Mi are still matrices, but of smaller size than gs(MiMi), generally

they are (3×3) matrices, with respect to the three dimensions X = {x, y, z}. In the

case of a superlattice (SL) and for the sake of simplicity we consider only the case

of phonon propagation normal to the layers. Due to the symmetry of translation

along the layers (x, y) one can introduce a wavevector k‖ parallel to the layers

k‖ = ixkx + iyky, (2.54)

with ix,y being unit vectors along the specified direction, such that gs(MiMi|k‖).
Then, longitudinal and transverse waves are decoupled and the inverse elements of

the interface Green’s functions of the slabs (with two different materials) simply
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become (2× 2) matrices

g−1
1 (MiMi) =

(
a1 b1

b1 a1

)
, g−1

2 (MiMi) =

(
a2 b2

b2 a2

)
, (2.55)

with ai = iωρcL coth(−iωd/cL) and bi = iωρcL/ sinh(−iωd/cL). Juxtaposition of

the matrices (2.55) allows to construct the elements of the Green’s function for the

composite system (Fig. 2.6, right) in the entire interface space M

g−1(MM) = g−1
s (MM) + VI , (2.56)

with g−1
s (MM) being the block diagonal matrix formed out of all g−1

s (MiMi) (Fig. 2.6,

left) and

g−1(MM) =




Fsub + a1 b2 0 0 0 0 0

b1 a1 + a2 b2 0 0 0 0

0 b2 a2 + a1 b1 0 0 0

0 0 b1 a1 + a2 b2 0 0

0 0 0 b2 a2 + a1 b1 0

0 0 0 0 b1 a1 + a2 b2

0 0 0 0 0 b2 a2




.

(2.57)

Thus, (2.57) uniquely represents any given multilayer systems, described by the

thickness of each layer d, their mass density ρ and longitudinal sound velocity cL.

The boundary condition at the interface to the substrate g−1
sub(0, 0) is defined as

Fsub = iωρcL.

In the interface response theory for a continuous composite material systems, the

elements of the Green’s function g(DD) can be obtained via [145,146]

g(DD) = G(DD) +G(DM)
[
G−1(MM) g(MM)G−1(MM)−G−1(MM)

]
G(MD),

(2.58)

whereas G(DD) denotes the block diagonal bulk Green’s function of the reference

system and g(MM) is the interface Green’s function of the entire composite system

(cf. Fig. 2.6).

For a SL with n repetition units, a unit cell composed of the two different materials
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Layer 2

Layer 1

Substrate

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Substrate

 g1   (Mi Mi )
-1

 g2   (Mi Mi )
-1

 gsub(0,0)-1

g     (MM)-1
d2

d1

a

Figure 2.6: Schematic illustration of the construction of the Green’s response function
of a composite material (Eq. 2.57) by superposition of the interface response function of
the individual layers g−1

s (MiMi) (Eq. 2.55).

i (= 1, 2), and with Eq. 2.54 the elements of the Green’s function take the following

form

gαβ(ω2, k‖|n, i, z;n′, i′, z′) (2.59)

where α, β (= 1, 2, 3) indicate the directions x, y and z, with z being the direction

perpendicular to the layers. Any position in space M along the z-axis in medium i

of unit cell n is denoted as (n, i, z). The local density of states at the interfaces can

be calculated from the imaginary part of (2.59)

nα(ω2, k‖|n, i, z) = − 1

π
=
{
gαα(ω2, k‖|n, i, z;n, i, z)

}
. (2.60)

Here, α (= 3) is the z-component in the case of pure longitudinal modes. Integration

over z and summation over n, i.e. over all interfaces of the SL, yields the structure’s

total density of states

ntotal(ω
2) =

∑

i

∑

n

∫ di/2

−di/2
nα(ω2|n, i, z)dz. (2.61)

Therefore, the corresponding g11 (hence, n1), and g22 (hence, n2) give the transverse

vertical and transverse horizontal components of the modes, respectively. The new

interface states, i.e. the dispersion relations, of propagating and localized modes
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can be calculated from the following determinant [145]

det
[
g−1(MM)

]
= 0. (2.62)

That means for the calculation of a SLs interface states, one only needs to know

the inverse of the Green’s function of each individual layer in the space of their

respective interfaces.

Finally, the interface response theory allows the determination of the eigenvectors

E (= ω2 + iξ) of a composite system associated with the corresponding eigenvalues.

Therefore, we consider the matrix operator (cf. Eq. 2.44)

h = EI −H, (2.63)

with I being the identity matrix and H a Hamiltonian. If the force on the system

is zero, the eigenvalues E and the corresponding eigenvector u(D) are given by the

diagonalization of (2.63). If the force is non-zero, the direct calculation is compli-

cated, since h becomes a matrix of large dimension. Instead, we can use the result

of (2.58) wich allows us to calculate the displacement field (denoted as row vector

|u(D)〉) at any point inside the composite material [146]

|u(D)〉 = |U(D)〉 − |U(M)〉G−1(MM)G(MD)

+ |U(M)〉G−1(MM)g(MM)G−1(MM)G(MD).
(2.64)

|U(D)〉 represents the displacement field of the reference medium. In the particular

case of a supported SL, |U(D)〉 is a bulk propagating wave launched inside the

homogeneous substrate (z = −∞).

Hence, the interface response theory becomes a powerful tool to calculate the

dispersion relation, mode displacements and light scattering spectra (Section 2.3.3)

of any layered material. This freedom to adapt the theoretical representation is

particularly useful for the description of SLs with designed defects (Chapter 4).

The density of states will be shown to be very sensitive to changes in spacing or

elastic moduli of the layers.

In the generalized case of an infinite SL, the dispersion relation is well represented
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by the following analytical expression [86,91]

cos(ka) = cos

(
ω d1

cL,1

)
cos

(
ω d2

cL,2

)
− 1

2

(
Z1

Z2

+
Z2

Z1

)
sin

(
ω d1

cL,1

)
sin

(
ω d2

cL,2

)
(2.65)

with Z(= ρ cL) being the longitudinal elastic impedance, cL being longitudinal sound

velocity and d1,2 being the thickness of the two layers. The lattice spacing is given

by a = (d1 + d2) and k is the Bloch wave vector.

2.3. Inelastic Light Scattering

In this Section, the concepts of inelastic light scattering are introduced, in particular

we will focus on the use of light scattering for the study of acoustic properties. While

the latter can be readily analyzed in the sonic and ultrasonic frequency regime, an

investigation of GHz acoustics (the hypersonic regime) is usually non-trivial as they

are beyond the reach of piezo-electric transducers. Fortunately, this frequency range

can be covered by light scattering, since the wavelengths of visible light are of the

same order of magnitude as the acoustic waves at hypersonic frequencies. The

elastic motion of materials is a sensitive probe to the mechanical properties and

relaxation rates a high frequencies. The length scale under study (10 nm–10 µm) is

of particular interest as it falls together with the dimensions in modern nanoscience.

Hence, probing acoustic phonons by means of light scattering is of utter importance

and contributes to state-of-the-art materials science by providing complementary

information, not available by conventional mechanical testing methods.

2.3.1. Fundamentals of light scattering

While the theory of light scattering is typically developed by quantum field theory,

its results differ only little from those obtained by the classical theory of light scat-

tering. In the semimacroscopic view, light scattering is essentially a result of local

fluctuation in the dielectric constant, [147] which fully satisfies the description of our

experiments. In short, the electromagnetic field of an incident beam is considered to

exert a force on the charges inside an arbitrary scattering volume. The acceleration

of charges in turn gives rise to emission of radiation – the scattered light. Thus the
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incident light polarizes the material and produces scattered light in every volume el-

ement. If the object is optically homogeneous, i.e. has the same dielectric constant,

the wavelets scattered in each volume element are identically, but are different in

phase due to their spatial separation. Therefore, destructive interference will cause

annihilation of any scattered light, except in the direction of the incident beam. On

interfaces of different dielectric constant, the scattered light is no longer identical,

therefore no complete cancellation occurs.

Due to the ubiquitous thermal motion, the local dielectric constant ε(r, t) is always

fluctuating around its equilibrium value ε0 and can be expressed as a second rank

tensor

ε(r, t) = ε0I + δε(r, t), (2.66)

with I being the unit tensor and δε(r, t) the dielectric fluctuation at position r and

time t. The incident electric field is represented by a plane wave of the following

form

Ei(r, t) = niE0e
i(ki·r−ωit), (2.67)

with ni being the unit vector in the direction of the incident field (the polarization).

r and t denote the position and time, whereas ki and ωi denote the wave vector

and angular frequency of the incident light. Electrodynamics demand that the

total electric field E = Ei + Es always satisfies Maxwell’s equation. The same

applies for the magnetic H and electrical displacement field D. After its lengthy

derivation, [148] the scattered far-field (seen by the detector) at distance R from the

scattering volume with polarization ns, and wave vector ks becomes

Es(R, t) =
E0

4πRε0
eiksR

∫

V

d3r ei(q·r−ωit) [ns· [ks × (ks × (δε(r, t)·ni)]] , (2.68)

whereas
∫
V

denotes the integral over the entire scattering volume. The scattering

vector q = ks−ki is defined by the scattering geometry (Fig. 2.7). The angle between

ks and ki is the scattering angle θ. Using the definition of the scalar product and

having in mind the quasielasticity (|ks| ≈ |ki|) we can write

q2 = k2
i + k2

s − 2ki · ks = 2k2
i (1− cos θ) = 4k2

i sin2 θ

2
. (2.69)

With ks = ki = 2πn/λ and the refractive index n =
√
ε0 we obtain the Bragg
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condition

q = 2ki sin
θ

2
=

4πn

λ
sin

θ

2
. (2.70)

With its spatial Fourier transform, the dielectric fluctuation becomes a function

of q

δε(q, t) =

∫

V

d3r eiq·r δε(r, t), (2.71)

and (2.68) can be expressed as

Es(R, t) =
E0

4πRε0
ei(ksR−ωit) [ns· [ks × ks × (δε(q, t)·ni)]] . (2.72)

By working out the vector products, it can be simplified to [148]

Es(R, t) =
−k2

sE0

4πRε0
ei(ksR−ωit)δεis(q, t), (2.73)

with

δεis(q, t) ≡ ns·δε(q, t)·ni (2.74)

being the component of the dielectric constant fluctuation tensor along the polar-

ization directions before and after the scattering event. The time-correlation of the

ki,ωi ki

ks,ωs
q = ks-ki

DetectorAnalyzer
ns

Polarizer
ni

θ

Figure 2.7: Schematic view of a general light scattering setup. An incident light beam
of polarization ni, frequency ωi, and wave vector ki is scattered. Although the scattering
is omnidirectional (dashed arrows), only the light with ns and ks can reach the detector
after passing the analyzer. The scattering vector q = ks − ki shown in red is defined by
the scattering geometry.
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scattered field can be evaluated from (2.73)

〈E∗s (R, 0)Es(R, t)〉 =

(
k2
s |E0|

4πRε0

)2

〈δε∗is(q, 0)δεis(q, t)〉 e−iωit, (2.75)

and the spectral intensity reads as follows

Iis(q, ωs, R) =

∫ +∞

−∞
eiωstdt 〈E∗s (R, 0)Es(R, t)〉

=

[
I0k

4
s

16π2R2ε20

]
1

2π

∫ +∞

−∞
dt 〈δε∗is(q, 0)δεis(q, t)〉 ei(ωs−ωi)t,

(2.76)

with I0 = |E0|2. Three important conclusions can be drawn from (2.76):

i) It reflects the inverse λ4 dependence Iis ∝ λ−4 (k4), i.e. the fact that light of

shorter wavelength is subject to stronger scattering, as prominently shown by the

blue of the sky. ii) The inverse R2 dependence Iis ∝ R−2 simply accounts for the

attenuation of spherical wave via the inverse-square law. iii) The scattered intensity

depends on ωi and ωs solely by their difference ω = ωs − ωi. A change in frequency

can occur only if δε(q, t) varies with time, otherwise the scattering will be purely

elastic.

Thus, for a given experiment (i.e., constant prefactor in Eq. 2.76) the light scat-

tering spectrum directly measures the fluctuation of the local dielectric constant

via

Iis(q, ω) ∝
∫ +∞

−∞
dt 〈δε∗is(q, 0)δεis(q, t)〉 eiωt. (2.77)

The advent of lasers enabled experimental observation of the spectral shape

I(q, ω), that hasn’t been possible before due to the lack of sufficiently monochro-

matic light sources. The phonon frequencies measured in this work are in the GHz-

range, while the frequency of the probing light itself is in the THz-range, hence

high-resolution spectrometers are needed to resolve the tiny frequency shift of this

quasi-elastic scattering. But also with the limitation of low resolution, the evaluation

of the total (frequency integrated) intensity by static light scattering

Iis(q) ∝
〈
|εis(q)|2

〉
, (2.78)

bears important information, such as the structure factor S(q) (cf. Eq. 2.87).
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As seen from the above outline, any scattering event can be regarded in terms of

conservation of momentum and energy. A photon either looses or gains energy and

momentum by interaction with the scattering volume.

(±)~ω = ~ωs − ~ωi, (2.79)

(±)~q = ~ks − ~ki. (2.80)

For Brillouin light scattering this means a phonon is either created (∆Ephoton =

−~ω) or annihilated (∆Ephoton = +~ω) with a wavevector kphonon equal to the

scattering vector q. The connection between the quantities ω and q is described by

the (phononic) dispersion relation ω(q), which in our experiments serves as a unique

probe of composite materials structural composition, elastic parameters and wave

propagation characteristics.

2.3.2. Brillouin light scattering

Inelastic scattering of light from thermally activated sound waves with frequencies

in the GHz range is generally referred to as Brillouin light scattering (BLS). The

striking feature of each BLS spectrum is the appearance of the symmetric Brillouin

doublet, already predicted in 1922. [149] Other than in Raman spectroscopy, where

almost only the ground state is occupied, the energy of hypersonic phonons is well

below the thermal energy kBT (at 298 K), with kB being Boltzmann’s constant. The

occupation number for phonons (which are bosons) is expressed as

〈n〉 =
1

e~ω/(kBT ) − 1
. (2.81)

Figure 2.8 illustrates that quantum states at frequencies typically probed by BLS

(few GHz) are well occupied, even at low temperatures. Hence, the Stokes (phonon

excitation) and anti-Stokes (annihilation) processes are of similar probability, i.e.,

their peaks have the same intensity. [150] According to (2.39) and (2.80) the frequency

of the incident light ωi undergoes the Doppler shift

ωs = ωi ± cL,T q, (2.82)
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Figure 2.8: Occupation number 〈n〉 as function of phonon frequency and temperature.

as it is scattered from the hydrodynamic modes within a fluid. cL,T denotes the

longitudinal (transverse) sound velocity and q is the exchanged wave vector. This

very basic finding is important for most of the experiments, where we are only

interested in the phonon frequency, in order to derive the elastic properties and map

the dispersion relation of new materials. Deeper insight to the processes involved

in BLS is provided by the elucidation of the spectral features. To clarify the origin

of the scattered intensity we need to go back to (2.77). In the simple case of a

monatomic fluid which has no off-diagonal elements in the dielectric fluctuation

δεαβ(q, t) = ε(q, t)δαβ the spectral intensity is represented by the scattering formula

Iis(q, ω) = (ni · ns)2 1

2π

∫ +∞

−∞
dt 〈δε∗(q, 0)δε(q, t)〉 eiωt

︸ ︷︷ ︸
S(q,ω)

. (2.83)

BLS probes dielectric fluctuations of wavelengths in the range of q−1 ∼ 100 nm

that is considerably higher than the intermolecular separation. These fluctuations

rather involve collective motion of numerous molecules, that can be described by

the macroscopic laws of physics, such as thermodynamics and hydrodynamics. In

general, the dielectric constant of a fluid in equilibrium is a function of density ρ

and temperature T , which is expressed in the dielectric equation of state

δε(r, t) =

(
∂ε

∂ρ

)

T

δρ(r, t) +

(
∂ε

∂T

)

ρ

δT (r, t). (2.84)
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The derivatives can be determined experimentally by the variations of ε with density

and temperature. Combining (2.83) and (2.84) the spectral intensity becomes

Iis(q, ω) = (ni · ns)2

{(
∂ε

∂ρ

)2

T0

Sρρ(q, ω)

+

(
∂ε

∂ρ

)

T0

(
∂ε

∂T

)

ρ0

[SρT (q, ω) + STρ(q, ω)]

+

(
∂ε

∂T

)2

ρ0

STT (q, ω)

}
,

(2.85)

whereas Sαβ(q, ω) denotes the spectral densities of the respective correlation funci-

tions 〈δα∗(q, 0)δβ(q, t)〉. In most practical cases the temperature dependence of the

fluctuations in ε are negligible and (2.85) simplifies to

Iis(q, ω) = (ni · ns)2

(
∂ε

∂ρ

)2

T0

Sρρ(q, ω). (2.86)

Thus the scattered intensity essentially reflects the autocorrelation of the local den-

sity fluctuation δρ(q, t). The total integrated intensity is then proportional to the

structure factor

S(q) =
〈
|δρ(q)|2

〉
, (2.87)

which is the mean-square fluctuation of qth Fourier component of the density fluc-

tuations. Since q−1 is large compared to intermolecular distances, the q-dependence

can be ignored and S(q) is shown to be proportional to the mean-square fluctuation

of the number of particles in the scattering volume

lim
q→0

S(q) =
〈
|δN |2

〉
, (2.88)

=V ρ2kBTχT . (2.89)

With equality (2.89) that follows from statistical fluctuation theory and χT being

the isothermal compressibility, the integrated intensity is given by [147]

Iis(q) = (ni · ns)2

(
∂ε

∂ρ

)2

T0

V ρ2kBTχT . (2.90)
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This formula is fundamental for the understanding of BLS as it reports the observed

intensity being

i) strong for polarized scattering (VV),

ii) independent of the scattering angle θ (except for the slight change of the scat-

tering volume with θ),

iii) and proportional to density fluctuations of the dielectric constant ( ∂ε
∂ρ

)2
T , the

square number density ρ2, and the isothermal compressibility χT = 1
ρ
(∂ρ
∂p

)2
T .

While (2.90) gives good account for the experimentally observed total intensity,

it does not specify to what extent the central unshifted line (Rayleigh) and the

Brillouin doublet contribute to the spectrum. The dielectric equation of state (2.84)

can also be expressed as function of other independent thermodynamic quantities,

such as entropy S and pressure p

δε(r, t) =

(
∂ε

∂S

)

p

δS(r, t) +

(
∂ε

∂p

)

S

δp(r, t). (2.91)

The first term of (2.91) describes the isobaric entropy fluctuations, which are non-

propagating and account for the intensity of the central line Ic. The latter similarly

accounts for the adiabatic pressure fluctuations which are propagating sound waves

that give rise to the Brillouin doublet 2IB. After a lengthy derivation, [136,148] the

spectral density of the Rayleigh-Brillouin spectrum in (2.86) is given as a sum of

Lorentzians

Sρρ(q, ω) =
1

π
ρ2kBTχT

{(
1− 1

γ

)(
DT q

2

ω2 + [DT q2]2

)

︸ ︷︷ ︸
∝ IC

+
1

γ

(
Γq2

[ω − ω(q)]2 + [Γq2]2
+

Γq2

[ω + ω(q)]2 + [Γq2]2

)

︸ ︷︷ ︸
∝ 2IB

+
b(q)

γ

(
[ω + ω(q)]

[ω + ω(q)]2 + [Γq2]2
− [ω − ω(q)]

[ω − ω(q)]2 + [Γq2]2

)}
,

(2.92)

with γ being the specific heat ratio γ = Cp/CV = χT/χS. DT is the thermal

diffusivity DT = κ/(ρCp), with termal conductivity κ. The term in the first line

of (2.92) represents the central Rayleigh line with the full-width at half maximum

(FWHM) ∆ωC(q) = 2DT q
2. The two terms in the central line denote the Brillouin
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doublet with frequency shift ±ωB = ±cSq (cS being the adiabatic velocity of sound)

and linewidth (FWHM)

∆ωB(q) = 2Γq2 =

[
ηv + 4

3
ηs

ρ︸ ︷︷ ︸
DV

+
κ(γ − 1)

ρCP

]
q2, (2.93)

whereas Γ is the classical attenuation coefficient of sound, while ηv and ηs denote

the bulk and shear viscosities, respectively. The last line of (2.92) is non-Lorentzian

and normally a very small contribution, that shifts the apparent Brillouin peaks

towards the center. The prefactor is b(q) = q[3Γ − DV /(γcS)], whereas DV is the

longitudinal kinematic viscosity (cf. Eq. 2.93).

The relation between the intensity of the central and Brillouin lines is known as

the Landau-Placzek ratio

IC
2IB

=
χT − χS
χS

=
Cp − CV
CV

= γ − 1. (2.94)

It follows from the above equation that if isobaric and isochoric heat capacity are

not much different (e.g., in water) no Rayleigh line will be observed.

The experimental width of BLS peak comprises many contributions, such as ab-

sorption, phonon scattering (on phase boundaries), and intermolecular relaxations

that reduce the lifetime of phonon, thereby increase the width ∆ω. Detailed knowl-

edge of all contributions is necessary for physically relevant deconvolution processes,

which in practice is hardly achieved. Only the q-dependence of ∆ω is always present

(in Newtonian fluids) and due to Navier-Stokes equations [148] we obtain ∆ω ∝ q2.

The inherent line width of Brillouin signals (2.93) increases with the viscosity and

thermal conductivity. Another source of line broadening in composite systems is due

to scattering of phonons on interfaces (grain boundaries, structural imperfections),

i.e. the finite size of crystallites can limit the effective mean free path of phonons.

2.3.3. Longitudinal acoustic phonons in 1D superlattices

This section is devoted to the computation of the BLS spectra of 1D hybrid super-

lattices (SLs) studied in Chapter 3 and 4. Based on the calculation of the density of

vibrational states (DOS) and photo-elastic coupling between material displacements
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and refractive index fluctuations, the spectral density can be deduced. Utilization

of the Green’s function technique and the theory of interface response in the frame

of elasticity theory allows to calculate the density of states n(ω, k) and the displace-

ment field (Section 2.2.4). The dispersion relations of propagating and localized

modes are given by the determinant of the inverse Green’s function det[g−1(MM)]

in the interface space M , that uniquely represents the mechanical properties of a

given SL (Eq. 2.62). If an acoustic phonon propagates in the multilayer structure

it causes a periodic variation of strain, which in turn induces a modulation of the

dielectric tensor εij through the photo-elastic coupling to elastic fluctuations

δεij = εiiεjj
∑

kl

Pijkl
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
. (2.95)

Pijkl are the elements of the photoelastic tensor and can be considered a function of z

(along the axis of periodicity). Here, we consider the electromagnetic field polarized

along the x-direction and wave propagation along z with {x, y, z} = {1, 2, 3}. Hence,

for each medium α, described by longitudinal sound velocity cL, density ρ and

refractive index nα =
√
εα we can write the photoelastic constant as

pα = −ε2αPα
1133, (2.96)

and consequently

δεα = pα
∂uα(z)

∂z
. (2.97)

The calculations consider the modulation δε caused by the displacement due to

strain, sometimes referred to as the opto-mechanical effect. In finite structures

another contribution to δε has to be taken into account. Eq. (2.98) gives the modu-

lation δε
′
caused by the displacement of the interfaces, which is in our case negligible

except at the surface

δε
′
=
∑

α

(εα − εα+1) {θ(z − zα)− θ(z − zα − uz(zα))} , (2.98)

with θ denoting the Heaviside step function and zα being the position of the interface

between layers α and α + 1.

