
Cha rg e Tr a n s p o rt i n O r g a n i c P ho t ovo lta i c C e l l s





Joha n n e s - Gu t e n b e r g - Un i v e r s i t ä t M a i n z
Fac h b e r e i c h P h y s i k

Charge Transport in
Organic Photovoltaic Cells

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenscha5en

(Doctor rerum naturalium)

verfasst und vorgelegt von

Manuel Schrader
geb. in Wiesbaden

Max-Planck-Institut für Polymerforschung

Mainz, Juni 2013





이학박사 학위논문
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유기태양전지에서 전하 전송 연구
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서울대학교 대학원

화학부 물리화학전공
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Zusammenfassung

Die vorliegende Dissertation dient dazu, das Verständnis des Ladungstransportes in
organischen Solarzellen zu vertiefen. Mit Hilfe von Computersimulationen wird die
Bewegung von Ladungsträgern in organischen Materialien rekonstruiert, und zwar
ausgehend von den quantenmechanischen Prozessen auf mikroskopischer Ebene bis
hin zurmakroskopischen Skala, wo Ladungsträgermobilitäten quanti>zierbar werden.
Auf Grundlage dieses skalenübergreifenden Ansatzes werden Beziehungen zwischen
der chemischen Struktur organischer Moleküle und der makroskopischen Mobilität
hergestellt (Struktur-Eigenscha5s-Beziehungen), die zu der Optimierung photovol-
taischer Wirkungsgrade beitragen. Das Simulationsmodell beinhaltet folgende drei
Schlüsselkomponenten. Erstens eine Morphologie, d. h. ein atomistisch aufgelöstes
Modell dermolekularenAnordnung in demuntersuchtenMaterial. Zweitens einHüpf-
modell des Ladungstransportes, das Ladungswanderung als eineAbfolge vonLadungs-
transferreaktionen zwischen einzelnen Molekülen beschreibt. Drittens ein nichtadia-
batischesModell des Ladungstransfers, das Übergangsraten durch drei Parameter aus-
drückt: Reorganisationsenergien, Lageenergien und Transferintegrale.
Die Ladungstransport-Simulationen richten sich auf dieMaterialklasse der dicyano-

vinyl-substituierten Oligothiophene und umfassen Morphologien von Einkristallen,
Dünnschichten sowie amorphen/smektischen Mesophasen. Ein allgemeiner Befund
ist, dass die molekulare Architektur, bestehend aus einer Akzeptor-Donor-Akzeptor-
Sequenz und einem ?exiblen Oligomergerüst, eine erhebliche Variation molekularer
Dipolmomente und damit der Lageenergien bewirkt. Diese energetische Unordnung
ist ungewöhnlich hoch in den Kristallen und umso höher in den Mesophasen. Für
die Einkristalle wird beobachtet, dass Kristallstrukturenmit ausgeprägter π-Stapelung
und entsprechend großer Transferintegrale zu verhältnismäßig niedrigenMobilitäten
führen. Dieses Verhalten wird zurückgeführt auf die Ausbildung bevorzugter Trans-
portrichtungen, die anfällig für energetische Störungen sind. Für die Dünnschichten
bestätigt sich diese Argumentation und liefert ein mikroskopisches Verständnis für
experimentelle Mobilitäten. In der Tat korrelieren die Simulationsergebnisse sowohl
mit gemessenen Mobilitäten als auch mit photovoltaischen Wirkungsgraden. Für die
amorphen/smektischen Systeme steigt die energetische Unordnungmit der Oligomer-
länge, sie führt aber auch zu einer unerwarteten Mobilitätsabnahme in dem stärker
geordneten smektischen Zustand. Als Ursache dafür erweist sich, dass die smektische
Schichtung der räumlichen Korrelation der energetischen Unordnung entgegensteht.





본논문은유기태양전지의전하전송에대한심도있는이해를추구하였다.

컴퓨터시뮬레이션을통하여유기물질에서전하전달체의역학을,미시적수

준의양자역학적과정에서부터전하전달체의이동도를정량화할수있는거

시적수준까지재구성하였다.이다중스케일적접근방법에의하여,유기물질

의화학구조와거시적이동도의관계 (구조-물성관계)를확립하였는데,이관

계는태양광효율의개선을지원하게된다.시뮬레이션모델에는다음세가지

주요구성요소가포함되어있다. 첫째는형태로서,해당물질내에서분자배

열모형을원자단위로쪼개어구성하였다.둘째는전하전송의호핑모델로서,

전하이동을개별분자사이에서의연속적인전하전달반응으로설명하였다.

마지막은전하전달의비단열모델로서,전이율을다음세가지파라미터로설

명하였다:재구성에너지,사이트에너지,전달인테그럴.

전하전송시뮬레이션은다이시아노비닐치환올리고싸이오펜의물질적

인부분과단결정및박막과비정질/스멕틱메조상의형태에초점을맞추었다.

이에따른일반적결과는,어셉터-도너-어셉터순서와유연한올리고머주사슬

로구성된분자구조가분자의쌍극자모멘텀에변화를줌으로써사이트에너

지를변화시킨다는것이다. 이에너지측면에서의무질서는보통결정에서높

으며메조상에서는더욱높은것으로드러났다.단결정의경우,파이스태킹을

갖춘결정구조와그에따른대규모전자전달인테그럴이상대적으로낮은이

동도로이어졌다.이반직관적인행동은에너지결함이발생하기쉬운전송경

로의형성에기인한것이다.박막의경우,위추론이다시확인됨으로써실험적

이동도에대한미시적이해로이어질수있다.사실,시뮬레이션결과는측정된

이동도와태양광효율모두와연관된다.비정질/스멕틱계의경우,에너지무질

서는올리고머의길이에따라증가하는데,보다스멕틱질서가커질수록이동

도가감소하는이상현상을보인다.그이유는스멕틱층이에너지무질서의공

간적상관관계와충돌하기때문으로설명된다.





Abstract

Ais thesis serves to deepen the understanding of charge transport in organic pho-
tovoltaic cells. Using computer simulations, the dynamics of charge carriers in or-
ganic materials is reconstructed, starting from the quantum mechanical processes
on the microscopic level up to the macroscopic scale, where charge carrier mobili-
ties can be quanti>ed. Based on this multiscale approach, relationships between the
chemical structure of organic molecules and the macroscopic mobility are established
(structure-property relationships), which assist the improvement of photovoltaic eB-
ciencies. Ae simulation model includes the following three key components. First, a
morphology, i.e., an atomistically resolvedmodel of themolecular arrangementwithin
the material of interest. Second, a hopping model of charge transport, describing
charge migration as a succession of charge transfer reactions between individual mol-
ecules. Aird, a nonadiabatic model of charge transfer, expressing transition rates by
three parameters: reorganization energies, site energies, and transfer integrals.
Ae charge transport simulations focus on the material class of dicyanovinyl-sub-

stituted oligothiophenes and cover morphologies of single crystals, thin >lms, and
amorphous/smectic mesophases. A general result is that the molecular architecture,
consisting of an acceptor-donor-acceptor sequence and a ?exible oligomer backbone,
gives rise to substantial variations of molecular dipole moments and hence of the site
energies. Ais energetic disorder is unusually high in the crystals and even higher in
themesophases. For the single crystals, it is observed that crystal structures with a pro-
nounced π-stacking and correspondingly large transfer integrals lead to relatively low
mobilities. Ais counterintuitive behavior is traced back to the formation of preferred
transport directions which are prone to energetic defects. For the thin >lms, this rea-
soning can be con>rmed and provides a microscopic understanding for experimental
mobilities. In fact, the simulation results correlate with both measured mobilities and
photovoltaic eBciencies. For the amorphous/smectic systems, the energetic disorder
increases with the oligomer length, but also leads to an unexpectedmobility reduction
in the more ordered smectic state. Ae reason for this is elucidated by showing that
the smectic layering con?icts with the spatial correlations of the energetic disorder.
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Introduction

Ae sun provides more energy to the earth every hour than mankind consumes in
an entire year. In fact, the energy resource of terrestrial solar radiation far exceeds
that of all other renewable and fossil energy sources combined.1 Harnessing the im-
mense solar energy resource not only has the potential to accommodate the increas-
ing global energy demand, but also holds promise to reshape the energy sector for
environmental sustainability. However, a widespread adoption of photovoltaic elec-
tricity generation is only achievable through competitive pricing on the energymarket.
In fact, conventional inorganic photovoltaic cells, although technologically advanced,
are still limited to niche applications due to high costs. Ae emerging technology of
organic photovoltaic cells, in contrast, could quickly>nd a ubiquitous deployment since
organic materials oIer strong potential for cost reduction. In addition to an inex-
pensive production, organic solar cells can inherit the advantageous physical prop-
erties of organic materials, such as light weight and mechanical ?exibility. Although
organic photovoltaic technology is still far from the level of maturity required to de-
liver these promises, the >eld has recently experienced such a rapid progress that it
is currently transitioning from a phase of technology development to industrial pro-
duction. Ais dynamic development is the fruit of concerted eIorts in several areas,
such as synthetic chemistry, producing increasingly >ne-tuned organic compounds,
and material processing, constantly adapting to the demands of the >eld. Now that
organic photovoltaics is close to >rst commercialization, the scienti>c community is
more than ever demanded to address the still major challenges ahead. Ae most criti-
cal issues of organic solar cells, as compared to their inorganic counterparts, are their
shorter life spans and lower power conversion eBciencies. One of the greatest dif-
>culties in improving such device properties is the widely lacking comprehension of
how these properties are linked to the constituent organic compounds. As a result, the
chemical synthesis of new ormodi>ed compounds is mostly guided by intuitive rather
than rational design rules. With the aim of a rational compound design, models relat-
ing the chemical structures to macroscopic properties, so-called structure-property
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relationships, become highly desired. Establishing such relationships is a central con-
cern of this work. Ais necessitates both a microscopic description of organic pho-
tovoltaic cells as well as methods for linking the macroscopic properties to this de-
scription. A more detailed discussion on the challenges for improving photovoltaic
device properties is provided a5er introducing the required background on organic
photovoltaic cells in Chapter 1.
A window into the microscopic world of chemical matter is opened by the >eld of

computational chemistry, which provides methods of computer simulation, or, in a
sense, a virtual laboratory. Most fundamentally, computational chemistry considers
matter as a many-particle system of two diIerent constituents: atomic nuclei and elec-
trons, interacting through the electromagnetic force. Modeling this chemical reality
by computer simulations receives its justi>cation and merit from the full understand-
ing of the underlying physical principles. In fact, already in 1929, Dirac realized that
“the underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the diBculty is
only that the exact application of these laws leads to equations much too complicated
to be soluble.”2 Indeed, with the Dirac equation, and certainly today with quantum
electrodynamics, well-elaborated theories, accounting for both quantum mechanics
and relativity, have been developed. For many chemical systems, these levels of elabo-
ration are not even necessary and one can restrict the description to classical electrody-
namics and non-relativistic quantum mechanics, that is, to the Schrödinger equation.
Ae second part of the quotationmight, due to the ever-increasing processing power of
computers, be seen in a diIerent light today. Although certain approximations are in-
deed required in order to transform an exact quantummechanical equation ofmotion
from its abstract form into actually tractable expressions (these fundamental approxi-
mations include in particular the Born-Oppenheimer approximation, which facilitates
a decoupling of the nuclear and electronic motions), the enormous amount of calcu-
lation required for solving the resulting expressions has become an increasingly feasi-
ble task. As of today, computational chemistry techniques which are solely based on
>rst principles of physics and fundamental approximations, so-called ab initio meth-
ods, are applicable to complex systems of microscopic size, such as molecular systems.
Ae background of these foundations of computational chemistry, covering in partic-
ular the separation of nuclear and electronic motions, their decoupling by means of
the Born-Oppenheimer approximation, as well as ab initio electronic structure theory
is discussed in Chapter 2.
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One of the most important macroscopic properties of organic photovoltaic cells is
their ability to produce an electrical current.Ae prerequisite for such a current ?ow is
the migration of charge carriers through the organic material. Ais process is denoted
as charge transport and is characterized in terms of the charge carrier mobility. Ais
quantity, which is associated with the average velocity of the charge carriers, can be
experimentally measured for a given sample of the organic material. However, when
it comes to optimizing thematerial for an improvedmobility, one faces the problem of
missing structure-property relationships linking the mobility to the constituent mole-
cules. With the aim of closing this knowledge gap, this work applies computer simu-
lations to reconstruct the macroscopic process of charge transport based on its micro-
scopic origins. Aese charge transport simulations are based on a model including the
following three key components. First, a suBciently large, but at the same time atom-
istically resolved model of the organic material, a so-called morphology. To generate
such a large-scale material morphology, ab initio methods need to be supplemented
by computational chemistry techniques operating on a higher level of approximation.
Ais is achieved by molecular dynamics simulations, where the motion of atoms is
governed by classical Newtonian mechanics, calibrated according to ab initio meth-
ods. Ae second ingredient is a model of charge transport which describes charge
carrier migration within the morphology as a sequence of charge hops between in-
dividual molecules. Aese microscopic processes of charge movement are referred
to as charge transfer reactions and the quantity characterizing their eBciency is the
charge transfer rate. Such a rate is in?uenced by several factors: the electronic struc-
ture of the two individual molecules, their relative positions and orientations, but also
their environment of surrounding molecules. Ae third component is an appropriate
model of charge transfer, which translates these dependences into a set of tangible
parameters, which are accessible by methods of computational chemistry. In some
cases, the applicability of ab initio methods may be limited by the large number of
molecular pairs for which charge transfer parameters need to be evaluated. Ae pa-
rametrization can then be assisted by semiempirical methods, which are still based
on the quantum mechanical level of description, but incorporate certain empirical
data to accelerate the computation. Altogether, the simulation of charge transport
invokes a hierarchy of methods to scan all the required length and time scales with
a manageable computational eIort. While the theory of charge transfer in molecu-
lar systems is treated in Chapter 3, the complete methodology of charge transport in
organic solids is presented in Chapter 4.
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Chemical structures of buckminster
fullerene (C) and dicyanovinyl-sub-
stituted oligothiophenes (dcvnt).

At present, the most successful materials for building organic photovoltaic cells are
compositions of buckminster fullerene (C) and the novel class of dicyanovinyl-sub-
stituted oligothiophenes (dcvnt) or its derivatives. In fact, based on these compounds,
an ongoing series of world record power conversion eBciencies has been achieved be-
tween 2009 and 2013 byHeliatek GmbH.3 In addition to these proprietary cells, a wide
range of related devices has been published by the collaborating groups of Bäuerle at
the Institute of Organic Chemistry II and Advanced Materials in Ulm, Germany, and
Leo at the Institute for Applied Photo Physics in Dresden, Germany. In this work,
charge transport is studied for a variety of dcvnt material morphologies associated
with these devices. A simulation study on single crystals and a further one on thin
>lms are presented in Chapter 5. For single crystals, charge transport is compared for
a set of four systems: the terthiophene and quaterthiophene, dcv3t anddcv4t, as well
as two methylated derivatives, dcv3t-m and dcv4t-m. For thin >lms, charge trans-
port is examined in systems of the bare and methylated quaterthiophenes, dcv4t and
dcv4t-m. A simulation study on amorphous and smectic systems of the compound
series of thiophene to sexithiophene, dcv1t to dcv6t, is presented in Chapter 6.
Parts of the methodology and the results reported in this work (Sections 4.2–6.1)

are the subject of prior publications, listed on Page 19.Aese studies are presented here
in signi>cantly more detail. Ae background and the methodology (Sections 1.1–4.2)
have been developed based on the textbooks and review articles provided at the be-
ginning of the respective discussions. All chapters of this work employ a notation for
symbols summarized on Page 21.

1Lewis, N. S. Toward Cost-EIective Solar Energy Use. Science 315 (2007), 798.
2Dirac, P.A.M.QuantumMechanics ofMany-ElectronSystems.Proc. R. Soc. London, Ser. A 123 (1929), 714.
3Le Séguillon, T., and PfeiIer, M. EBciency Development. Heliatek, www.heliatek.com, 2013.
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Notation

Indices

n,m electrons
a, b nuclei / atoms
i , j molecules / sites
α, β electronic states
+,− / i, f adiabatic / diabatic electronic states
η, ϑ nuclear states
n,m molecular orbitals
σ , τ atomic orbitals
µ, ν general vector and matrix elements

Entity and Pair Properties

rn / r electronic coordinates / multi-index
pn electronic momenta
σn electronic spin
Ra / R nuclear coordinates / multi-index
Rab nuclear separations
Pa nuclear momenta
Va nuclear velocities
Ma nuclear masses
za atomic numbers
pa atomic dipole moments
qca / qna atomic partial charges of charged / neutral site
αca / αna atomic polarizabilities of charged / neutral site
Q / P / ωvib reaction coordinate / momentum / eigenfrequency
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ri site coordinates
rij site separations
pi site occupation probabilities
αni / αc

i site polarizability tensor in neutral / charged state
Un

i / Uc
i internal site energies in neutral / charged state

Un′
i / Uc′

i internal site energies in neutral / charged state, opposite geometry
Wn

i /Wc
i electrostatic site energies in neutral / charged state

Eint
i / ∆Eint

ij internal site energies / diIerences
Eelstat
i / ∆Eelstat

ij electrostatic site energies / diIerences
Ei / ∆Eij site energies / diIerences
λij / λi reorganization energies / site contributions
Jij transfer integrals
ωij charge transfer rates
cij edge currents

System Properties and Observables

ρ electron density
n number of electrons
a number of nuclei / atoms
d mass density
T temperature
F external electric >eld
t time of nuclear motion
τ time of charge carrier motion
⟨λ⟩ / ⟨Λ⟩ diagonal / oI-diagonal dynamic disorder
σ / Σ diagonal / oI-diagonal static (energetic / electronic) disorder
σ / σ eI energetic disorder of neighbor list / reduced neighbor list
CE site energy correlation function
Qµν / Q nematic order tensor
Dµν / D charge carrier diIusion tensor
µµν / µ charge carrier mobility tensor
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Operators

Ĥ Hamiltonian operator
T̂nuc nuclear kinetic energy
V̂nuc–nuc nuclear-nuclear interaction
T̂el / t̂el(rn) electronic kinetic energy / for electron n
V̂el–el / v̂el–el(rn , rm) electronic-electronic interaction / for electrons n,m
V̂nuc–el / v̂nuc–el(rn) nuclear-electronic interaction / for electron n
Ĥel(R) electronic Hamiltonian operator
Ĥα

nuc(R) nuclear Hamiltonian operator

Θ̂αβ
nuc(R) nonadiabatic coupling (nonadiabaticity operator)

Ĥ±nuc(Q) / Ĥi,f
nuc(Q) adiabatic / diabatic nuclear Hamiltonian operator

Θ̂+−nuc(Q) / J if(Q) / Jij nonadiabatic / nondiabatic coupling (transfer integral)
Ĥ / Ĥ equilibrium / phononic Hamiltonian
Ĥ / Ĥ local / nonlocal electron-phonon coupling
Ĥhf / Ĥks / Ĥ Hartree-Fock / Kohn-Sham / one-particle operator
v̂h(r) / v̂x(r) / v̂xc(r) Hartree / exchange / exchange-correlation operator

Wave Functions / Eigenstates

Ψ(R, r, t) total wave function
χαη(R, t) nuclear wave functions
ψα(r,R) electronic wave functions
∣ψ±(Q)⟩ / ∣ψi,f⟩ / ∣ψi⟩ adiabatic / diabatic electronic states
ϕn
i (r) / ∣ϕn

i ⟩ / ∣ϕfi ⟩ molecular orbitals / frontier orbitals
φτ
i (r) / ∣φτ

i ⟩ atomic orbitals

Eigenvalues and Potential Energy Surfaces

Eα
el(R) electronic eigenvalues

Uα(R) potential energy surface
E±el(Q) / Ei,f

el adiabatic / diabatic electronic eigenvalues
U±(Q) / U i,f(Q) adiabatic / diabatic potential energy surface
εni molecular orbital energies
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Functionals, Matrices, and Tensors

Ex[ρ] / Ec[ρ] / Exc[ρ] exchange / correlation / exchange-correlation functional
Eb3lyp
xc [ρ] b3lyp exchange-correlation functional

Tab / T
µ
ab / T

µν
ab multipole interaction tensor / >rst / second derivative

Hστ / H one-electron Hamiltonian matrix
Hστ

zindo / Hzindo zindoHamiltonian matrix
diag(εn) / E molecular orbital energy matrix
Cτn / C atomic orbital matrix
Sστ / S atomic orbital overlap matrix

Photovoltaic Cell Properties and Solar Parameters

ηpce power conversion eBciency
ηeqe external quantum eBciency
ηff >ll factor
j / jsc / jmp current density / at short circuit / for maximum power
V / Voc / Vmp voltage / at open circuit / for maximum power
Psolar solar power density
Φsolar(E) solar spectral photon ?ux density

Physical Constants

mel electron mass
e elementary charge
ε vacuum permittivity
c speed of light
ħ Planck constant
kB Boltzmann constant
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Chapter 1.