The coupling between incident photons Ei(z
′, t) and thermally activated phonons
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in a SL is the source of the scattered field Es(z, t) from the composite system,

whereas z′ (z) denotes the space inside (outside) the SL/air system. After a lengthy

derivation, [151] and using the Green’s function method (cf. Eq. 2.59), the scattered

field after interaction of Ei with a SL can be obtained as follows [146]

Es(z, t) =
ω2
i

ε0c2

∑

α

∫
pαG(z, z′)

∂uα(z′)

∂z′
Ei(z

′, t)dz′. (2.99)

Here, ωi denotes the frequency of the incident field and c is the vacuum velocity of

light. G(z, z′) is the Green’s function associated with the propagation of an electro-

magnetic field along the z-direction in the SL in absence of any elastic deformation.

Note, that the theoretical representation of Es(ω, q⊥) in (2.99) is performed with

regard to the elastic and optical modulation of the layers.

The dielectric modulation of the multilayer structure can be neglected when the

layers are thin as compared to the probing optical wavelength. The same is true if the

layers are characterized by almost the same refractive indices. This particular case

applies for the systems in Chapter 3 and 4, that can be considered as homogeneous

media from the optical point of view (except at the surface). Instead of being a

Bloch wave, the incident electric field in the medium then becomes a simple plane

wave

Ei(z
′, t) = E0

i e
ikiz
′
, (2.100)

and the Green’s function can be written as

G(z, z′) ∝ eiks(z−z′). (2.101)

With the definition of the scattering vector q⊥ = ks−ki the scattered field Es(ω, q⊥)

becomes

Es(ω, q⊥) ∝
∑

α

∫
eiq⊥z

′
pα
∂uα(z′, ω)

∂z′
dz′. (2.102)

Consequently, the Brillouin intensity is given by the square of Eq. (2.102)

Is(ω, q⊥) = |Es(ω, q⊥)|2 (2.103)

Momentum conservation at the frequencies of the Brillouin doublet requires that

all partial waves are scattered coherently. Hence, in the case of a large (or infinite)
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SL the scattered intensity from all layers interferes constructively and the corre-

sponding spectral line should be narrow and well pronounced. However, in real

systems there are a few sources of line broadening, such as interfacial roughness and

structural incoherence. The thickness fluctuations of individual layers are not explic-

itly handled in this presentation as they have only marginal effects on the Brillouin

spectra, as being studied in Section 3.3.4. All sources of broadening, including the

instrumental function, were accommodated by the convolution with a Lorentzian.

In summary, theoretical Brillouin spectra are computed using the Green’s func-

tion technique in the frame of elasticity theory. With the knowledge of the SL’s

response function, and hence the displacement field, we can calculate the Brillouin

intensity as function of the scattering vector. Finally, the spectra are broadened to

account for the instrumental function.

2.3.4. Eigenmode spectra of submicron particles

BLS usually measures the frequency of propagating phonons with the dispersion

ω(q). However, this quantity from which group and phase sound velocities, as well

as frequency gap formation can be deduced is not accessible in turbid media. Such

multiply scattering samples appear as white powders and the exchanged wave vec-

tor q(θ) can adopt any value between forward- and backscattering (0◦ < θ < 180◦),

therefore we speak of q being ill-defined. This apparent disadvantage of incoher-

ent scattering can be exploited for the determination of q-independent (localized)

resonance modes arising from the spatial confinement of elastic energy. Due to the

strong scattering integrated over all possible q-values, one readily obtains the vi-

brational eigenmode spectrum of the individual particles. These rich BLS spectra

contain a wealth of information about the particles, such as their diameter, shape,

elastic moduli, and effects of interaction (Chapter 5 and 6).

This section intends to give a concise description of the mathematical represen-

tation of eigenmodes, first derived by Lamb for freely vibrating spheres. [152] Here,

a more generalized approach is chosen that allows energy leakage into the matrix,

which becomes important for infiltrated colloidal films (Chapter 7). This coupling

of eigenmodes to the propagating acoustic waves causes broadening of the reso-

nance lines and diminishes the character of individual particles as function of elastic
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impedance mismatch. Dry films of particles in air that exhibit a large impedance

contrast render the boundary-condition quasi-stress-free and the results will coincide

with those of Lamb. The modes are indexed by (p,n,l,m), whereas the parameter p

specifies the polarization of the modes as spheroidal (s) or torsional (t). The latter

involves only shear, i.e. they evoke no volume change, hence cannot be seen by

BLS. In analogy to atomic orbitals, the quantum number n denotes the nth radial

component of vibrations and l,m denote the angular momentum quantum numbers.

For the description of particle vibrations, it is beneficial to use the spherical-wave

solution of the elastic wave equation for isotropic media (2.29). Using spherical

coordinates the displacement can be given as the sum of the vectors

u = l + m + n, (2.104)

and we obtain three independent Helmholtz equations [131]

(
∇2 + k2

L

)
l = 0,

(
∇2 + k2

T

)
m = 0,

(
∇2 + k2

T

)
n = 0. (2.105)

The displacement associated with a longitudinal wave is represented by l, while m

and n account for two orthogonal transverse waves. These vectors can be written

as gradients of scalar potential functions (ϕ, ψ, χ) that satisfy the respective scalar

Helmholtz function (∇2 + k2
L,T )(ϕ, ψ, χ) = 0

l =
1

kL
∇ϕ, m = ∇× rψ, n =

1

kT
∇×∇× rχ. (2.106)

Here, the transverse displacements remain independent of l and were expressed

as the curl and curl curl of the product of position vector r and the scalar vector

functions. A well-known solution of the scalar Helmholtz function takes the form

flm(r, θ, φ) = Rl(kr)Ylm(θ, φ), (2.107)

where Ylm(θ, φ) denote the spherical harmonics (the Legendre polynomials) with

l = 0, 1, 2, . . . and m assumes integer values from −l to +l. The radial functions

Rl(kr) are the nth order Bessel functions and independent of l. With that, the
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solutions for the vectors in (2.105) read as follows

llm(R, kL) =
1

kl
∇ [Rl(kLr)Ylm(r̂)] , l = 0, 1, 2, 3, . . . , (2.108)

mlm(R, kT ) = ∇× [rRl(kT r)Ylm(r̂)] , l = 1, 2, 3, . . . , (2.109)

nlm(R, kT ) =
1

kT
∇×∇× [rRl(kT r)Ylm(r̂)] , l = 1, 2, 3, . . . , (2.110)

whereas monopole waves (l = 0) exist only as longitudinal solutions llm, which are

the so called “breathing” modes with purely radial displacement.

When a elastic wave strikes a particle we can divide the total displacement field in

three contributions, namely the unimpeded incident wave uinc, the scattered wave

uscatt and the elastic excitation inside the sphere uin. For the derivation of eigen-

modes, the displacement field inside uin and outside uout the particles needs to be

the same. This boundary condition requires the continuity of stress and strain at

the surface r = rs, such that

uin(rs) = uout(rs) = uinc(rs) + uscatt(rs), (2.111)

pin(rs) = pout(rs) = pinc(rs) + pscatt(rs). (2.112)

(2.112) represents the boundary condition for the surface traction, i.e. the force per

unit area pi = σiknk with stress tensor σik and n being the outbound unit vector

normal to the sphere surface. With (2.104) and (2.108–2.110) the three waves can

be expanded into vector spherical harmonics and we obtain

uinc(r) =
∑

lm

{
a1
lmlmlm(Rl, k

out
L ) + a2

lmmlm(Rl, k
out
T ) + a3

lmnlm(Rl, k
out
T )
}
, (2.113)

uscatt(r) =
∑

lm

{
b1
lmlmlm(R′l, k

out
L ) + b2

lmmlm(R′l, k
out
T ) + b3

lmnlm(R′l, k
out
T )
}
, (2.114)

uin(r) =
∑

lm

{
c1
lmlmlm(Rl, k

in
L ) + c2

lmmlm(Rl, k
in
T ) + c3

lmnlm(Rl, k
in
T )
}
. (2.115)

The coefficients ailm are related to bilm (i=1,2,3) via the boundary conditions and

should be known for a given incident wave. Hence, the above equation can be

decomposed into six independent scalar equations with the coefficients bilm and cilm.

This system can be further broken to two subsystems, one involving the coefficients
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b2
lm and c2

lm of the vector mlm and another involving the remaining four coefficients

that correspond to llm and nlm. With the orthonormality over Ylm, each of the

six equations can be decomposed into l equations. In practice, the calculations are

performed with a limited number of l to handle the computational demand. The two

subsystems account for the torsional modes (mlm) and spheroidal modes (nlm, llm),

respectively. In the case of a sphere the eigenmodes are degenerate in m, but mix

with the torsional modes if particles loose their spherical symmetry (Chapter 6).

For every l the determinant vanishes only for a discrete set of modes ωn,l, where

n denotes the branch number. For the scattered waves uscatt(r), a different Bessel

function R′lm has to be used that diverges at r = 0 and accounts for the exclusion

of the sphere’s origin. [153]

2.4. BLS Instrumentation

The description of the experimental design in this section is intended to be as con-

cise as possible. Therefore, we first have a look on the integral part necessary to

detect small frequency changes. Laser interferometry is widely used to monitor sub-

tle frequency shifts and probably the most impressive demonstration is the use of the

giant interferometer LIGO (4 km mirror distance) for the detection of gravitational

waves. [154,155] Basically, a Fabry Pérot interferometer (FPI) makes uses of multiple

interference of light inside an etalon. The latter is composed of two highly reflec-

tive mirrors, typically coated with thin films of dielectric materials or metals (Ag,

Al) on thick (for stability) optical flats, mounted perfectly parallel to each other.

Parallelism is maintained by piezoelectric actuators.

Figure 2.9 illustrates the multiple reflections of the incident light. The path

length difference L between different beams that exit the etalon depends on the

mirror distance d and the refractive angle αr

L = 2nd cosαr. (2.116)

Due to numerous reflections, the light is subject to destructive interference at

αr ∼ 0◦, except when the path length difference is an integer multiple (m) of the

wavelength λ

L = mλ. (2.117)
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d
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αr

I0

ItIr

Figure 2.9: Scheme of the beam path entering a Fabry Pérot etalon at an incident angle
αr. The transmitted and reflected intensity is denoted as It an Ir, respectively. A thin
film metal is coated on the inside surface to increase reflectivity.

At normal incidence (cosαr = 1) the refractive index has no effect and the trans-

mission condition becomes

λ =
2d

m
, (2.118)

i.e., the observed wavelength is varied by scanning the mirror distance d. With

the phase difference between two adjacent rays δ = k0L and the reflectivity r one

obtains expressions for the relative intensity of the reflected and transmitted beam,

respectively

Ir
I0

=
(4F 2/π2) sin2(δ/2)

1 + (4F 2/π2) sin2(δ/2)
, (2.119)

It
I0

=
1

1 + (4F 2/π2) sin2(δ/2)
. (2.120)

Here, the finesse F is directly related to the reflectivity of the mirrors [156]

F =
π
√
r

1− r
, (2.121)

and the term 1/[1 + (4F 2/π2) sin2(δ/2)] is the so called Airy function. With the

parameter F , this function can be used to represent the transmission characteristics

of a Fabry-Perot etalon. The portion of transmitted light as function of the phase

difference is illustrated in Fig. 2.10. Large values for F (i.e., high reflectivity) result
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Figure 2.10: Illustration of the Airy transmission function of a FPI used in Eq. 2.119
at different values of F . The abscissa can be defined either in the wavelength or in the
frequency domain.

in an almost complete extinction of the light entering the etalon and the intensity

between the two transmission maxima approaches zero. The spectrometer’s trans-

mission function is characterized by the distance of the maxima, sometimes referred

to as the free spectral range (fsrλ), and the full width at half maximum ∆λ . The

finesse F serves as the figure of merit that can be easily evaluated from experimental

observables (Fig. 2.10)

F =
fsrλ
∆λ

. (2.122)

Since our argumentation is based on path length differences we have defined fsr and

∆ in the wavelength domain. However, the findings can be equally well presented

in the frequency domain which is more important in practice

fsrλ =
λ2

2nd
−→ fsrω =

c

2nd
, (2.123)

∆λ −→ ∆ω, (2.124)

whereas c denotes the vacuum velocity of light and (2.122) holds accordingly. Note

that in this simple presentation no absorption effects are considered.

While in general a high finesse is preferred for high resolution measurements,

one faces inherent problems of the technique. In practice it is hard to achieve
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Figure 2.11: Tandem multi-pass operation of two FPI allows the suppression of higher
order transmission modes. The two FPI have different fsr ’s, hence only common multiples
of fsr1 and fsr2 will be transmitted without attenuation.

F > 50, although non-scanning FPIs with special geometries and up to F ∼ 1000

have been realized. [157] To vary the passing wavelength, one either has to adjust

the refractive index inside the etalon (by different gases and/or concentration) or

the mirror distance needs to be scanned. While the former is very slow, the latter

is quite unstable and impractical to use. The group around Sandercock succeeded

to develop a self-stabilizing scanning multiple-pass tandem FPI to tackle the above

mentioned problems. [158]

The core element of the BLS setup (Fig. 2.12) is the interferometer (JRS Scientific

Instruments) with two FPI’s (FP1 and FP2) operated in tandem mode. That means

the mirror distance is synchronously scanned by a common translation stage which

is moving along the normal axis of FP1. Simultaneous transmission through both

FPIs with different spacing d2/d1 ∼ 0.95 requires

m1λ = 2nd1, (2.125)

m2λ = 2nd2. (2.126)

FP2 is inclined at a fixed angle ϕ with respect to FP1, therefore its mirror distance

depends on those of the latter by

d2 = d1 cosϕ. (2.127)
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Figure 2.12: Scheme of the BLS setup. A polarized single-mode (532 nm) laser beam
impinges on the sample centered in a goniometer which allows to change the scattering
angle θ. The (inelastically) scattered light is analyzed by a 6-pass tandem FPI and the fre-
quency shift upon interaction with a thermal phonon is observed as the Brillouin doublet.
Both etalons are scanned synchronously by the translation stage (white) moving along the
normal of FP1.

Figure 2.11 illustrates the transmission of a tandem FPI that realizes a much higher

finesse and suppresses the higher order peaks (also referred to as “Ghosts”). Due to

the different spacings (hence, different fsr values), one FPI blocks the transmitted

light of the other, except under the condition where both transmission peaks fall

together (m1/d1 = m2/d2), which is tuned to the center position (Fig. 2.11).

The light scattering setup as a whole is shown in Fig. 2.12. The sample holder is

mounted in the middle of a goniometer with the option to control its temperature

(−15–200 °C) and the possibility to apply strain by appropriate auxiliary devices. A

solid-state diode-pumped single-mode laser (λ = 532 nm, Coherent, Compass 315M,

150 mW) is placed on the goniometer arm. This configuration allows to measure

at scattering angles θ between 5 and 150°, and probe sound propagation at various

directions and magnitude of q inside the specimen. This is a clear advantage over

BLS experiments using only the backscattering component qBS. The laser beam

passes a Glan-Thompson polarizer (extinction ratio of the depolarized light ∼10−5)

ensuring vertical (V) polarization and is then focused to the center of the goniometer

(beam diameter ∼100 µm). The scattered light along a specific direction is collected

beyond an aperture, the subsequent pass of another Glan-Thompson prism (now

with a higher extinction ratio of 10−8) selects polarized (V) or depolarized (H) light,
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Figure 2.13: Scheme of the BLS scattering geometries for a slab sample. The left
panel illustrates the transmission geometry in the special case of α = θ/2 for which n-
independet moduli can measured. The right panel demonstrates the reflection geometry
for α = 180◦−θ

2 .

and the beam is focused into the entrance pinhole (150–1000 µm) of the tandem FPI.

Inside the spectrometer, the scattered photons are directed by a set of lenses and

mirrors to traverse a FPI etalon six times before they pass the output pinhole (200–

1500 µm) and reach the detector. The latter is an avalanche photo diode (APD),

whose signal is processed by a multi-channel analyzer (MCA, 1024 ch.) to give the

frequency resolution as function of the position of the translation stage.

As mentioned above, the stability of the optical setup remains an issue for scanning

FPIs. This problem is addressed by dynamic realignment of FP1 and FP2 for

perfect parallelism of the two mirrors. Therefore, a small portion (∼4%) bypasses

the sample and is used as reference to constantly adjust the piezo voltages that

control the mirror position to gain maximum transmittance of the central elastic

line. Each time the translation stage moves through the zero-frequency position,

the dual-shutter unit behind the entrance pinhole selects the reference beam for

stabilization purposes and to protect the detector from the high intensity of the

Rayleigh line. At last, the whole setup rests on an optical table that provides active

vibration isolation of disruptive noise from the environment.

The q-vector is—besides by the scattering angle—largely determined by the sam-

59



2 Theory and Methods

ples’ geometry. In the case of a cylindrical sample, the scattering vector is given

by

q =
4πn

λ
sin

θ

2
. (2.128)

However in this work we often deal with samples of slab geometry which are easy

to prepare and can be conveniently positioned in the center of the goniometer with

a selected angle of incidence α. In general, two scattering geometries are used and

sketched in Fig. 2.13. In transmission, the magnitude of the q-vector is defined by

q =
4πn

λ
sin

[
1

2
arcsin

(
sin (θ − α)

n

)
+

1

2
arcsin

(
sinα

n

)]
. (2.129)

When the q-vector is decomposed into its components parallel and perpendicular to

the slab plane, the component q‖ is independent of the material’s refractive index n

q‖ =
2π

λ
[sinα + sin (θ − α)] . (2.130)

Sound propagation parallel to the sample is probed in the special case of q = qpara,

i.e. θ = 2α, where q is simply given by

q = qpara =
4π

λ
sin

θ

2
. (2.131)

This geometry allows the unequivocal determination of the sound velocities in un-

known materials without having to rely on the (estimated) refractive index. Fur-

thermore, the refractive index of new mechanically homogenous materials can be

evaluated by measuring the (linear) dispersion in transmission and reflection geom-

etry. The q⊥ values can be fitted in n until they line up with the group velocity (the

slope of the dispersion) measured independent of n. For the reflection geometry, the

scattering vector reads

q =
4πn

λ
sin

[
1

2
arcsin

(
sinα

n

)
+

1

2
arcsin

(
sin (θ + α)

n

)]
, (2.132)

and under the condition α = 180◦−θ
2

the probed wavevector is equal to the perpen-

dicular component q = q⊥.
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One-Dimensional Phononics
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3. Engineering the Band Diagram of

Hypersonic Hybrid Superlattices

This Chapter reports on the full control of phononic band diagrams for periodic

stacks of alternating layers of poly(methyl methacrylate) and porous silica combining

Brillouin light scattering spectroscopy and theoretical calculations. These structures

exhibit large and robust on-axis band gaps determined by the longitudinal sound

velocities, densities, and spacing ratio. A facile tuning of the gap width is real-

ized at oblique incidence utilizing the vector nature of the elastic wave propagation.

Off-axis propagation involves sagittal waves in the individual layers, allowing access

to shear moduli at nanoscale. The full theoretical description discerns the most

important features of the hypersonic one-dimensional crystals forward to a detailed

understanding, a precondition to engineer dispersion relations in such structures.

This Chapter is based on:

D. Schneider, F. Liaqat, E. H. El Boudouti, Y. El Hassouani, B. Djafari-Rouhani,

W. Tremel, H.-J. Butt, G. Fytas, Engineering the Hypersonic Phononic Band Gap

of Hybrid Bragg Stacks. Nano Lett. 2012, 12, 3101.
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3.1. Introduction

Controlling sound propagation has been an intensely studied field during the past

centuries, ranging from architectural design [88] over noise reduction applications [159,160]

to the rise of thermal management, [81] sound shields, [161] acoustic diodes, [113] and

acoustic metamaterials. [49,162] Phononic crystals (PnC) happen to be a promising

class of composite structures, that allow for systematic manipulation of elastic

(acoustic) wave propagation. The most striking feature is their ability to create

(phononic) band gaps, similar to the electronic and photonic bandgaps in semi-

conductors and photonic crystals (PhC), respectively. Following the discoveries in

the older field of PhC (periodic spatial variation of refractive index n), PnCs (vari-

ation of density ρ, longitudinal cL and transverse cT sound velocities) happen to

share many similarities, such as Bragg reflection and characteristic dispersion rela-

tions. However, elastic waves require many more parameters being considered for a

full theoretic description, i.e., it renders predicted phononic behavior complicated.

While the band diagram of semiconductors simply reflects scalar waves, and trans-

verse waves in PhCs, sufficient description of sound propagation requires full vector

waves.

The search for phononic structures started with theoretical work, [32,33] in 1993.

The first observation of band gaps followed later, using manually manufactured

metallic macrostructures in the centimeter range with gaps at audible frequencies. [34]

In contrast to these sonic phononic crystals, the need to reach high frequencies in

the hypersonic (GHz) range and beyond imposes substantial demand on design,

fabrication, and characterization techniques because of the inherently much smaller

length scale. The first phononic band gap in the hypersonic regime was experimen-

tally observed in a three-dimensional assembly of close-packed polymer colloids, [40]

soon after its prediction in 2005. [39] During the following years extensive research

has been carried out on hypersonic phononics. The tuning and switching of high

frequency phononics [40,163] point forward to possible applications and underline the

importance of controlled wave propagation. However, the full description of phonon

propagation in multidimensional periodic assemblies still remains a challenging task.

The research on phononic band diagrams in 1D superlattices has started earlier

than the discovery of complete (omnidirectional) phononic band gaps [32,33] with the

study of folded phonons in a semiconductor superlattice using Raman spectroscopy
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at few laser wavelengths, [91] followed by other Raman studies. [92–94,106] More re-

cently, some evidence for the existence of a hypersonic band gap and zone-folded

phonons, and in-plane layer excitations was reported for porous silicon [98,99] and

polymer [95,100,101] superlattices using Brillouin and pump-probe time resolved spec-

troscopy. For 1D periodic structures, however, the first direct observation of a

sizeable normal incidence hypersonic phononic band gap was reported in periodic

porous silica/poly(methyl methacrylate) (p-SiO2/PMMA) multilayer films by some

of the present authors. [95]

The latter study has initiated new perspectives towards engineering of phonon

propagation which are addressed in this work. These include (i) robustness of the

dispersion to fabrication inherent imperfections, (ii) the unique estimation of both

elastic moduli (longitudinal C11 and shear C44) and elasto-optic coefficients of the

individual layers through (iii) the theoretical representation of the dispersion rela-

tions for normal and oblique incidence and (iv) the intensities of the two, lower and

upper, phononic branches of the gap. On the basis of these findings, we expect new

designs of nanostructures to emerge for desired direction dependent elastic wave

propagation and profound (hypersonic) phonon-(visible) photon interactions.