Organic Photovoltaic Cells

In contrast to their silicon-based inorganic counterparts, organic photovoltaic cells are
manufactured from organic, i.e., carbon-based molecules. Depending on the molecu-
lar weight, there is a common classi>cation into organic solar cells produced frompoly-
mers and from small molecules. Ais distinction refers to the processing techniques
used for preparing the desired layers of organic molecular solids: while polymers are
dissolved in solutions, which are solidi>ed by solvent removal techniques, small mol-
ecules are mostly processed by vacuum evaporation or sublimation and subsequent
material deposition. However, both types of cells share the same working principle for
the photovoltaic power conversion. A third type of functionally diIerent organic solar
cells, which is not related to this work, is the class of dye-sensitized solar cells.
Ae following discussion opens with a qualitative insight into the electronic struc-

ture of organic molecular solids (Section 1.1). Since organic solids possess relatively
weak cohesive intermolecular interactions, their electronic structure can be regarded
as a perturbed one of its constituent molecules. Molecules of particular interest are
those which comprise π-conjugated systems, since they can enable the desired semi-
conducting properties of the organic solid.
Aen, the focus is directed to organic photovoltaic cells and their working principle

for the conversion of solar radiation into electrical power (Section 1.2). Ae power con-
version is based on four optical and electronic processes: optical absorption yielding
an exciton (a bound electron-hole pair), exciton diIusion, exciton dissociation into
free charge carriers, and charge transport towards the electrodes.
Finally, the most important metric of a photovoltaic cell – the power conversion

eBciency – is introduced (Section 1.3). A5er brie?y re?ecting on the theoretical up-
per limits for the eBciency, the currently achieved values and challenges for further
improvements are discussed. Among the main challenges are the improvement of the
light harvesting, the active layer morphologies, but also the fundamental understand-
ing of how the eBciency is linked to the properties of the constituent molecules.
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1.1. Electronic Structure of Organic Solids

In general, organic solids [6–10] are solid-state materials which are composed of mol-
ecules falling within the scope of organic chemistry. Aese organic molecules are pre-
dominantly composed of carbon atoms and exist, due to the versatile bonding capabil-
ities of carbon, in amyriad of architectures.Ais diversity of compounds is re?ected in
a wide spectrum of observed solid state order, ranging from the perfect crystalline to
the amorphous phase and covering many intermediate forms, such as polycrystalline,
semicrystalline, or mesomorphic phases. While most organic solids are insulators,
the >eld of organic photovoltaics is primarily concerned with the subclass of materi-
als acting as (semi)conductors. Aese materials, capable of carrying an electric current,
are generally composed of molecules which have electrons delocalized over larger, so-
called conjugated systems of the molecular skeleton. Important building blocks for
such conjugated systems are aromatic hydrocarbons, such as the polyacenes, i.e., ben-
zene, naphthalene, anthracene, etc., or heterocyclic compounds, such as thiophene,
furane, pyrrole, etc., which are depicted in Figure 1.1.
To understand the origin of electronic delocalization in conjugated molecules, one

can start from the familiar viewpoint of independent electrons, described by individ-
ual wave functions, i.e., molecular orbitals. In addition, these molecular orbitals shall
be composed as linear combinations of atomic orbitals (mo-lcao). In fact, these con-
cepts constitute electronic structure theories (Section 2.2), which enable one to quan-
titatively derive the right linear combinations for composing the molecular orbitals.
One can then verify that there are indeed delocalized orbitals. For a qualitative un-
derstanding, however, the notion of valence bond theory may be illustrative. Aere,
pairs of overlapping atomic valence orbitals give rise to bondingmolecular orbitals, i.e.,
shared electron pairs lead to covalent bonds.Ais simple picture is accompanied by the

Benzene Naphthalene Anthracene

'iophene

S O

Furan

H
N

Pyrrole

Figure 1.1. Selection of basic conjugated organic
molecules, acting as building blocks for small
molecules, oligomers, or polymers employed in
organic electronic devices.
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Figure 1.2. (a) Atomic valence or-
bitals of the carbon atoms in ben-
zene. Overlapping sp-orbitals give
rise to σ-bonding, while overlap-
ping pz-orbitals lead to π-bonding.
(b) Splitting of the energy levels of
two atomic sp-orbitals leading to
bonding and antibonding molecu-
lar σ- and σ∗-orbitals as well as of
six pz-orbitals yielding π- and π

∗-or-
bitals. Adapted from Reference [11].

idea of hybridization: it allows one to transform each basis of standard (hydrogen-like)
atomic orbitals, by intuitive linear combinations, to equivalent bases of so-called hy-
brid atomic orbitals. Considering carbon, the ground state electron con>guration in
terms of hydrogen-like atomic orbitals reads sspxpy with two valence electrons.
Hybrid atomic orbitals are, however, derived from the excited electron con>guration
ss pxpypz with four valence electrons. Ais is because the energy expenditure
for the excitation is more than compensated by the formation of two additional bonds.
A simple linear combination of the s-, px-, and py-orbitals leads to three hybrid
sp-orbitals, which lie in the xy-plane at angles of °. Ae pz-orbital remains un-
changed and is perpendicular to the xy-plane. Using the example of benzene, con-
taining six carbon atoms in a hexagonal arrangement, these orbitals are illustrated in
Figure 1.2 a. Now, pairs of overlapping atomic sp-orbitals in the xy-plane give rise
to molecular σ-orbitals, which are localized between the respective pairs of nuclei.
Figure 1.2 b shows how the energy levels of an overlapping pair of sp-orbitals are split
into an energetically lower level, corresponding to a bonding σ-orbital, which is dou-
bly occupied, and a higher level, corresponding to an antibonding σ∗-orbital, which
is vacant. Due to the strong overlap of sp-orbitals, the energy splitting and the result-
ing energetic advantage is large, and therefore the σ-bonding a strong eIect. In total,
the molecular backbone of the benzene molecule involves twelve sp-orbitals form-
ing the hexagon and a further six linking the hydrogens. Ae remaining six atomic
pz-orbitals are also overlapping, namely above and below the xy-plane, which gives
rise to three bonding molecular π-orbitals, which are doubly occupied, and three an-
tibonding π∗-orbitals, which are empty. Obviously, the three π-orbitals cannot be lo-
calized between three pairs of nuclei, since all six pairs of nuclei are equivalent by the
molecular symmetry. In fact, the π-orbitals are instead delocalized over the molecular
skeleton. As the overlap of the pz-orbitals is weak, their energy splitting is small and
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Figure 1.3. Electronic structure of
organic solids: one observes a gen-
eral shi5 as well as a slight broaden-
ing of the molecular energy levels.
While ordered solids show narrow
energy bands, disordered solids of-
ten exhibit a Gaussian distributed
density of states (dos). Adapted
from Reference [8].

therefore the mechanism of π-bonding comparatively weak. In many conjugated or-
ganic molecules, the highest occupied molecular orbital (homo) is a π-orbital, while
the lowest unoccupied molecular orbital (lumo) is a π∗-orbital.
Ae electronic structure discussed so far refers to isolated organicmolecules, as they

are encountered in the gas phase. In an organic solid, formed upon condensation of
the molecules, the electronic structure changes, since molecules interact with each
other. Ae interaction between molecules, causing their cohesion, is dominated by
the van der Waals interaction, provided the molecules are neutral and are not form-
ing ionic bonds. Van der Waals interactions result from ?uctuations in the molecular
charge distributions: such ?uctuating dipole moments polarize adjacent molecules,
leading to an induced dipole-dipole attraction. Since these intermolecular interactions
are much weaker than the strong covalent binding forces within the molecules, the
molecular properties remain largely intact in an organic solid. Aus, the electronic
structure of the solid is only a moderately altered one of a free molecule. Ae main
diIerences are illustrated in Figure 1.3. First, one observes a general shi5 of the en-
ergy levels due to the polarizable environment. Ae homo and lumo energies, i.e.,
the ionization potential Eip and electron aBnity Eea (in Koopman’s approximation),
are displaced by the polarization energies Pea and Pip, respectively. Aerefore, in the
solid, the diIerence between the ionization potential and electron aBnity is usually
lowered. Second, the energy levels in the solid are slightly broadened due to the weak
overlap of the molecular orbitals. In the case of ordered solids, such as crystalline
phases at low temperatures, narrow energy bands can emerge. In analogy to inorganic
materials, these bands are sometimes referred to as the valence and conduction bands
of the organic solid and the region in between as the band gap. In the case of disor-
dered solids, such as amorphous or mesomorphic phases, the density of states (dos)
is o5en described by Gaussian distributions. Aen, the distribution tails extend into
the band gap and the band edges are no longer clearly de>ned.
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1.2. Conversion of Solar Radiation into Electric Power

Organic photovoltaic cells [12–18] make use of organic solids to convert solar pho-
tons into electric voltage and current. A major similarity to inorganic cells, which are
mostly based on silicon, is that the photoactive organic materials are semiconductors.
Aerefore, the photovoltaic eIect can be exploited for promoting electrons across the
band gap, which prevents the rapid decay back to the ground state by a series of pho-
nons, as would occur without the gap. A key diIerence in organic semiconductors,
on the other hand, is that a promoted electron is not free, but instead electrostatically
bound to the remaining hole. Ae bound electron-hole pair is denoted as exciton and
therefore organic solar cells sometimes as excitonic solar cells. For the separation of
excitons, the most common concept is to use a junction between two diIerent organic
semiconductors, which is referred to as a heterojunction. Ais device design was >rst
proposed in 1986 by Tang in the much-cited Reference [19]. Ae basic working princi-
ple of a heterojunction solar cell involves four optical and electronic processes, which
are illustrated in Figure 1.4: optical absorption yielding an exciton, exciton diIusion to
the heterojunction, exciton dissociation into free charge carriers, and charge transport
to the electrodes.
First, upon optical absorption, a solar photon promotes an electron within one of

the two diIerent organic semiconductors across the band gap. Ais is possible since,
due to the π-conjugation, organic semiconductors exhibit relatively low band gaps,
roughly between  and  eV, which lies within the spectrum of the solar radiation re-
ceived on earth. A5er the photoexcitation, the system rapidly relaxes to the band edges,
i.e., dissipates the energy exceeding the band gap via a series of phonons as heat, and
>nally forms an exciton. Ae exciton binding energy, that is, the electrostatic inter-
action energy between the electron and hole, is of the order of . to  eV in organic
materials, which is signi>cantly higher than thermal energy at room temperature. As
a consequence, the electron and hole are not free. Ais strong electrostatic attraction is
a result of the low dielectric constants, i.e., the weak electrostatic screening of organic
materials. In inorganic semiconductors, in comparison, exciton binding energies are
of the order of − eV and photoexcited electrons and holes are free at room tempera-
ture. Compared to inorganicmaterials, organic semiconductors also have signi>cantly
higher absorption coeBcients. As a consequence, organic photoactive layers can be
much thinner. A thickness of the order of nm is usually suBcient to absorb most
incident photons whose energy bridges the band gap.
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1. 2. 3. 4.

Figure 1.4. Optical and electronic
processes taking place in an or-
ganic photovoltaic cell: >rst, op-
tical absorption yielding an exci-
ton; second, exciton diIusion to
the heterojunction; third, exciton
dissociation into free charge carri-
ers; and fourth, charge transport to
the electrodes.

Second, exciton diCusion to the heterojunction is required. As an exciton is a neutral
quasiparticle, which is not aIected by any electric >elds, its migration is a purely diIu-
sive process.Ae diIusion length is determined by the >nite lifetime of the exciton and
is of the order of nm. Within this length scale, the exciton, traveling within one of
the two semiconductors, must reach the interface to the other one, otherwise it is lost
due to radiative recombination. In planar heterojunction architectures, where the two
semiconductors are arranged in two layers on top of each other, the exciton diIusion
length obviously requires thinner layers than are needed for eBcient photon absorp-
tion (nm). It is therefore necessary to >nd a compromise for the layer thickness. In
order to avoid such a trade-oI, one can employ bulk heterojunction architectures [20],
where the two semiconductors are mixed to an interpenetrating network, as sketched
in Figure 1.4. Ais design allows the interface area to be increased, while at the same
time tuning the layer thickness for optimal absorption.
Aird, exciton dissociation can take place once the exciton has reached the hetero-

junction of the two semiconductors. Ae rationale behind this heterojunction, as in-
troduced by Tang, is to provide appropriate energetic steps between the ionization po-
tentials and electron aBnities, aligned such as to overcome the exciton binding energy
and therefore to facilitate the separation of the electron-hole pair. Figure 1.5 a depicts
the required level alignment of the two semiconductors, which are henceforth referred
to as the electron donor and acceptor, respectively. Ae energy diIerence between the
ionization potential of the donor and the electron aBnity of the acceptor, Ed

ip − Ea
ea,

must be more than the binding energy lower than the band gap of either material, i.e.,
Ed
ip−Ed

ea and Ea
ip−Ea

ea, provided excitons are generated in both materials. Ae illustra-
tion shows the case where the exciton is formed within the donor: since the energetic
step in the electron aBnity at the donor-acceptor heterojunction exceeds the binding



1.2. Conversion of Solar Radiation into Electric Power 33

Donor

Acceptor

Cathode

Anode

Anode
E

E

E

E

CathodeV

(a) (b)

Figure 1.5. (a) Energy level alignment of a donor-acceptor heterojunction solar cell required to facilitate
exciton dissociation into charge carriers. (b) Schematic energy diagram of the solar cell under operating
conditions leading to dri5 currents of charge carriers towards the electrodes.

energy, the separation of the electron and hole is an energetically favorable process.
Aerefore, the electron can be transferred from the donor to the acceptor, while the
hole remains on the donor. Conversely, if the exciton is formed within the acceptor,
the hole can be transferred from the acceptor to the donor, while the electron remains
on the acceptor.
Fourth, charge transport of the free electron and hole towards their respective elec-

trodes occurs as a result of diIusion and dri5 [12, 21]. While charge diIusion, similar
to the migration of excitons, occurs independently of electric >elds, dri5 currents of
the charge carriers are a result of the electric potential gradient inherent in the device.
As illustrated in Figure 1.5 b, this potential gradient arises once the anode and cathode
are either short-circuited, as indicated by the dashed line, or connected to an external
circuit with a voltage drop V . Ae higher the voltage drop across the external circuit,
the lower the internal potential gradient and thus the dri5 currents. If the voltage drop
nearly cancels the internal potential gradient, the migration of electrons and holes is
dominated by diIusion currents.
Finally, the charge carriers are collected at their respective electrodes, i.e., the elec-

tron at the cathode and the hole at the anode. Ae electrodes, as conductors, are solely
characterized by their Fermi levels, or their work functions. In an idealized model,
the work function of the cathode matches the electron aBnity of the electron accep-
tor, while the work function of the anode >ts to the ionization potential of the donor.
In practice, the cathode is o5en manufactured from aluminum, while the common
choice for the anode is indium tin oxide (ito), which is not only conductive, but also
transparent for the incident light.
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1.3. Power Conversion Efficiency

Ae power conversion eBciency of any photovoltaic cell [22–24] depends on the de-
vice characteristics when operating in an electric circuit. In principle, both inorganic
and organic devices generate a photocurrent under illumination, while they exhibit
rectifying properties of a diode in the dark. Ais similarity is because the energetic
step in an organic device, due to the heterojunction of two diIerent semiconductors,
is essentially similar to the step arising in an inorganic device upon contacting a p- and
a n-doped material to a pn-homojunction [14]. As a consequence, any ideal solar cell
can be modeled by an equivalent circuit consisting of a current source in parallel with
a diode, as illustrated in Figure 1.6 a.Ae current-voltage characteristic of a solar cell ex-
posed to light thus corresponds to a shi5ed diode characteristic, as seen in Figure 1.6 b.
If the electrodes of the solar cell are connected, that is, R = , no voltage between them
can be established and the cell delivers the short-circuit current density jsc. (Note that
the current density j is used instead of the current I, since the photocurrent is ide-
ally proportional to the illuminated area.) Conversely, if the electrodes are isolated,
that is, R =∞, no current can ?ow and the cell develops the open-circuit voltage Voc.
Ais case corresponds to Figure 1.5 a. For any intermediate applied resistance R, the
cell generates a voltage V and a current density j = j(V), according to the current-
voltage characteristic, such that R = V/I. Ais general case corresponds to Figure 1.5 b.
At any point on the current-voltage characteristic, the electric power density supplied
by the solar cell is given by the product of j and V . Ae point maximizing this product

j

V
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j
Maximum Power

V V

j jdark

V V

j

dark light

j R

(b)(a)

Figure 1.6. (a) Equivalent circuit of an ideal solar cell consisting of a current source in parallel with a
diode. Under illumination, the cell generates a current density j and voltage V . (b) Current-voltage
characteristic j = j(V). In the light, a shi5ed characteristic of an ideal diode is encountered. In the dark,
the ideal diode characteristic is obtained when a voltage is applied.
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determines the current density and voltage for maximum power, which are denoted
as jmp and Vmp. Under these operating conditions, the ratio of the maximum electric
power density and the incident solar power density Psolar de>nes the

▸ Power Conversion E!ciency

ηpce = jmpVmp

Psolar
= ηff

jscVoc

Psolar
. (1.1)

Here, the Dll factor ηff is introduced to easily re?ect the shape of the current-voltage
characteristic. It is de>ned as the quotient of the two rectangular areas in Figure 1.6 b:

ηff = jmpVmp

jscVoc
. (1.2)

▸ Upper Limits for the Efficiency As pointed out by Shockley and Queisser [25],
a theoretical limiting eBciency for an ideal solar cell can be determined by three basic
assumptions. First, the device exhibits perfect absorption, i.e., each incident photon
produces an exciton, provided the photon energy bridges the optical gap Egap of the
absorbing semiconductor (i.e., the electronic gap minus the exciton binding energy).
Second, there is no internal device resistance and each electron-hole pair is instanta-
neously collected at the electrodes if they are short-circuited. With these assumptions,
the ideal short-circuit current density simply equals the elementary charge times the
number of absorbed photons per time, which can be written as

jsc = e ∫ ∞EgapdE Φsolar(E) . (1.3)

Here, Φsolar is the solar photon ?ux density in spectral distribution and the lower inte-
gration limit re?ects theminimum energy of absorbed photons, as shown in Figure 1.8.
Ae third assumption refers to the case where an external resistance is applied to the
electrodes and hence charge carriers can no longer be collected instantaneously. In
this case, an inevitable process, occurring in addition to absorption, is the sponta-
neous emission of photons as a result of radiative recombination of electron-hole pairs.
By relating generation and recombination rates according to the principle of detailed
balance, the current-voltage characteristic of the ideal solar cell (shown in Figure 1.6 b)
can be parametrized. With the current-voltage function j(V) at hand, the ideal open-
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Figure 1.7. Upper limit of the power
conversion eBciency ηpce as a func-
tion of the optical gap Egap of the ab-
sorbing semiconductor and the volt-
age loss ∆ due to exciton dissociation.
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to the Shockley-Queisser limit for in-
organic photovoltaic cells. Adapted
from Reference [26].

circuit voltage is de>ned by the point of vanishing current, which is V( j = ) ≲ 
e Egap.

Although this voltage represents a strict limit for the ideal solar cell, irrespective of its
inorganic or organic nature, one can argue more precisely for organic cells. In fact, ex-
citon dissociation in organic devices involves intermediate charge-transfer or charge-
separated states and thus entails further inevitable energy losses. To account for these
inherent losses, conceivable as the driving force for exciton dissociation, the consider-
ations of Shockley and Queisser can be extended by a voltage loss parameter ∆ [26]:

Voc = V( j = ) − 
e ∆ . (1.4)

With the short-circuit current (1.3) and the open-circuit voltage (1.4), the>ll factor (1.2)
is, of course, determined and one realizes that the power conversion eBciency (1.1)
becomes a function of the optical gap Egap and the voltage loss ∆.Ais function, shown
in Figure 1.7, indicates that the maximum eBciency for a given ∆ is achieved for some
intermediate gap Egap. Ais is because the short-circuit current goes to zero for large
gaps, while the open-circuit voltage vanishes for small gaps. For zero voltage loss, i.e.,
along the abscissa, the Shockley-Queisser limit for inorganic solar cells is reproduced,
which is .% at an optical gap of . eV. If the voltage loss is ∆ = . eV, organic
cells can theoretically achieve eBciencies slightly above % for optical gaps between
. and . eV [26]. It should be mentioned that these upper limits apply to solar cells
with a single absorbing semiconductor and can be surpassed by tandem cells.
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Figure 1.8. Spectral distribution of the terrestrial solar photon ?ux density Φsolar and external quantum
eBciency ηeqe of an organic photovoltaic cell prepared from a dcv5t-m donor and a C acceptor [28].

▸ Challenges for Efficiency Improvements Ae highest reported power conver-
sion eBciency of organic solar cells is currently %, reached by tandem cells devel-
oped by Heliatek GmbH [27]. Ae absorbers employed are proprietary derivatives of
dicyanovinyl-substituted oligothiophenes (dcvnt), acting as donor materials, while
fullerene C is the acceptor. For this class of compounds, depicted on Page 18, re-
markable eBciencies have also been published for single-absorber devices, the high-
est of which is .%, reported for a methylated quinquethiophene (dcv5t-m) [28].
In view of the >rst donor-acceptor heterojunction device by Tang with % eBciency,
these achievements demonstrate the signi>cant progress in the >eld of organic pho-
tovoltaics. Now that organic solar cells are close to commercialization, the scienti>c
community is more than ever challenged to further advance the power conversion ef-
>ciencies in the direction of the theoretical limiting eBciencies. Ais goal requires
improvements in all parameters entering the eBciency: the short-circuit current den-
sity, the open-circuit voltage, and the >ll factor.
Ae short-circuit current density of a real solar cell is, contrary to the ideal form (1.3),

determined by the external quantum eBciency ηeqe, which is de>ned as the ratio of
collected charge carriers and incident photons of a given energy E:

jsc = e ∫ dE ηeqe(E)Φsolar(E) . (1.5)

Figure 1.8 depicts, as an example, the quantum eBciency of the mentioned solar cell
prepared from dcv5t-m and C. Ae path to improved quantum eBciencies is to
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minimize the losses of photons upon optical absorption, of excitons during exciton dif-
fusion and dissociation, and of charge carriers during charge transport; in short: losses
in all processes involved in the conversion of radiation into electricity (Section 1.2).
Optical absorption with little loss critically depends on an optimized optical gap

of the absorbing semiconductor. In fact, most organic semiconductors suIer from
overly large band gaps, resulting in a lack of light harvesting in the low-energy, i.e.,
the high-wavelength region of the solar spectrum. Fullerene C, for instance, can
only harvest a tiny fraction of solar photons, as can be seen in Figure 1.8. Fortunately,
in the last decade, great progress has been made in synthesizing absorbers with lower
optical gaps. Ae class of dcvnt compounds is one example, where this is realized by
attaching electron-withdrawing dicyanovinyl moieties to conjugated oligothiophene
cores. As a result, the light harvesting reaches the visible range of the solar spectrum,
as seen in Figure 1.8. However, synthetic chemistry still faces many challenges, in
particular in engineering materials extending the absorption to the infrared region.
Exciton diIusion and dissociation with little loss requires both eBcient exciton

transport and an optimized solar cell architecture. In planar heterojunction layouts,
the thickness of the active layer must satisfy a compromise between optimal extinc-
tion of light and lossless exciton diIusion to the interface. In bulk heterojunction
layouts, the layer thickness can be optimized for light extinction, however, the scale
of the donor-acceptor phase separation in the morphology must meet a trade-oI be-
tween maximum interfacial area and continuous percolation paths to the electrodes.
While optimal scales of phase separation have been determined theoretically [29, 30],
it remains a major challenge for the >eld of material processing to control the bulk
heterojunction morphology during layer preparation in the desired manner.
Charge transport with little loss requires, apart from proper percolation paths, high

electron and hole mobilities in the acceptor and donor domains, respectively. Ais is
particularly important since mobilities in organic semiconductors can vary by many
orders of magnitude. Among the materials with the highest electron mobilities are
fullerenes and its derivatives, which are therefore the most common candidates as ac-
ceptors. However, when engineering associated donors, these need to be primarily
tuned for optical absorption, making it problematic to simultaneously ensure optimal
hole mobilities. Although increased hole mobilities are o5en highly desirable, there
are few systematic strategies for this purpose. A major obstacle is the lack of structure-
property relationships, linking chemical structures to mobilities. Closing this knowl-
edge gap is an important challenge for computational chemistry.
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Ae open-circuit voltage of a real solar cell is, contrary to that of the ideal one (1.4),
usually approximated by the diIerence between the ionization potential of the donor
and the electron aBnity of the acceptor, since these band edges are thought to charac-
terize the hole and electron energies a5er the exciton dissociation:

Voc = 
e (Ed

ip − Ea
ea − ∆′ ) . (1.6)

However, several sometimes insuBciently understood eIects lead to an empirical volt-
age loss ∆′, which is typically within . to . eV [31–33]. An important part of
this loss stems from the energy diIerences between the band edges and the actual
charge transport levels. In fact, band transport is seldom seen in organic materials.
Ais is because eIects of disorder o5en in?uence the electronic structure of organic
solids (Section 1.1). Most particularly, disordered solids, such as amorphous or me-
somorphic materials, are typically characterized by Gaussian distributed densities of
states rather than by sharp energy bands. Aen, hopping transport is observed, where
charge transport levels are located in the distribution tails. But even organic crystals, if
heated to room temperature, tend to exhibit hopping or so-called polaronic transport
rather than band transport. As a consequence, improving the open-circuit voltage can
bene>t from an in-depth understanding of the nature of charge transport, as can be
provided by computational chemistry.
Ae Dll factor of a real solar cell is, as opposed to the ideal cell, no longer a function of

the short-circuit current and the open-circuit voltage, since the current-voltage char-
acteristic has no prede>ned functional form. Instead, the shape of the current-voltage
characteristic is negatively aIected by mainly two parasitic eIects [14]. First, leakage
currents ?owing in the opposite direction of the photocurrent lead to a reduction of
the maximum power current jmp. Ais eIect is related to the quality of the solar cell
and may be reduced by careful device preparation. Second, the >nite resistance of the
device leads to a voltage drop under operation, i.e., a reduction of themaximumpower
voltage Vmp. Ais eIect is mostly due to the >nite conductivity of the semiconducting
materials and can thus be reduced by improving the charge carrier mobilities.
In light of these challenges for improving power conversion eBciencies, this work

is devoted to the >eld of charge transport using methods of computational chemistry.
While the characterization of morphological disorder allows the nature, or regime of
charge transport, to be speci>ed, the simulation of charge carrier dynamics delivers
the missing links between chemical structures and mobilities.
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Chapter 2.

Foundations of Computational
Chemistry

Computational chemistry has its foundation in viewing the structure of matter as a
many-body system of point-like nuclei and electrons. Aese constituents carry an
electrical charge and thus interact through the electromagnetic force, expressed as
an instantaneous >eld according to classical electrodynamics. Ae quantum nature
of the constituents is taken into account by the equation of motion of non-relativistic
quantummechanics, i.e., the Schrödinger equation, complemented by spin if required.
With this powerful framework, virtually all chemical and related physical system prop-
erties become, in principle, accessible by solving the Schrödinger equation.
In what follows, the initial step towards a solution is recalled: the separation of nu-

clear and electronic motions (Section 2.1). Ais approach is motivated by the large
mass ratio of nuclei and electrons, implying that nuclear positions remain nearly >xed
while the electronic motion takes place. Ae separate Schrödinger equation for the
electrons thus depends on the nuclear degrees of freedom only as a >xed parameter.
If this electronic Schrödinger equation is solved, i.e., the electronic states and ener-
gies are obtained, and that for a large set of >xed nuclear con>gurations, the separate
nuclear equation of motion can be parametrized. To solve the nuclear equation of
motion, one can o5en, but not always, neglect electronic state transitions, which is
known as the adiabatic or Born-Oppenheimer approximation. In the classical limit,
these approximations lead to the Newtonian equation of motion for the nuclei.
Subsequently, an insight into electronic structure theory is oIered (Section 2.2).

Ais >eld focuses on >nding solutions of the electronic Schrödinger equation at >xed
nuclear positions. Two formalisms are discussed: Hartree-Fock and Kohn-Sham den-
sity functional theory. Both theories reduce the many-electron Schrödinger equation
to a set of one-electron equations governed by an eIective one-electron operator.
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2.1. Separation of Nuclear and Electronic Motions

A chemical system can be regarded as an assembly of electrostatically interacting atom-
ic nuclei and electrons, governed by quantum mechanical dynamics. Ae full Hamil-
tonian operator of such a system depends on the cartesian coordinate and conjugate
momentum operators of the nuclei, Ra and Pa, as well as on those of the electrons,
rn and pn [34–37]. It can be written as a sum

Ĥ = T̂nuc + V̂nuc–nuc + V̂nuc–el + T̂el + V̂el–el (2.1)

of kinetic energy terms for the a nuclei with masses Ma and atomic numbers za as
well as the n electrons with masses mel,

T̂nuc = a∑
a=

P 
a

Ma
, T̂el = n∑

n=
p 
n

mel
, (2.2)

further, terms accounting for the repulsive electrostatic pair interaction of the nuclei
and of the electrons, respectively,

V̂nuc–nuc = 


a∑
a=

a∑
b≠a

za zb e

πε ∣Ra − Rb ∣ , V̂el–el = 


n∑
n=

n∑
m≠n

e

πε ∣rn − rm∣ , (2.3)

where e is the elementary charge and ε the vacuum permittivity, and >nally the at-
tractive electrostatic interaction between the nuclei and electrons,

V̂nuc–el = − a∑
a=

n∑
n=

za e

πε ∣Ra − rn∣ . (2.4)

With the Hamiltonian operator Ĥ of the system, the dynamics of nuclei and electrons
are governed by the Schrödinger equation

Ĥ Ψ(R, r, t) = iħ
∂
∂t

Ψ(R, r, t) , (2.5)

where the full wave function of the system (which is sought a5er) is denoted as Ψ and
the sets of nuclear and electronic coordinates are combined in the multi-indices

R ≡ (R, . . . ,Ra) ≡ (R, . . . , Ra) ,
r ≡ (r, . . . , rn) ≡ (r, . . . , rn) . (2.6)
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▸ Adiabatic Electronic Basis Since nuclei have more than three orders of mag-
nitude larger mass than electrons, one expects only little variations in nuclear coor-
dinates while the electronic motion takes place. If the nuclei were entirely >xed, the
dynamics of electrons would be governed by an electronic Schrödinger equation

Ĥel(R) ψα(r,R) = Eα
el(R) ψα(r,R) , (2.7)

where the electronic Hamiltonian operator (including the interaction with the nuclei)

Ĥel(R) = Ĥ − T̂nuc − V̂nuc–nuc = V̂nuc–el + T̂el + V̂el–el , (2.8)

its eigenfunctionsψα , and the associated energy eigenvalues Eα
el depend on the nuclear

con>guration R only parametrically. Aese eigenfunctions ψα are known as adiabatic
electronic wave functions and their complete orthonormal set as adiabatic electronic
basis. Ae naming stems from the conceptual correspondence between moving elec-
trons at >xed nuclear positions on the one hand and electrons responding instanta-
neously, or adiabatically, to the much slower movements of the nuclei on the other.
To study the slow nuclear motion in this adiabatic picture, the full wave function Ψ

of the system (2.5) can be expanded in the adiabatic electronic basis,

Ψ(R, r, t) = ∑
α

χα(R, t) ψα(r,R) , (2.9)

where the expansion coeBcients χα can be identi>ed with the nuclear wave functions
of the system in the respective adiabatic electronic states ψα . Inserting the expan-
sion (2.9) in the full Schrödinger equation (2.5), applying the product rule of diIer-
ential calculus for the nuclear momentum operators Pa = −iħ∇a, and making use of
the electronic Schrödinger equation (2.7) leads to a nuclear equation of motion

Ĥα
nuc(R) χα(R, t) +∑

β≠α
Θ̂αβ(R) χβ(R, t) = iħ

∂
∂t

χα(R, t) (2.10)

for each nuclear wave function χα . Clearly, such a wave function carries a functional
dependence on the nuclear coordinates R. Ae same applies to the two operators in-
troduced in (2.10): the nuclear Hamiltonian operator,

Ĥα
nuc(R) = T̂nuc + V̂nuc–nuc + Θ̂αα(R) + Eα

el(R)-........................................................................................./.................................... .....................................................0
Uα(R)

, (2.11)
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acting on χα and depending in particular on the electronic energy eigenvalue Eα
el, and

the so-called nonadiabaticity operator,

Θ̂αβ(R) = ⟨ψα(R) ∣ T̂nuc ∣ψβ(R)⟩ + a∑
a=


Ma
⟨ψα(R) ∣Pa ∣ψβ(R)⟩Pa , (2.12)

which acts on the other nuclear wave functions χβ and thereby couples the nuclear
equations of motion. Here integrals over electronic coordinates are abbreviated by

⟨ψα(R) ∣ ⋯ ∣ψβ(R)⟩ ≡ ∫ dr ψα∗(r,R) ⋯ ψβ(r,R) . (2.13)

Ae dynamics of the nuclei, governed by the nuclear equation of motion (2.10), can be
understood as follows: while the system is in a speci>c adiabatic electronic state ψα ,
the nuclear motion is determined by the related nuclear Hamiltonian operator (2.11),
hence evolves in the eIective potential Uα . Ae function of this potential de>nes a
hypersurface in the space of nuclear coordinates, which is called adiabatic potential
energy surface (pes) [34]. However, while the nuclear motion proceeds, it may occur
that the system transitions into another adiabatic electronic state ψβ with associated
pes Uβ. Such transitions, for example from the electronic ground state to the >rst
excited state, are mediated by the nonadiabaticity operator (2.12).
Technically, solutions of the full Schrödinger equation (2.5) follow from the expan-

sion (2.9), once solutions of the nuclear equation of motion (2.10), that is, wave func-
tions χαη, with η being the nuclear quantum number, are obtained. Ae solving of
the nuclear equation of motion requires, in turn, the prior determination of the elec-
tronic wave functions ψα and energy eigenvalues Eα

el. Aese solutions of the electronic
Schrödinger equation (2.7) are needed for each parameter R, i.e., nuclear con>gura-
tion, covered by the motion of the nuclei. Solving the electronic Schrödinger equation
for speci>c nuclear positions is the remit of electronic structure theory (Section 2.2).

▸ Adiabatic Approximation For many chemical systems, the ratio of electronic
and nuclear energy scales is approximately given by (Ma/mel)/ as follows from sim-
ple arguments [34, 35]. In cases where this estimate is reliable, the largemass diIerence
between electrons and nuclei leads to an electronic energy spacing at least two orders
of magnitude larger than the energy scale of nuclear motion. Aese systems remain
during nuclearmotion, in good approximation, in the same eigenstate of the electronic
Hamiltonian; in other words, electronic transitions due to the nonadiabaticity opera-
tor are negligible. Ae neglect of the nonadiabaticity operator Θ̂αβ in the nuclear equa-
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tion of motion (2.10) is referred to as the adiabatic approximation. If in addition the
diagonal terms Θ̂αα in the nuclear Hamiltonian operator (2.11) are disregarded, the
approximation is known as the Born-Oppenheimer approximation [38].1 In both cases,
the nuclear equation of motion becomes decoupled, yielding for each adiabatic elec-
tronic state ψα an individual nuclear Schrödinger equation:

[T̂nuc +Uα(R)] χα(R, t) = iħ
∂
∂t

χα(R, t) . (2.14)

Note that these approximations are not applicable if electronic energy levels become so
close that nuclear vibrational energy suBces for initiating electronic transitions, which
is exactly the case in charge transfer reactions in molecular systems (Chapter 3).