3.2. Experimental

3.2.1. Fabrication

Stacks of poly(methyl methacrylate) (PMMA) and porous silica (p-SiO2) were as-

sembled by alternating spin-coating from the respective stock solutions on a glass

substrate starting with the PMMA layer. Two multilayer stacks each consisting of

twenty alternating PMMA and p-SiO2 layers with different thicknesses dPMMA and

dSiO2
and hence periodicity a (= dPMMA + dSiO2

) were fabricated. A combination

of scanning electron microscopy (SEM) and confocal microscopy was used to de-

termine (i) the relative distribution of materials and (ii) the absolute thickness of

the multilayer structure. Figure 3.1 (left panel) displays the SEM pictures of stack

A with a = 117 nm (dSiO2
= 79±6 nm and dPMMA = 38±4 nm) and stack B with

a = 100 nm (dSiO2
= 55±5 nm and dPMMA = 45±5 nm).
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3.2.2. Brillouin light scattering

We used the non-destructive technique of spontaneous Brillouin light scattering

(BLS) spectroscopy to probe hypersonic phonons propagating in these structures at

sub-micrometer scale and thermal equilibrium (Section 2.4). BLS utilizes the photo-

elastic interaction of an incident visible photon (532 nm) and a thermally excited

phonon with wavevector k and frequency ω (= 2πf) in the sample. The phonon

energy is represented by the frequency shift (ω) of inelastically scattered light of a

single-mode laser beam. The small shift (of the order of few GHz) is resolved by a six-

pass tandem Fabry-Pérot interferometer. For a homogeneous medium, the probed

phonon has k equal to the scattering wavevector q = ks − ki (here ks, ki are the

wavevectors of the scattered light and incident laser beam). For a periodic structure

with a reciprocal lattice vector G momentum conservation requires, k = q + G.

The desired dispersion relation is represented by the plot ω(k) along a propagation

direction selected by the scattering geometry: [95] Along the periodicity direction

(on-axis), q = q⊥ is perpendicular to the layers (hence, q‖ = 0), whereas in-plane

propagation is probed for q = q‖ along the layers (and hence q⊥ = 0); at oblique

incidence, q⊥, q‖ 6= 0 (off-axis).

3.3. Results and Discussion

3.3.1. Normal incidence phonon propagation

Figure 3.1 displays BLS spectra for stacks A and B, both for two q⊥-values near the

edge of the first Brillouin zone (BZ) appearing at G/2 = π/a, i.e. qBZ = 0.0269 nm−1

and qBZ = 0.0314 nm−1, respectively for stacks A and B. The double peak structure

of the BLS spectra correspond to the bands 1 (at low) and 2 (at high frequency)

between which the Bragg gap occurs. The different spacing of the two films is

manifested in the BLS spectral shape (Fig. 3.1); stack A (periodicity a = 117 nm)

shows only branch 2 while stack B (a = 100 nm) displays both branches at the high

q⊥ value in the right panel of Fig. 3.1. The BLS spectra correspond to different q⊥a

values and their shape sensitively depends on the proximity to the edge of the BZ

at q⊥a = π.

Both stacks were scanned through the accessible q-range (methods) to obtain
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Figure 3.1: Two Bragg-stacks and the phononic band gap at a glance; scanning electron
microscopy (SEM) images (left) and splitting into two phonon branches (1 and 2, middle
and right panel). Stack A has a larger spacing a than stack B and displays only the
high-frequency band 2 at high q⊥ directed normal to the layers (on z-axis, s. scheme in
the left panel). The situation is inverted in stack B. The solid lines represent Lorentzian
line fits used to extract the frequency f and damping Γ (FWHM) of modes (1) and (2)
from the experimental spectra.

the dispersion relation f(q⊥) for on-axis phonon propagation (yellow circles/red

diamonds on blue ground in Fig. 3.2c). The BLS spectra were well represented

by a double Lorentzian convoluted with the instrumental function (Fig. 3.1); the

solid lines in Fig. 3.2a represent the theoretical spectra. The line intensities and the

peak frequencies are shown in Figs. 3.2b and 3.2c (blue shaded area), respectively.

Figure 3.2c also includes the phonon frequencies for in-plane propagation (reddish

area) in the two hybrid stacks. The opening of a hypersonic phononic stop band

along the periodicity direction (at q⊥a = π) is demonstrated with the two stacks

covering different regimes in the BZ; stack A falls mainly into the 2nd BZ. In spite

of the (small) differences in the elastic parameters (Table 3.1), the intensity ratio

I(2)/I(1) of the two bands superimpose on a common curve when plotted versus

q⊥a in Fig. 3.2b, thereby justifying the larger ratio observed for stack A (Figs. 3.1

and 3.2a).

A detailed understanding of the phononic properties of 1D crystals requires the full

description of the experimental BLS spectrum that involves the concurrent represen-

tation of both intensities of the two modes and the dispersion relations. Following
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Figure 3.2: a) Experimental BLS-spectra of the stack A and B superimposed with the
theoretical spectra (solid lines) at different phonon wavevectors q⊥ normal to the layers.
b) The ratio I(2)/I(1) of the intensities of the high and low frequency bands in (a). The
small-size symbols indicate the values of I(2)/I(1) obtained from the theoretical spectra in
(a). c) Dispersion relation of stack A and B (experimental data given in yellow circles/red
diamonds) for in-plane (reddish back) and out-of-plane (light blue back) propagation.
The solid lines denote the theoretical dispersion relation Eq. 3.2 for sound propagation
along the periodicity axis (scheme for q⊥) and hollow symbols indicate the mode 1 and 2

frequencies obtained from the theoretical spectra in a). The linear dispersion for phonon
propagation parallel to the stacks (scheme for q‖) is denoted as a dotted line along with
the experimental data along the same direction.
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the strategy outlined in Sections 2.2.4 and 2.3.3 the scattered intensity is given by

(2.103)

Is(ω, q⊥) ∝

∣∣∣∣∣
∑

α

∫
pαe

iq⊥z
′ ∂uα(z′, ω)

∂z′
dz′

∣∣∣∣∣

2

. (3.1)

The solid lines in Fig. 3.2a denote the fit of Is(ω, q⊥) ∝ |Es(ω, q⊥)|2 to the BLS

spectra using the values of the parameters listed in Table 3.1. The computed

I(2)/I(1) ratio (solid symbols in Fig. 3.2b) and the frequencies of modes 1 and

2 (blue and green symbols on the right shaded areas in Fig. 3.2c) in the dispersion

relations of the two stacks are in good agreement with the corresponding experi-

mental values. The on-axis dispersion diagram in the present 1D phononic crystals

was found to be well represented (solid lines in Fig. 3.2c) by [86]

cos(ka) = cos

(
ω dSiO2

cL,SiO2

)
cos

(
ω dPMMA

cL,PMMA

)

− 1

2

(
ZSiO2

ZPMMA

+
ZPMMA

ZSiO2

)
sin

(
ω dSiO2

cL,SiO2

)
sin

(
ω dPMMA

cL,PMMA

)
,

(3.2)

with Z(= ρ cL) being the longitudinal elastic impedance of the two layers. In

the computation of the dispersion relations, we utilized the values of the param-

eters (Table 3.1) as obtained from the representation of the experimental spectra

(Fig. 3.2). Hence, the description of the dispersion relations in Fig. 3.2c by (3.2) is

noticeable.

The effective medium longitudinal sound velocity cL,⊥ amounts to 2970 ms−1 in

stack A and 2890 ms−1 in stack B (slope of (3.2) in the low-q limit). In fact, these

values can be also computed from Wood’s law, [164] which is obtained by Taylor

expansion of (3.2) around ω = 0:

1

M(A/B)
=

φ

ρPMMAc
2
L,PMMA

+
1− φ

ρSiO2
c2

L,SiO2

, (3.3)

whereas M (= C11 = ρeff c
2
L,⊥) is the bulk modulus of the whole system (stack A or

B) with an effective density of ρeff = φρPMMA + (1 − φ)ρSiO2
, and volume fraction

φ = dPMMA/a.

The frequency of band 1 below the gap (reddish area in Fig. 3.2c) deviates from

69



3 Phonon Propagation in Hybrid Superlattices

Table 3.1: Values of the physical quantities used in the calculations.

PMMA p-SiO2 substrate

A

cL / m s−1 2800a 3100 5600
cT / m s−1 1400a 1800
ρ / kg m−3 1190a 1420 2200
d / nm 38 79

pPMMA/pSiO2
2

n 1.49 1.46 1.53

B

cL / m s−1 2800a 3030 5600
cT / m s−1 1400a 1800
ρ / kg m−3 1190a 1500 2200
d / nm 45 55

pPMMA/pSiO2
2

n 1.49 1.46 1.53

Sound velocities (cL, cT ), density (ρ), thickness (d), refractive index (n).
a These parameters were fixed to the values of bulk PMMA film. [73,95]

the corresponding frequency (experimental symbols) for in-plane propagation in

both stacks. In the direction parallel to the layers, the effective medium sound

velocity cL,‖ is a different average of the elastic properties in the individual layers

as it is affected by sagittal modes. In fact, the computed in-plane acoustic phonon

frequency [165] (dots in the reddish area of Fig. 3.2c) agrees well with the experimental

frequencies along the same direction. The slopes of these dotted lines, i.e., the sound

velocities for in-plane propagation cL,‖(A) = 3020 m/s and cL,‖(B) = 2990 m/s are

slightly higher than the corresponding cL,⊥, respectively. This small difference might

suggest a low (< 5%) mechanical anisotropy normal, and parallel to the layers.

In order to provide a measure for the width of the band gap, we first look at two

exemplary situations. If we assume that
dPMMA

cL,PMMA
= 2

dSiO2

cL,SiO2

, exemplified by stack A,

the frequencies of the upper/lower limit of the gap are given exactly by,

f1,2 =
cL,PMMA

2πdPMMA

cos−1

(
ZPMMA,SiO2

ZPMMA + ZSiO2

)
. (3.4)

The obtained gap width of ∆f = f2 − f1 ∼ 2 GHz, is in good agreement with the

band gap in stack A. Now, if we assume
dPMMA

cL,PMMA
=

dSiO2

cL,SiO2

, approximately fulfilled in

stack B, the center of the first gap conforms to
f0 dPMMA

cL,PMMA
=

f0 dSiO2

cL,SiO2

= 1/4, i.e., the
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system acts as an “quarter wave stack” exhibiting the widest possible band gap in

1D crystals, [22]

f1,2 = f0 ±
2f0

π
sin−1

(
ZPMMA − ZSiO2

ZPMMA + ZSiO2

)
, (3.5)

with f0 being the frequency of the center of the gap at kBZ = π/a. The larger gap

width in stack B is ∆f ∼ 3 GHz according to (3.5) and in good agreement with the

experimentally observed band gap.

Aside of these two special cases and for relatively small contrast in elastic impedance

∆Z/Z (which is the case here) the width of the band gap can be approximated by

a general expression, [166]

∆f ∼= 4f0 sin
πdPMMAcL,SiO2

dPMMAcL,SiO2
+ dSiO2

cL,PMMA

∆Z

Z
, (3.6)

where ∆Z = |ZPMMA − ZSiO2
|, Z =

√
ZPMMAZSiO2

and f0 is obtained from

1
2 f0

=
dPMMA

cL,PMMA
+

dSiO2

cL,SiO2

. Note that f0 defines the middle of the gap only in the

case of a “quarter wave stack”, where the gap width is maximized. The fundamen-

tal quantity of 1D phononic crystals, the width of their primary band gap, depends

on many parameters, such as thickness and sound velocity of constituent materials

and not just from the impedance mismatch ∆Z/Z, although this plays a central role

(Fig. 3.5); ∆Z/Z ∼ 0.37 for the present PMMA and p-SiO2 layers.

For small elastic contrast, Eqs. 3.4–3.6 yield two simple equations for stop band

width of stacks A (dPMMA/dSiO2
≈ 0.5) and B (dPMMA/dSiO2

≈ 1), respectively:

∆f ∼=
√

3

6

cL,PMMA

πdPMMA

∆Z

Z
≈ 1.8GHz, (3.7)

and

∆f ∼=
1

2

cL,PMMA

πdPMMA

∆Z

Z
≈ 3GHz. (3.8)

The observed good agreement between theory and experiment leads to important

conclusions: (i) the phononic dispersion is not simply scalable with the contrast of

elastic impedance ∆Z/Z. In contrast to photonics, density and sound velocity of
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both layers enter explicitly in (3.2); (ii) the physical quantities, density and longi-

tudinal elastic modulus of the porous SiO2 layer adopt lower values than in silica

glass; these are slightly different in the two stacks; (iii) the average thicknesses of

the individual layers are uniquely obtained, and (iv) effective medium elastic pa-

rameters (ρ,cL,⊥) are also obtained from the frequency of mode 1 which becomes

acoustic only at low q⊥’s.

3.3.2. Oblique incidence phonon propagation

A versatile tuning of the phononic band structure is feasible by simply turning the

film around its axis normal to the scattering plane (saggital plane) as visualized in

Fig. 3.3a. This leads to an oblique incidence at which the scattering wavevector q

deviates from q⊥ activating mixing with saggital modes, i.e., in-plane propagating

transverse modes. Yet, q is represented by a linear combination of q⊥ and q‖, that

is a function of the scattering angle θ and the incident angle α (Eq. 3.9)

q‖ = q · sin
[

1

2

(
sin−1

(
1

n
sinα

)
− sin−1

(
1

n
sin (α + θ)

))]
, (3.9a)

q⊥ = q · cos

[
1

2

(
sin−1

(
1

n
sinα

)
− sin−1

(
1

n
sin (α + θ)

))]
, (3.9b)

q =
√
q2
‖ + q2

⊥. (3.9c)

Figure 3.3b depicts the phonon frequencies of modes 1 and 2 as function of the

incidence angle in stack B (at θ = 150◦). As α deviates from π−θ
2

(= 15 ◦) the

low-frequency mode 1 approaches the high-frequency mode 2, which is remarkably

robust to the incidence angle. We note that the experimental frequencies (dots in

Fig. 3.3b) do not fall at the edge of the BZ. The locus of the two mode frequencies

in the three-dimensional dispersion diagram is better seen in Fig. 3.3c along with

the theoretical dispersion relations (dotted lines) plotted as a function of both, q⊥
and q‖. Furthermore, the gap width narrows with increasing q‖ or obliqueness. The

mixing of the longitudinal with the transverse phonons becomes advantageous since

it allows the estimation of the shear moduli of the individual layers.

The computed frequencies of modes 1 and 2 using the shear velocity cT,SiO2
(Ta-

ble 3.1) as adjustable parameter capture the experiment very well (Figs. 3.3b and

3.3c). Thus, implementation of particular sample rotation (Fig. 3.3) is beneficial as
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Figure 3.3: Oblique phonon propagation and impact on the dispersion relation. a)
Scheme of experimental geometry. Laser and detector remain at fixed positions while
the stack itself is turned around the normal of the scattering plane; α varies at constant
θ(= 150◦). b) Frequency for the low (1) and high (2) frequency Bragg modes in stack B as
a function of the incident angle α. c) Theoretical dispersion relation f(q‖, q⊥) around the
center of the longitudinal acoustic band is illustrated in a 3D surface. The experimental
data obtained at various α are depicted in red (shaded if below the surface) and the
theoretical dispersions f(q⊥) at different q‖ are presented by dotted lines.

it allows ease tuning of the gap and concurrent determination of the shear moduli

which are inaccessible for normal incidence wave propagation.

3.3.3. Structure disorder and layer imperfections

Figure 3.4 contrasts the theoretical prediction of the modes near the edge of the BZ of

an ideal 1D periodic structure with the experimental doublet of the BLS spectrum for

stack A at a constant q⊥. The left panel (Fig. 3.4a) shows the theoretical dispersion

relation while panel 3.4b displays the calculated DOS with ten sharp peaks for

each branch in the BZ equivalent to the number of periods in the stack. The peak

separation is about 1.2 GHz in the DOS diagram, while their inherent broadening

(Γ∗ ∼ 0.25 GHz, even smaller near the gap) is due to interaction of the superlattice

discrete modes with the substrate continuum as these modes are propagating within

the substrate. The modeled spectrum, displayed in Fig. 3.4c for q⊥ = 0.0313 nm−1

(vertical dashed line in Fig. 3.4a), exhibits a triplet spectral structure (with the

maximum at the fixed q⊥). It had to be convoluted with the instrumental function

(Gaussian with Γ ∼ 2Γ∗ ∼ 0.53 GHz) to match the doublet shape of the experimental

spectrum in Fig. 3.4d associated with the dispersion diagram of the infinite structure

(Eq. 3.2 and Fig. 3.2c).
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Figure 3.4: Dispersion curve at normal incidence (a), densities of states (DOS) (b) and
two modeled spectra of different resolutions (c,d) at q = 0.0313 nm−1 (vertical dashed
line in a). The linewidth (FWHM) of the peaks in the DOS (b) is ∼0.25 GHz and the
theoretical spectrum in (c) is a triplet spectral structure for each of the two Bragg bands
1 and 2 with maximum frequencies arising at f fixed by q⊥ in the dispersion curve (a)
(red guides). The triplet structure in (c) is smeared out to the experimental doublet (d)
due to the reduced resolution (Γ = 0.53 GHz).

3.3.4. The role of structure incoherence

In order to elucidate the impact of unavoidable interfacial defects of layers (SEM

pictures in Fig. 3.1), we note that state-of-the-art hybrid (inorganic/polymer) spin-

coating cannot yet compete with semiconductor production techniques, e.g., molec-

ular beam epitaxy, in terms of roughness and structural coherence. However, the

roughness is much smaller than the layer thicknesses and phonon wavelengths in the

sub-micrometer range should render the scattering losses weak.

We therefore consider theoretically the effect of structural disorder exemplified

by incoherent spacing. Figure 3.5a shows the experimental BLS spectrum of stack

A at q⊥ = 0.0313 nm−1 along with the computed spectrum indicated by the solid

line as already shown in Fig. 3.4d. The sensitivity of this representative spectrum

in the vicinity of the BZ to the variation of the thickness of the two constituent

layers at fixed lattice constant a (=117 nm) is illustrated in Fig. 3.5b for three

thickness combinations and the average spectrum over ten thousand realizations

with different dPMMA/dSiO2
ratios. It is remarkable that the spectral doublet is

74



Results and Discussion 3.4

robust and only the lower frequency band 1 undergoes a blue shift leading to a gap

narrowing with decreasing dPMMA/dSiO2
whereas the large sampling (dashed line in

Fig. 3.5) coincides with the spectrum for dPMMA/dSiO2
= 0.5 (∼39/78). The gap

widening at increased volume fractions of PMMA, as well as the asymmetric shift of

the low- and high-frequency peak are captured by Eqs. 3.4–3.6. This predicted trend

is clearly seen in the non-convoluted spectra of Fig. 3.5c which indicates that the

smearing of the triplet structure for both bands 1 and 2 (Fig. 3.5b) cannot be singly

attributed to the particular kind of disorder (structure incoherence). We conclude

that the smearing due to disorder is less than the experimental resolution, hence

its effect can only be evaluated if the instrumental resolution could be significantly

improved.

Figure 3.5: Structure incoherence. a) The experimental BLS of stack A at
q = 0.0313 nm−1 along with the (low resolution) theoretical spectrum (solid line) of
Fig. 3.4d with dPMMA = 38 nm and dSiO2

= 79 nm. b) Theoretical spectra at three dif-

ferent dPMMA/dSiO2
ratios (solid lines), but fixed spacing a = 117 nm. The dashed curve

represents a mean over 10 000 stacks of randomly chosen PMMA/p-SiO2 fraction between
the two extrema (30 nm ≤ dPMMA ≤ 50 nm). c) High resolution theoretical spectra without
instrumental broadening corresponding to the four cases in (b) (cf. Fig. 3.4c).
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3.4. Conclusions

One dimensional periodic hybrid phononic structures act as a model system for a

fundamental understanding of elastic wave propagation in nanostructured matter.

A phononic “Bragg” gap opens for wave propagation along the periodicity direc-

tion, i.e., normal incidence. The width, the frequency at the center of the gap,

and the intensities of the lower and upper frequency Bragg modes are all well de-

scribed theoretically. The concurrent representation of the phonon dispersion and

the amplitudes of the modes leads to the estimation of the out-of-plane longitudinal

sound velocity and density of the individual layers. Inherent fabrication-related film

imperfections such as inhomogeneous layer thicknesses lead to a smearing of the

position of the lower Bragg mode. However, the width of the gap remains constant

in the course of the examined thickness variations as indicated by the simulations.

Tuning of the gap position and width is readily obtained by rotation of the stack

around the axis normal to the saggital plane of the film. At such oblique incidence

due to the vector nature of the elastic wave propagation, mixing with in-plane

saggital modes allows the estimation of the shear moduli of the individual layers at

nanoscale. Access to both moduli opens a new way to investigate material behavior

under confinement and address direction dependent mechanical properties.

The complete description of 1D hybrid phononics, i.e., experimental dispersion

relations and the density of states of one-dimensional hybrid stacks creates the

fundamental knowledge necessary to engineer the band structure of high frequency

phononics. Introduction of defect layers and design of dual gap structures for both,

photons in the visible and hypersonic phonons look now more feasible. [167]

This work is the first demonstration of the utility of soft matter fabrication tech-

niques in hypersonic phononics. As compared with classical semiconductor fabrica-

tion techniques leading to high quality periodic structures at shorter length scales,the

present hybrid hypersonic structures possess distinct advantages, such as facile tun-

ing of the elastic impedance contrast, realization of large phonon band gaps, and

good perspectives for strong interactions of hypersonic phonons with visible photons.