▸ Classical Nuclei Approximation For nuclei at room temperature, the range of
quantum phase coherence, provided by the de Broglie wavelength (πħ/MakBT)/,
is at least an order of magnitude shorter than typical interatomic distances [35]. Hence,
nuclei can o5en be treated as classical particles, which is accomplished by considering
a nuclear wave function χα as Hartree product of incoherent wave functions for indi-
vidual nuclei, localized at the classical particle positions Ra (identi>ed with the mean
of the coordinate operator). Aen, owing to the Ehrenfest theorem [39], the Schrö-
dinger equation (2.14) transforms into a Newtonian equation of motion for the nuclei:

Ma
∂Ra

∂t
= −∇aUα(R) . (2.15)

Numerical integration requires knowledge of the pes Uα of the selected electronic
state ψα as a function of R. In principle, one can construct an interpolation by solving
the electronic subsystem for a grid of sampling points in the space of nuclear coordi-
nates. However, since the number of sampling points scales exponentially with the di-
mension of this space, such an approach is prohibitive in practice. A viable option is to
approximate the pes as truncated expansion in terms of many-body interactions [37],

Uα(R) ≈ a∑
a=U

α
 (Ra) + 



a∑
a,b

Uα
 (Ra ,Rb) + 



a∑
a,b,c

Uα
 (Ra ,Rb ,Rc) + . . . , (2.16)

denoted as force Deld (Section 4.2.1).Ae determination of expressions for the included
many-body terms allows for classical molecular dynamics simulations (Section 4.2.2).

1Note that in literature, the Born-Oppenheimer approximation is occasionally not clearly distinguished
from the adiabatic approximation, or even the introduction of the adiabatic electronic basis.
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2.2. Electronic Structure Theory

Electronic structure theory [35, 40–43] aims at>nding solutions to the electronic Schrö-
dinger equation of a many-body problem, such as a molecular system, with >xed nu-
clear positions. Ais electronic Schrödinger equation, provided in (2.7), implies that
for any solution ψ, the associated electronic energy is determined by

Eel[ψ] = ⟨ψ ∣ Ĥel ∣ψ⟩ ≡ ∫ dr ψ∗(r) Ĥel ψ(r) , (2.17)

that is, the expectation value of the electronic Hamiltonian operator (2.8), which reads

Ĥel = n∑
n= v̂nuc–el(rn)-............................../..............................0

V̂nuc–el

+ n∑
n= t̂el(rn)-................/................0

T̂el

+ 


n∑
n=

n∑
m≠n v̂el–el(rn , rm)-.........................................................../............................................................0

V̂el–el

. (2.18)

Here, the following terms, corresponding to the de>nitions (2.2) to (2.4), are intro-
duced: v̂nuc–el, denoting the one-electron energies in the potential of the >xed nuclei,
t̂el, the one-electron kinetic energies, and v̂el–el, the two-electron interaction energies.2

Ae following discussion is limited to the task of retrieving the electronic ground state,
that is, the wave functionwith lowest energy. For this case, a solving strategy is themin-
imization of the energy functional (2.17) with respect to a trial set of wave functions.
Wave functions coming into consideration are normalized as well as antisymmetric
under the exchange of two electrons. Ae latter originates from the Pauli principle
applying to fermions.3 In principle, the most general antisymmetric wave function,
de>ning a complete trial set, can be represented as a linear combination of an in>nite
set of Slater determinants. In practice, however, tractable approximations are required.
Inwhat follows, the traditionalHartree-Fock theory is outlined (Section 2.2.1). Here,

the simplest antisymmetric wave function is constructed, a single Slater determinant.
Ais yields a model of independent electrons, each moving in amean Deld of all other
electrons. While this approach includes the exchange interaction between electrons,
their dynamical correlation is neglected. In the subsequently discussed Kohn-Sham
density functional theory (Section 2.2.2), these exchange and correlation contributions
are separated in an energy functional of the electron density. Ais so-called exchange-
correlation functional allows the dynamical correlation of electrons to be treated in an
approximate way. Finally, the basis set approximation is introduced (Section 2.2.3).

2Note that in (2.17) and (2.18) the parametric dependences on the nuclear coordinates are omitted.
3Ae Pauli principle represents an independent postulate within non-relativistic quantum mechanics.
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2.2.1. Hartree-Fock Theory

A multi-electron wave function of n electrons can be constructed as a product, a so-
called Hartree product, of n independent wave functions for the individual electrons.
Aese one-electron wave functions ϕn are denoted asmolecular orbitals, each describ-
ing a single electron with space and spin coordinate rn.4 To ensure the antisymmetry
of the n-electron wave function, i.e., that the exchange of two electron coordinates
causes only a sign change, the Hartree product can be antisymmetrized by a Slater de-
terminant.Ais simplest antisymmetric wave function is used inHartree-Fock theory:

ψhf(r) = √
n!

:::::::::::::::::::::

ϕ(r) ϕ(r) ⋯ ϕn(r)
ϕ(r) ϕ(r) ⋯ ϕn(r)⋮ ⋮ ⋱ ⋮
ϕ(rn) ϕ(rn) ⋯ ϕn(rn)

:::::::::::::::::::::
. (2.19)

Inserting this n-electron wave function in the energy functional (2.17), with the elec-
tronic Hamiltonian operator provided by (2.18), that is, working out the expression

Eel[ψhf] = ⟨ψhf ∣ V̂nuc–el ∣ψhf⟩ + ⟨ψhf ∣ T̂el ∣ψhf⟩ + ⟨ψhf ∣ V̂el–el ∣ψhf⟩ , (2.20)

allows one to collect similar integrals over the n individual electronic coordinates and
to abandon their numbering. Ae >rst two terms of (2.20), comprising the one-elec-
tron energy contributions v̂nuc–el and t̂el, simply become sums of these contributions:5

⟨ψhf ∣ V̂nuc–el ∣ψhf⟩ = n∑
n= ∫ dr ϕ

n∗(r) v̂nuc–el(r) ϕn(r) , (2.21)

⟨ψhf ∣ T̂el ∣ψhf⟩ = n∑
n= ∫ dr ϕ

n∗(r) t̂el(r) ϕn(r) . (2.22)

Ae third term of (2.20), that is, the electron-electron interaction composed of the
two-electron contributions v̂el–el, yields two parts:

⟨ψhf ∣V̂el–el ∣ψhf⟩ = 


n∑
n,m

∫ dr dr ϕn∗(r)ϕm∗(r) v̂el–el(r, r)ϕn(r)ϕm(r) (2.23)

− 


n∑
n,m

∫ dr dr ϕn∗(r)ϕm∗(r) v̂el–el(r, r)ϕm(r)ϕn(r), (2.24)
4Here, rn = (rn , rn , rn , σn) captures the three spatial and one spin coordinate for electron n collectively.
5In Hartree-Fock literature the terms (2.21) and (2.22) are typically combined into a core Hamiltonian.
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where the >rst part, denoted as theHartree energy, represents the Coulomb energy due
to all independent electrons and the second part is referred to as the exchange energy.
Now, to >nd the wave function ψhf with lowest energy, the energy functional (2.20)

is minimized with respect to variations of the orbitals ϕn, which are constrained to
orthonormality. Employing Lagrange multipliers εn, henceforth interpreted as orbital
energies, allows the derivation of an eigenvalue equation for the orbitals, known as the

▸ Hartree-Fock Equation

Ĥhf ϕn(r) = εn ϕn(r) , (2.25)

Ĥhf = t̂el(r) + v̂nuc–el(r) + v̂h(r) + v̂x(r) , (2.26)

where Ĥhf is called the Fock operator. Its four contributions are related to the four en-
ergy terms (2.21) to (2.24) and the newly speci>ed ones act on the orbitals as follows:

v̂h(r) ϕn(r) = [ n∑
m= ∫ dr ϕ

m∗(r) v̂el–el(r, r) ϕm(r)] ϕn(r) , (2.27)

v̂x(r) ϕn(r) =−[ n∑
m= ∫ dr ϕ

m∗(r) v̂el–el(r, r) ϕn(r)] ϕm(r) . (2.28)

Ae Fock operator is an eIective one-electron operator that governs the dynamics of
the independent electrons. Each electron experiences the>xed nuclear potential v̂nuc–el,
as well as theHartree potential v̂h and the exchange potential v̂x. Ae Hartree potential
mimics the exact electron-electron interaction by amean Deld of all other independent,
or noninteracting electrons, whose charge can be seen as spread over the system. Ae
exchange potential describes a certain interaction – the exchange interaction: it pre-
vents the near vicinity of parallel-spin electrons, and thus re?ects the Pauli principle
enforced by the antisymmetrization of the wave function. However, the Fock operator
neglects any dynamical correlation of electrons due to their electrostatic interaction. In
other words, opposite-spin electrons can come arbitrarily close to each other.
Technically, the Fock operator depends on its own eigenfunctions, i.e., the orbitals

which are actually determined by the Hartree-Fock equation. Hence, the Hartree-
Fock eigenvalue equation needs to be solved self-consistently (Section 2.2.3). Once
self-consistent solutions are obtained, the Slater determinant ψhf constructed from
the n orbitals with lowest orbital energies provides the Hartree-Fock ground state.
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2.2.2. Kohn-Sham Density Functional Theory

Ae electronic Hamiltonian operator (2.18), describing a many-body system such as a
molecular system, is completely de>ned by the speci>cation of both the >xed nuclear
coordinates, i.e., the nuclear potential V̂nuc–el, and the number of electrons n. Ae
key insight giving rise to density functional theory is that the Hamiltonian operator is
alternatively determined by the knowledge of the ground state electron density ρ, that
is, the probability of >nding any of the n electrons at a particular point in space:

∫ dr ρ(r) = n . (2.29)

Ais is proven by the >rst Hohenberg-Kohn theorem [44], providing the equivalent
statement that the electron density ρ (which already speci>es n) uniquely determines
the nuclear potential V̂nuc–el, thus the Hamiltonian operator, and therefore all informa-
tion of the system, in particular its ground state energy through a necessarily existing
functional (2.30). A second theorem states that this functional obeys the variational
principle, i.e., is minimized by ρ yielding the ground state energy:

Eel[ρ] = ∫ dr ρ(r) v̂nuc–el(r) + Tel[ρ] + Vel–el[ρ] . (2.30)

As opposed to the nuclear potential, one lacks explicit expressions of the kinetic en-
ergy Tel and the electron-electron interaction Vel–el in terms of the electron density.
Within the Kohn-Sham approach [45], this central problem of density functional the-
ory is addressed by introducing an auxiliary system of independent, noninteracting
electrons with molecular orbitals ϕn, representing the same electron density:

ρ(r) = n∑
n=ϕ

n∗(r) ϕn(r) . (2.31)

In this way, portions of the unknown energy functionals, corresponding to the nonin-
teracting auxiliary system, can be expressed in terms of the orbitals using the results
of Hartree-Fock theory for the kinetic energy (2.22) and the Hartree energy (2.23),

Tel[ρ] = n∑
n= ∫ dr ϕ

n∗(r) tel(r) ϕn(r) + T̃el[ρ] , (2.32)

Vel–el[ρ] = 
 ∫ dr dr ρ(r) ρ(r) v̂el–el(r, r) + Ṽel–el[ρ] , (2.33)
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while all remaining many-body contributions, due to the exchange interaction and
dynamical correlation, are incorporated in the exchange-correlation energy functional
of the density, which is a purely formal expression at this point:

Exc[ρ] = T̃el[ρ] + Ṽel–el[ρ] . (2.34)

To >nd an expression of the ground state density (2.31), the energy functional (2.30)
is minimized with respect to variations of the auxiliary orbitals ϕn, constrained to or-
thonormality. Ae method of Lagrange multipliers εn leads to an eigenvalue equation
for the orbitals, which requires self-consistent solving (Section 2.2.3) and is called the

▸ Kohn-Sham Equation

Ĥks ϕn(r) = εn ϕn(r) , (2.35)

Ĥks = t̂el(r) + v̂nuc–el(r) + v̂h(r) + v̂xc(r) . (2.36)

Here, the eIective one-electron operator Ĥks, denoted as the Kohn-Sham operator, de-
scribes the electron-electron interaction by the Hartree potential v̂h, representing the
electronic mean->eld, plus the exchange-correlation potential v̂xc, which is the func-
tional derivative of the exchange-correlation energy functional (2.34):

v̂h(r) = ∫ dr ρ(r) v̂el–el(r, r) , v̂xc(r) = δExc[ρ]
δρ(r) . (2.37)

▸ Exchange-Correlation Energy Functional In principle, self-consistent solu-
tions of the Kohn-Sham equation give access to the exact ground state of the inter-
acting many-body system, provided an exact expression for the exchange-correlation
energy functional Exc is used. Unfortunately, such an expression is unknown – but
a number of approximations are available. Ae simplest of these is the local density
approximation (lda), where the electron density is approximated as locally homoge-
neous in order to use the model of the homogeneous electron gas at the same density,
for which the exchange functional Elda

x is known analytically [46] and the correlation
functional Elda

c can be parametrized with high accuracy [47]. To address the issue of
the still neglected nonlocal density dependences of the exchange-correlation energy,
improved approximations can be performed. In a>rst step, semilocal dependences can
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be taken into account by establishing expressions for the density gradient and higher
order derivatives, referred to as the generalized gradient approximation (gga); exam-
ples are the exchange functional Egga

x of Becke [48] and the correlation functional Egga
c

of Lee, Yang, and Parr [49]. Ae next step of accounting for truly nonlocal density de-
pendences poses the greatest challenge; however, at least for the exchange energy, the
nonlocal expression given by Hartree-Fock theory Ehf

x (2.24) can be incorporated in
the description, resulting in hybrid Hartree-Fock Kohn-Sham exchange-correlation
energy functionals. Particularly successful is the Becke three-parameter hybrid func-
tional with Lee, Yang, and Parr correlation (b3lyp) [50], which is composed as

Eb3lyp
xc = Elda

x + Elda
c + α(Ehf

x −Elda
x ) + α(Egga

x −Elda
x ) + α(Egga

c −Elda
c ) . (2.38)

Ae parameters α = ., α = . and α = . are determined by >tting to experi-
mental data for atomization energies, ionization potentials, and proton aBnities of up
to 56 diIerent molecules, and total energies of 10 atoms [50].
In this work, Kohn-Sham density functional theory with the b3lyp hybrid func-

tional is used, inter alia, to obtain many-body terms, as in (2.16), for the parametriza-
tion of force Delds (Section 4.2.1), to determine molecular point charge distributions
and polarizabilities for the calculation of site energies (Section 4.2.5), and to assess the
nuclear rearrangement of molecules upon electron attachment for the quanti>cation
of reorganization energies (Section 4.2.6).

2.2.3. Basis Set Approximation

Ae discussed electronic structure theories reduce the electronic Schrödinger equation
of the n-electron system to the Hartree-Fock (2.25) and Kohn-Sham equation (2.35).
Both of these represent a set of one-electron eigenvalue equations for molecular or-
bitals ϕn and associated orbital energies εn, governed by an eIective one-electron
Hamiltonian operator Ĥ, which depends on its own eigenfunctions:

Ĥ ϕn(r) = εn ϕn(r) . (2.39)

Ais type of equation is routinely solved a5er conversion into an algebraic equation
by means of a >nite set of prede>ned basis functions φτ . Aese basis functions are
o5en chosen as atomic orbitals of the isolated atoms of the system, or are based on
them, and are therefore conventionally denoted as atomic orbitals. By expanding the
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unknownmolecular orbitals as a linear combination of the atomic orbitals (mo-lcao),
only the expansion coeBcients Cτn remain to be determined:

ϕn(r) = ∑
τ
Cτnφτ(r) . (2.40)

Now, inserting this expansion in the eigenvalue equation (2.39), multiplying from the
le5with φσ and integrating over r leads to the desired algebraic equation, also known
as the Roothaan-Hall matrix equation [51, 52],

H C = S C E , (2.41)

for the expansion coeBcients C = (Cτn) and molecular orbital energies E = diag(εn).
H = (Hστ) is the Hamiltonian matrix and S = (Sστ) the atomic orbital overlap matrix,

Hστ = ⟨φσ ∣ Ĥ ∣φτ⟩ ≡ ∫ dr φσ∗(r) Ĥ φτ(r) , (2.42)

Sστ = ⟨φσ ∣φτ⟩ ≡ ∫ dr φσ∗(r) φτ(r) , (2.43)

where the latter arises, since atomic orbitals are generally nonorthogonal, which im-
plies that nonvanishing terms of diCerential overlap, that is, for σ ≠ τ, exist. Ae appli-
cation of a similarity transformation T , which orthogonalizes the basis set of atomic
orbitals T†ST = I, leading to a new coeBcient matrix C′ = T−C and a transformed
one-electron Hamiltonian matrix H′ = T†HT , results in a matrix equation [40],

H′ C′ = C′ E , (2.44)

which yields the new coeBcients and the orbital energies by diagonalization of H′.
Of course, thismatrix still depends itself on the coeBcients sought, hence the diagonal-
ization process requires an initial guess of the coeBcients. To obtain a self-consistent
solution, i.e., coeBcients matching the initial guess, the diagonalization process needs
to be iterated until the coeBcient matrix is converged to a desired level of precision.
Aese iterative methods are implemented in standard so5ware packages for computa-
tional chemistry, such as the gaussian package [53], which is used in this work. Aese
methods of electronic structure theory are o5en referred to as ab initio or Drst prin-
ciples methods, although density functional theory may include certain empirical pa-
rameters, depending on the employed exchange-correlation energy functional.
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▸ Basis Sets In practice, computational chemistry packages provide a comprehen-
sive choice of basis sets. Particularly popular are the Pople style basis sets [54], whose
basis functions are, as is customary, based on the atomic orbitals of the isolated atoms
of the system.Ae correct functional form for describing atomic orbitals are Slater type
orbitals, whose radial part decays exponentially with the distance from the atomic nu-
cleus. However, for computational eBciency, it is bene>cial to approximate a Slater
type orbital by multiple Gaussian type orbitals, which decay exponentially with the
squared distance. According to this approximation, the minimal Pople style basis sets,
designated as sto-ng, describe the Slater type orbitals by n Gaussian type orbitals.
Aese minimal basis sets are, however, o5en unsuitable for molecular systems, since
chemical bonding in molecules breaks the spherical symmetry of the atomic orbitals.
To address this issue, the valence orbitals, which facilitate the bonding eIects, can
be split into two or more functions with varying decay factors. Ae corresponding
split-valence Pople style basis sets are designated as n-mlg, where n indicates the num-
ber of Gaussian type orbitals used to represent the core orbitals, while each of the
subsequent variables m, l , etc. refers to one of the functions into which the valence
orbitals are split. Ae basis sets can be further improved by including polarization
functions, indicated by an asterisk, while two asterisks signify that they are added to
light atoms as well. In this work, the 6-311g∗∗ basis set is typically employed.

▸ Semiempirical Methods Based onHartree-Fock theory, there exists a variety of
semiempiricalmethods [55–58], which incorporate further approximations and empir-
ical information in order to reduce the computational expense of ab initio methods.
On the one hand, such semiempirical methods o5en involve what is called the ne-
glect of diIerential overlap (ndo), where the calculation of the atomic orbital overlap
matrix (2.43) is initially avoided, that is, Sστ = δστ . Ais implies that the Roothaan-
Hall matrix equation (2.41) is directly in the standard eigenvalue form (2.44). On the
other hand, the matrix elements (2.42) of the Fock operator (2.26) are replaced by sig-
ni>cantly simpli>ed expressions including empirical relationships. Aese simpli>ed
expressions may also include some special, again empirically parametrized, atomic or-
bital overlap terms Sστ to compensate for the major errors resulting from the ndo.
An example is Zerner’s intermediate neglect of diIerential overlap (zindo) [59, 60],
which is referred to at a later point; in this work, it is employed to calculate coupling
strengths between electronic states, speci>cally the transfer integrals (Section 4.2.4).
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Chapter 3.