In addition, the reach of polymer and colloid science enables a wealth of soft peri-

odic structures with ease tunability. Yet, their quality can be significantly improved

using, e.g., interference lithography fabrication techniques. [39,168]
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4. Defect-controlled Hypersound

Propagation in Hybrid

Superlattices

This Chapter reports on spontaneous Brillouin light scattering spectroscopy and

detailed theoretical calculations used to reveal and identify elastic excitations inside

the band gap of hypersonic hybrid superlattices. Surface and cavity modes, their

strength and anti-crossing are unambiguously documented and fully controlled by

layer thickness, elasticity, and sequence design. This new soft matter based super-

lattice platform allows facile engineering of the density of states and opens new

pathways to tunable phoxonic structures.
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4.1. Introduction

Selective transmission of elastic waves in superlattices (SLs), reported in 1979, has

inaugurated the idea of phonon filtering by dielectric Bragg mirrors. [90] Fourteen

years later, the study of phononic stop bands in 3D nanostructures was initiated by

calculations of the full band structure of periodic composites, [32] a followup of the

electromagnetic analogs proposed in 1987. [20] The necessity of combining materials

of significantly different acoustic impedance in a periodically ordered assembly is the

basis for phononic effects and has been exemplified both experimentally and the-

oretically. [34,36,39,146,169] SLs largely facilitate the study of phononic crystals, as the

complex vector nature of the elastic wave propagation is subdued in one-dimensional

structures. This platform allows the discovery of a new class of states and thereby the

manipulation of elastic wave propagation in periodic structures. Longitudinal acous-

tic phonons folded to the Brillouin zone (BZ) [91] and confined acoustic vibrations in

a phonon cavity of a SL embedded within an optical cavity [111] have been observed

in semiconductor SL by Raman scattering. Defect modes, either surface localized

within the frequency gaps of the zone folded phonons [102–104] or surface avoiding with

wave vectors in the vicinity of the center [105] and edge of the BZ, [107] have been re-

vealed by Raman and pump-probe experiments. Many applications benefit from SL

designs with controlled defects such as coherent phonon generation, [69,94,108,109] con-

current modulation of light and sound, [58,61,111,112] acoustic diodes, [113] and reduction

of heat conductivity. [114,115]

However, to date these functional SLs are exclusively based on semiconductor ma-

terials with relatively low elastic impedance contrast and strong optical absorption

preventing probing far from the surface, while their fabrication requires epitaxial

growth under clean-room conditions. Instead, hybrid SLs comprising hard inorgan-

ics and soft polymers pose an alternative flexible platform with distinct advantages:

large and tunable band gaps, [95,96,101] easy fabrication [97] and variation of total thick-

ness and spacing for concurrent operation at hypersonic phonon and visible photon

frequencies. Using these new soft matter based SLs, we present the first unequiv-

ocal observation of surface modes and their interaction with cavity modes varying

the material and the thickness of the top layer, as well as the thickness and posi-

tion of the cavity layer. The full theoretical description of both the experimental

phononic band structure and the Brillouin light scattering (BLS) spectra is based on
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a Green’s function method in the frame of elasticity theory, as concisely presented in

Section 2.2.4 and 2.3.3. This formalism directly accesses the density of states (DOS),

which helps to identify the modes inside and near the edges of the 1st BZ that are

activated through breaking of the high symmetry. The gained understanding is a

precondition for reliable predictions of phonon propagation in periodic composite

structures.

4.2. Experimental

4.2.1. Fabrication

One-dimensional Bragg stacks (finite superlattices - SLs) of alternating poly(methyl

methacrylate) (PMMA or P ) and porous silica (p-SiO2 or S) layers were built up on

piranha cleaned glass substrate by high speed spin coating (5000 rpm; 5040 rpm/s;

20 s). All the layers except the defect layer are coated from the respective stock

solutions of 2.2% PMMA in toluene (w/v) and 3.4% colloidal dispersion of silica

nanoparticles (LUDOX AS-30) containing ammonia and sodium dodecyl sulfate

62 nm

200 nm

500 nm

92 nm

200 nm

140 nm

200 nm

SL5SL4SL3

500 nm200 nm

SL2 SL6 SL7

Figure 4.1: Electron micrographs of samples SL2–7.
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Table 4.1: Architecture and elastic parameters of the hybrid Bragg stacks.

ID dPMMA,SiO2
(Layer sequencea) cL(SiO2) ρ(SiO2) cL(PMMA) ρ(PMMA)

/ nm / ms−1 / kg m−3 / ms−1 / kg m−3

SL1 ‖4256 4256 4256 4256 4256 4256 4256 4256 57 3150 1700 2800 1190
SL2 ‖(4555 )880 3200 1750 2800 1190
SL3 ‖4255 4255 4255 4255 6255 4255 4255 4280 54 3150 1700 2800 1190
SL4 ‖4252 4252 4252 4270 9252 4252 4252 4270 44 3150 1700 2800 1190
SL5 ‖4252 4280 4252 425214052 4252 4252 4280 45 3150 1700 2800 1190

SL6 ‖4150 4150 4150 4150 9550 4150 4165 4150 4185 3000 1420 2800 1190
SL7 ‖40100 (4053 )8 8553 (4053 )10 3150 1700 2800 1190
a Bold (italic) numbers denote the thickness of PMMA (SiO2) layers in nm.

(SDS). In an optimized system of alternating PMMA/SiO2, heat treatment at 105 ◦C

is an essential part of fabrication after each coating. To study the influence of

anomalies in an otherwise perfect stack (dP = dS ∼ 50 nm), four samples were

prepared, designed to introduce a PMMA defect layer (C) at the position of the

5th bilayer in the sequence [(PS)4CS(PS)3P ]. The thickness of layer C was varied

from 42 nm (SL1), 62 nm (SL3), 92 nm (SL4) and 140 nm (SL5). The actual thickness

d(C) of each defect layer was determined from scanning electron microscopy (SEM,

Fig. 4.1); it is expected to be lower than the targeted thickness due to partial

infiltration of PMMA through the porous silica layer. In order to investigate the

effect of the surface and cavity defects the samples were designed as follows: SL2 =

(PS)8C, SL6 = (PS)4CS(PS)4 and SL7 = (PS)9CS(PS)9, where dc = dP+S ∼ 100 nm.

Table 4.1 provides a detailed description of architectural design of the stacks.

The second column lists the thickness of every layer used as a fixed parameter in

the theoretical representation of the BLS spectra. The other columns report the

sound velocity and density of the two composing materials. While the values for

PMMA are constant, the porous silica strongly depends on condition of the stock

solution used for casting, hence these values are subject to some deviations from the

initially designed value of the SiO2 layer. The refractive indices of the composing

materials are as follows: n(substrate) = 1.46, n(PMMA) = 1.49, n(SiO2) = 1.46

and n(air) = 1. For the sake of simplicity, we assumed an effective refractive index

(n = 1.47) for the calculation of the Brillouin spectra. The ratio of the photoelastic

constants was set to pPMMA/pSiO2 = 2. We assumed the thickness of the SiO2 layer

underneath the top PMMA layer slightly larger in order to optimize the agreement

with the experimental BLS spectra. However, this fine adjustment doesn’t affect
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the mode count, i.e., no additional modes show up in the observed band gap region.

4.2.2. Brillouin spectroscopy

Brillouin Light Scattering (BLS) is as a non-destructive and non-contact technique

(Section 2.4) to probe the propagation of (thermally activated) propagating phonons

at hypersonic frequencies (GHz). [38] It is a sensitive tool to study structural and mor-

phological features in composite materials, given that the phonon wavelength 2π/q

commensurates their characteristic (periodic) spacing a, i.e., q a = O(1). Hence,

BLS is of particular interest for the study of phononic structures with lattice pa-

rameter at few hundred nanometers. Photoelastic interaction between single mode

incident photons with wave vector ki and thermally excited phonons give rise to mo-

mentum transfer q = ks−ki along a specified direction determined by the scattering

geometry (with ks being the wave vector of the scattered photons). The associated

phonon energy is represented by the frequency shift ω of inelastically scattered light

of a single-mode (532 nm) laser beam, known as the Brillouin doublet. These small

shifts (few GHz) are resolved by an actively stabilized tandem FP interferometer.

Typical accumulation times for Brillouin spectra in thin (∼ 1 µm) composite films

range from 12 to 24 h. Periodic structures with reciprocal lattice vector G require

momentum conservation via k = q + G. The dispersion relation along a selected

propagation direction is represented by the plot ω(k). Here, we focus on wave prop-

agation along the axis of periodicity a.

Experimental (theoretical) spectra for various q-values are shown in black (red)

together with the total DOS for each SL in Figs. 4.2 and 4.3. Good overall agreement

is obtained using the elastic and geometrical parameters listed in Table 4.1.
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Figure 4.2: a) Experimental BLS-spectra for the four samples SL1, SL3, SL4, and SL5
at three q-values. Effective refractive index n = 1.47.
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Figure 4.3: Spectra and DOS for SL2 (left panel), SL6 (middle panel) and SL7 (right
panel).
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4.3. Results and Discussion

Hybrid SLs with uniform lattice spacing exhibit large band gaps for phonon prop-

agation normal to the layers. [95,96] Structural disorder due to thickness fluctuations

(∼5%) was accommodated by the BLS instrumental width rendering the spectral

pattern in the band gap region robust. [96] The theoretical spectra were convoluted

with an instrumental function to represent the corresponding experimental BLS

spectra. In this approach we can account for both the instrumental resolution and

the conceivable weak hypersonic absorption in the hybrid SL structures. In fact, the

acoustic attenuation, which can be described in the theory by using complex sound

velocities for each sublayer, essentially causes broadening of the peaks in the DOS

and hence the BLS spectra.

Insertion of defects into the hybrid SLs can, in principle, be realized by a manifold

of different ways, e.g., variation of thickness and materials. Here, defected SLs are

exemplified by surface and cavity layers of either constituent material (Table 4.1).

The control of boundary conditions is implemented by the choice of the surface layer.

The SLs are terminated with either a hard SiO2 or soft PMMA layer that strongly

impacts the band gap region as reported herein.

4.3.1. Surface modes in defected superlattices

Figure 4.4 is a paradigm for surface-defect induced qualitative changes in the band

diagram as illustrated for SL1 with eight bilayers (8 BL) and PMMA surface layer

(Table 4.1 and Fig. 4.4f). A new mode with frequency around 14 GHz falls inside

the band gap region of an infinite defect-free SL; [96,101] the gray lines in Fig. 4.4a

represent theoretical calculations for an infinite SL. The small thickness of SL1

enables mode resolution in the BLS spectrum (Fig. 4.4d) as the separation between

the three modes (DOS in Fig. 4.4b) exceeds the instrumental width (∼0.5 GHz).

Moreover, modes along the longitudinal acoustic (LA) branch are more intense than

along the folded FLA−1 [96,170] as suggested by the contour plot in Fig. 4.4a. Hence,

suitable q values have been selected for a strong detection (white circles in Fig. 4.4a).

The optimal design of the present SL was based on theoretical simulations of the

BLS spectra and the band diagram: thinner SLs, e.g., with 5 BL would reduce the

BLS signal and the sampling quality of the dispersion relation (Fig. 4.4g); thicker
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Figure 4.4: a) Dispersion relation for SL1 (Table 4.1) with 8 bilayers (BL) and a PMMA
surface layer (17P ). The theoretical Brillouin intensity is given as a color scale and the
dispersion of an infinite SL as gray lines. Peak positions of experimental (theoretical)
spectra are given as white (black) circles b) Total density of states and local DOS at the
surface (c) with indicated edge e1,2 and surface modes s. d) Experimental (theoretical)
Brillouin spectra in black (red) at three q values. e) Displacement fields of the modes
indicated in c). f) Cross sectional electron micrograph of SL1. g,h) Mode separation and
strength of the surface mode s in SLs with 5 BL (g) and 20 BL (h); mode s (indicated by
arrows) is hardly discernible in h).

SLs (20 BL) would decrease the separation of the individual modes rendering their

experimental resolution hard (Fig. 4.4h). These finite size effect calculations for

SLs have been reported by some of the authors earlier. [146] Some of these modes are

observed as sets of small satellite lines in high-resolution Raman spectra. [92,171,172]

However, this is the first experimental documentation utilizing the advantages of

hybrid SLs and coherent BLS.

The total DOS for SL1 in Fig. 4.4b reveals three main contributions, the upper (e2)

and lower (e1) edge modes, and the surface mode (s), whose nature can be identified

84



Results and Discussion 4.3

0.01 0.02 0.03 0.04 0.05 0.06
5

10

15

20

25

f /
 G

Hz

q / nm-1

total DOS

s

e

a) b)

experiment
theory

SL2

0 200 400 600 800

mode e

z / nm

di
sp

la
ce

m
en

tf
ie

ld

mode s

Figure 4.5: a) Dispersion relation and Brillouin intensity for SL2 with a thicker surface
layer of PMMA compared to SL1. The gray lines indicate the band gap for the infinite
SL. b) The displacement field reveals the upper edge mode (e) to be a surface avoiding
mode while the lower band edge mode is merged with a surface mode s with slow decay
into the SL.

by their displacement fields (Fig. 4.4e). This mode assignment is further supported

by the pattern of the local DOS at the surface (Fig. 4.4c). It should be noted that the

peak in the DOS associated with this s-mode becomes narrower as the number of BL

increases; the coupling strength of the s-mode with the substrate modes weakens

with surface-substrate separation. Hence, after convolution of this s-peak with

the instrumental function, its documentation in the experimental BLS spectrum is

severely affected. In fact, the contour plots for the notional SLs in Figs. 4.4g (5 BL)

and 4.4h (20 BL) indicated by the s-arrows demonstrates the suppression of the

s-mode with the SL thickness.

The local DOS at the surface (Fig. 4.4c) underlines the importance of the s-mode,

while the e-modes have their maximum displacement centered in the middle of the

SL (Fig. 4.4e). Moreover, the envelope function of the displacement field for mode

e2 almost vanishes at the surface. The latter can therefore be qualified as a surface

avoiding mode (SAM) recently reported for semiconductor SLs. [107,173] Additional

evidence of the surface mode is its dependence on the top layer thickness. [146,174]

Theoretically, [146] the frequency of mode s should decrease with ds and its frequency

could then be easily tuned inside the gap.

In fact, SL2 (Table 4.1) nicely exemplifies this situation as demonstrated by the
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good agreement with the theoretical predictions in Fig. 4.5. The upper band edge

mode behaves as a SAM, whereas the lower edge mode is merged with a surface

mode close to the lower band (gray line) and decays slowly into the SL.

4.3.2. Interaction of cavity and surface modes

Insertion of cavity layers in the interior of the SLs as schematically shown in Fig. 4.6c

represents a second class of defects distinctly manifested in the band diagram. Ad-

ditionally, a cavity mode (c) appears which can be affected by the interactions with

mode s. In the gap region, Fig. 4.6a shows the variation of the frequency of modes

s and c with the thickness of a cavity located in the middle of a 8 BL-SL. While

the frequency of mode s remains almost independent of the cavity thickness dc, the

frequency of mode c decreases monotonically with dc. When the two frequencies of

modes c and s approach each other, the interaction between their evanescent fields
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Figure 4.6: a) Mode dispersion around the Bragg gap as function of cavity thickness.
As the central PMMA layer is enlarged the cavity mode shifts inside the band gap and
interacts with a surface mode for large cavity stacks. Experimental data are given by
circles. The shaded region denotes the gap region of SL1. b) Displacement field for modes
c and s. c) Schematic indicating the position of the surface and cavity layers.

86



Results and Discussion 4.3

leads to an anti-crossing of the dispersion curves (Fig. 4.6a). For this observation a

relatively small spatial separation between surface and cavity layers is required.

To address this predicted behavior experimentally, the thickness of the cavity

layer located in the middle (9P ) of the hybrid SLs (SL1,3–5, Table 4.1) was stepwise

increased (from 42 nm to 140 nm) while keeping the thickness of the surface layer

roughly constant (ds ∼ 50 nm). At large dc, mode c anticrosses mode s, but main-

tains the characteristic features of a cavity mode as proven by the displacement plot

(Fig. 4.6b). These findings conform well to theoretical work on the interaction of

surface and cavity modes. [146]

4.3.3. Surface modes by hard cap layers

SLs terminated with the high elastic impedance layer exhibit no surface modes. [96,175]

However, we show that if the top hard layer is significantly thicker than its precursor

layer (inside the SL) the surface can again support a localized mode. Figure 3.4

displays the band diagram for SL6 bearing a SiO2 top layer with ds ∼ 2 dSiO2 .

According to the associated DOS, two of the well-separated modes inside the gap are

identified as the surface mode (∼16.5 GHz) and the cavity mode (∼15 GHz) based

on the displacement field (not shown). This is a clear evidence of the existence

of the surface mode irrespectively of the rigidity of the top layer. In agreement
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Figure 4.7: Dispersion relation with Brillouin intensity and DOS for SL6 (with a thick
SiO2 surface layer), which accommodates two well-separated modes in the band gap region,
a surface (s) and a cavity mode (c). Experimental data is given by white circles.
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with theoretical predictions [174] the existence of surface modes depends both upon

the material and thickness of the top layer. Further, Fig. 3.4 shows the concurrent

existence of mode s induced by SiO2 at the surface and mode c induced by the

PMMA layer in the middle of SL6. Similar to Fig. 4.6, these modes may interact

with each other inside the band gap when changing the thickness of PMMA and/or

SiO2 layers.

4.3.4. The semi-infinite case

Finally, in the semi-infinite SL7 (Fig. 4.3) the experimental peaks are in fact the sum

over several DOS contributions. It consists of a 20 BL SL with a PMMA layer in the

middle and a SiO2 cavity layer near the glass substrate. The experimental BLS peaks

represent the sum of different SL modes due to their closer proximity and hence the

band diagram (Fig. 4.8) approaches that of infinite SL (no boundary conditions)

with a large normal incidence longitudinal Bragg gap (gray lines). However, the

fine structure due to the PMMA cavity (mode c1 at ∼16 GHz) is robust to the

total SL thickness. In fact, this cavity mode arises from the superposition of two

cavity modes as depicted in the right panel of (Fig. 4.8). In addition to the PMMA

c1-mode, the DOS shows the presence of the SiO2 cavity (c2-mode) which is much

broader due to its higher coupling to the substrate modes owing to the proximity
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Figure 4.8: Dispersion relation and DOS for the semi-infinite SL7. The modes combine
to continuous bands and align with the dispersion for infinite SLs. Cavity layers gives rise
to a flat band (modes c1 and c2) inside the gap.
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of this cavity to the substrate. Despite their different width, both contributions are

needed to account for the total intensity of the defect mode.

4.4. Conclusions

The phononic band structure of hybrid SLs is proven to be very sensitive to period-

icity perturbations due to the breaking of high symmetry by introduction of defect

layers. We presented the first unambiguous experimental evidence for the existence

and significant interaction of surface and cavity modes in finite SLs supported by

well-established theoretical predictions. The strong response to layer thickness and

sequence opens pathways to phononic devices based on soft matter. Dynamic tun-

ing of cavity modes and interaction with other defect modes under external stimuli

(e.g., phase transformation using thermo- or chemiresponsive layers) could be used

for detection applications. Finally, because of both acoustic and optical mismatch of

the composing materials, hybrid SLs constitute a platform for new dual phononic-

photonic (or phoxonic) structures for concurrent tuning of acoustic transmission

in the GHz range and optical transmission in the visible by adjustment of layer

thicknesses. For instance sample SL1 displays an optical stop band around 290 nm

(Fig. 4.9). Because of the optical mismatch between substrate, air and the layers

composing the SL it can act as an optical cavity.
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Figure 4.9: Calculated optical transmission of SL1 demonstrating a photonic gap at
λ ∼ 290 nm. The probing wavelength in this experiment is 532 nm, i.e., at a maximum of
transmission (black arrow).
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5. Vibration Spectroscopy of Weakly

Interacting Mesoscopic Colloids

In this Chapter, Brillouin spectroscopy is used to study the vibrational dynamics of

clusters of polystyrene (PS) spheres with different size. In a first approximation, the

spectra can be described by a single particle model within the continuum approxi-

mation of the Lamb theory, which yields excellent results for particles with diameter

d ∼ 500 nm. However, it fails in accounting for the (a) lineshapes of the observed

lowest frequency signals in the vibration spectrum of smaller particles (d ∼ 400 nm)

and (b) additional very low frequency broad band attributed to phonon propagation

in clusters governed by the interactions among particles. A simple model allows to

represent the new spectral features and estimate the strength of the interactions and

the long wavelength longitudinal velocity in the colloidal clusters. Annealing near

the glass transition of PS enhances the interactions, manifested in the low frequency

spectrum and the phonon bands associated with the vibrations of the individual

spheres. The emerging particle vibration spectroscopy becomes a sensitive tool for

the study of thermo-mechanical properties and interactions of colloids.

This Chapter is based on:

M. Mattarelli, M. Montagna, T. Still, D. Schneider, G. Fytas, Vibration spectroscopy

of weakly interacting mesoscopic colloids. Soft Matter 2012, 8, 4235.
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5.1. Introduction

In the last decade, Brillouin light scattering (BLS) has been widely used for the study

of the acoustic vibrational dynamics of submicron particles, [38,120,121,127,129,133,176–182]

whereas smaller particles can be studied by Raman scattering [183–193] and pump-

probe [194,195] techniques. Mesoscopic particles (sizes of few hundreds of nanome-

ters) exhibit BLS spectra with many peaks of comparable intensities. In BLS ex-

periments, spherical particles made of silica, [121,127,180] polystyrene (PS) [127,179,181]

or poly(methyl methacrylate) (PMMA) [38,121,182] were investigated. BLS spectra

recorded either in disordered powder-like or colloidal crystalline samples were, to a

first approximation, very similar. The frequency of all resolved peaks in the BLS

spectra were found to be independent of the magnitude of the exchanged wave vec-

tor of the scattered light, q, implying localized in space vibrational motion. [127,177]

On the contrary, the intensity of the peaks should be q-dependent. [128] However,

multiple Mie scattering of the exciting and scattered light, occurring when the light

wavelength commensurate to particle diameter, d, almost precludes a q-dependence

of BLS. [127] By considering that all wave vectors with magnitude from zero up to

the maximum value at backscattering, qbs, contribute to the spectra, frequencies and

intensities of the observed peaks were well reproduced by a calculation based on the

eigenfunctions of the acoustic vibrations of a homogeneous sphere. [127,128] Even if the

spectra do not depend on the scattering angle, the number of the resolved vibration

modes and their intensities did, however, depend on the particle size through the

product qbsd. For small particles, few low frequency modes are observed; as the

particle size increases, new higher frequency modes appear, and the relative inten-

sity of the observed peaks is size-dependent. These studies laid the foundation of

the particle vibration spectroscopy, the acoustic analog of the molecular vibration

spectroscopy.

So far, no interaction was considered among the spheres which can form clusters

of particles due to attractive interactions or bonding between particles. The main

contribution to the linewidth of the observed peaks was attributed to a finite size

distribution that causes inhomogeneous line broadening, since the frequencies of all

acoustic vibrations are inversely proportional to d. This source of line broadening

is not present in the experiments using a micro-Brillouin apparatus to investigate

single particles. [129,180] The effect of interaction among spheres is important as it was
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indicated by the BLS spectra of infiltrated (wet) opals. [38,127] If the elastic mismatch

between particles and matrix fluid is appreciable, the spectra of wet samples exhibit

much broader lines than those of the dry opals associated with a shift of the peak

frequency. [127] However, cluster formation due to attractive interactions between

particles is also conceivable in dry opals. [179]

Broadening and shift of the single particle lines are expected also in dried aggre-

gates, compared to the values predicted for free spheres in vacuo. The air filling the

pores should have a negligible effect in mechanically coupling the spheres, due to the

large mismatch of densities ρ and sound velocities cL (longitudinal) and cT (trans-

verse) of the particles (p) and of the air (a), ρp/ρa ∼ 1000, cp
L/c

a
L ∼ 10, cp

T/c
a
T =∞.

More important should be the interaction caused by non-covalent or covalent bonds

at the contacts among the spheres. This effect was recently studied for a coupled

pair of spherical particles by continuum calculations. [196] The strength of the inter-

action was modulated by considering two interpenetrating spheres with centers at

different distances D < d. Each localized vibrational mode of the single sphere is

split into a doublet of modes of the dimer. For a weak interaction, the eigenmodes

of the dimer can be regarded as the superposition of one eigenmode for each sphere

with in-phase or out-of-phase oscillations of the two spheres.

In this Chapter, we demonstrate the sensitivity of the Brillouin vibration spec-

troscopy of mesoscopic clusters of spherical particles to measure the elastic constants

and unveil interaction mediated effects among the particles. High resolution BLS

spectra were recorded at room temperature for dry films prepared from suspensions

of (elastically soft) PS particles with different diameters (90–550 nm). The strength

of particle contacts was experimentally tuned by short thermal annealing near the

glass transition temperature Tg of PS. The rich shape of the overall vibration spec-

trum and in particular its low frequency region near the Rayleigh line was considered

theoretically for a face centered cubic (fcc) crystal of spherical particles. The dynam-

ics of each sphere is simulated by an atomistic model with a finite number of atoms

on a cubic lattice. A single atom is shared by two nearest spheres. The strength of

the interaction is constant but its effect can be modulated by changing the number of

atoms in the spheres. Each single particle acoustic mode is transformed on a shallow

phononic band, except for the six translational and rotational modes. While these

modes have zero frequency in the single free sphere, the corresponding bands of the

crystal have important dispersion. The low frequency band in the BLS spectrum is
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attributed to these longitudinal phonons of the clusters, allowing the estimation of

both the strength of the interaction among the particles and the long wavelength

sound velocity in the cluster. The present study is a clear jump forward towards

the foundation of the particle vibration spectroscopy of spherical colloids, so far.

5.2. Experimental

5.2.1. Samples

Particles with 90 nm < d < 550 nm were prepared by emulsion polymerization

reported elsewhere. [123] Their diameter was determined by scanning electron mi-

croscopy (SEM) (1530 Gemini with acceleration voltages between 0.2 and 1.0 kV,

inLens detection) averaging over at least 100 particles. The size polydispersity

ranged from 7% to 2% for the smallest (93 nm) and largest (550 nm) sizes, respec-

tively. For the BLS experiment, nontransparent dry powders of latex spheres were

prepared by drop casting from their aqueous suspensions on a glass substrate and

subsequent solvent evaporation under vacuum at ambient temperatures for several

hours. In order to affect the interactions at the contact points between the particles

in the dry state, we annealed the powder-like film (∼20 µm) at different tempera-

tures near Tg (100 ◦C) of bulk PS, for about two hours inside the BLS setup. [181]

The film was then cooled to 24 ◦C within ca. 20 min with subsequent recording of

the BLS spectrum.

5.2.2. Brillouin light scattering

BLS is a unique non-destructive and non-contact technique to probe acoustic ex-

citations, e.g., propagating phonons, localized vibration modes in bulk, films and

nanostructured materials at hypersonic (GHz) frequencies (Section 2.4). Hence,

BLS is a sensitive index of structure, morphology, micromechanics, and photon-

matter interactions in composite materials when the phonon wavelength commen-

surate their characteristic spacing, i.e., qd = O(1). BLS uses the interaction between

single frequency incident photons with wave vector ki and thermally excited phonons

q = ks − ki along a selected direction determined by the scattering geometry with

ks being the wave vector of the scattered photons. In turbid media, q is ill defined
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due to light multiple scattering and scattering at all q-values is observed, at any

detection angle. For the high resolution temperature BLS experiment, we utilized

a set-up consisting of a six-pass tandem Fabry-Pérot interferometer, actively sta-

bilized by a reference beam, a λ = 532 nm Nd/YAG laser (∼ 50 mW) mounted on

a goniometer and a cell holder allowing q-dependent experiments. [38,181] A typical

accumulation time of the vibration spectrum in the colloidal powder-like film was

60 min.

5.3. Theory

The acoustic dynamics of a free homogeneous sphere was described by Lamb within

a continuum model 130 years ago. [152] The normalized vibrational modes, eα, with

frequencies ωα are labeled by four indices, α ≡ (p, n, l,m). Torsional modes (p = t)

have pure shear motions, whereas spheroidal modes (p = s) involve both shear and

stretching. The n, l, m indices label the radial and angular vibrations of spheres

in analogy to the atomic orbitals. The frequencies ωα are numerically calculated by

using two parameters, cL and cT, and analytical expressions of the eigenfunctions

eα(x), where x spans the volume of the sphere, are obtained. [197] The contribution

of the α-th spheroidal mode to the polarized Brillouin intensity is given by [127,128,198]

Iα(q) ∝ n(ωα, T ) + 1

ωα
P 2

∣∣∣∣
∫

V

e−iq·x q · eα(x) dx

∣∣∣∣
2

, (5.1)

where n(ωα, T ) is the Bose-Einstein factor, P is the polarizability density and the

integral is over the volume V of the sphere.

We consider an fcc crystal of weakly interacting monodisperse homogeneous spheres

with a primitive cell containing a single sphere. The Bloch theorem ensures that

the vibrations are phonons with displacements given by

uk,α(r) = eik·Xfα(x), (5.2)

where r = X + x with X being position vectors of the centers of the spheres and

the wavevector k spans the first Brillouin zone (BZ) of the fcc crystal.

The usual approach to phononic crystals starts from phonons, i.e., plane waves

traveling the crystal, and considers a mesoscopic periodicity that will break the con-
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tinuous acoustic bands introducing gaps in the acoustic dispersion curve. [38,199–201]

The approach is similar to that used for the electronic bands in crystals: starting

from a free electron model, gaps appear for k-values at the edges of the BZ in the

presence of a potential with the periodicity of the crystalline structure. The weak

interaction among the spherical particles suggests an alternative approach similar

to the tight-binding model for electrons. The interaction will couple the vibrations

of the single spheres such that the discrete vibrational spectrum ωα will be trans-

formed into bands ωα(k). [202] If the interaction between pairs of particles is weak,

the mode patterns within each sphere will be very similar to the patterns of Lamb

modes of the free sphere. Any perturbation ∆eα(x,k) will be small and limited to

small volumes near the twelve contacts with the surrounding spheres. In this case,

the acoustic vibrations of the system can be described by

uk,α(r) = eik·X[eα(x) + ∆eα(x,k)], (5.3)

and the perturbation |∆eα(x,k)| << |eα(x)|.

For the intensity calculations (Eq. 5.1) different approaches can be considered.

The simplest case refers to a transparent crystal with full coherent contribution

of the scattering volume to the Brillouin inelastic event. In an fcc crystal, the

minimum exchanged q that fulfills the diffraction conditions is kmin = |G(111)| =√
3π/a =

√
6π/d, where a is the side of the cubic cell with four spheres. On the

other hand, the maximum exchanged q is qbs = 4πneff/λ, where neff is the effective

refractive index of the medium (spheres and holes). No diffraction can occur for

qbs < kmin or d . 220 nm (nPS = 1.59, neff = 1.46 for a volume fraction of 0.74, and

λ = 532 nm). In this case, there is no attenuation of incoming and scattered light

and the amplitude of the scattered field is

Fα(q) ∝
∫

V

e−iq·x q · [eα(x) + ∆eα(x,k)] dx

×
∑

j

e−iq·Xjeik·Xj , (5.4)

where the sum is over the spheres in the scattering volume.

The phonons with k = q are allowed, producing the well known Raman and

Brillouin selection rules, and in the case of bulk atomic crystals only the low-k
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limit, far away from the border of the BZ, can be activated. For the present case of

bigger spheres, a large volume of the BZ can be probed. Access to the whole volume

of the BZ is allowed for qbs > kmax '
√

2π/d. If ∆eα(x,k) can be neglected, the

BLS intensity reflects the contribution of the single sphere.

A second approach refers to disordered clusters with d� λ. Disorder can be in-

troduced by size distribution and fabrication procedures, e.g., drop casting, leading

to random sequences of (111) planes and defects. Such clusters should be highly

transparent to light with λ � d, as in nanoceramics, where the attenuation is

much lower than that calculated for Rayleigh scattering from a random distribution

of particles. [203,204] The attenuation in the low-q range is governed by long-range

density fluctuations of the particles. Density fluctuations of nanocrystals in nanoce-

ramics are small due to the dynamics of aggregation. [204] For clusters of spherical

particles, density fluctuations are weak, even in the absence of crystalline order

rendering therefore the transparency high. In this limit (qd � 1), the BLS spec-

trum resembles that from glasses. The exchanged q is well defined, but the acoustic

vibrations are not well defined plane waves. Longitudinal acoustic vibration are

approximatively plane waves only at low frequencies, producing a sharp peak at

ω = cLq, but the peak broadens with q, as shown by X-ray Brillouin scattering

measurements. [205,206] It should be noted that for small particles (d� λ), a different

mechanism of inelastic light scattering becomes dominant. This “Raman” scattering

(not considered in this Chapter) allows the contribution of l = 0, 2 spheroidal mode

even at q = 0. [128,183–193,207]

A third simple approach refers to turbid multiple scattering media. In this case,

the BLS spectra appear completely q-independent. [127] For crystals made of large

particles (qbs > kmax), all phonons at any k in the BZ will contribute to the BLS

spectrum. The intensity of any phonon band will be given by Eq. 1, taking the

integral over all q-values for 0 ≤ q ≤ qbs, and the shape of the peaks will reflect the

density of states (DOS) of the particular band. In a disordered cluster, the vibrations

are not plane waves with a defined k, and their spatial Fourier transform contains

a distribution of k-vectors. The spectral shape reflects the vibrational DOS of the

systems assuming now a rounded shape with respect to the corresponding DOS of

the crystal.

An atomistic model can describe how the discrete set of single particle modes

(p, n, l,m) is transformed into phonon bands (p, n, l,m,k) of the crystal. Here, we
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Figure 5.1: Illustration of the pattern (arrows) of four modes of a dimer of interacting
spherical particles, simulated by finite clusters sharing an atom. The displacements of
atoms in a plane containing the center of the sphere are shown. a) z component of the
translational mode of the dimer, derived from the (s, 1, 1, z) Lamb mode of a single sphere.
b) In this mode the two spheres move out of phase. The common atom (circled) at the
contact region is standing. c) Both spheres expand and contract in phase with motions
derived from the (s,1,0) mode. d) The mode deriving from the (s,1,0) mode, but with the
two spheres moving out of phase.

resume the main results; a detailed discussion will be given elsewhere. For a weak

interaction among particles, a shallow phonon band appears in correspondence to

any (p, n, l,m) single particle mode. The band has its low frequency edge at the

frequency of the single particle mode. Important dispersion is present only for

the (s,1,1) and (t,1,1) phonon bands, which are parent of the zero-frequency pure

translational and rotational modes of the free particle. For all modes, the pattern of

the vibrational displacement in the interior of each sphere is identical with that of

a free sphere, with k-dependent phase difference among spheres. The perturbation

∆eα(x,k) becomes significant only in a small region around the contacts. Figure 5.1

illustrates the model for four modes of a dimer, chosen instead of an fcc crystal for

graphical reasons. The zero-frequency dimer mode of Fig. 5.1a is the translation

along the dimer axis, derived from the (s, 1, 1, z) Lamb mode of a single sphere.

The two spheres move in phase without any strain at their contact. The mode of

Fig. 5.1b is the translation along the dimer axis, derived from the (s, 1, 1, z) Lamb
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Figure 5.2: Density of vibrational states of an fcc crystal made of masses M connected
by springs with stiffness Keff. The highest frequency of the DOS in the tail of the sharp
peak (at ω(kX) = 2

√
2(Keff/M)) yields the long wavelength longitudinal sound velocity

by Eq. 5.5.

mode of a single sphere, but with the two spheres now moving out of phase. The

common atom is standing and the perturbation ∆e is significant only in a small

region near to the contact. The two modes of Fig. 5.1c,d are derived from the

(s, 1, 0) symmetric Lamb mode of a single sphere, with the two spheres moving

in and out of phase, respectively. For the in-phase vibration, the common atom

is standing and the perturbation ∆e is significant only in a small region near the

contact. Alternatively, the two spheres move freely in the out-of-phase vibration

and hence, this mode maintains the same frequency of the corresponding vibration

of the single sphere. All phonons of the fcc crystal maintain these characteristics of

the dimer modes. In particular, the (s,1,1,m,k) and (t,1,1,m,k) phonons are nearly

rigid relative translations and rotations of each sphere with important strains only

in the contact region. This suggests a simple model to describe these two kinds of

phonons, assuming rigid spheres connected by springs.

Such a model was used to explain the dynamics of aggregates of macroscopic metal

spheres under an external pressure. [208–210] The contacts are modeled by two springs

for normal and transverse interactions. [210] Here we will consider a single normal

elastic spring with stiffness Keff, since (i) the nature of the interaction is unknown;
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(ii) the rotational modes are not relevant for BLS; (iii) transverse interactions have

low impact on the dispersion curves of the longitudinal and transverse vibrations. [210]

Figure 5.2 shows the density of states of an fcc crystal made of massesM (M = π
6
d3ρ,

where ρ is the density) connected by springs (Keff). The sharp high frequency

peak is due to the longitudinal vibrations, whereas the low frequency structures

are mainly due to transverse phonons. [141,211] The maximum acoustic frequency is

expected for longitudinal modes at the X point of the BZ. For k = [k, 0, 0], the

distance between neighboring planes of atoms moving in phase is D100 = a/2 =

d/
√

2. The frequency of the acoustic (longitudinal (L) or transverse (T)) modes

is ω(k) = 2(KL,T
100 /M)1/2| sin(kD100/2)| (at the X point ω(kX) = 2(KL,T

100 /M)1/2),

where KL,T
100 are effective spring constants connecting (100) planes. Each mass is

connected to twelve masses in the [110] directions. Four links are with masses in

the same (100) plane and two times four links (at 45◦ with the normal) with masses

in the adjacent planes. Therefore, KL
100 = 2Keff and ω(kX) = 2

√
2Keff/M . Eq. 5.5

connects the “long-wavelength” longitudinal velocity (for modes near the Γ-point)

to the frequency of the mode at the X-point. [141]

vL
100 =

(
KL

100D
2
100

M

) 1
2

= d

(
Keff

M

) 1
2

=
ω(kX)d

2
√

2
. (5.5)

The present theoretical calculations are made for colloidal crystals, while the

vibrational spectra are recorded for powder-like amorphous colloidal samples. How-

ever, experimental spectra of dry PS opals do display the low frequency pattern (see

Fig. 2 in Cheng et al. [179]) as for the present PS particles. Hence our approach can

yield physically meaningful information on the strength of the interaction among

particles and of the sound velocity in the colloidal clusters.

5.4. Results and Discussion

5.4.1. Vibrational spectra of interacting colloidal particles

Fig. 5.3a shows the room temperature BLS spectrum of colloidal clusters of PS

spheres with diameter d = 186 nm obtained by splicing together spectra with dif-

ferent free spectral ranges (fsr : 7.5, 12, and 30 GHz). Figure 5.3b shows the re-

duced spectrum, where the intensity is multiplied by the square of the frequency,
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f 2 (f = ω/2π), after splicing of the spectra recorded at three different free spectral

ranges and subsequent subtraction of a constant background. This representation

allows for a better comparison of the experimental spectrum with the calculated

Brillouin activity, the dynamical structure factor in Eq. 5.1,

Iα(q) · ωα
n(ωα, T ) + 1

∝ P 2

∣∣∣∣
∫

V

e−iq·x q · eα(x) dx

∣∣∣∣
2

, (5.6)

Figure 5.3: a) Brillouin spectrum of a colloidal cluster consisting of PS spheres
(d=186 nm) recorded at three different resolutions given by the free spectral range
(fsr = 7.5, 12 GHz, and 30 GHz) in the figure. b) Reduced Brillouin spectrum, obtained
by multiplying the intensity of (a) by f2, after the subtraction of a constant background
indicated by the horizontal line in the high frequency range of the spectrum amplified by a
factor 10. The arrow indicates the frequency in the tail of the (s, 1, 1) peak at 20 % of the
maximum reduced intensity (see Fig. 5.2). Calculated contributions of 17 (n, l) spheroidal
Lamb modes (labeled at the top of the figure) of a single sphere with cL = 2400 m/s,
cL/cT = 1.99 are represented by the sharp lines.
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correcting for the thermal factor n(ω,T )+1

ω
∝ ω2 at kT � ~ω. A well defined low

frequency peak appears in the reduced spectrum of Fig 5.3b. In the original ex-

perimental spectrum this scattering appears as a shoulder of the elastic line. We

assign this peak to the longitudinal phonons of the cluster, deriving from the (s,1,1)

zero frequency spheroidal Lamb modes, in the presence of a finite interaction among

particles. The intensity of the sharp lines with labels indicating the (n,l) spheroidal

modes are calculated, with cL = 2400 m/s and cT = 1210 m/s, by Eq. 5.6, summing

over the 2l+1 components, and integrating over all q-values in the range 0 ≤ q ≤ qbs.

In the strong multiple scattering limit, the light scattered at all angles 0 ≤ θ ≤ π is

collected at any angle of measurement. [127] A single free sphere model is used for the

intensity calculation with the simplifying assumptions that the interaction trans-

forms the sharp lines of a discrete spectrum into phonon bands, without modifying

the intensity. The calculated spectrum is shown in Fig. 5.3b by the sharp lines at

the vibration frequencies of the free particle modes.

Besides the Lamb modes, Eq. 5.6 allows the calculation of the intensity of the

(s,1,1) band, a rigid translation of the entire sphere with ωs11 = 0 in the free

particle. This line should be positioned at ω = 0. However, for graphical reasons

and for better comparison with the intensity of the lowest frequency peak, the line

is positioned at a frequency ω > 0 on the observed peak. The observed peak (1,1)

in Fig. 5.3 is much broader than the calculated DOS of an fcc crystal (Fig. 5.2).

Besides the finite but narrow experimental line width, other broadening sources are

disorder and anharmonicity, both not considered by the simple model.

Disorder in an fcc crystal is due to a finite size distribution of the spherical par-

ticles. For large particles (d > 500 nm) size polydispersity is rather low (< 2%) but

increases as the sizes decrease (' 3% for d = 186 nm). Size polydispersity will intro-

duce finite distributions of both masses and spring constants. Molecular dynamics

simulation in systems with mass and spring disorder show that acoustic vibrations

are no more pure transverse or longitudinal plane waves. As the frequency increases,

the acoustic waves become distorted including extended diffusive vibrations, and the

high frequency wing of the DOS is due to localized vibrations. [212] Compared to the

crystal case, DOS can have much broader distribution. Anharmonicity could be

the source of further broadening. Polymers are known to have important anhar-

monicity, since longitudinal sound velocity measurements as a function of pressure

and temperature show large Grüneisen parameters, [213] and the Brillouin peaks of
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bulk polymers are quite broad. [182] While the preceding arguments can rationalize

the observed broad DOS (Fig. 5.3b vs. Fig. 5.2), it is nevertheless not clear how to

extract the stiffness Keff and longitudinal sound velocity vL in the clusters from the

experimental BLS spectra of Fig. 5.3. We therefore deliberately chosen to compare

the frequency (fco) at 20 % above the (1,1) signal’s maximum intensity (arrow in

Fig. 5.3b) with the cut-off frequency in the DOS of Fig. 5.2:

2πfco = 2

(
2Keff

M

) 1
2

. (5.7)

Taking ρ = 1050 kg/m3 and d = 186 nm for the estimation of M , Keff is computed

from eq. 5.7 and vL = d
(
Keff

M

)1/2
from Eq. 5.5. A similar analysis was performed for

the spectra of the other drop casting colloidal clusters of PS particles with d = 93,

130, 260, 306, and 365 nm; for the largest d = 550 nm, the (1,1) peak is hardly

discernible, even in the reduced spectrum. We should note that there is no particular

physical reason for the choice of fco at 20% of the signal’s maximum intensity, apart

for the fact that simulations in glasses show some localized acoustic modes having

frequencies higher that the maximum frequency of the corresponding crystal. A

systematic error due to the rough model cannot be excluded.

Figure 5.4 shows the reduced Brillouin spectra of all examined samples with seven

particle sizes plotted versus fd for better comparison of the shapes of the (n, l) bands

that appear superimposed; in fact this presentation accounts for the d−1 dependence

of the eigenfrequencies of an isolated particle. Pertinent issues emerge from the high

resolution vibrational spectra of Fig. 5.4.

First, we consider the lowest frequency band which represents the longitudinal

translational band of the colloidal cluster; this band presumably relates to the

(s,1,1) Lamb mode. As the particle size increases, its frequency decreases more

than those of the other (s, n, l) bands, for which f ∝ 1/d. Its relative intensity

decreases with increasing size and the lowest frequency band is hardly resolved for

d > 500 nm (Fig. 5.4). This intensity decrease is well reproduced by the calculations

with Eq. 5.6 for the three degenerate (s, n, l) translational modes. The frequency of

the longitudinal translational band expressed by fco for six particle sizes shown in

Fig. 5.5a appears to conform to the steeper scaling fco ∼ d−1.2±0.1 compared to d−1

of the particle eigenfrequencies. The spring constant Keff, obtained from Eq. 5.7, is
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5 Vibrations of Weakly Interacting Colloids

plotted in Fig. 5.5b. It should be noted that kX < qbs for all studied samples, but

the sample with d = 93 nm (kX = qbs for d ' 120 nm), so that the full DOS of the

phonon bands should appear in the spectra.

The computed Keff weakly increases with d, assuming values in the range 13–

18 eV/Å2. For comparison, the covalent bond in H2 has 27 eV/Å2. The value of Keff

might indicate the presence of many binding sites characterized by much weaker

Figure 5.4: Reduced Brillouin spectra of PS clusters of spheres with different sizes plotted
as a function of the product f · d. Calculated contributions of the (n, l) spheroidal Lamb
modes of a single sphere with cL = 2400 m/s and cT = 2010 m/s. Only the Stokes side is
shown for clarity.
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spring constant, e.g., van der Waals noncovalent bonding. The variation of Keff

with d (Fig. 5.5b) can be estimated from the fco ∝ d−1.2 relation (Fig. 5.5a): Keff ∝
Mf 2

co ∝ d0.6. The estimated error (∆Keff/Keff = 2∆fco/fco + 3∆d/d) does not

include possible systematic errors related to the use of a simplified model for deriving

fco from the spectra. The dependence of Keff on the particle size cannot be clearly

understood within the limitations of the presented simple model.

Figure 5.5c shows the long wavelength longitudinal sound velocity calculated by

Eq. 5.5, that decreases with d as vL ∝ fcod ∝ d−0.2. The obtained values are

Figure 5.5: a) The high frequency cutoff at 20% of the peak intensity for the lowset
frequency peak of the reduced spectra of Fig. 5.4 as a function of the particle diameter.
b) Spring constant (Eq. 5.7) for the bonded masses in the colloidal cluster of the PS
particles with diameter d. c) Long wavelength longitudinal sound velocity in the colloidal
cluster (Eq. 5.5).
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of the same order but significantly smaller than the longitudinal sound velocity

cL = 2400 m/s in the bulk PS in the glassy state. Within the rigid sphere model

the sound propagation should have stepwise character, as within the Herz-Mindlin

model. [208–210] Within a sphere the sound should have a fast propagation, the bot-

tleneck being at the contacts among spheres. In any case, the sound velocity of the

system, which also in the Hertz-Mindlin model slightly decreases with the size of the

beads, should be much smaller than the sound velocity of the bulk system. [208–210] In

fact, the data of Fig. 5.5c clearly show a drop of vL relatively to cL, being approxi-

mately cL/2 for the largest particle size. In the absence of a quantitative theoretical

estimate for a given size, the data of Fig. 5.5c corroborate the notion that the simple

rigid sphere model unveils the essence of the interactions between the spheres. A

detailed investigation of q-dependent BLS of clusters with smaller PS particles (to

increase the optical transparency) will shed more light on the nature of interactions.