Charge Transfer in Molecular Systems

Charge transfer [34, 61–64] refers to a microscopic process of electron movement,
which is elementary for many macroscopic charge transport phenomena. Ae mi-
croscopic systems hosting charge transfer processes are molecular systems, such as
molecular fragments, entire molecules, or their aggregates. A more precise de>nition
of such a microscopic system is the charge transfer complex. It denotes a molecular
system comprising a negative or positive excess charge, i.e., an electron or hole, which
is localized to a certain degree, such that (in the simplest case) two spatial localization
centers can be identi>ed: the donor and the acceptor. Ae process of charge transfer
is then understood as the spatial displacement of the excess charge from the donor to
the acceptor part of the charge transfer complex, and is written, in the case of electron
transfer, as d−a→ da− . Since such a charge redistribution alters the electrostatic >eld
within the complex, it is associated with a rearrangement of the nuclear coordinates
of the molecular system. Ais leads to a central property of charge transfer: the two
nuclear con>gurations corresponding to the charge localization at the donor and ac-
ceptor can be thought of as minima in the potential energy surfaces for the nuclear
motion. Ae energetic barrier separating these two minima acts as reaction barrier
for the transfer process and critically determines the characteristic reaction time, in
other words the charge transfer rate. Ae formulation of analytical expressions for the
charge transfer rate is the main objective of charge transfer theories. To this end, the
key features characterizing the charge transfer complex and its environment need to
be translated into tangible parameters.
Ae discussion starts by introducing the regimes of charge transfer (Section 3.1).

Ais overview illustrates that a charge transfer reaction should be treated on a diIerent
theoretical basis, depending on the degree of localization of the excess charge. Based
on these considerations, it follows the explicit formulation of charge transfer rates in
the regime of strongly localized charges (Section 3.2).
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3.1. Regimes of Charge Transfer

Ae microscopic processes occurring in a charge transfer complex are governed by
the Schrödinger equation of its constituent electrons and atomic nuclei (Section 2.1).
Such a full Schrödinger equation (2.5) can be expanded by an adiabatic electronic basis
of delocalized states, de>ned by an electronic motion with >xed nuclei, i.e., a paramet-
ric dependence on the nuclear coordinates. Ais leads to separate but coupled equa-
tions of motion for electrons (2.7) and nuclei (2.10), which may be decoupled by the
Born-Oppenheimer (or adiabatic) approximation. Now, considering a charge transfer
reaction, the validity of the Born-Oppenheimer approximation is not expectable in
general since the charge displacement and nuclear rearrangement occur concertedly.
Moreover, even the use of the adiabatic electronic basis can be unsuitable for repre-
senting electronic wave functions describing the shi5 of charge localization.
Herea5er, the adiabatic electronic basis is applied to describe the transfer of rather

delocalized charges, which is the regime of adiabatic charge transfer (Section 3.1.1).Ae
transfer of rather localized charges, in contrast, falls into the regime of nonadiabatic
charge transfer (Section 3.1.2). In this case, it proves bene>cial to choose an electronic
basis of localized states, which is denoted as diabatic electronic basis.

3.1.1. Adiabatic Charge Transfer

To treat the present case of two localization centers (the donor and acceptor), it suf-
>ces to introduce an adiabatic electronic basis in two-state approximation, consisting
of two delocalized states ∣ψ±(Q)⟩.Aese states correspond to adiabatic wave functions
ψ±(r,R) = ⟨r ∣ψ±(R)⟩ de>ned in (2.7), which are parametrically dependent on the nu-
clear coordinates R. Note that this a-dimensional set of nuclear coordinates is here
expressed by a one-dimensional linear combination Q, the reaction coordinate. While
detailed later, it can for now be imagined to pass through the two nuclear con>gura-
tions, where the excess charge is localized at the donor and the acceptor.

▸ Hamiltonian in Adiabatic Representation In the thus-de>ned adiabatic elec-
tronic basis, the full Hamiltonian of the charge transfer complex expands as follows:1

Ĥ = ∑
α=±Ĥ

α
nuc(Q) ∣ψα(Q)⟩ ⟨ψα(Q)∣ + ∑

α=±≠β̂
Θαβ(Q) ∣ψα(Q)⟩ ⟨ψβ(Q)∣ . (3.1)

1Ais results from the nuclear equation of motion (2.10), as seen by taking ∑γ (3.1) ∣ψγ(Q)⟩ χγ(Q),
using the full Schrödinger equation (2.5) and the expanded full wave function (2.9).
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2J

Q

U−(Q) U+(Q)

Q∗
∆E∗

Figure 3.1. Adiabatic potential energy surfaces of
a charge transfer complex as functions of the reac-
tion coordinate Q. Ae potentialsU− andU+ gov-
ern the nuclear motion in the adiabatic electronic
basis states ∣ψ−⟩ and ∣ψ+⟩. At the nuclear con>gu-
ration Q∗, the functions approach to a minimum
separation of J and the potential U− exhibits an
energetic barrier ∆E∗, separating two minima.

Ais implicates that the electronic coupling between the two adiabatic basis states∣ψ−⟩ and ∣ψ+⟩ is caused by the nonadiabaticity operator Θ̂±∓, which is given in (2.12).
If the system is in one of these basis states, its nuclear motion is governed by the re-
spective nuclear Hamiltonian operator, which, according to (2.11), reads

Ĥ±nuc(Q) = T̂nuc + V̂nuc–nuc + Θ̂±±(Q) + E±el(Q)-.........................................................................................../.................................. ..........................................................0
U±(Q)

. (3.2)

A prototypical example of the corresponding adiabatic potential energy surfaces (pes)
U− and U+ is depicted in Figure 3.1. Here, the pes of the electronic ground state U−
exhibits two minima, separated by a barrier ∆E∗ at the nuclear con>guration Q∗.

▸ Adiabatic Charge Transfer Reaction Now, if the excess charge is rather delo-
calized, the charge transfer complex is in the almost pure electronic ground state ∣ψ−⟩,
while electronic coupling to the next state is only a small term.2 Aen, the nuclear dy-
namics is governed by the pesU− and is conceivable as a vibration around the, say, le5
minimum until, a5er a characteristic time, the barrier to the right minimum can be
surmounted. During this nuclear rearrangement along the reaction coordinate Q, the
electronic state ∣ψ−⟩ – which is a parametric function ofQ – is continuously deformed,
such that the excess charge moves from the donor to the acceptor part of the charge
transfer complex. Ais continuous modi>cation of the electronic probability density
of a single electronic state is denoted adiabatic charge transfer. Ae associated charge
transfer rate is proportional to the nuclear transition rate, and hence takes, according
to transition state theory [65, 66], the simple form of an Arrhenius relation:

ω ∼ e−∆E∗/kBT . (3.3)

2In Figure 3.1 this corresponds to an energy splitting larger than nuclear energy quanta: J ≫ ħωvib.
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3.1.2. Nonadiabatic Charge Transfer

If the excess charge, in contrast to the preceding case, is rather localized, the system is
no longer in an almost pure delocalized state of the adiabatic electronic basis. Instead,
one expects substantial mixing of these states, in other words strong electronic cou-
pling,mediated by the nonadiabaticity operator. As the nonadiabaticity operator (2.12)
is a diIerential operator with respect to Q, the derivation of an eligible charge trans-
fer rate is no simple task. It is therefore advisable to introduce an electronic basis of
localized states, which is referred to as diabatic electronic basis.

▸ Diabatic Electronic Basis Staying in the two-state approximation, diabatic elec-
tronic states ∣ψi,f⟩ are inferred from the adiabatic ones ∣ψ±⟩ by a basis transformation,

( ∣ψi(Q)⟩∣ψf(Q)⟩ ) = T(Q)( ∣ψ−(Q)⟩∣ψ+(Q)⟩ ) , (3.4)

where the unitarymatrixT is chosen such as to eliminate their parametric dependence
on the nuclear coordinates Q, in other words to inhibit any electronic coupling due to
the Q-derivative nonadiabaticity operator [67–69], which, in turn, enables electronic
localization.3 Typically, the diabatic states depend on a >xed nuclear reference con-
>guration Q (henceforth omitted), irrespective of the actual nuclear positions. Aus,
they are no longer eigenstates of the electronic Hamiltonian (2.8), except at Q [34],

Ĥel(Q) ∣ψi,f⟩ = Ei,f
el ∣ψi,f⟩ , (3.5)

with eigenvalues Ei,f
el , while the parametric dependence on Q is separated in a term V̂ ,

Ĥel(Q) = Ĥel(Q) − V̂(Q ,Q) . (3.6)

▸ Hamiltonian in Diabatic Representation In the thus-de>ned diabatic elec-
tronic basis, the full Hamiltonian of the charge transfer complex expands as follows:4

Ĥ = Ĥi
nuc(Q) ∣ψi⟩ ⟨ψi∣ + Ĥf

nuc(Q) ∣ψf⟩ ⟨ψf ∣ + J if(Q) (∣ψi⟩ ⟨ψf ∣ + ∣ψf⟩ ⟨ψi∣) . (3.7)

3One can show that the absence of the nonadiabatic coupling terms is related to the diagonalization of
operators associated with charge localization, such as the dipole moment operator [70–75].

4Ae expression (3.7) results from expanding Ĥ = Î Ĥ Î using the completeness relation of the diabatic
electronic basis and the de>nition of the electronic Hamiltonian operator (2.8).
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U i(Q) U f(Q)

QQ∗
∆E∗ 2J

U−(Q) U+(Q) Figure 3.2. Diabatic potential energy surfaces of a
charge transfer complex as functions of a reaction
coordinate Q. Ae potentials U i and U f (solid
black and red lines) govern the nuclear motion in
the diabatic electronic basis states ∣ψi⟩ and ∣ψf⟩.
Ae functions are crossing at the nuclear con>gu-
ration Q∗, de>ning the energetic barrier ∆E∗. In
contrast, the adiabatic potential energy surfaces
(dashed gray lines) avoid crossing at Q∗ with an
energetic separation of J.

While any terms with the nonadiabaticity operator vanish by de>nition, one now en-
counters electronic coupling between the diabatic basis states ∣ψi⟩ and ∣ψf⟩ due to the
▸ Transfer Integral

J if(Q) = ⟨ψi ∣ Ĥel(Q) ∣ψf⟩ = ⟨ψi ∣ V̂(Q ,Q) ∣ψf⟩ . (3.8)

If the system is in one of the diabatic basis states, the nuclear dynamics is described by
the respective nuclear Hamiltonian operator, which is given by

Ĥi,f
nuc(Q) = T̂nuc + V̂nuc–nuc + J ii,f f(Q) + Ei,f

el-............................................................................../............................................... ...............................0
U i,f(Q)

. (3.9)

Prototypical diabatic potential energy surfaces U i and U f are depicted in Figure 3.2.
Apparently, these two functions are crossing at the nuclear con>guration Q∗ and give
rise to the shape of their adiabatic counterparts, which avoid crossing at this point.

▸ Nonadiabatic Charge Transfer Reaction Now, if the excess charge is rather lo-
calized, the charge transfer complex is in an almost pure diabatic basis state, say, ∣ψi⟩,
while the electronic coupling to the other one, i.e., the transfer integral, is only a small
term.5 Aen, nuclear vibrational motion is governed by the pes U i and leads, a5er a
certain time, to the nuclear transition state Q∗. Aere, an electronic transition to the
state ∣ψf⟩ can take place,6 such that nuclear motion proceeds in the pes U f . Note that
5In Figure 3.2 this corresponds to an energy splitting smaller than nuclear energy quanta: J ≪ ħωvib.
One can show that this splitting equals the transfer integral at the transition state: J = J i f(Q∗) [34].

6An electronic transition is restricted to this diabatic crossing point due to the simultaneous ful>llment
of the Franck-Condon principle [76], i.e., the condition of constant nuclear coordinates (vertical
transition in Figure 3.2), and the energy conservation (horizontal transition).
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nuclear motion along the reaction coordinateQ causes no alteration of the basis states,
which follows from their independence of Q. Instead, it is the transition between the
basis states which describes the movement of the excess charge from the donor to the
acceptor. Ais instantaneousmodi>cation of the electronic probability density due to
the transition between electronic states is denoted nonadiabatic charge transfer. Ae
associated charge transfer rate not only re?ects the probability of reaching the nuclear
transition state Q∗, which is the familiar Arrhenius relation (3.3), but also the proba-
bility for the occurrence of the electronic transition mediated by the transfer integral:

ω ∼ ∣ J if ∣ e−∆E∗/kBT . (3.10)

When deriving rate expressions of this type, the transfer integral as a small quantity
can be conveniently treated as a perturbation to the initial state (Section 3.2).

▸ Reaction Coordinate What follows is a supplement to the one-dimensional re-
action coordinateQ, which combines the a-dimensional set of nuclear coordinatesR.
To describe nuclear vibrational motion in a pesU(R) around someminimum R, one
may approximate the pes in the vicinity of R by a second order Taylor expansion [34],

U(R) =U+ 
∑
a,b

hab (Ra−R
a)(Rb−R

b) =U+ 
∑

ξ
(ωvib

ξ (Qξ−Q
ξ)) =U(Q) , (3.11)

which allows the transformation, by diagonalization of the Hessian matrix (hab), to
a−  (mass weighted) normal mode coordinates Qξ with eigenfrequencies ωvib

ξ . Note
that  eigenvectors represent overall translational and rotational motions. Aen, along
with the conjugate momentum operators Pξ, the nuclear Hamiltonian operator reads

Ĥnuc(Q) = 
∑

ξ
P
ξ +U(Q) . (3.12)

A charge transfer reaction is usually triggered by the nuclear motion of a small subset
of normal mode coordinates, the active normal mode coordinates. An appropriate
linear combination of these active coordinates o5en yields a suitable one-dimensional
reaction coordinate Q with average eigenfrequency ωvib and conjugate momentum
operator P, such that the nuclear Hamiltonian (3.12) takes the simple form

Ĥnuc(Q) = 
 P

 +U(Q) , U(Q) = U + 
 (ωvib(Q − Q)) . (3.13)
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3.2. Charge Transfer Rates

A charge transfer reaction can take place in numerous variants, which is re?ected in
the existence of a wide variety of rate expressions, tailored to the characteristics of the
charge transfer complex. Aese distinctive features are worth mentioning. A >rst dis-
tinction is the degree of localization of the excess charge: according to the discussion
on the regimes of charge transfer (Section 3.1), this speci>es if the charge transfer reac-
tion is an adiabatic or nonadiabatic process and suggests the appropriate, i.e., adiabatic
or diabatic, representation of the Hamiltonian operator. A second factor is the actual
composition of the molecular system: for unimolecular systems, where the donor and
acceptor are parts of the same molecule, the nuclear vibrational dynamics can be de-
scribed by a common set of normal mode coordinates, which usually leads to a single
reaction coordinate. For bimolecular systems, in contrast, it is generally required to
introduce two separate sets of normal mode coordinates with independent reaction
coordinates. A third aspect is the surrounding of the charge transfer complex: if the
complex is embedded in a static environment, it suBces to account for changes in the
electrostatic interactions with the environment, related to the charge redistribution
in the complex. However, if the complex is formed in a polar solvent, the reorienta-
tion of surrounding solvent molecules causes signi>cant nuclear adjustments, which
requires the introduction of an outer-sphere reaction coordinate in addition to the
internal ones. A fourth important system property is the temperature: it allows the
determination of whether the nuclear vibrations along the internal and outer-sphere
reaction coordinates should be described by classical or quantummechanics. In a high-
temperature limit, the vibrations related to all reaction coordinates can be treated clas-
sically. At medium temperatures, the high-frequency vibrations along the internal re-
action coordinates should be treated quantummechanically, while the low-frequency
dynamics related to the outer-sphere reaction coordinate may still be described classi-
cally. In a low-temperature limit, the nuclear vibrations may be entirely neglected.
In the studies of this work, charge transfer occurs between individualmolecules, i.e.,

in bimolecular systems, surrounded by solid material, i.e., a static environment, which
is at room temperature, identi>ed as high-temperature limit, and exhibits structural
disorder, causing strong charge localization and hence nonadiabatic charge transfer.
For this particular type of charge transfer, the derivation of an appropriate rate expres-
sion is detailed (Section 3.2.1). Ais is followed by a brief comparison to rates in the
medium and low temperature limits of nonadiabatic charge transfer (Section 3.2.2).
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3.2.1. Bimolecular High-Temperature Nonadiabatic Charge Transfer

Ae theoretical elaboration of the charge transfer reaction starts from theHamiltonian
operator of the charge transfer complex in diabatic representation (3.7). Accordingly,
the electronic basis consists of an initial and a >nal electronic state (i and f), corre-
sponding to charge localization at the donor and acceptor, respectively. In treating
the bimolecular case, the donor and acceptor are taken as two independent molecules
(i and j), whose nuclear vibrational motions are described by two separate sets of nor-
mal mode coordinates, which are collected in two independent (mass weighted) reac-
tion coordinates Qi and Qj with conjugate momentum operators Pi and Pj. Hence,
the nuclear Hamiltonian operators for the initial and the >nal electronic states (3.9)
contain two independent contributions of kinetic energy, potential energy and of inter-
action energy with the environment, where the latter accounts for a static environment
of the charge transfer complex by constant electrostatic interactionsWc,n

i , j with the two
molecules in their charged and neutral states (c and n):

Ĥi
nuc(Qi ,Qj) = 

 P

i + 

 P

j +U i

i(Qi) +U i
j(Qj) +Wc

i +Wn
j-......................................................................................./...................................... ..................................................0

E i(Qi ,Qj)
,

Ĥf
nuc(Qi ,Qj) = 

 P

i + 

 P

j +U f

i (Qi) +U f
j(Qj) +Wn

i +Wc
j-........................................................................................./.................................... .....................................................0

Ef(Qi ,Qj)
.

(3.14)

Here, Ei and Ef represent two-dimensional potential energy surfaces, which, in a har-
monic oscillator approximation, are expressed by quadratic functions with respect to
the individual reaction coordinates of the two molecules, such as in (3.13):

U i,f
i , j(Qi , j) = Uc,n

i , j + 
 (ωvib

i , j (Qi , j − Qc,n
i , j )) . (3.15)

Figure 3.3 provides an illustration of these four quadratic functions and de>nes the
minimum energies Uc,n

i , j at the nuclear equilibrium con>gurations Qc,n
i , j given in (3.15).

Ae functions U i
i and U i

j, drawn in black, govern the nuclear vibrations of the two
molecules (around the con>gurations Qc

i and Qn
j ) in the initial electronic state of the

charge transfer complex, where the excess charge is localized at the donor molecule i.
In the >nal electronic state of the complex, where the charge has passed to the accep-
tor molecule j, the nuclear vibrations of the two molecules (around Qn

i and Qc
j ) are

described by the functions U f
i and U f

j , marked in red.
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Figure 3.3. (a)Diabatic potential energy surfaces for the donormolecule i, (b) for the acceptormolecule j.
For each molecule, the potential energy surface of the initial electronic state is drawn in black, while that
of the >nal electronic state is drawn in red. Adapted from Reference [4].

Ae high-temperature limit refers to the limiting case in which the energy spacing
of the harmonic oscillators is small compared to the thermal energy (ħωvib

i , j ≪ kBT)
and the nuclear vibrations can be treated classically. Aen, an average treatment of the
kinetic energy is possible by the reaction coordinate distribution functions

fi , j(Qi , j) = 
Zi , j

e−U i
i , j(Qi , j)/kBT , Zi , j = ∫ dQi , j e−U i

i , j(Qi , j)/kBT . (3.16)

Characteristic fornonadiabatic charge transfer is aweak electronic coupling between
the initial and >nal diabatic electronic states: this allows the transfer integral J if (3.8)
to be treated as a perturbation to the initial state, switched on at time zero. Hence, the
time-dependent electronic Schrödinger equation, describing the localization shi5 of
the electronic probability density from the donor to the acceptor, can be expressed by
means of time-dependent perturbation theory. In >rst-order approximation, Fermi’s
golden rule [76–78] provides the transition rate from the initial electronic state with
energy Ei to the >nal state with energy Ef ,7 where summations over quantum level
manifolds can be replaced by integrations over the averaged vibrational energies:

ωif = π
ħ
∣ J if ∣ ∫ dQi dQj fi(Qi) f j(Qj) δ (Ei(Qi ,Qj) − Ef(Qi ,Qj)) . (3.17)

7To apply Fermi’s golden rule, the transfer integral J i f is considered constant with respect to the reaction
coordinate, which is referred to as the Condon approximation [79].
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To carry out the integration (3.17), one inserts the expressions (3.14), (3.15), and (3.16)
and demands that the argument of the delta function vanishes [80–82]. Ais leads to
a charge transfer rate that is referred to as the

▸ Marcus Rate

ωij = π
ħ

Jij√
πλijkBT

exp
⎧⎪⎪⎨⎪⎪⎩−
(∆Eij − λij)
λijkBT

⎫⎪⎪⎬⎪⎪⎭ . (3.18)

Notice that the rate ωij and the transfer integral Jij are henceforth labeled by the index
pair of the molecules at which the excess charge is localized (i and j) in the respective
diabatic electronic state (i and f). Ae same applies to the energy diIerence between
the nuclear equilibrium con>gurations of these electronic states, that is, the driving
force for the charge transfer reaction, which can be expressed as the

▸ Site Energy Di"erence

∆Eij = (Eint
i + Eelstat

i )-.............................../...............................0
Ei

− (Eint
j + Eelstat

j )-.............................../...............................0
E j

, (3.19)

where energetic contributions are grouped with respect to molecules i and j, de>ning
the site energies Ei and Ej. Ae site energy of a particular molecule comprises an inter-
nal and an electrostatic contribution, each ofwhich characterizing the charged state (c)
of the molecule relative to its neutral state (n), as indicated in Figure 3.3:

Eint
i , j = Uc

i , j −Un
i , j , Eelstat

i , j =Wc
i , j −Wn

i , j . (3.20)

In addition, the Marcus rate accounts for the energetic expense associated with the
nuclear rearrangement from the equilibrium con>gurations to the nuclear transition
states, located at the diabatic crossing points. Ais is covered by the

▸ Reorganization Energy

λij = (Un′
i −Un

i )-....................../.......................0
λ i

+ (Uc′
j −Uc

j )-...................../.....................0
λ j

. (3.21)
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Ae reorganization energy λij of the charge transfer complex can be considered as a
sum of reorganization energies λi and λ j for the donor and acceptor molecules. Aese
molecular reorganization energies denote the energy of a molecule in the >nal elec-
tronic state, but at the nuclear equilibrium con>guration of the initial electronic state,
as is indicated in Figure 3.3 by gray dots. In other words, the reorganization energy λi
represents the energy of molecule i in its neutral state with nuclear con>guration of its
charged state (n′), and λ j is the energy of molecule j in its charged state with nuclear
con>guration of its neutral state (c′). Aese energetic values contain the information
about the curvature andmutual oIset of the potential energy surfaces and hence about
the height of the energetic barrier at their diabatic crossing points.8

To summarize, the Marcus rate (3.18) is a simple yet powerful analytical rate expres-
sion for charge transfer that depends on three parameters of the charge transfer com-
plex. First, the transfer integral Jij (3.8), specifying the electronic coupling between the
two diabatic electronic states, in which the excess charge is localized at the molecules
i and j, respectively. Second, the site energy diIerence ∆Eij (3.19), denoting the diIer-
ence between the energies of these two electronic states with molecules being in their
nuclear equilibrium con>gurations. And third, the reorganization energy λij (3.21),
accounting for the energetic barrier between these nuclear equilibrium con>gurations,
which needs to be overcome by nuclear vibrational motion. Note that the latter is also
referred to as electron-phonon coupling.
Depending on the relation of the site energy diIerence and the reorganization en-

ergy, one distinguishes between two regimes of the Marcus rate. If the site energy dif-
ference is smaller than the reorganization energy (∆Eij < λij), the rate is an increasing
function with the site energy diIerence, which is denoted as the normal regime. How-
ever, if the site energy diIerence exceeds the reorganization energy (∆Eij > λij), the
rate turns into a decreasing function with increasingly favorable driving force, which
is called the inverted regime [83]. Ais is because high site energy diIerences lead to
the formation of >nal states with high vibrational energy, which is experimentally es-
tablished [84]. In Figure 3.3, the inverted regime corresponds to situations where the
lower potentials cross the energetically higher ones on the le5, and no longer on the
right side with respect to their minima.

8Note that the values have no direct physical meaning; rather, one can imagine a process in which a
molecule in its nuclear equilibrium con>guration of the initial electronic state (black dot) experiences,
by violation of energy conservation, a vertical transition into the >nal electronic state (gray dot)
and then reorganizes its nuclear coordinates to the new equilibrium con>guration (red dot) under
dissipation of the reorganization energy.
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3.2.2. Further Limits of Nonadiabatic Charge Transfer

Ae previously derived Marcus rate of nonadiabatic charge transfer covers bimolecu-
lar reactions under the constraints of a static environment and high temperature. To
highlight the resulting scope of the Marcus rate, a comparison to closely related ex-
pressions is instructive. To this end, two prominent examples are presented: the more
general Marcus-Levich-Jortner rate and the simpler Miller-Abrahams rate.
A generalization of the Marcus rate should, on the one hand, account for the nu-

clear relaxation of the environment associated with the charge transfer reaction. Ais
is achieved by introducing outer-sphere normalmode coordinates, which are common
to both molecules and are therefore treated by a single outer-sphere reaction coordi-
nate, coupled to the internal ones. Ae outer-sphere reaction coordinate captures com-
paratively slow reorientations of molecules surrounding the charge transfer complex,
hence its average eigenfrequency ωvib

out is much lower than the eigenfrequencies of the
internal reaction coordinates, ωvib

i and ωvib
j . On the other hand, a generalization may

embrace medium temperatures, where internal nuclear vibrations have large energy
quanta compared to thermal energy (ħωvib

i , j ≫ kBT) and are therefore treated quan-
tum mechanically. Ae nuclear dynamics related to the low-frequency outer-sphere
reaction coordinate may, however, still be described classically (ħωvib

out ≪ kBT). Ais
situation implies that in the initial electronic state, the molecules i and j are restricted
to their vibrational ground states with quantum numbers , while the >nal electronic
state can be formed in amanifold of vibrational states with quantum numbers η and ϑ,
respectively. Consequently, Fermi’s golden rule comprises two summations over quan-
tized manifolds of vibrational states and one integral over a reaction coordinate distri-
bution function, such as (3.16), describing the continuous outer-sphere energy. Car-
rying out the integration over the outer-sphere reaction coordinate [4, 85, 86], which
ensures energy conservation, yields a generalized (to the bimolecular case)

▸ Marcus-Levich-Jortner Rate

ωij = π
ħ

Jij√
πλoutij kBT

∞∑
η,ϑ=
∣⟨χi ∣ χηi ⟩∣ ∣⟨χj ∣ χϑj ⟩∣

⋅ exp
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−(∆Eij − ħ(ηωvib

i + ϑωvib
j ) − λoutij )

λoutij kBT

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (3.22)
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Here, the transition between the initial and >nal electronic states is associated with a
nuclear rearrangement of the environment, captured by an outer-sphere reorganization
energy λoutij , and with nuclear coupling terms for molecule i (and similarly for j), relat-
ing the nuclear ground state wave function χi in the initial electronic state with the nu-
clear wave functions χηi in the >nal electronic state, known as Franck-Condon factors:

∣⟨χi ∣ χηi ⟩∣ = 
η!
( λi
ħωvib

i
)ηexp(− λi

ħωvib
i
) . (3.23)

Ae Marcus-Levich-Jortner rate (3.22) should be preferred to the Marcus rate (3.18)
if the classical treatment of the internal nuclear vibrations is no longer appropriate.
In fact, internal normal mode frequencies are o5en comparable to the frequency of
carbon-carbon bond stretching with vibrational energy quanta ħωvib

cc ≈ . eV, which
is nearly an order of magnitude larger than thermal energy at room temperature [63].
However, it has been shown for these cases that the Marcus rate still yields quantita-
tively comparable results, as long as the site energy diIerence is not large compared
to the internal reorganization energy, i.e., charge transfer does not occur far outside
of the normal regime [4]. If the nuclear relaxation of the environment remains to be
taken into account, one can extend theMarcus rate by adding the outer-sphere reorga-
nization energy λoutij to the internal reorganization energy λij given in (3.21). However,
in solid materials, contrary to polar solvents, the outer-sphere reorganization energy
is typically only a small contribution [87–89]. For these reasons, the studies of this
work can rely on the Marcus rate.

A simpler expression than the Marcus rate arises in the limit of low temperatures
with weak electron-phonon coupling. Ais comprises the neglect of nuclear reorgani-
zation towards a nuclear transition state, where the charge transfer reaction actually
takes place, as well as the sole consideration of vibrational ground states, which are
bridged exclusively by tunneling. Note that energy conservation of the reaction is con-
sidered as satis>ed by the absorption or emission of a single lattice phonon. In this
limiting case, time-dependent perturbation theory leads to a rate [90] known as the

▸ Miller-Abrahams Rate

ωij = ω exp (−γijrij)
⎧⎪⎪⎨⎪⎪⎩
exp (−∆Eij

kBT ) , for ∆Eij >  ,
 , for ∆Eij ≤  . (3.24)
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Here, the electronic coupling is expressed as Jij = exp(−γijrij), where γij denotes the
inverse localization radius of the excess charge and rij is the distance between its lo-
calization centers, i.e., between the donor and acceptor molecules. Ae prefactor ω,
referred to as the hopping attempt frequency, can be set as the ground state vibrational
frequency or be considered as a material constant. For >xed electronic coupling, the
Miller-Abrahams rate decreases exponentially for a transfer reaction upwards in the
energy (∆Eij > ), while a reaction downwards in energy (∆Eij ≤ ) is independent of
the site energy diIerence. Contrary to theMarcus rate, theMiller-Abrahams rate lacks
a parameter for the reorganization energy. Hence, it precludes a quantitative calcula-
tion of charge transfer rates at ambient temperatures and is therefore unsuitable for
this work. Nonetheless, it is o5en used in conjunction with phenomenological charge
transport models, such as the Gaussian disorder models (Section 4.1.2).



Chapter 4.

Charge Transport in Organic Solids

Ae electrical conductivity of organic solids depends on their ability to support charge
carrier migration over macroscopic distances, that is, charge transport [6, 7, 91–96].
Ae eBciency of charge transport is speci>ed by the charge carrier mobility, de>ned
as the dri5 velocity attained by a charge carrier per unit electric >eld applied. Ae
charge carrier mobility in organic materials depends signi>cantly on the electronic
structure of the constituent molecules, but no less critically on their packing scheme
on a large scale. In addition, for a given material sample, the mobility is in?uenced by
further parameters, such as the applied electric >eld and the temperature. While the
molecular packing of the material, being somewhere in between perfectly crystalline
and completely amorphous, is related to so-called static disorder, the temperature of
the system gives rise to dynamic disorder. Ae absolute and relative strengths of these
types of disorder are o5en employed to distinguish between several regimes of charge
transport. Within these regimes, charge carrier migration diIers in its very nature,
which is a reason that, as of today, there is no uni>ed theory of charge transport for or-
ganic solids, but instead a variety of diIerent theories. Many of these charge transport
theories are based on charge transfer as an elementary process. While some theories
lead to generic, material-independent expressions of the mobility as a function of, for
example, the electric >eld and temperature, others further aim at predicting mobility
magnitudes for concrete material morphologies.
Ae following discussion starts with an overview of charge transport regimes and

the related transport theories (Section 4.1). For their classi>cation, a general charge
transport Hamiltonian is introduced which formalizes both static and dynamic disor-
der.Aen, particular attention is directed to a predictive charge transportmodel which
includes both types of disorder and is the core methodology of this work (Section 4.2).
To parametrize the charge transport Hamiltonian, this model relies on the extensive
use of computational chemistry methods, all of which are presented in detail.
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4.1. Regimes of Charge Transport

From amicroscopic point of view, charge transport of a single excess charge in a large-
scale organic solid can be described by a generalization of the two-state charge transfer
Hamiltonian, such as (3.7), to a large basis of electronic states. In the diabatic repre-
sentation, these are localized states ∣ψi⟩ with non-vanishing amplitude at spatial local-
ization centers, or sites i, and the charge transport Hamiltonian can be written as

Ĥ = Ĥ + Ĥ + Ĥ + Ĥ , where (4.1)

Ĥ = ∑
i
Ei ∣ψi⟩ ⟨ψi ∣ + ∑

i , j
Jij ∣ψi⟩ ⟨ψ j∣ , (4.2)

Ĥ = ∑
ξ


(P

ξ + (ωvib
ξ Qξ)) , (4.3)

Ĥ = ∑
i ,ξ

λ/iξ ωvib
ξ Qξ ∣ψi⟩ ⟨ψi ∣ , (4.4)

Ĥ = ∑
i , j,ξ

Λ/
ijξ ω

vib
ξ Qξ ∣ψi⟩ ⟨ψ j∣ . (4.5)

Ĥ is the equilibrium energy of the system, where all nuclear positions are >xed at their
energetic minimum. Ais energy is determined by the site energies Ei and transfer
integrals Jij. Ĥ represents the nuclear vibrational energy in terms of phonons with fre-
quencies ωvib

ξ , normal mode coordinatesQξ, and conjugate momentum operators Pξ.1

Ais term collectively describes low-frequency intermolecular vibrations, i.e., mutual
displacements of entiremolecules, and high-frequency intramolecular vibrations, and
that by means of reference oscillators which are centered at the origin in the space
of normal mode coordinates. Ĥ, known as local electron-phonon coupling, accounts
(in linear approximation) for modulations of the site energies Ei due to intramolec-
ular vibrations and re?ects the oIset of intramolecular oscillators from the origin.2

Ae coupling constants λiξ are thus associated with the reorganization energies (3.21),
generally by a relationship λi ∼ ∑ξ λiξ, where the sum vanishes under the assumption
that each site is only coupled to a single phonon branch. Ĥ, referred to as nonlocal
electron-phonon coupling, describesmodulations of the transfer integrals Jij due to low-
frequency intermolecular vibrations with the coupling constants Λijξ.

1Alternatively, a conjugate pair of dimensionless operators C†
ξ and Cξ for the creation and annihilation

of phononswith energy ħωvib
ξ maybe introduced, as usual, byCξ = Qξ(ωvib

ξ /ħ)/+ iPξ(/ħωvib
ξ )/.

2Ĥ + Ĥ + Ĥ corresponds to the two-state Hamiltonian (3.7), where the nuclear Hamiltonians (3.14)
are linearly expanded in the oIset from the nuclear equilibrium con>gurations Qc,n

i , j .
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(a) Band Transport⟨λ⟩ ≪ ⟨J⟩

(b) Polaron Transport
⟨λ⟩ ≳ ⟨J⟩

Figure 4.1. In ordered organic solids, the periodic
crystal lattice (gray) allows for delocalization of
the charge carrier (red) overmultiple sites. (a) For
weak dynamic disorder, i.e., ⟨λ⟩ ≪ ⟨J⟩, the carrier
rarely interacts with the lattice and migrates by
band transport. (b) For strong dynamic disorder,
i.e., ⟨λ⟩ ≳ ⟨J⟩, the carrier deforms the lattice, lead-
ing to polaronic transport.

Ae charge transport Hamiltonian Ĥ (4.1) allows the distinction between static and
dynamic disorder. Static disorder, which refers to ?uctuations evolving slowly com-
pared to themotion of a charge carrier, is described by the equilibriumHamiltonian Ĥ.
Ae variations of site energies Ei and transfer integrals Jij are denoted as diagonal and
oI-diagonal static disorder, or as energetic disorder σ and electronic disorder Σ:

σ =√⟨E⟩ − ⟨E⟩ , Σ =√⟨J⟩ − ⟨J⟩ . (4.6)

Dynamic disorder, which refers to rapid ?uctuations relative to charge dynamics, is
captured by the local and nonlocal electron-phonon couplings Ĥ and Ĥ. Ae related
modulations of site energies and transfer integrals are denoted as diagonal and oI-
diagonal dynamic disorder and are quanti>ed by the coupling constants ⟨λ⟩ and ⟨Λ⟩.
Note that the discrimination between static and dynamic disorder is o5en not obvious,
since organic solids may comprise phononic modes which evolve slower than charge
dynamics and should be treated as static disorder. Ais is particularly important for
organic crystals, where static disorder due to frozen molecular motion is absent.
Charge transport in organic solids may not only diIer in the magnitude of the

charge carrier mobility µ, but also in the functional dependence of µ on the temper-
ature T or external >eld F, and therefore by its very nature. Ae nature of transport
depends on the interplay of the average electronic coupling ⟨J⟩, which enables charge
migration and delocalization, and the in?uences of disorder, that is, σ , Σ, ⟨λ⟩, and ⟨Λ⟩,
which may counteract these eIects. Ae overview of charge transport regimes is divi-
ded into statically ordered (Section 4.1.1) and disordered organic solids (Section 4.1.2).

4.1.1. Ordered Organic Solids

Ordered organic solids are devoid of any static disorder, that is, σ ≪ ⟨J⟩ and Σ≪ ⟨J⟩,
including phonon modes evolving slower than charge carrier dynamics. Ais applies
to certain molecular crystals which have no structural imperfections whatsoever.
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▸ Weak Dynamic Disorder If dynamic disorder is weak, ⟨λ⟩ ≪ ⟨J⟩ and ⟨Λ⟩ ≪ ⟨J⟩,
the charge carrier leaves the periodic crystal lattice almost unaIected, as is sketched
in Figure 4.1 a. Ais gives rise to the formation of an electronic band structure of al-
lowed and forbidden energy regions.Ae charge carrier is then completely delocalized,
described by Bloch states extending over the entire crystal, and charge transport is un-
derstood as band transport [97–99]. Transitions between diIerent Bloch states are ini-
tiated by rare events of phonon scattering, i.e., perturbative lattice vibrations. As the
scattering probability increases with the temperature, the charge carrier mobility is a
decreasing function with temperature, µ∼T−s , where s >  depends on the type of scat-
tering processes. Ae concepts of band transport, originally developed for inorganic
materials, apply to organic solids only in a few cases of ultrapure single crystalline
phases of rigid small molecules at low temperatures, where charge carrier mobilities
of  cm/Vs and higher are observed.