Next, we turn to the effect of interactions among colloidal particles on the local-

ized (n,l) spheroidal Lamb modes, also shown in Fig. 5.4. In particular, the (1,2)

and (1,3) bands render the analysis more straightforward, since they appear for all

examined particles and are well separated in frequency from other contributions.

Relatively sharp symmetric peaks appear in the 550 nm sample, where the effect of

the interaction is quite weak as judged from the soft (1,1) mode; fco < 1 GHz.

As the size decreases, the two bands broaden and appear more and more distorted

and structured, indicating a progressive increase of the effect of the interaction. The

(1,3) band presents a main sharp peak with a higher frequency tail in the sample

with d = 306 nm. This tail becomes stronger with decreasing particle size and

finally dominates the spectra for the two smallest sizes. Preliminary results from a

simulation of the vibrational dynamics in crystals made of finite spheroidal cluster

are in good agreement with the observed spectra, showing that the widths of the

phonon bands increase with the interaction, maintaining their low frequency edge

close to the frequency of the corresponding single free particle. Furthermore, the

effect of the interaction is stronger on the low frequency modes. This explains why

the frequencies of the single particle modes appear at the low frequency edges of the

observed phonon bands for modes (1,2) and (1,3), as seen in Fig. 5.4.
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5.4.2. Enhanced interaction by annealing

A crucial experiment on the origin of the low frequency peak in the vibration spec-

trum of colloidal clusters and thereby its connection to the (s,1,1) single particle

mode would enable a controlled tuning of the interparticle interactions. This re-

quires a systematic elaborative study beyond the aim of the present work. Instead,

we decided to modify the particle stickiness through their short annealing near Tg.

Figure 5.6 is a compilation of the BLS spectra (all recorded at 24 ◦C) for two sam-

ples with d = 120 nm and d = 182 nm particle diameter. We started with the virgin

sample after drop casting and then the same sample after thermal annealing for 2 h

at 92 ◦C, 97 ◦C and 102 ◦C. The two samples were cooled down to 24 ◦C after each

thermal treatment in order to avoid broadening and shift due to the thermal effects

of anharmonicity. [214]

After annealing at 92 ◦C, the lowest frequency peak shifts to higher frequency,

indicating an increase of the sound velocity in the cluster caused by a strengthen-

ing of the interaction among particles. An increasing blue shift is observed after

annealing at 97 ◦C in the 182 nm sample. At the same time, the (1,2) and (1,3)

signals broaden and shift to higher frequencies, evolving their spectral shape. After

annealing at 102 ◦C, the distinct signals disappear and a broad peak, with a maxi-

mum at about 13.7 GHz in the 120 nm and at 12.5 GHz in the 182 nm sample, with

a long tail towards low frequency, dominates the spectrum. The high frequency tail

of the peak at about 14 GHz corresponds to that of the Brillouin peak of a bulk

PS in backscattering geometry (fbs = 14.3 GHz for cL = 2400 m/s). After this last

annealing cycle at 102 ◦C, the colloidal cluster collapses, filmation occurs, and the

BLS spectrum contains contributions from q’s other than qbs leading to an asym-

metric towards lower frequencies peak. The spectrum for the sample with 120 nm

particles exhibits a very broad and asymmetric band peaked at 11 GHz following the

annealing at 97 ◦C. This shape can be accounted for by considering a partial collapse

of the cluster with large spatial inhomogeneities of the particle-particle interaction

and therefore large inhomogeneities of the sound velocity in different parts of the

cluster.

The SEM images of Fig. 5.7, taken after the last annealing at 102 ◦C in the sample

of 182 nm particles, and after an even higher temperature annealing (121 ◦C) in

the sample of 93 nm particles, indicate a largely collapsed film with the particles
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5 Vibrations of Weakly Interacting Colloids

Figure 5.6: Room temperature reduced spectra of the colloidal clusters for two PS
spheres (120 nm, 182 nm) at different annealing temperatures as indicated in the plot.
After annealing at 92 ◦C, 97 ◦C and 102 ◦C the two samples were cooled down to 24 ◦C to
record the BLS spectrum. The dotted lines connect peaks associated with the (1,1), (1,2)
and (1,3) modes.

still maintaining their character. Hexagons appear in the picture showing that the

spheres have been deformed to dodecahedrons with large contact areas due to an

entanglement between polymer chains of neighboring spheres. The large contact

areas strongly increase the effective coupling allowing the propagation of the sound

with a velocity close to that of the bulk material (cf. Fig. 5.5c). Yet, the clear

blue shift of the (1,1) signal for both particle sizes in Fig. 5.6 is in accord with

the increasing particle overlap with annealing temperature seen in the SEM images

(Fig. 5.7). The presence of residual porosity, as indicated by the arrows, is the source

of important light scattering that avoids the observation of any q-dependence of the

spectra, causing the detection of broad Brillouin bands due to scattering at all q-

values, at any detection angle.
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Figure 5.7: SEM images of annealed clusters of PS particles after annealing at high
temperatures. a) Cluster of d = 93 nm particles after annealing at 121 ◦C for 2 h. The
particles maintain their individual structure but the spheres, when close packed, have
been converted to dodecahedrons. b) Cluster of d = 182 nm (mean size) particles after
annealing at 102 ◦C for 2 h, with residual porosity clearly indicated by the arrows.

5.5. Conclusions

Brillouin light scattering from dry non-transparent samples of mesoscopic colloids

emerges as a powerful spectroscopic tool to resolve numerous vibrational modes,

which sensitively index the geometrical and thermo-mechanical characteristics of the

spherical particles. Hence, this newly developed “particle vibration spectroscopy”

becomes the acoustic analog of the molecular vibrational spectroscopy. While the

BLS spectrum (frequencies and intensities) of large particles (diameter d > 500 nm)

can be well represented by the eigenmodes of the individual spheres, the low fre-

quency regime of the BLS spectrum clearly displays different lineshapes. In addition

to this pertinent quantitative differences, we observed a new broad band at frequen-

cies lower than the lowest finite energy particle eigenfrequency (1,2) of PS particles.

Within the continuum approximation of Lamb theory, we have attributed the failure

of the single particle model to the inevitable interactions among the spheres in a

dry powder-like sample.

We have experimentally documented the contribution of the spheroidal Lamb

modes of a single PS spheres for seven different diameters to the BLS spectrum I(ω)

of drop-cast dry colloidal clusters (Fig. 5.4). The additional low-energy mode was

well resolved in the reduced spectrum (ω2I(ω)) for d < 400 nm, falling at frequencies

below the lowest vibration eigenfrequency (1,2). We note that the spheroidal (1,1)
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5 Vibrations of Weakly Interacting Colloids

mode of an individual sphere is purely translational (zero frequency).

We have accounted for the presence of the aforementioned interactions in an fcc

colloidal crystal in which neighboring spheres are connected by an effective spring

constant, Keff. Depending on the strength of the interactions (modulated by the

spring stiffness), the zero-frequency modes in a single free sphere become dispersive

bands of the crystal. In particular, the (1,1) phonon band was identified with the

new lowest frequency broad peak of the BLS spectrum, and the cut-off frequency,

fco, of the sharp high frequency peak in the density of vibrational states (Fig. 5.2)

was related to the longitudinal sound velocity, vL, of the colloidal cluster. Inter-

estingly, fco(∝ d−1.2) drops faster with the particle diameter than the free particle

eigenfrequencies (∝ d−1).

Comparison between experimental BLS and computed vibrational spectra led to

the estimation of Keff and vL in the colloidal clusters consisting of different particle

sizes. The sound velocity in the colloidal cluster was expectedly found to be about

half of the sound velocity cL(2400 m/s) in the bulk PS indicative of a much lower

modulus due to the relatively weak interactions among spheres. Keff ∼ 15 eV/Å2

(240 J/m2) corresponds to several hundreds van der Waals bonds. Qualitatively,

we validated these findings and thereby support our simple model, by short ther-

mal annealing of the colloidal samples near the PS glass transition temperature Tg.

“Sintering” of colloidal crystals strengthens the interactions between neighboring

spheres due probably to polymer chain entanglements and non-covalent bonding as

indicated by the blue-shift of the (1,1) band BLS spectra (Fig. 5.6) and hence higher

Keff. Longer annealing few degrees above Tg, however leads to filmation via flowing.

A more controlled tuning should be feasible using cross-linked PS particles.

Thus BLS particle vibration spectroscopy does not only reveal the nanomechan-

ical properties of individual colloidal particles, but also provides a simultaneous

access to the interactions between neighboring spheres forming the colloidal cluster.

These novel insights into the adhesion of colloids extend the applications of a rel-

atively new non-contact technique to new mesoscopic particle systems allowing for

the characterization of different types of interactions.
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6. Elongated Polystyrene Spheres as

Resonant Building Blocks in

Anisotropic Colloidal Crystals

This Chapter addresses the mechanical properties of stretched polystyrene colloids

(spheroids). Eigenmodes resolved by Brillouin spectroscopy are considered finger-

prints of the particles’ shape, size and composing materials. A single particle model

is used to simulate the experimental data by calculation of all active modes and

subsequent evaluation of their contribution to the spectrum. Compared to spheres

(high symmetry) more modes contribute to the spectra that limit the resolution at

very high frequencies, due to the lifted mode degeneracy. Knowing the nature of the

principal modes of spheroids is a precondition to understand the phononic dispersion

in the respective colloidal crystals, in particular those responsible for anticrossing

interactions with the effective medium acoustic phonon.
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M. Montagna, E. M. Furst, G. Fytas, Elongated polystyrene spheres as resonant

building blocks in anisotropic colloidal crystals. Soft Matter 2013, 9, 9129.
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6.1. Introduction

In recent years, a vast library of colloidal building blocks has emerged from which

novel materials may be created by directed self-assembly. [215–217] An open challenge

to using directed self-assembly techniques in the nanomanufacture of complex mate-

rials with designed functionality is the ability to i) identify desired ordered structures

to achieve such functionality and ii) develop efficient routes to manipulate the in-

terparticle interaction energies to realize the assembly. To accomplish both goals,

an understanding of the particle’s physical properties is warranted.

Particular interest has emerged in the ordered assembly of ellipsoidal (spheroidal)

particles due to the expanded range of final structures and additional flexibility in de-

sign allowed by shape anisotropy. The self-assembly of spheroids has been examined

at fluid interfaces [218,219] and using magnetic, [220,221] electric [222–224] or flow [225] fields.

Specific to electric and magnetic fields, the anisotropy in polarizability along the

short and long axis of an ellipsoid allows for preferential, tunable, particle orienta-

tion ranging from parallel to perpendicular with the applied field. [226] Combining this

orientational control with convective flows to concentrate the particles and “lock-in”

the structure circumvents kinetic arrest that occurs at high volume fractions due to

glassy dynamics and opens up the possibility of realizing the theoretically predicted

close-packed phases of hard ellipsoids. [227,228] From a practical perspective, such

structures may impart noteworthy photonic, phononic, mechanical and/or thermal

properties to the resulting material due to alignment and periodicity. One recent

example of the utility of controlling the orientational order of ellipsoidal particles

was presented by Hopkins et al., [229] where the thermal conductivity of convectively

assembled titania films is modulated by the film microstructure.

At room temperature, thermal conductivity in dielectric materials relies mainly

on phononic transport of energy in the sub-THz regime. Hence, direct access to

the phononic dispersion becomes important. Brillouin spectroscopy has proven to

be the tool of choice to investigate phononic band diagram in the GHz range. [40]

Colloidal crystals are of particular interest as they can accommodate both Bragg-

type band gaps (due to destructive interference of elastic waves) and hybridiza-

tion band gaps (due to level repulsion between the acoustic branch and a localized

mode). [41] In the latter, the exact knowledge of a particle’s eigenmode spectrum

poses a substantial role. This particle vibration spectroscopy based on Brillouin
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light scattering (BLS) becomes a valuable method for the mechanical character-

ization of sub-micron particles. [127] Eigenmode measurements have been reported

for spheres, [127,182] nanorods, [116] cubes, [117,120] octahedrons, [118,133] and more com-

plex geometries [194,230] using BLS, Raman and time-resolved spectroscopy. While

nanocolumns [231] were shown to shift the resonance line with respect to spherical

particles, the eigenmode spectra of elongated spheres have not been fully investi-

gated until now. Some of the aforementioned particles were synthesized from crys-

talline materials, whose anisotropic mechanic properties affect their eigenmodes in

addition to the shape dependence.

Here we present a comprehensive particle vibration spectroscopy study of amor-

phous polystyrene (PS) spheres and spheroids (elongated spheres with rotational

symmetry) utilizing the powerful technique of Brillouin light scattering combined

with computational simulation of the spectra. To the best of our knowledge, this

is the first work that provides theoretical representation for vibrational spectra of

spheroidal nanoparticles studied by Brillouin spectroscopy.

6.2. Experimental

Polystyrene particles were stretched by a matrix assisted elongation process and

the change of their eigenmode spectra was followed by Brillouin spectroscopy. The

experimental strategy is outlined as follows:

6.2.1. Materials

The seed particles used were 400 nm diameter carboxylate modified PS latex spheres

(Invitrogen, Eugene, OR, cat#C37238) with molecular weight of Mw ∼ 240 kDa.

The spheroid synthesis procedure is described elsewhere. [124,125] In short, seed par-

ticles are dispersed in an aqueous poly(vinyl alcohol) (PVA) solution, spread in a

dish and allowed to dry into a thin film after water evaporation. The film is then

heated to 145 ◦C for less than 5 min (oil bath) and stretched to a given strain to

produce 2.12:1, 3.52:1 and 3.99:1 aspect ratio prolate ellipsoids of revolution. The

processed film was cut into small sections and cleaned from silicon oil by fivefold

washing with isopropyl alcohol (IPA). The particles were recovered by dissolution

in water/IPA 7:3 (v/v) and the suspensions are observed to be stable. These are
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washed via stirring (12 h), heating to 75 ◦C for one hour (to aid PVA removal), cen-

trifugation, decantation and resuspension (sonication) in water/IPA. This cleaning

cycle was repeated three times and finally the particles were stored in water. The

suspensions were rewashed in 0.1 mM KCl and concentrated to a volume fraction

φ ≈ 0.05 before being drop cast onto a glass slide and dried at ambient conditions.

The size of the particles is characterized by scanning electron microscopy of the

disordered casts (Fig. 6.1) and a summary of the particle dimensions is given in

Table 6.1.

Table 6.1: Size characterization of particles studied and material parameters used in
calculations. a and b being the long and short axis of the spheroids, respectively. ρ is the
mass density and nref the refractive index at 532 nm.

ID a/b a / nm b / nm ρ / kg m−3 nref
b

S0 1 400±14 − 1050 1.599
S1 [119] 1.28±0.07 459±15 358± 16 965.1a 1.540
S2 2.12±0.16 690±42 325±15 921.9a 1.511
S3 3.52±0.20 986±15 280±15 869.4a 1.477
S4 3.99±0.22 1078±93 270±23 854.7a 1.468
a calculated based on stretched particle volume.
b calculated from density via Clausius-Mossotti relation.

6.2.2. Brillouin spectroscopy

Brillouin Light Scattering (BLS) serves as a non-destructive and non-contact tech-

nique to probe acoustic behavior, e.g., thermally activated propagating phonons

and localized vibration modes in bulk as well as nanostructured materials in the

hypersonic frequency regime (GHz). Hence, BLS is a sensitive tool to study struc-

ture, morphology and light-matter interactions in composite materials, given that

the phonon wavelength 2π/q commensurates their characteristic (periodic) spacing

d, i.e., qd = O(1). BLS relies on the interaction between single mode incident

photons with wave vector ki and thermally excited phonons q = ks − ki along a

specified direction determined by the scattering geometry (ks being the wave vec-

tor of the scattered photons). For localized modes in nanostructures, BLS gives a

structured spectrum with contributions from all modes having a q-component. In

multiply scattering samples, q is no longer well-defined (the sample appears tur-
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Figure 6.1: Scanning electron micrographs (SEM) of seed spheres S0 (a) and spheroids
S2–S4 (b–d) of various aspect ratio. Insets denote transmission images (TEM) of the
respective particles.

bid) and hence all possible q-values contribute to the observed spectrum, regardless

which scattering angle θ is chosen. Realization of a high-resolution BLS experiment

(Fig. 2.12) requires convenient and stable operation of an energy-dispersive detector.

This is achieved using a six-pass tandem FP interferometer, which is actively stabi-

lized by a reference beam and capable to detect a (Anti-)Stokes shift of 0.5–300 GHz

(via different free spectral ranges – fsr). A λ = 532 nm Nd/YAG laser mounted on

a goniometer and a (heatable) cell holder allows for q-dependent and temperature

dependent experiments. [38,41] Together, this setup provides the tool-kit necessary for

high-resolution acoustic measurements at the nanoscale.

The typical accumulation time of the vibration spectrum in a drop cast powder-

like film ranges from 30 to 120 min. Thin films or weakly scattering particles (size

and material dependent) may require accumulation times up to 48 h.

BLS spectra obtained at θ = 60 ◦ for the samples listed above (Table 6.1) were

processed (stitched spectra at fsr = 7.5, 15, 30 GHz) and plotted in a common graph

(Fig. 6.2). The upper panel (Fig. 6.2a) displays spectra for large changes in aspheric-

ity, from sphere up to an axis ratio of a/b = 3.99, while the lower panel (Fig. 6.2b)
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Figure 6.2: a) Brillouin light scattering (BLS) spectra of the spheroids with three
different aspect ratios along with the rich spectrum of the seed spheres displaying the
contribution of the principal modes (s, 1, l=2;3;4) in the low frequency region. b) Onset of
asphericity and the accompanying bifurcation of the lowest frequency (s, 1, 2) mode due
to the lifting of degeneracy in m.

examines the small differences in the spectrum between the sphere (S0) and the

particle with only slight elongation (S1).

6.3. Theory

6.3.1. Vibrational modes of spheroidal particles

Propagating and localized acoustic modes in a medium induce fluctuations of the

dielectric constant which can be probed by inelastic scattering of light. Limiting

ourselves to the effect of density fluctuations, the contribution of the α-th mode,

with frequency ωα and uα displacements, to the scattered field in an one-phonon
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process was derived earlier. [128]

Iα(q) ∝ n(ωα, T ) + 1

ωα
P 2

∣∣∣∣
∫

V

e−iq·x q · uα(x) dx

∣∣∣∣
2

, (6.1)

where n(ωα, T ) is the Bose-Einstein factor, q is the exchanged wavevector, P is the

polarizability density and the integral is over the volume V of the particle.

For spherical free homogeneous particles, the displacement field can be calculated

following the theory developed by Lamb, using as parameters the sound velocities cL

and cT and the size of the particle. [152] Within a continuum model, the normalized

vibrational modes, uα are labeled by four indices, α ≡ (p, n, l,m). Torsional modes

(p = t) have pure shear motions, whereas spheroidal modes (p = s) involve both

shear and stretching. The n, l, m indices label the radial and angular vibrations

of spheres in analogy to the atomic orbitals. For any l, we have 2l + 1 modes

whose Brillouin activity depend on the angle between the z-axis and the exchanged

wavevector. The total intensity is anyway constant. Given the symmetry of the

problem, it is possible to calculate it for an angle equal to zero, where the only

active modes are those with cylindrical symmetry (p = s,m = 0). This procedure

allowed reproducing the details of the particle vibration spectra with high sensitivity

to the sound velocities. [127,134,207]

When we consider the light scattering induced from the vibrations of particles with

different shapes, (6.1) still holds once we have specified the displacements. Finite

elements method (Comsol Multiphysics) was used to illustrate the displacements

of two low-order modes for spheroid S2 with m = 0 (Fig. 6.3, right panel). The

analytically calculated displacement for the two vibrational modes (s,1,2) and (s,1,3)

are shown in the left panel of Fig. 6.3 and coincide with the numerical results.

A more precise displacement field of the vibrational modes is needed for the cal-

culation of the Brillouin activity. This was achieved by following the procedure

reported by Kang and Leissa, which considers the symmetry of the system. [232] The

quantities needed for the calculation are the aspect ratio and the transverse and

longitudinal sound velocities. The model has been validated comparing the results

with those obtained by an analytical evaluation of the Lamb modes in a sphere. The

mode frequencies and patterns show a very high agreement . Up to 7 GHz Brillouin

spectra calculated from the two models are practically identical.
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Figure 6.3: Displacement fields of two low frequency modes commonly observed in
Brillouin spectroscopy. The depicted aspect ratio corresponds to sample S2, with a/b =
2.12. a) First m = 0 mode, mainly derived from (s, 1, 2), with two nodal lines (white
dashes) and b) second m = 0 mode, mainly derived from (s, 1, 3).

Figure 6.4a shows the adimensional frequencies of the first vibrational modes as a

function of the aspect ratio for a spheroid with fixed volume and cL/cT = 1.96. For

clarity, only the modes with m = 0 are displayed. The blue dashed lines denote the

aspect ratio of the particles under study. Figure 6.4b shows the vibrational modes

with m ranging from 0 to 3 for the same frequency range, whereas the dashed lines

denote purely torsional modes, which are not Brillouin active. The solid vertical

line marks the spherical case where the modes are degenerate in m.

While for spherical particles we can assign (p, n, l,m) quantum numbers, as the

axis ratio departs from 1 there is important mixing between the various modes of

the sphere. For the spheroid vibrations l is no more a good quantum number and

only for aspect ratios close to 1 it is possible to identify modes with a dominant l

number. In fact, the (2l+1) degeneracy in m of the (n, l) modes is lifted and we can

discriminate the modes which correspond to m = 0, 1, 2, 3 . . . Modes with opposite

m (n, l,±m) are still degenerate.

A detailed analysis of the complex behavior of modes dispersion is out of the

scope of this work. It is, however, relevant to note that crossing and anticrossing
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Figure 6.4: a) Adimensional frequency of the first vibrational modes as a function of
the aspect ratio displayed for m = 0 only, for clarity. G is the shear modulus and ρ
the density of the particle. b) Additional bands shown for m = 0, 1, 2, 3 as function of
the aspect ratio. For m 6= 0 no discrimination between torsional and spheroidal modes
can be made, as both are active in BLS. Torsional modes (dashed lines) were calculated
separately for m = 0, being non-active in BLS, as they produce no local dilatation.
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6 Elongated Polystyrene Spheres

between the modes are present. Anticrossings which indicate a strong mixing, show

that the spheroid modes have no memory of the symmetry of the sphere modes from

which they are derived apart from the m and the parity index. Note in particular

that the torsional and spheroidal nature of the modes is not conserved. Only a

subset of m = 0 modes are in fact torsional (with no local dilatation) and silent in

the inelastic light scattering (dashed lines in Fig. 6.4b). All other modes present a

stretching component and are active.