▸ Strong Dynamic Disorder If dynamic disorder is strong, ⟨λ⟩ ≳ ⟨J⟩ and ⟨Λ⟩ ≳ ⟨J⟩,
where the latter is usually neglected, a charge carrier can induce local lattice distor-
tions, which act back on the carrier and impede extended delocalization, as indicated
in Figure 4.1 b. Such a self-trapped charge carrier together with its surrounding lattice
deformation is termed a polaron [100, 101]. Charge carrier migration is then conceiv-
able as polaron transport, which is extensively discussed by a large number of polaron
theories [102–109]. At low temperatures, polaron theories typically result in charge
delocalization over multiple sites, adiabatic transport, and a band-like temperature
dependence, i.e., µ ∼T−s . In this case, experimental low-temperature mobilities of or-
ganic crystals, typically of the order of − to  cm/Vs, can o5en be reproduced.
At ambient temperatures, it is predicted that polarons can localize on individual sites
and transport occurs by nonadiabatic hopping processes, which are thermally acti-
vated, thus leading to an increasing mobility with temperature: µ ∼ exp(−⟨λ⟩/kBT).
In this case, quantitative results o5en disagree with experiments and even the quali-
tative model is inconsistent with certain room-temperature experiments, where small
charge carriermean-free paths point to strong charge localization, but a band-like tem-
perature dependence is observed at the same time [93, 110]. Indications suggest that
these inconsistencies can be resolved by accounting for the usually neglected nonlocal
electron-phonon coupling ⟨Λ⟩. A corresponding charge transport model, known as
diCusion limited by dynamic disorder, has only been developed in recent years, >rst in
one-dimensional [111], then in two-dimensional space [112], allowing the reproduction
of room-temperature mobilities in rubrene crystals of the order of  cm/Vs.
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4.1.2. Disordered Organic Solids

Disordered organic solids possess signi>cant static disorder, i.e., σ ≳ ⟨J⟩ and Σ ≳ ⟨J⟩,
which can apply to diIerent phase states of matter. In organic crystals, static disorder
can arise if nuclear dynamics is rich in time scales and low-frequency vibrations fall
below the time scale of charge carrier dynamics [113–115]. Further sources of static
disorder are structural imperfections, such as lattice dislocations, residual impurities
of foreign molecules, and, in polycrystalline materials, grain boundaries between ad-
joining crystallites. In mesomorphic or amorphous organic solids, where molecules
are arranged irregularly, static disorder is, of course, particularly strong.
Unlike in perfectly ordered semiconductors, where energetic bands are sharply de-

limited from the forbidden gap, static disorder leads to a broadening of the band edges,
i.e., the formation of band tails extending in the forbidden gap. Ae tail states located
in the forbidden gap correspond to strong charge carrier localization on the individual
sites i, known as Anderson localization [116]. Ae formation of these trap states results
in hopping transport occurring as a sequence of nonadiabatic charge transfer reactions
between diabatic electronic basis states ∣ψi⟩.
To describe the evolution of the charge carrier in time τ, one adopts a quantum sta-

tistical picture, where each diabatic state is associatedwith an occupation probability pi ,
i.e., statistical weight, and the statistical mixture of these pure states is characterized
by a density operator ρ̂. It is recalled that the time-dependent Schrödinger equation
for the pure states leads to the von Neumann equation for the time evolution of ρ̂:

iħ
∂ρ̂
∂τ
= [Ĥ, ρ̂ ] , ρ̂ = ∑

i
pi ∣ψi⟩ ⟨ψi ∣ . (4.7)

Under the Markov approximation of incoherent charge transfer processes, this can be
cast into an equation of motion for the occupation probabilities pi [34, 117], known as

▸ Master Equation

∂pi
∂τ
= ∑

j
p j ω ji −∑

j
pi ωij , ∀i , (4.8)

where nonadiabatic charge transfer rates ωij, associated with transitions between elec-
tronic states ∣ψi⟩ and ∣ψ j⟩, take the form of Fermi’s golden rule. In order to apply
explicitly derived rate expressions (Section 3.2), it is required to specify the strength
of dynamic disorder in the statically disordered organic solid.
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(a) Hopping Transport – Miller-Abrahams Regime⟨λ⟩ ≪ ⟨J⟩

(b) Hopping Transport – Marcus Regime
⟨λ⟩ ≳ ⟨J⟩

Figure 4.2. In disordered organic solids, the un-
even energetic landscape (gray) leads to localiza-
tion of the charge carrier (red) resulting in hop-
ping transport. (a) For weak dynamic disorder,
i.e., ⟨λ⟩ ≪ ⟨J⟩, charge transfer is governed by tun-
neling, according to the Miller-Abrahams rate.
(b) For strong dynamic disorder, i.e., ⟨λ⟩ ≳ ⟨J⟩,
charge transfer is activated by vibrational site en-
ergy modulations, according to the Marcus rate.

▸ Weak Dynamic Disorder For weak dynamic disorder, ⟨λ⟩ ≪ ⟨J⟩ and ⟨Λ⟩ ≪ ⟨J⟩,
and low temperatures, the master equation contains the Miller-Abrahams rate (3.24),
leading to hopping transport by tunneling, as is illustrated in Figure 4.2 a. Obviously,
when aiming at wide temperature ranges, this regime can only constitute phenomeno-
logical charge transport theories. Such theories are in particular theGaussian disorder
models [118], which use simple and intuitive relations to determine the parameters in
the transport Hamiltonian (4.1) entering the rate expressions. First, site energies Ei
are drawn from a Gaussian distribution of postulated width σ . Second, a distribution
of transfer integrals Jij with standard deviation Σ is determined by the isotropic ex-
pression Jij = exp(−γijrij), where the inverse charge localization radius γij = γi + γ j
is composed of site-speci>c contributions, drawn from empirical Gaussian distribu-
tions. Ae inter-site distances rij are typically obtained by arranging the hopping sites
on a regular lattice. Numerical calculations solving the master equation have led to an
empirical mobility function of the temperature T and electric >eld F [119, 120],3

µ(T , F) = µ exp{−( σ
kBT

) + β
√
F (( σ

kBT
)− Σ)} , (4.9)

including the static disorder σ and Σ as well as coeBcients µ and β as parameters.
While the mobility increases with temperature, following a super-Arrhenius relation,
the >eld dependence ln µ ∼ F/ is referred to as the Poole-Frenkel relationship. Within
certain ranges, these relations are observed experimentally for numerous disordered
organic materials [120, 124], and respective >eld ranges o5en become reproducible by
imposing spatial correlations of site energies [125–129].Ae analytic function obtained
by Gaussian disorder models (4.9) can be >tted to temperature and >eld-dependent
mobility measurements of many materials, e.g., to characterize their static disorder,
however it provides no material-speci>c structure-property relationship.
3A relation for the charge carrier density is established by extendedGaussian disordermodels [121–123].
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▸ Strong Dynamic Disorder For strong dynamic disorder, ⟨λ⟩ ≳ ⟨J⟩ and ⟨Λ⟩ ≳ ⟨J⟩,
where the oI-diagonal part is typically negligible compared to its static pendant Σ,
charge transfer is activated by intramolecular vibrations, as is sketched in Figure 4.2 b.
Hence, at high temperatures, where vibrational motion behaves classically, the master
equation (4.8) is equipped with the Marcus rate (3.18), while at medium temperatures,
where quantum mechanical eIects are important, the more general Marcus-Levich-
Jortner rate (3.22) is applied. Since this regime, o5en with the Marcus rate, has its
physical justi>cation at ambient temperatures, one can formulate charge transport the-
ories that transcend the phenomenologicalmodel of Gaussian disorder with randomly
drawn transport parameters. In this spirit, microscopic charge transport models start
from atomistically resolved molecular arrangements, i.e., material morphologies for
speciDc chemical compounds [4, 130, 131]. With the knowledge of the chemical struc-
tures and atomistic morphologies, and the aid of computational chemistry methods,
it becomes possible to explicitly determine the parameters of the charge transport
Hamiltonian (4.1), i.e., the site energies Ei , transfer integrals Jij, and reorganization
energies λij, that enter the transfer rates. Aus, for a speci>c pair of sites, the transfer
rate no longer depends only on the inter-site distance, but is also sensitive to the actual
arrangement of the underlying molecular system. Solving the master equation now al-
lows one to predict the material-speci>c charge transport properties, in other words to
link the chemical structure and the material morphology to the macroscopic charge
carrier mobility. A realization of this microscopic modeling paradigm, establishing
structure-property relationships, is the core methodology of this work (Section 4.2).
Microscopic charge transport studies have already been performed in recent years

for a variety of disordered organic solids. In amorphous phases of conjugated poly-
mers [132] and small molecules [133–135], experimentally measured charge carrier mo-
bilities in the range of − to − cm/Vs are reproducedwith o5en considerable accu-
racy. Inmesomorphic phases of columnarly arranged discotic molecules [136–141] and
carbazole macrocycles [142], both theoretical and experimental mobilities lie in simi-
lar ranges of − to  cm/Vs. In semicrystalline phases of conjugated polymers [143]
and crystalline phases of several small molecules [144–147], theoretical mobilities in
the range of − to  cm/Vs show reliable directional dependences. Since charge
transport models typically neglect grain boundaries and impurities, they tend to sys-
tematically overestimate experimental results for crystals. In caseswhere experimental
mobility measurements are performed on highly ordered and pure material samples,
such as rubrene, mobilities of the order of  cm/Vs agree very well.
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4.2. Charge Transport Simulations in Disordered
Organic Solids

Charge transportmodels for disordered organic solids, which are aimed at establishing
structure-property relationships, engage atomistic material morphologies for speci>c
chemical compounds in order to parametrize the charge transport Hamiltonian (4.1).
Once a compound of interest is selected, this concept requires computational chem-
istry techniques, such as ab initio methods (Section 2.2) but also, in order to overcome
prohibitive computing times, semiempirical and classical approximations.
Inwhat follows, thework?owof charge transport simulations, depicted in Figure 4.3,

and the employed computational methods are presented. Any charge transport study
starts from the chemical structure of a particular organic semiconductor, e.g., dcv4t.
On the experimental side, chemical synthesis, material processing, and structure analy-
sis may lead to the crystal structure, provided that crystallization occurs. For amor-
phous substances, experiments may identify other expedient material characteristics,
such as the density or glass transition temperature. On the computational side, density
functional theory (dft) serves as the basis for developing an atomistic forceDeld for the
chemical structure (Section 4.2.1). Using both the force >eld and an experimentally in-
spired starting con>guration, molecular dynamics simulations yield an atomistically
resolved morphology of the material (Section 4.2.2). Ae morphology allows for the
identi>cation of charge localization centers, that is, the hopping sites, and the charge
transfer complexes, which de>ne a neighbor list of hopping site pairs (Section 4.2.3).
Aen follows, for each pair of hopping sites, the explicit evaluation of the charge trans-
fer parameters. Ae transfer integrals Jij can be determined using the semiempirical
zindomethod (Section 4.2.4).Ae site energy diIerences∆Eij = Ei−Ej result from the
site energies Ei and Ej, which are derived fromdistributed point charges and dipolemo-
ments interacting via theAole model (Section 4.2.5). Ae reorganization energies λij
are computed by dft calculations on the charge transfer complexes (Section 4.2.6).
Aese parameters lead to the charge transfer rates and thus to the parametrization of
the master equation. Solving the master equation can be performed by the kinetic
Monte Carlo method and results in the time-dependent site occupation probabilities,
i.e., the charge dynamics (Section 4.2.7). Ais information can >nally be related to
macroscopic observables, such as the charge carrier mobility (Section 4.2.8).
Ais work?ow is the subject of prior publication [4] and is presented below in more

detail using partially similar terms. As part of this and many other works, the meth-
ods were implemented in the votca-ctp so5ware package, while dft and molecular
dynamics methods stem from the gaussian [53] and gromacs packages [148].
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Figure 4.3. Work?ow for microscopic simulations of charge transport in disordered organic solids.
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(b) (c) (d) (e)

(a)

Rab

Rab θabc θabcd θabcd

Figure 4.4. Atomic interactions con-
tributing to a force >eld. (a) Nonbon-
ded interaction between two atoms.
(b) Bond stretching between two
atoms. (c) Angle bending between
three atoms. (d) Dihedral torsion be-
tween four atoms. (e) Out-of-plane
bending between four atoms.

4.2.1. Force Field

Ae molecular modeling of a material morphology at an atomistic scale relies on simu-
lating the dynamics of the atoms, or equivalently of the nuclei, which are adiabatically
followed by the electrons, according to the Born-Oppenheimer (or adiabatic) approxi-
mation (2.14). To describe this nuclear or atomic motion, one needs knowledge about
the potential energy surface U(R), which captures, for each atomic con>guration R,
the ground state energy of the electronic system. However, using ab initio methods to
globally determine the pes is an infeasible endeavor for practical systems with high-
dimensional atomic con>guration space. A simpli>ed yet very eIective alternative is
to employ a force Deld: it refers to an analytical function, decomposed into empirical
atomic few-body contributions that are >tted to ab initio or experimental results [54].
Ae underlying notion is to >t the function only to the minima of the pes that corre-
spond to atomic con>gurations of covalent bonding to the desired molecules, while
eIects of bond breaking and formation are neglected. Hence, the bonding pattern is
de>ned a priori, which allows the distinction between few-body contributions for co-
valently bonded and not directly bonded atoms. Most force >elds employ a two-body
term for nonbonded and two-, three-, and four-body terms for bonded contributions:

Uff(R) = ∑
a,b

nonbonded

Unb(Rab) +∑
a,b

bonds

Ubond(Rab) +∑
a,b,c
angles

Uang(θabc) +∑
a,b,c,d
dihedrals

Udih(θabcd) . (4.10)

Figure 4.4 illustrates the meaning of these few-body terms. Unb is the potential energy
associatedwith interactions between two nonbonded atoms, which comprises the very
short-range Pauli repulsion emerging from overlapping electron orbitals, the short-
range van derWaals attraction due to induced dipole-dipole interactions, and the long-
range electrostatic interaction between atomic multipole moments arising from in-
tramolecular charge redistributions. Ubond describes the energy for stretching a bond
from its equilibrium length, Uang for bending a bond angle formed of three serially
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dihedral angles θ (cc–c–ca–s), θ
(s–ca–ca–s), and θ (cn–cc–c–ca).
Adapted from Reference [1].

linked atoms, andUdih for rotating a dihedral angle de>ned by four serially connected
atoms. An energy penalty for out-of-plane bending de>ned by four radially bonded
atoms, as seen in Figure 4.4 e, may be incorporated by “improper” dihedral angles.
Many popular force >elds, such as amber [149], charmm [150], gromos [151], or

opls-aa [152], employ energy potentials which are essentially of the prototypical form

Unb(Rab) = Aab
R
ab
− Bab
R
ab
+ qaqb
πεRab

, (4.11)

Ubond(Rab) = 
Cab(Rab − R

ab) , (4.12)

Uang(θabc) = 
Cabc(θabc − θabc) , (4.13)

Udih(θabcd) = ∑
k=

Cabcd ,k(− cos θabcd)k , (4.14)

where the Pauli and van der Waals interactions are modeled by the Lennard-Jones po-
tential [153], the electrostatic interaction is described by atomic partial charges, i.e., dis-
tributed monopole moments, the bond and angle terms are represented by harmonic
potentials, and the dihedral torsion is expressed by a periodic function, here the Ryck-
aert-Belleman potential [154]. While force >elds may share the same functional form,
they diIer in the parametrization of the potentials. Such a parametrization is based
on atom types, de>ned not only by the atomic number, i.e., the chemical element, but
also by the bonding situation, hybridization state, or local environment. Ais enables
the identi>cation of recurring units within diIerent molecules, thus gives force >elds
a versatile applicability to various chemical compounds, but also limits their accuracy.
In particular for organic small molecules, a compound-speci>c re>nement is essential.
In this work, a customized force >eld for dicyanovinyl-substituted oligothiophenes

(dcvnt) is developed [1], which is based on the opls-aa force >eld and the atom types
de>ned in Figure 4.5. Regarding the nonbonded interaction energy (4.11), the Lennard-
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Figure 4.6. Atomic partial charges qa for rotamers of dicyanovinyl-substituted quaterthiophene (dcv4t),
obtained by the chelpgmethod and dft calculations using the b3lyp functional and 6-311g∗∗ basis set.

Jones parameters Aab and Bab are adopted from the opls-aa force >eld, where two
atoms a and b of diIerent types are treated by the geometric combination rules
Aab = (AaaAbb)/ and Bab = (BaaBbb)/. Ae atomic partial charges qa, which are
representing the molecular charge distribution, are speci>cally determined for the
dcvnt molecules. To this end, the molecular geometries are >rst optimized using
dft calculations with the b3lyp functional and the 6-311g∗∗ basis set resulting in the
atomic coordinates of the stable molecules, the corresponding electron densities, and
the associated electrostatic potentials. Aen, point charges at the atomic coordinates
are >tted to reproduce the molecular electrostatic potentials on cubic grids according
to the chelpg method [155, 156]. Finally, the partial charges are averaged for atoms
of the same type and adjusted to ensure charge neutrality of the dcv and thiophene
units [1], resulting in the values listed in Table 4.1. To verify that their validity is not
signi>cantly aIected by conformational variations, the procedure is repeated for ro-
tamers of the dcv4tmolecule, de>ned by torsions around the bonds linking dcv and
thiophene units. Figure 4.6 shows that the dcv4t rotamers have very similar partial
charges. Concerning the bonded interaction energies (4.12) to (4.14), all equilibrium
bond lengths R

ab and bond angles θabc are obtained from the optimized molecular

n cn cc c hn s ca cb hc

qa −. . −. . . . . −. .

Table 4.1. Atomic partial charges qa for dicyanovinyl-substituted oligothiophenes (dcvnt), obtained by
the chelpg method and dft calculations using the b3lyp functional and 6-311g∗∗ basis set. Ae values
are given in units of e.
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Figure 4.7. Potential energy for the dihedrals θ and θ ,
from density functional theory, Udft

dih , and the initial
and >nal force >elds, Uff′

dih and Uff
dih, respectively [1].