With increasing frequency the number of active modes increases (Fig. 6.4b) with

concurrent decrease of their life time. These two facts lead to an increasing broaden-

ing of the vibration spectra of monodisperse spheroids with frequency. In addition,

the inevitable presence of size/shape polydispersity renders the shape of the high

frequency spectra featureless (Fig. 6.2a). Thus the low frequency regime of the BLS

spectra becomes important for the determination of the thermomechanical proper-

ties of spheroidal particles with large aspect ratio. In fact, for rods the only modes

are the longitudinal (with displacement along the main axis and constant for any

section), the bending (displacement perpendicular) and torsional ones. [194]

6.3.2. Simulation of Brillouin spectra

Having determined the displacement field for the vibrational modes of the spheroid,

the Brillouin activity can be calculated by (6.1). For a given mode, it will depend on

the exchanged wavevector q and on the angle α between q and the main axis of the

spheroid; note that differently from the sphere case, we cannot invoke symmetry in

order to reduce ourselves to α = 0. The studied samples show a significant turbidity

which is the mark of the intense multiple scattering. In these conditions, we cannot

consider a single exchanged q or α, even for aligned particles. The intensity has to

be averaged on all angles between 0 and π/2 and all q’s between 0 and 4πnref/λ,

where nref is the refractive index (Tab. 6.1) at the laser wavelength λ (=532 nm).

Operatively, we calculated frequency and displacements of the vibrational modes

below 7 GHz of homogeneous spheroids with the aspect ratios of the samples in Ta-

ble 6.1. The value of the Young’s modulus and of the Poisson’s ratio (and therefore

of the velocity ratio) has been considered constant for all samples (S0–S4) being

E = 4.0 GPa and ν = 0.32 (corresponding to a velocity ratio cL/cT of about 2).

However,the values of cL and cT are conceivable to change upon stretching [233] af-
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fecting also the density of the particles (Table 6.1). To a first approximation, the

velocities scale with ρ−1/2. The Brillouin activity was calculated on a grid of q and

α values with steps respectively 1/3b and π/16. Discrete integration between 0 and

4πnref/λ and between 0 and π/2 with appropriate weights will produce the scattered

intensity by any mode. Note, that for the stretched particles, the refractive index

(Table 6.1) was evaluated using Clausius-Mossotti equation and considering that the

polarizability of the scattering units has not changed after elongation. For a direct

comparison with the experimental spectrum, the discrete calculated spectrum was

broadened with Gaussian lineshapes. The latter take into account the experimental

linewidth (0.25 GHz), the polydispersity in size (σf/f = σd/d) and aspect ratio

k (σf = ∂f/∂k σk), with f denoting the vibrational frequency and σ the variance

either in f or particle size d. This last source of broadening is very important for

the lowest frequency m = 1 modes, whose frequency is strongly dependent on the

aspect ratio as shown in Fig. 6.4. One effect of line broadening is a shift of the peaks

toward lower frequency with respect to the average position calculated for the mean

values, as it clearly appears for the low frequency peaks of Fig. 6.2b. It is caused by

the (n(ω, T ) + 1)/ω term of (6.1), which favors particles with larger size and aspect

ratio.

Here, we point out that all calculations were performed using no fitting param-

eters. Furthermore, no anisotropy of elastic properties was regarded along the two

axes. Mechanical anisotropy induced by the elongation process would be a conceiv-

able source of broadening. [234] AFM assisted fractal analysis of the surface texture

is a conceivable method to identify ordering modification (due to chain elongation)

in the stretched particles. [235] However, this method is not applicable when using

a sacrificial PVA matrix. Although mild, processing modifies the surface structure

with regard to topography, charge and residual PVA.

6.4. Results and Discussion

6.4.1. Lifting of degeneracy in quantum number m

In order to check the accuracy, the simulation procedure was applied to the spher-

ical particles before (untreated) and after (treated) embedding them in PVA. The

agreement (Fig. 6.5) is quite good and comparable to earlier results for spheres. [127]
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6 Elongated Polystyrene Spheres

Note, that the fitting of the treated sample (blue line in Fig. 6.5) has been made

considering a larger size polydispersity (σd/d = 0.06 vs. 0.035 in the untreated)

and a decreased volume (6%), resulting from the removal of the PVA matrix. The

vibrational spectrum in particular at low frequencies seems to be very sensitive to

size/shape changes even after mild processing conditions.

Clearly, processing is able to modify the particle identity, as monitored by BLS.

This change of spectral shape exemplifies the sensitivity to surface fluctuations which

is induced by the stretching process. While the shift of frequencies due to size

decrease or a mixed PVA/PS surface layer can be attributed to the etching process,

the observed broadening has not such a clear attribution. In the fit it has been

considered by increasing the size dispersion, but it could also be due to a departure
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Figure 6.5: Brillouin spectra and simulation of spheres, before (upper panel) and after
(lower panel) embedding in the PVA matrix. Recovered particles exhibit reduced volume
and larger size dispersion.
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Figure 6.6: Brillouin spectra for relatively low asphericity (a/b=1.28). The shift of
spheroidal and torsional lines (blue arrows) cause significant broadening of the low-
frequency peak.

from spherical symmetry. Furthermore, it should be noted that a single particle

model has been considered neglecting the (possibly increased) interaction between

neighboring particles, which causes a line broadening. [134] Finally the particles were

considered homogeneous with no density gradient near the surface, a possible result

of the mild processing.

As the particle shape departs from spherical symmetry the degeneracy in m is

lifted and more modes contribute to the spectrum. This reduced symmetry [118] and

to a lesser degree mechanical anisotropy [234] cause the spectral features to be washed

out at higher frequency, in addition to size/shape polydispersity. An aspect ratio of

1.28 (Fig. 6.2b) is already large enough that the distinction, found in parent spheres,

between torsional and spheroidal modes is no longer valid. Therefore any peak is

in fact the sum of several contributions with different m. In Figure 6.6 the first

peak at 2.65 GHz can be considered as the sum of the m-splitted (s,1,2) mode of the

parent sphere and causes the broadening, even if the contribution from m = 1 (red)

and m = 2 (green) modes derived from the (t,1,2) Lamb mode is not negligible.

The situation for the peak at 5 GHz is even more complicated as it consists of many

contributions already in the parent sphere. The swapped intensity between the two

shoulders (red horizontal lines in Fig. 6.2b) is just a consequence of the manifold

shift of lines.
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6 Elongated Polystyrene Spheres

In order to follow this transition trend from homogeneous spheres towards an ho-

mogeneous rod, we examined higher aspect ratios. Figure 6.7 (upper panel) displays

the superposition of experimental and simulated spectra for sample S2 (a/b = 2.12).

Peak positions and relative intensity are well represented. Sound velocities larger

than that of PS were used to account for the reduced density at constant elastic

constants via M,G = ρc2
L,T. M (G) being the longitudinal (shear) modulus.
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Figure 6.7: Brillouin spectra for spheroids of aspect ratio 2.12 (upper panel) and
3.99 (lower panel). The inset to the lower panel displays the reduced spectrum for S4.
Theoretical Brillouin intensity (red lines) as calculated from the sum of the individual
contributions m = 0...4 (modes with m > 4 have frequencies higher than 7 GHz). Sources
of broadening are the instrumental resolution as well as size and shape dispersion of the
spheroids. The blue line in the lower panel gives the simulation with 6% increased sound
velocity.
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Figure 6.8: Reduced Brillouin spectra (I f2) for spheroids of aspect ratio 2.12, and 3.52
reveal the contribution of modes at low frequencies.

At very low frequencies the flanks of the elastic line disturb the inspection of the

lower order peaks (e.g., for m = 1). In a reduced plot (Fig. 6.8, upper panel) the

low-frequency contribution at about 1.3 GHz, which is not observed in Fig. 6.7, is

clearly resolved. Due to experimental restrictions (lowest free spectral range and in

particular the strong elastic line) frequencies below ∼ 1 GHz were not accessible.

6.4.2. Mechanical anisotropy at high aspect ratio

As the aspect ratio is increased (bottom panel of Fig. 6.7) the agreement of sim-

ulation and experimental spectra isn’t as good as for a/b = 2.12. Possibly, the

mechanical anisotropy introduced by the stretching process to achieve high aspect

ratios cannot be neglected anymore. The modes contributing to the spectrum are

too many to be observed individually. The peaks appear much more broadened than

those of the upper panel. A broad peak at about 2.5 GHz seams to be reproduced

by a couple of nearly resonant modes, the 4th m = 1 and the 2th m = 0. It better
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6 Elongated Polystyrene Spheres

appears in the reduced spectrum (inset to Fig. 6.7), that is obtained by multiply-

ing the experimental spectrum by f 2. The calculated spectrum reproduces well the

sharp increase of the intensity occurring at about 3.5 Ghz, which is attributed to

several different modes. The representation of the spectrum for a/b = 3.99 using

sound velocity values adjusted to the density is of moderate quality (red line). In-

stead, a further increase (∼ 6%) of the sound velocities, while keeping constant their

ratio (cL/cT) leads to better agreement with the experimental spectrum (blue line in

Fig. 6.7) as without any adjustable parameter (red line). This hardening in stretched

polymers has been reported before [236] and reflects the mechanical anisotropy caused

by the stretching process. Only for the particles with the largest aspect ratio, the

moduli increase by about 12% compared to the spherical parent particles. For the

particles with lower aspect ratio, it is noteworthy mentioning the insensitivity of the

average moduli and hence the Poisson’s ratio to the stretching of the PS spheres.

This preserved mechanical strength is an unprecedented information from the par-

ticle vibrational spectra.

6.5. Conclusions

This work presents the capability of a computational method combined with Bril-

louin spectroscopy as an effective tool for the characterization of the elastic proper-

ties of elongated spheres. Notwithstanding the significant approximation involved,

we were able to reproduce reasonably well the experimental spectra of spheroidal

particles. However, a few obstacles are faced with respect to the results for the

spherical particles: i) the m-splitting of the modes, which multiplies any sphere

(n, l) mode into l + 1 ones at different frequency; and ii) the polydispersity of the

samples (size and aspect ratio). The mixed effect of increasing the number of active

modes and of the polydispersity induced broadening leads to practically featureless

spectra for frequencies higher than ∼ 7 GHz (Fig. 6.2a). In any case the apparent

peaks in the Brillouin spectra are indeed the sum of many different contributions

(e.g., the peak at ∼ 4 GHz in the spectrum of sample S4 is the sum of 7 peaks of

comparable intensity).

From the good theoretical representation of the experimental vibration spectra,

all four but the highest aspect ratio spheroidal PS particles preserve the same ori-
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entation averaged elastic constants with the seed spheres while the density (sound

velocity) decreased (increased) with asphericity. The highest aspect ratio (a/b ∼ 4)

spheroids possess elastic moduli increased by 12%. As an outlook, the low frequency

vibrational spectrum can be also utilized to assess the thermomechanical properties

and determine the glass transition temperature of these spheroids through a tem-

perature dependent study and establish the analogy to the spherical particles. [134]

This knowledge can be used for the study of phononic properties of an ordered

assembly. The opening of hybridization gaps requires strong localization of elas-

tic energy in the building units. [41] It becomes even more important, as energy

leakage is allowed when the local resonator is placed in a liquid to assure optical

matching. [43] For spheroids, mostly the rather well separated vibrational states in

the low-frequency regime will play a major role for anticrossing interaction with

the acoustic branch, i.e. opening of hybridization gaps. Colloidal crystals with

spheroidal building blocks will exhibit inherently anisotropic mechanical and optical

properties. Hence, thermal conductivity as well as transmission of light and sound

will be a function of the orientation relative to the asymmetric particles.
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7. Phononic Band Gaps in

Anisotropic Colloidal Crystals

A colloidal crystal with anisotropic acoustic properties and a unidirectional hyper-

sonic band gap is fabricated using AC electric field-directed convective self-assembly

of elongated spheroids. The opening of a band gap most likely originates from hy-

bridization of the primary eigenmode peak, the m-split (s,1,2) particle vibration

mode and the effective medium phonons. The frequency of the gap and the effective

sound velocities can be tuned by the particle aspect ratio. These results reveal large

potential for enhanced control of the phononic band diagram using a combination

of anisotropic particles and their ability of self-assembly.
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Anisotropic hypersonic phonons in films of aligned colloidal spheroids. unpublished.
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7.1. Introduction

The ever-expanding library of colloidal building blocks allows for the potential fab-

rication of complex structured, functional materials that react to and guide sound,

energy, light and/or chemical species via directed self-assembly techniques. [215–217]

However, creating structures with long range order from nonspherical building blocks

remains a challenge. In particular, the realization of theoretically predicted close-

packed phases of anisotropic particles [227,228,237,238] is frustrated by slowing transla-

tional and rotational dynamics [239,240] and high nucleation barriers, [241] leading to

jammed or glassy random structures. [241,242] Overcoming these barriers to ordered

assemblies with directed self-assembly techniques is important because periodicity

in microstructures can be exploited to control the transport of phonons, photons,

charge and/or molecular species.

Extensive work has been done examining the propagation of phonons through

colloidal crystals assembled from spherical building blocks. Such materials exhibit

a Bragg-type bandgap whose frequency and width can be tuned by sphere diame-

ter and infiltrated fluids. [40] An additional bandgap at lower frequencies, termed a

hybridization gap, has also been found in similar crystals. [41,181] This hybridization

gap forms from level repulsion between the acoustic branch and a localized resonant

mode within particle, and as a result persists upon the loss of structural order in the

sample. The width of these gaps depends on the contrast of density, longitudinal (cL)

and transverse (cT ) sound velocities of the particles and infiltrating liquid. For sub-

micron colloids the gaps occur in the GHz frequency range which is readily probed

by Brillouin light scattering (BLS). These materials (and analogs with smaller length

scales) are of particular interest for heat management applications since the thermal

conductivity in dielectric materials partially relies on phononic transport of energy

in this frequency regime. [161] Here, the probed frequency range (few GHz) covers

only the lower range of the heat carrying phonons that exhibit a wide spread in

the sub-THz range. Previous BLS studies have characterized the eigenmode spec-

tra of spheres [127,134,177] and their resulting phononic band diagram. [40,41,43] Only

recently, the vibrational spectra of particles with more complex shapes has been

identified [135,243] while the phononic band diagram of ordered arrays of such parti-

cles has not previously been examined.
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This Chapter presents the phononic band diagram of aligned films of polystyrene

(PS) spheroids. The films are fabricated by AC field-directed convective self-assembly

and subsequently infiltrated with poly(dimethylsiloxane) (PDMS) for BLS measure-

ment. We find that the preferential particle alignment with the directing field leads

to unprecedented anisotropy in the mechanical properties of a colloidal thin film,

and a unidirectional band gap is observed perpendicular to the axis of orientation.

This demonstrates how self-assembly of colloidal materials from anisotropic particles

allows for additional control over the flow of sound (or heat) in novel materials.

7.2. Experimental

7.2.1. Film preparation

We have fabricated spheroids of three aspect ratios (a/b = 2.12, 3.52 and 3.99)

by mechanical stretching of 400 nm diameter carboxylate modified PS spheres

(cat. #C37238, Invitrogen, Eugene, OR). The details of the stretching procedure

are described elsewhere. [124,125] Briefly, seed particles were dispersed in an aqueous

poly(vinyl alcohol) (PVA) solution, spread in a thin layer and allowed to dry into a

thin film after water evaporation. The film was then heated above the polystyrene

glass transition temperature (145 ◦C) in an oil bath and stretched to a given strain

to produce the three aspect ratio particles. The processed film was cut into small

sections and cleaned from silicon oil by fivefold washing with isopropyl alcohol (IPA).

The particles were recovered by dissolution in water/IPA 7:3 (v/v) and the suspen-

sions are observed to be stable. These were repeatably washed via centrifugation-

decantation-resuspension, first in the water/IPA and then in 0.1 mM KCl to remove

any contaminants. The size of the spheroids was characterized by scanning electron

microscopy (SEM) and a summary of the particle dimensions is given in Table 7.1.

The suspensions were concentrated to a volume fraction φ ≈ 0.15 before being in-

troduced to the AC electric field assembly cell.

To align the particles into orientationally ordered thin films, we made use of an

AC electric field-directed convective assembly technique. The assembly cell consists

of coplanar gold electrodes on a glass slide with a 1.5−2 mm electrode gap. A

thin sample chamber is created by spreading UV glue with ten micron diameter

glass beads on top of the electrodes, carefully placing a coverslip on top and curing
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Figure 7.1: a) Schematic side view of the AC field-directed assembly cell b) Schematic
of the ordered film formation process near the edges of the assembly cell.

(Fig. 7.1a). The cell was placed on a temperature controlled stage at 22 ◦C before

loading 3−5 µL of suspension by capillary forces at the open ends. Then, an AC

electric field of 75 kHz and 500−700 V/cm was applied. The edges of the cell were

left open, allowing the particles to align in suspension as a result of the applied field,

advect towards the drying front at the edge of the cell, and dry into an orientationally

ordered thin film (Fig. 7.1b).

SEM images of the resulting film show the orientational order persists throughout

the ∼20 µm film thickness (Fig. 7.2). Analysis of top-view SEM images of films fab-

ricated with all three aspect ratios show that greater than 90% of the particles are

aligned within ±30◦ of the electric field direction in every case (Fig. 7.3). Initially

Table 7.1: Size characterization of particles studied and material parameters used in
calculations.

a/b a / nm b / nm ρ / kg-m−3

1 400±14 − 1050
2.12±0.16 690±42 325±15 921.9a

3.52±0.20 986±15 280±15 869.4a

3.99±0.22 1078±93 270±23 854.7a

a calculated based on stretched particle volume.
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Figure 7.2: Scanning electron microscopy (SEM) images of the top, side and end view
of the resulting aligned film for a/b = 3.99.

field-aligning anisotropic particles in a more dilute suspension before concentrating

the particles with convective deposition avoids jamming; this successful assembly

path has also been used to crystallize slightly anisotropic magnetic ellipsoids, [220]

align titania ellipsoids [223] and crystallize PS dicolloids. [241] After the drying process

is complete, the top coverslip is carefully removed, keeping the film intact and al-

lowing infiltration with PDMS (Mw = 770 Da) for BLS measurement. The sample

is rotated in the holder to measure thermal phonon propagation both parallel (‖)
and perpendicular (⊥) to the particle alignment.

7.2.2. Brillouin light scattering

High-resolution BLS measurements of the ordered films were performed using a six-

pass tandem Fabry-Perot interferometer in conjunction with λ = 532 nm Nd/YAG

laser mounted on a goniometer, allowing for q-dependent experiments. Thermally

excited phonons cause inelastic scattering of the incident laser light due to elasto-

optic coupling. The scattering vector q = ks − ki specifies the direction of prop-

agation thas is probed. Here ki and ks refer to the incident and scattered photon

wave-vector, respectively. The desired dispersion relations are obtained by recording

the phonon frequencies as a function of scattering wave-vector q. The BLS spectrum
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Figure 7.3: Histogram showing the degree of particle alignment with the electric field
estimated from top view SEM images. The green line denotes a Gaussian fit to the data of
the highest aspect ratio. The dashed horizontal line represents an isotropic distribution.

consists of doublets centered around the elastic frequency with f = ±cLq/2π, where

cL is the sound velocity for homogeneous (over the probed length scale) films. BLS

spectra were obtained over a wide range of angles, θ = 20◦–120◦, corresponding to

a q-range of q = 0.0041–0.0205 nm−1. The free spectral range was varied between 6,

7.5 and 10 GHz depending on the scattering angle to achieve optimal resolution of

the phonon peaks. For turbid samples, multiple scattering causes loss of the well-

defined q-vector. Therefore the films were infiltrated with PDMS to reduce elastic

scattering of light by (almost) matching the refractive index of the particle with the

index of the surrounding liquid. However, the turbity enabled the measurement of q-

independent resonance modes of the individual spheroids (Chapter 6). The resolved

modes are an unique fingerprint of the particles’ shape and elastic properties, hence

are invaluable for the understanding of the anisotropic mechanical properties of the

aligned films. [135] The particle vibration spectra of opaque isotropic and aligned

colloidal films were checked and are expectedly consistent (Fig. 7.4). The BLS

measurements of infiltrated, index matched films allow access to the q-dependent

acoustic modes along the desired propagation direction, i.e. along or perpendicular

to the long axis a.
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Figure 7.4: The reduced eigenmode spectra for aligned, non-infiltrated, particles of
aspect ratio a/b = 3.99 are independent of film morphology and scattering geometry.
Minor variances are likely due to the length of measurement time and thickness of the
sample, the isotropic (drop cast) film is significantly thicker and was measured for a longer
time; as a result the peaks are resolved in greater detail.

7.3. Results and Discussion

Prior to measurements of elastic moduli of elongated PS spheres, we have checked

the phononic dispersion of the seed spheres, as shown in Fig. 7.5. The presence of

a Bragg gap and hybridization gap is evident and has already been described for

slightly smaller PS particles, in 2008. [41] For this film the longitudinal sound velocity

cL = 1460 ms−1 was extracted from the single acoustic (non-bending) phonon branch

at low q-values, which reflects an effective medium of PDMS (cL = 1050 ms−1) and

PS (cL = 2350 ms−1). [41]

7.3.1. Anisotropy of phonon dispersion

The BLS spectra for aligned films of aspect ratios a/b = 2.12, 3.52 and 3.99 at

several q-values are given in Fig. 7.6. For clarity, only the anti-Stokes side of the

symmetric BLS spectra is shown. At low q-values, the system appears homogeneous

and a single Lorentzian peak is seen. As q is increased, the peak width increases and

a double peak feature is observed in some cases. This splitting marks the edges of a
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Figure 7.5: Phononic band diagram for the assembled PS sphere seed particles. Two
phononic band gaps are observed: a hybridization gap (green) and a Bragg gap (orange).

frequency gap and occurs at a distinct q most likely due to hybridization between the

acoustic branch and a flat mode stemming from a particle resonance. The difference

in the spectra as a result of propagation direction is obvious, with peaks occurring

at higher frequencies for the q‖ than the q⊥ direction at a given scattering angle.

In Fig. 7.7 the complete dispersion relations of the three films are shown, that ex-

hibit several noteworthy features. First, as expected from Fig. 7.6, the frequency of

the acoustic peaks varies with propagation direction over the entire q-range covered.

In the direction parallel to the particle alignment, the f(q‖) is relatively linear over

the entire range, resulting in a large effective longitudinal sound velocity of 1753 ms−1

(1899; 1584 ms−1) for the a/b = 2.12 (3.52; 3.99) spheroid films, compared to spheres

or perpendicular propagation. At low q-values in the direction perpendicular to the

particle alignment, f(q⊥) is also linear with a significantly lower effective sound ve-

locity of 1441 ms−1 (1535; 1453 ms−1), for the respective films. It is worth pointing

out that these spectra were obtained from the same aligned films, only the sample

was rotated in plane to probe either propagation direction. This leads us to the first

major finding: films of aligned spheroids indeed exhibit anisotropic acoustic prop-

erties. Furthermore, the degree of stretching dictates the effective sound velocity

mainly in the parallel direction, while staying relatively constant (and equal to the

seed spheres) in the perpendicular direction. A possible scenario for this mechanical

138



Results and Discussion 7.3

3 51 3 5 2 4 6

a / b  =  3 . 9 9a / b  =  3 . 5 2a / b  =  2 . 1 2

q =
 0.0

160
 nm

-1
q =

 0.0
107

 nm
-1

q =
 0.0

167
 nm

-1
q =

 0.0
118

 nm
-1

q =
 0.0

081
 nm

-1

Int
ens

ity 
/ a

.u.

f  ( G H z )
 

q p a r a

q p e r p

Figure 7.6: Selected BLS spectra of the infiltrated aligned films with aspect ratio and
a/b = 2.12 (left), a/b = 3.52 (middle) and a/b = 3.99 (right) as function of scattering
vector q (increasing from bottom to top). The blue (red) lines denote a Lorentzian fit of
the experimental spectra for sound propagation parallel (perpendicular) to the long-axis.
Note, in the left panel the higher q-values slightly deviate from those in the other panels.

anisotropy is the increased number of PS/PDMS grain boundaries in the perpendic-

ular versus parallel direction, which consequently is subject to augmented phonon

scattering. A more likely explanation is the unidirectional stretching procedure that

causes different elastic moduli of PS inside the particle, depending on the direction.

Of course, the effective sound velocity will be also a function of the particle pack-

ing fraction. All films were fabricated by the same method, and estimation of the

packing fraction from SEM images leads to a consistent φ ≈ 0.7 across all films.

This value is slightly less than the maximum theoretical packing of φ = 0.77 for el-

lipsoidal particles [227,228] and notably higher than for spheres (random close packing

φ ∼ 0.64).
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7 Phononic Band Gaps in Anisotropic Colloidal Crystals

7.3.2. Unidirectional hybridization gaps

The second striking feature is the presence of a unidirectional band gap, centered

at q-values of 0.0095 and 0.0113 nm−1 for the low and high aspect ratio films (Ta-

ble 7.2). Here, the peak in the BLS spectra splits and the slope of the dispersion

f(q⊥) is steeper above the band gap (Fig. 7.7). This behavior suggests the ex-

istence of a hybridization gap (HG), arising from anti-crossing interaction of the

effective medium phonon with low-f particles resonances. Note that this gap is

completely absent in the parallel direction, where the slope of f(q‖) is constant and

the material exhibits homogenous, effective medium-like properties over the entire

q-range. A previous study of the eigenmode spectra of the same particles revealed

the (s, 1, 2) mode of the seed spheres splitting into multiple modes as the symmetry

of the particle is lost (Chapter 6). [135] In particular, the m = 0 mode shifts to lower

frequencies while the m = 2 mode moves to higher frequencies. It is this latter mode

that gives the strongest contribution to the BLS eigenmode spectra (cf. Fig. 6.2b)

and has the same frequency dependence across different aspect ratios as the ob-

served HG. Finite element method (FEM) calculations of the displacement revealed

this mode essentially as a “pinching” of the short axis of the spheroid (Fig. 7.8b).

Since the perpendicular direction is measuring propagation across the short axis,
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Figure 7.7: Dispersion relations for phonon propagation along the long (blue) and short
axis (red) of aligned spheroid films with aspect ratio a/b = 2.12 (a) 3.52 (b) and 3.99 (c).
A band gap is only observed in the q⊥ direction (grey shading).
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(s,1,2) m=0 (s,1,2) m=2

a) b)

Figure 7.8: Displacement field of two principal modes calculated by the finite elements
method. The generacy of the fundamental spheroidal mode (s,1,2,m) is lifted in m, hence
the displacement along a) the long (m = 0) and b) short axis (m = 2) is clearly distin-
guished.

the hybridization of this vibrational state with the propagating acoustic phonon

should occur merely along this direction. FEM calculations of the m = 0 (s, 1, 2)

mode reveal that its deformation is a stretching of the particle along the long axis

(Fig. 7.8a). This mode exhibits weaker intensity and shows up at lower frequencies

due to the longer a-axis (which corresponds to a lower q). Therefore, observation of

a HG in the q‖-direction is unlikely given the size of the particles and instrumental

limitations (too low frequency).

A complete summary of the results for the a/b = 1, 2.12, 3.52 and 3.99 aligned

films is given in Table 7.2. The results for the 2.12 particle films are of particular

interest. The effective sound velocity found in the q⊥ direction above the hybridiza-

Table 7.2: Sound velocities, band gap location and eigenfrequencies of aligned spheroids.

a/b cL,‖ / c∗L,⊥ / cL,‖/cL,⊥ qHG / fHG / f(s,1,2) /

ms−1 ms−1 nm−1 GHz GHz

1 n/a 1460 1 0.0076 2.13 2.57

2.12 1753±85
1441±59 1.22

0.0095 2.50 3.10
1703±46

3.52 1899±46
1535±05 1.24

0.0101 2.89 3.58
1693±23

3.99 1854±53
1453±16 1.28

0.0113 2.85 3.79
1672±20

∗For sound propagation perpendicular to the long axis two velocities are
given for frequencies below and above the band gap, respectively.
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7 Phononic Band Gaps in Anisotropic Colloidal Crystals

tion gap is close to that in the q‖ direction. Hence, phonons with these frequencies

propagate isotropically with the same speed of sound, while at lower phonon fre-

quencies the propagation is retarded along a specific direction. This increased sound

velocity above the gap is a direct consequence of the opening of a band gap that

shifts the upper bands to higher frequencies.

However, for an exact analysis of stretched colloidal crystals complete band struc-

ture calculations are needed. Although the films presented here are well aligned

(Fig. 7.2), they hardly form structures of sufficient cristallinity to apply Bloch’s the-

orem. This makes a Bragg interference a very unlike origin of the gap. Furthermore,

the decreased lattice parameter along the short axis (upon stretching) should result

in a Bragg gap located at even higher frequency; here the opposite is observed. The

favored hybridization gap is further underpinned by a consistent increase of the qHG-

values (Table 7.2) with aspect ratio, that clearly remain below qBG = 0.012 nm−1

of the sphere (Fig. 7.5). The q-shift of the HG is intimately connected with the

increase of the aspect ratio as proven by qHG/q
◦
HG ≈ b◦/b (◦ denoting the respective

quantity of the sphere). Therefore we have to turn our attention to the vibrations of
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Figure 7.9: Vibrational DOS for particles of different aspect ratio (vertical offset for
clarity). A reduced frequency f∗ = 2πfb/cL,PDMS is used to eliminate the absolute particle
size and the properties of the matrix. (provided by N. Papanikolaou and N. Stefanou)
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the individual particles. While the eigenmodes of dry colloids are easily measured

(Fig. 6.2a), the vibrational density of states (DOS) of infiltrated spheroids has to be

calculated to account for the different elastic properties of the matrix. [41] Fig. 7.9

displays the DOS as function of reduced frequency and various aspect ratios. Due

to symmetry decomposition in m (Chapter 6) the DOS consists of many contribu-

tions. The most striking is a well-localized (narrow) mode at low frequencies that

strongly varies with aspect ratio and its frequency falls well below the band gap

(for the a/b = 2.12 film at 1.1 GHz). In contrast, the mode at f ∗ = 7.5 is rela-

tively robust to stretching and corresponds to 3.6 GHz, i.e. slightly above the band

gap (fHG=3.1 GHz). The theoretical results were derived for an isolated particle

in PDMS, disregarding any multiple scattering of phonons that could further affect

the dispersion relation. However, these semiquantitative findings already represent

a localized mode that scales with aspect ratio and probably evokes the formation of

a HG. The correct values will be given by fine adjustment of the elastic parameters,

which might be necessary to account for the mechanical anisotropy caused by the

stretching procedure. Therefore the computational elucidation of the mechanical

anisotropy is further pursued.

Although the particles have excellent orientational order, they are not arranged

on a periodic crystal lattice, which prevents the observation of a Bragg gap in the

spheroid films. Refined self-assembly techniques that achieve such robust control

over translational order could lead to new functional materials. These make the

simultaneous realization of anisotropic Bragg gaps (tunable by the dimensions of

the building blocks) and unidirectional hybridization gaps (tunable by aspect ratio

and packing fraction) conceivable.

7.4. Conclusions

In conclusion, we have shown how AC field-directed self-assembly can be used to

fabricate a material with fascinating acoustic properties. Due to shape anisotropy

in the spheroidal building blocks, acoustic phonons propagate with different velocity

depending on alignment with respect to the directing field. For the first time, a uni-

directional hybridization gap is observed. The nature of this gap has to be further

supported by theoretical calculations. Soft matter colloids provide unique building
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7 Phononic Band Gaps in Anisotropic Colloidal Crystals

blocks to study the phonon-matter interactions in mechanically anisotropic materi-

als. As self-assembly techniques are applied to non-spherical particles, the creation

of increasingly complex ordered structures may lead to further refinement and con-

trol over the phononic band structure and thus the propagation of heat/sound in

nanostructures.
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8. Final Remarks

8.1. Conclusions

The thesis yields insight to current research on hypersonic wave propagation in meso-

scopic composite structures. Access to the micromechanical properties of artificially

designed systems is provided by a combination of inelastic light scattering and the-

oretical calculations. High-resolution Brillouin spectroscopy is employed to probe

elastic excitations at GHz frequencies, enabling the study of the phononic dispersion

relation in multilayered thin films (superlattices) and local resonant modes in col-

loidal particles. As the elucidation of full vector-wave propagation in 3D structures

is quite demanding, the problem is approached by initially limiting ourselves to the

one-dimensional case.

Structures with periodicity along a single direction are suitable model systems for

fundamental studies of elastic wave propagation. Herein, we proposed the use of

hybrid superlattices composed of alternately spincoated layers of hard SiO2 and soft

PMMA using conventional soft matter fabrication techniques. First, the opening of

Bragg gaps along the direction of periodicity was reported for normal incidence, i.e.

for an elastic wave traversing a SL perpendicular to the layers. Concurrent theoret-

ical representation of the phonon dispersion and amplitudes of the modes provided

reliable determination of the longitudinal moduli of the respective materials. The

characteristics of the band gap (width, central position and the intensity of the edge

modes) were all adequately described by theory. The impact of fabrication-related

film imperfections on measured Brillouin spectra was examined by modeling a disor-

dered structure, having a surprisingly robust dispersion as result. Transverse moduli

were accessed via oblique incidence experiments, exploiting the vector nature of the

elastic wave propagation. The resulting mode mixing of longitudinal acoustic waves

with in-plane sagittal modes can be immediately seen from the dispersion relation

as a function of obliqueness. The complete description of these hybrid SL laid the

foundation for a subsequent study on defect-designed SLs.

Next, we demonstrated the sensitivity of the band diagram by introduction of

defect layers. After various other works have described the indication of surface
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modes, [105,107,175] we reported the first unequivocal evidence for the existence and

interaction of surface and cavity modes in finite SLs. [132] The findings open pathways

for dynamic tuning of cavity modes and mode interaction under external stimuli,

such as phase transformation induced by thermo- or chemiresponsive layers). The

fact that hypersonic phononic crystals also act as phononic crystals, makes them

interesting candidates for concurrent modulation of light and sound. These new

dual photonic-phononic structures are often referred to as “phoxonic crystals” and

might play a pivotal role in future tunable optomechanic devices.

For the colloid-based phononics, eigenmodes play a vital role in the dispersion

diagram. Dry non-transparent films of mesoscopic colloids yield the spectrum of vi-

brational eigenmodes, which sensitively index the geometrical and thermomechan-

ical characteristics of the respective particles. Therefore, this particle vibration

spectroscopy can be considered the elastic analog of the molecular vibrational spec-

troscopy (FT-IR, Raman). We found the BLS spectra of relatively large particles

to be well represented by theory based on a freely vibrating sphere, [127] but the

line shapes of small particles were shown to be significantly different from the sim-

ple theory. To account for the effects of interactions being important for smaller

spheres, we considered a fcc colloidal crystal in which adjacent spheres are con-

nected by springs. Modes that have zero frequency in a single sphere can become

dispersive bands if the interaction among the particles (given by the effective spring

constant) is increased. [134] Thus, a broad band at low frequencies was attributed

to the (s, 1, 1) mode which is purely translational, hence only seen in clusters of

particles. These findings were qualitatively validated by annealing of colloidal films

near the glass transition temperature. Besides the determination of nanomechanical

properties, we gained novel insights into the adhesion of colloids, which will enable

the characterization of different types of interactions.

The utility of particle vibration spectroscopy has been used to characterize the

elastic properties of non-spherical particles. Although a few approximations had

to be used, the experimental spectra of spheroidal particles (elongated PS spheres)

were well reproduced. The most striking feature was the practically featureless

spectrum at higher frequencies and large aspect ratios. Apart from the increased size

dispersion due to the stretching process, this “washing-out” of peaks mainly arises

from the lifting of degeneracy in the quantum number m. The m-splitting of the

principal (s,1,2) mode was confirmed by investigating particles of small asphericity.
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Successful theoretical representation of moderately stretched spheres was entirely

based on the change in shape. Young’s modulus was held constant by assuming an

increased sound velocity to account for the decreased density.

These spheroids were used as building blocks to form aligned colloidal crystals with

anisotropic mechanical properties. An immediate evidence for mechanical anisotropy

is given by the acoustic phonons traveling with a fast or slow pace parallel or perpen-

dicular to the aligned assembly, respectively. Strong localization of elastic energy

in the particles can lead to the opening of hybridization gaps or distorted phonon

dispersion diagrams. [41,43] The spheroids presented here, have well separated vibra-

tional states at low frequencies that can contribute to such a gap opening. This

work demonstrates for the first time, that a unidirectional hybridization gap can

show up in mechanically anisotropic aligned colloidal crystals, despite the consid-

erable degree of disorder. While the theoretical representation of the gap nature is

still in progress, preliminary calculations based on the hybridization mechanism are

already intriguing. More elaborate self-assembly techniques hold the potential to

create increasingly complex ordered structures.

8.2. Outlook

When concluding on this thesis’ work, it becomes obvious that future work is needed

to further advance the fundamental research and potential applications of phononic

systems. As mentioned above, the design of dual gap (phoxonic) structures [167]

for manipulation of both, photons (in the visible) and (hypersonic) phonons is a

promising expansion of this work with convincing perspectives towards applications

in optomechanics and acoustic MEMS. Hypersonic phononics with wavelengths sim-

ilar to that of visible light hold an important place in the spectrum of elastic waves.

At the high-frequency edge, the THz regime will be entered which is the realm of

thermal phonons and vibronic transitions. On the low-frequency side we find the

ultrasonic and sonic regime with numerous applications in our daily life. A number

of efforts were already reported [51,162,244] that aim to manipulate elastic waves in a

given frequency range with either much larger or much smaller structures. Here,

the buzzword is optical/acoustic metamaterials that involve negative refractive in-

dex (optics) or negative effective mass (acoustics). These materials have fascinating

149



8 Final Remarks

abilities for unconventional interactions with electro-magnetic or elastic waves man-

ifested, e.g., in the design of acoustic cloaks or superlenses.

An interesting development is the reach of polymer and colloid sciences towards

fields, thus far dominated by condensed matter physics. This work demonstrated the

utility of soft matter fabrication to be able to compete with classical semiconductor

fabrication techniques with regard to tunability and ease of fabrication. Although,

there is still a way to go when it comes to the accuracy and other inherent limitations

of soft matter, basic concepts like phonon folding and gap formation have been

realized using hybrid superlattices. During the course of this thesis, first experiments

on lamellar 1D structures with periodicity along the sample plane were performed

(so called nanoridges). Here, the use of laser interference lithography grants the

production of high-quality periodic structures with sub-wavelength dimensions. [168]

Regarding system complexity polymer science becomes the link between biological

tissue engineering and solid state research. Nanocomposites composed of an organic

component and an inorganic such as clay, silica or calcite are very interesting with

regard to biomimetic devices. [245] Of particular technological importance are the

strong backbones (the spicules) of deep sea sponges [246] and corals or the dragline

of spider webs. [247,248] BLS measurements on these transparent materials have high

potential, since the (high) elastic moduli are readily and non-destructively probed.

So far, only thermal phonons were probed by selecting a well-defined q-vector and

observing the associated phonons. The next step is to excite phonons of a specific

frequency above the thermal equilibrium, either by electrostriction or heat pulses

arising from absorbed GHz-pulsed lasers. Such stimulated hypersound experiments

will provide deeper insight to phonon propagation and dissipation in soft nanostruc-

tures, and open perspectives towards advanced heat management.
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[35] F. R. Montero de Espinosa, E. Jiménez, and M. Torres, Phys. Rev. Lett. 80,

1208 (1998).

[36] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng,

Science 289, 1734 (2000).

[37] J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski,

and D. Prevost, Phys. Rev. Lett. 86, 3012 (2001).

[38] R. S. Penciu, H. Kriegs, G. Petekidis, G. Fytas, and E. N. Economou, The

Journal of Chemical Physics 118, 5224 (2003).

[39] T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, Phys.

Rev. Lett. 94, 115501 (2005).

[40] W. Cheng, J. Wang, U. Jonas, G. Fytas, and N. Stefanou, Nat. Mater. 5, 830

(2006), ISSN 1476-1122.

[41] T. Still, W. Cheng, M. Retsch, R. Sainidou, J. Wang, U. Jonas, N. Stefanou,

and G. Fytas, Phys. Rev. Lett. 100, 194301 (2008).

[42] M. L. Cowan, J. H. Page, and P. Sheng, Phys. Rev. B 84, 094305 (2011).

[43] T. Still, G. Gantzounis, D. Kiefer, G. Hellmann, R. Sainidou, G. Fytas, and

N. Stefanou, Phys. Rev. Lett. 106, 175505 (2011).

[44] A. Shaulov, W. Smith, and B. M. Singer, in IEEE 1984 Ultrasonics Symposium

(1984), pp. 545–548.

153



Bibliography

[45] S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, Phys.

Rev. Lett. 88, 104301 (2002).

[46] K. M. Kinnunen, M. R. J. Palosaari, and I. J. Maasilta, Journal of Applied

Physics 112, 034515 (2012).

[47] B. Graczykowski, S. Mielcarek, A. Trzaskowska, J. Sarkar, P. Hakonen, and

B. Mroz, Phys. Rev. B 86, 085426 (2012).

[48] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

[49] L. Fok, M. Ambati, and X. Zhang, MRS Bull. 33, 931 (2008).

[50] J. Page, Nat. Mater. 10, 565 (2011), ISSN 1476-1122.

[51] Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, Nat. Mater. 10, 620 (2011), ISSN

1476-1122.

[52] S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, Phys.

Rev. Lett. 93, 024301 (2004).

[53] A. Sukhovich, L. Jing, and J. H. Page, Phys. Rev. B 77, 014301 (2008).

[54] S. A. Cummer and D. Schurig, New Journal of Physics 9, 45 (2007), ISSN

1367-2630.

[55] L. Sanchis, V. M. Garćıa-Chocano, R. Llopis-Pontiveros, A. Climente,

J. Mart́ınez-Pastor, F. Cervera, and J. Sánchez-Dehesa, Phys. Rev. Lett. 110,

124301 (2013).

[56] R. H. Olsson III and I. El-Kady, Measurement Science and Technology 20,

012002 (2009).

[57] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Nature

462, 78 (2009), ISSN 0028-0836.

[58] M. Maldovan and E. L. Thomas, Applied Physics Letters 88, 251907 (2006).

[59] S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude,

Journal of Applied Physics 106, 074912 (2009).

154



Bibliography

[60] N. Papanikolaou, I. E. Psarobas, and N. Stefanou, Applied Physics Letters

96, 231917 (2010).

[61] P. Lacharmoise, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, Applied

Physics Letters 84, 3274 (2004).

[62] N. Papanikolaou, I. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello,

and V. Laude, Microelectronic Engineering 90, 155 (2012), ISSN 0167-9317.

[63] A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, Phys.

Rev. Lett. 110, 037403 (2013).

[64] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander,

E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, et al., Nature 464, 697

(2010), ISSN 0028-0836.

[65] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Grob-

lacher, M. Aspelmeyer, and O. Painter, Nature 478, 89 (2011), ISSN 0028-

0836.

[66] G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, Nat. Phys. 8, 203 (2012),

ISSN 1745-2473.

[67] D. C. Jiles, Journal of Physics D: Applied Physics 28, 1537 (1995).

[68] A. J. Kent, R. N. Kini, N. M. Stanton, M. Henini, B. A. Glavin, V. A.

Kochelap, and T. L. Linnik, Phys. Rev. Lett. 96, 215504 (2006).

[69] R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, Phys. Rev. Lett.

104, 085501 (2010).

[70] M. I. Ojovan, Entropy 10, 334 (2008), ISSN 1099-4300.

[71] M. S. Paterson, Journal of Applied Physics 35, 176 (1964).

[72] Y. Mi, G. Xue, and X. Wang, Polymer 43, 6701 (2002), ISSN 0032-3861.

[73] W. Cheng, R. Sainidou, P. Burgardt, N. Stefanou, A. Kiyanova, M. Efremov,

G. Fytas, and P. F. Nealey, Macromolecules 40, 7283 (2007), 0024-9297.

155



Bibliography

[74] K. L. Kearns, T. Still, G. Fytas, and M. D. Ediger, Advanced Materials 22,

39 (2010).

[75] Y. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann,

N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, Nat. Mater. 11, 337

(2012), ISSN 1476-1122.

[76] M. D. Ediger and L. Yu, Nat. Mater. 11, 267 (2012), ISSN 1476-1122.

[77] S. Singh, M. D. Ediger, and J. J. de Pablo, Nat. Mater. 12, 139 (2013), ISSN

1476-1122.

[78] D. G. Cahill and R. O. Pohl, Phys. Rev. B 35, 4067 (1987).

[79] R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M.

George, Science 303, 989 (2004).

[80] C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski,

and P. Zschack, Science 315, 351 (2007).

[81] G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot,

J. Schumann, U. Denker, I. Mönch, et al., Nat. Mater. 9, 491 (2010), ISSN

1476-1122.
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[139] A. L. Cauchy, Exercices de Mathématiques 2, 60 (1827).
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Journal of Sound and Vibration 265, 663 (2003), ISSN 0022-460X.

[161] T. Gorishnyy, M. Maldovan, C. K. Ullal, and E. L. Thomas, Physics World

Dec, 24 (2005).

161



Bibliography

[162] J. Page, Nat. Mater. 10, 565 (2011), ISSN 1476-1122.

[163] J.-H. Jang, C. Y. Koh, K. Bertoldi, M. C. Boyce, and E. L. Thomas, Nano

Letters 9, 2113 (2009).

[164] A. B. Wood, A Textbook of Sound (G. Bell & Sons Ltd., New York, 1930).

[165] B. Djafari-Rouhani, L. Dobrzynski, O. H. Duparc, R. E. Camley, and A. A.

Maradudin, Phys. Rev. B 28, 1711 (1983).

[166] B. Jusserand, D. Paquet, F. Mollot, F. Alexandre, and G. Le Roux, Phys.

Rev. B 35, 2808 (1987).

[167] I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello,

and V. Laude, Phys. Rev. B 82, 174303 (2010).

[168] J. H. Moon and S. Yang, Chemical Reviews 110, 547 (2010).

[169] Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, and P. A.
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