Table 4.2. Ryckaert-Belleman parametersCk
for the dcvnt dihedral angles θ , θ , and θ ,
as de>ned in Figure 4.5. Ae values are given
in units of eV.

geometries, while the force constants for bond stretching Cab and angle bending Cabc
are adopted from the opls-aa force >eld. Ais is justi>ed since these degrees of free-
dom are fairly rigid, so that only small deviations from the equilibrium values are ex-
pected.Ae dihedral angles, in contrast, have o5en comparatively low torsional energy
barriers and therefore a major impact on molecular conformations. For this reason,
the Ryckaert-Belleman parameters Cabcd ,k are speci>cally determined for the dcvnt
molecules. It is essential that such a parametrization takes into account the existing
nonbonded interactions as they are intimately coupled to a torsional potential. Aere-
fore, constrained geometry optimizations for a set of >xed dihedral values need to be
performed by both density functional theory and also the tentative force >eld, which
yields functions Udft

dih and Uff′
dih, respectively. Aen, the Ryckaert-Belleman potential

Udih, given in (4.14), can be >tted to the diIerence Udft
dih −Uff′

dih, such that the >nal
force >eld results in a function Uff

dih that resembles the dft curve. Ais procedure
is performed for the three dihedral angles indicated in Figure 4.5, θ (cc–c–ca–s),
θ (s–ca–ca–s), and θ (cn–cc–c–ca), using dft calculations with the b3lyp func-
tional and the 6-311g∗∗ basis set. Ae obtained Ryckaert-Belleman parameters are
listed in Table 4.2, while the aforementioned functions are depicted in Figure 4.7 for
the two dihedrals θ and θ, which have comparatively low energies. Ae potential en-
ergy of thedcv-thiophene dihedral θ has a globalminimum at °, which corresponds
to the cis con>guration, while the thiophene-thiophene dihedral θ prefers the trans
con>guration [157, 158]. Both potentials have local minima in the opposite state, sepa-
rated by energetic barriers which can be overcome at elevated temperatures.
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4.2.2. Morphology

In a microscopic charge transport model, the transport Hamiltonian is parametrized
based on an atomistic material morphology of the organic solid of interest. Partic-
ularly important is that the morphology provides a realistic picture of the disorder
inherent to the material. Hence, to capture the related characteristic length scales and
achieve adequate statistics, system sizes much larger than a unit cell are required. For
the generation of such mesoscopic morphologies, ab initio methods are generally too
complex; instead, methods of choice areMonte Carlo [159, 160] or, as used in this work,
molecular dynamics simulations [161, 162].

▸ Molecular Dynamics Simulation Ae classical molecular dynamics simulation
refers to the study of atomic movements based on a potential energy surface in force
>eld representation (4.10) and an equation of motion (2.14) in classical approximation,
which is theNewtonian equation ofmotion (2.15).Ais diIerential equation in time t is
numerically solved, subject to appropriate boundary conditions, typically of periodic
nature, and initial conditions for the atomic coordinatesRa and velocitiesVa = ∂Ra/∂t.
Ae numerical integration is performed iteratively and over discrete time steps: at the
future time t + ∆t the coordinates are expressed by the Taylor expansion

Ra(t + ∆t) ≈ Ra(t) + ( ∂Ra

∂t
+ 


∂Ra

∂t
∆t ) ∆t , (4.15)

where the term in the bracket can be identi>edwith a Taylor expansion of the velocities
at time t + 

∆t yielding the relation (4.17). Performing a similar expansion of the ve-
locities at time t− 

∆t and using the Newtonian law (2.15) to express the accelerations
by forces, i.e., gradients of the force >eld potential, leads to an integration scheme

Va(t + 
∆t) = Va(t − 

∆t) − ∇aUff(R)
Ma

∆t , (4.16)

Ra(t + ∆t) = Ra(t) + Va(t + 
∆t) ∆t , (4.17)

known as the leap-frog algorithm [163]. In this scheme, velocities and coordinates are
alternately evaluated at time points that are mutually shi5ed by half a time step. In one
step, previous velocities and current forces are used to calculate new velocities, and in
the next step, these new velocities are used to determine new coordinates. If velocities
at the integer time points are required, a third evaluation step can be included [164].
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An atomistic trajectory generated in this way describes a point sequence in phase
space, and as such samples microstates of a statistical ensemble. Ae natural ensem-
ble which is maintained when solving the energy-conserving Newtonian equation is
the microcanonical ensemble, which corresponds to systems with constant number of
particles, volume, and energy, i.e., isolated systems. In experiments, however, systems
are usually in contact with an environment, which, as the time evolves, leads to ?uc-
tuations in some of these extensive variables and to conservation of their respective
intensive variables, i.e., chemical potential, pressure, or temperature. In other words,
the environment can act as chemostat, barostat, or thermostat. In fact, most experi-
ments are performed under conditions of constant particle number, temperature, and
either volume or pressure. To conduct corresponding simulations, the leap-frog in-
tegration scheme needs to be adapted to simulate a thermostat, which appropriately
rescales the velocities, i.e., the kinetic energies, thus leading to a canonical ensemble,
or an additional barostat, which also rescales the coordinates, i.e., the box volume, lead-
ing to an isobaric-isothermal ensemble. In this work, a stochastic velocity-rescaling
thermostat [165] and a Berendsen barostat [166] are employed. Ae implementation
of the adjusted leap-frog algorithm is provided by the gromacs package [148].
Anymolecular dynamics integration scheme is aWictedwith an error resulting from

the discretization of time. In order to keep this error small, the time step ∆t must be
signi>cantly shorter than the vibration period of the fastest processes in the system.
Since carbon-hydrogen bond stretching vibrations have a period of roughly  fs, and
carbon-carbon bonds still have about  fs, the time step is typically set in the order
of  fs. Ais time interval limits the real time a simulation can achieve, given a certain
computing power. When performing a number of  time steps, which is perfectly
feasible for mesoscopic systems these days, a real time of ns is reached.4

▸ Starting Configuration In order to integrate the equation of motion, initial con-
ditions for the atomic coordinates and velocities are required. In principle, one might
consider a random point in phase space, which complies with the >xed ensemble vari-
ables, and rely on the simulation to drive the conjugate thermodynamic variables to
their (?uctuating) equilibrium values and the thermodynamic potential associated
with the ensemble to its global minimum. However, when simulatingmolecular solids
at >xed temperatures, one is in a regime, where the thermodynamic potential, i.e., the

4If such time scales are insuBcient to equilibrate the atomisticmorphologies of interest, coarse-graining
techniques can be employed, provided they allow for back-mapping to the atomistic resolution [167].
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Figure 4.8. Crystalline morphology of
dcv4tmolecules at room temperature,
obtained by amolecular dynamics sim-
ulation.

free energy surface, is landscape-dominated by the potential energy surface Uff and
has highly complex energy barriers on many scales. Ais implies that an equilibration
to the global minimum is impeded by both short real times in the nanosecond range
and also insuBcient kinetic energy for barrier crossing. In other words, ergodicity is
violated and the region of the con>guration space, which is sampled during the simula-
tion, is critically determined by the initial conditions. While the starting velocities are
typically straightforwardly assigned by a Maxwell-Boltzmann distribution, the start-
ing conDgurationmust be carefully prepared in view of the desired morphology.
Formolecular crystallinemorphologies, which typically represent the global energy

minimum, one depends on experimental x-ray scattering results providing lattice spac-
ings, or ideally the exact atomic-scale crystal structure.5 A starting con>guration is
then prepared as a supercell of perfectly arrangedmolecules on a lattice. Formesomor-
phic or amorphous systems, which are kinetically arrested in a metastable nonequilib-
rium state, it is customary to perform a preceding simulation at elevated temperatures,
where a liquid crystalline or liquid phase is adopted. Representative starting con>gu-
rations can then be obtained by annealing the system to lower temperatures.
With a starting con>guration at hand, the molecular dynamics simulation at the

desired temperature is performed, comprising an equilibration and a subsequent pro-
duction run. As an example, Figure 6.2 depicts a snapshot of a dcv4t organic crystal.
Ae trajectories generated in a production run can be employed to investigate the time
scales of static and dynamic disorder.
5Alternatively, crystal structure prediction may be facilitated by advanced free energy sampling tech-
niques, such as metadynamics [168], or Monte-Carlo-based umbrella sampling [169, 170].
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4.2.3. Hopping Sites

Ae morphology allows the construction of the charge transport Hamiltonian (4.1),
Ĥ + Ĥ + Ĥ, and the parametrization of the master equation for charge carrier dy-
namics (4.8). Ae >rst step is the identi>cation of hopping sites for the charge carrier,
in other words subsystems of the morphology where the diabatic electronic states are
spatially localized. Typically, themorphology is partitioned into individual conjugated
molecules or, more generally, into conjugated segments on which charge localization is
expected by physical intuition.6

Ae conjugated segments can o5en be further divided into relatively rigid, planar
π-conjugated systems, which are referred to as rigid fragments. Ae bonded degrees of
freedom linking these fragments o5en evolve on time scales much slower than charge
carrier dynamics. In some cases, e.g., mesomorphic or amorphous systems, these slow
motions are frozen due to nonbonded interactions with the surrounding molecules.
Within a rigid fragment, in contrast, motions of bonded interactions, such as bond
length vibrations, are o5en much faster than the dynamics of charge carriers. Aere-
fore, rigid fragments can help to separate the eIects of static and dynamic disorder.
To this end, the rigid fragments in the morphology are replaced by corresponding
geometry-optimized equilibrium copies, obtained from ab initio calculations; their
alignment is achieved by matching the centers of mass and gyration tensors. Ais
enables the separate construction of the equilibrium Hamiltonian Ĥ, i.e., the transfer
integrals and the site energies, on the one hand and the dynamic contribution Ĥ+ Ĥ,
i.e., the reorganization energies, on the other hand.
To illustrate the concept of conjugated segments and rigid fragments, three repre-

sentative molecular architectures are presented. Figure 4.9 a depicts the >rst: a benzo-
thienobenzothiophene molecule consisting of three benzene and two thiophene units
fused to a rigid, planar π-conjugated structure. Ais molecule is both a single conju-
gated segment and a rigid fragment. Figure 4.9 b shows a compound relevant for this
work: a dicyanovinyl-substituted quaterthiophene (dcv4t), i.e., a short π-conjugated
oligomer comprising four thiophene and two dcv moieties. Since a charge carrier
is delocalized over the whole oligomer, the molecule is again a single conjugated seg-
ment. However, while the individual thiophene and dcv units are relatively rigid, the
dihedral angles in between can be reoriented at ambient temperatures, as results from
the previously developed force >eld (Section 4.2.1). Hence, each of the six units is a
6In principle, more fundamental deductive approaches for obtaining diabatic electronic states may as-
sist the partitioning of the morphology [171].
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Figure 4.9. Ae concept of conjugated segments and rigid fragments. Conjugated segments are indicated
by red and gray, rigid fragments by blue and cyan colors. (a) A benzothienobenzothiophene molecule is
both a single conjugated segment and a rigid fragment. (b) A dicyanovinyl-substituted quaterthiophene
molecule is a conjugated segment comprising six rigid fragments. (c) A polythiophene molecule can
consist of multiple conjugated segments, while each repeat unit is a rigid fragment.

separate rigid fragment. Figure 4.9 c illustrates a more general example, a long conju-
gated polymer, such as polythiophene. In this case, one molecule consists of multiple
conjugated segments, since the π-conjugation along the polymer backbone can be bro-
ken due to large out-of-plane twists between adjacent repeat units. Ae partitioning of
a molecule on individual conjugated segments can be performed by empirical criteria
[172–175], such as the dihedral angle [132].

▸ Neighbor List of Hopping Sites Having determined the hopping sites, repre-
sented by the molecules or their conjugated segments, the next step is the generation
of a list of selected pairs of hopping sites which are suBciently close to form a charge
transfer complex. To this end, a distance criterion is employed which is based on the
centers of mass of the rigid fragments: a pair of molecules, or conjugated segments, is
included in the neighbor list if the distance between the centers of mass of any pair of
mutual rigid fragments is below a certain cutoI. In this way, pairs are selected based
on their minimum distance, rather than their center-of-mass distance, which is useful
for molecules with anisotropic shapes. For each pair of the neighbor list, the charge
transfer parameters and rates are evaluated, as discussed below.
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4.2.4. Transfer Integrals

A pair of molecules i and j forming a charge transfer complex provides two localiza-
tion centers for the charge carrier, which are associated with the diabatic electronic
states ∣ψi⟩ and ∣ψ j⟩. In this diabatic representation (Section 3.1.2), the transfer inte-
gral (3.8) describes the electronic inter-state coupling and ismediated by the electronic
Hamiltonian operator Ĥel of the charge transfer complex:

Jij = ⟨ψi ∣ Ĥel ∣ψ j⟩ . (4.18)

To determine the transfer integral, electronic structure methods are employed to ac-
quire information about the three objects: the Hamiltonian of the molecular pair and
the two diabatic states localized on the individual molecules. If the diabatic states are
expressed by one-electron wave functions ϕm

i (r) = ⟨r ∣ϕm
i ⟩ and ϕm

j (r) = ⟨r ∣ϕm
j ⟩,

i.e., molecular orbitals m, the frozen core approximation can be employed to argue
that the charge transfer is accomplished exclusively by the frontier molecular orbitals f:∣ϕfi ⟩ and ∣ϕfj⟩. Such a frontier molecular orbital refers to the highest occupied molecu-
lar orbital (homo) in the case of hole transfer, and to the lowest unoccupiedmolecular
orbital (lumo) in the case of electron transfer. Under this assumption, the transfer in-
tegral (4.18) takes the simpli>ed form

Jij = ⟨ϕfi ∣ Ĥ ∣ϕfj⟩ , (4.19)

where Ĥ is an eIective one-particle Hamiltonian operator of the pair of molecules,
such as a Fock or Kohn-Sham operator, introduced before (Section 2.2) as Ĥhf (2.26)
and Ĥks (2.36), respectively. Note that the transfer integral is very sensitive to the ar-
rangement of the pair of molecules within the morphology, that is, to their distance
and mutual orientation. As a consequence, the electronic disorder Σ (4.6), resulting
from the distribution of transfer integrals for the neighbor list, is typically several or-
ders of magnitude large.

▸ Dipro Method Ae two diabatic electronic states required for calculating a spe-
ci>c transfer integral can be obtained by performing ab initio calculations subject to
electron density constraints [171]. A common approach is to strictly constrain the
density to the individual molecules by simply isolating the molecules and carrying
out two separate ab initio calculations. Aen, the adiabatic electronic ground states
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of the isolated systems are identi>ed with the diabatic states of the charge transfer
complex and yield in particular the desired frontier molecular orbitals ∣ϕfi ⟩ and ∣ϕfj⟩.
To determine the Hamiltonian operator Ĥ, one can perform a third, unconstrained
ab initio calculation on the molecular pair. With the resulting molecular orbitals ∣ϕn⟩
and corresponding orbital energies εn, the one-particle Hamiltonian operator can be
written in its spectral representation:

Ĥ = ∑
n
εn ∣ϕn⟩ ⟨ϕn∣ . (4.20)

With these results, the de>nition of the transfer integral (4.19) immediately becomes

Jij = ⟨ϕfi ∣ Ĥ ∣ϕfj⟩ = ∑
n
εn ⟨ϕfi ∣ϕn⟩ ⟨ϕn∣ϕfj⟩ . (4.21)

Hence, the transfer integral follows from projecting the frontier molecular orbitals∣ϕfi ⟩ and ∣ϕfj⟩ of the monomers onto the molecular orbitals ∣ϕn⟩ of the dimer. Ais pro-
cedure, denoted as the dimer projection method (dipro), is typically realized within
the framework of Hartree-Fock [176] or density functional theory [177]. To calculate
the transfer integrals for the entire neighbor list, an extensive series of ab initio cal-
culations on all individual and all pairs of molecules is required [177–182]. Such a
brute-force ab initio scheme is computationally demanding and may not be practica-
ble. An alternative approach, oIering a compromise between quantitative accuracy
and computational eIort, is the zindomethod.

▸ Zindo Method An approximate method for computing a transfer integral [176]
can be formulated within Zerner’s intermediate neglect of diIerential overlap (zindo),
a semiempirical electronic structure theory (Section 2.2.3). Ais approximate method
eliminates the need for a self-consistent calculation on the molecular pair, such that
only self-consistent calculations on the individual molecules i and j are required. Per-
forming these two calculations leads, similarly to the dipromethod, to the molecular
orbitals of the individual molecules,

∣ϕm
i ⟩ = ∑

τ
Cτm
i ∣φτ

i ⟩ , ∣ϕm
j ⟩ = ∑

τ
Cτm

j ∣φτ
j ⟩ , (4.22)

which includes in particular the required frontier molecular orbitals ∣ϕfi ⟩ and ∣ϕfj⟩.
Here, the molecular orbitals are expanded in respective basis sets of atomic orbitals
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{∣φτ
i ⟩} and {∣φτ

j ⟩}, according to the previous de>nition (2.40). Now, before construct-
ing theHamiltonian operator of the pair, two preliminary considerations are necessary.
First, the basis set for the pair ofmolecules is given by the joint basis set {∣φτ

i ⟩}∪{∣φτ
j ⟩},

where the atomic orbitals from the individual molecules are numbered sequentially.
Hence, in this joint basis set, the molecular orbitals of the individual molecules (4.22)
are represented by zero-extended column vectors

C ⋅mi = ( C m
i , . . . , C(n)mi ,  , . . . ,  )T ,

C ⋅mj = (  , . . . ,  , C(n +)mj , . . . , Cnm
j )T .

(4.23)

Ae second aspect concerns the unknown molecular orbitals of the pair of molecules:
each pair of molecular orbitals of this combined system, for instance ∣ϕn⟩ and ∣ϕn+⟩,
is assumed to be formed from a bonding-antibonding combination of a pair of molec-
ular orbitals of the individual molecules [176]:

∣ϕn⟩ = ∣ϕm
i ⟩ + ∣ϕm

j ⟩ , ∣ϕn+⟩ = ∣ϕm
i ⟩ − ∣ϕm

j ⟩ . (4.24)

Ais is reasonable, since the pair of molecules is expected to be characterized by two
charge localization centers on the individual molecules. Ae implication is that the
molecular orbitals of the pair are represented by column vectors

C ⋅n = ( Cm
i , . . . , C(n)mi , C(n +)mj , . . . , Cnm

j )T ,

C ⋅(n+) = ( Cm
i , . . . , C(n)mi , −C(n +)mj , . . . , −Cnm

j )T .
(4.25)

Now, inserting the frontiermolecular orbitals of the individualmolecules ∣ϕfi ⟩ and ∣ϕfj⟩,
expressed as linear combination of atomic orbitals (4.22), into the de>nition of the
transfer integral (4.19) leads to

Jij = ⟨ϕfi ∣ Ĥ ∣ϕfj⟩ =
n
∑

σ=
n∑

τ= n
 +

Cσf
i Cτf

j ⟨φσ
i ∣ Ĥ ∣φτ

j ⟩ , (4.26)

where the one-particle Hamiltonian operator Ĥ of the pair of molecules appears in
its matrix representation in the joint basis set of atomic orbitals: Hστ = ⟨φσ

i ∣ Ĥ ∣φτ
j ⟩.

Obviously, due to de>nition (4.23), re?ected in the summation indices, only the oI-
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Figure 4.10. Highest occupied molec-
ular orbital of a dcv4t molecule, de-
picted as an isosurface of the proba-
bility density with red and gray col-
ors representing the positive and neg-
ative phases of the wave function, re-
spectively. Ae orbital extends phase-
alternating over the entire molecule.

diagonal elements σ ≠ τ need to be evaluated for calculating the transfer integral.
According to the semiempirical Fockmatrix provided by the zindo technique [59, 60],
oI-diagonal matrix elements associated with atomic orbitals ∣φσ

i ⟩ and ∣φτ
j ⟩, located on

diIerent atoms a and b, which is necessarily the case here, since the atoms belong to
the diIerent molecules a ∈ i and b ∈ j, take the form

Hστ
zindo = 

 (βa + βb)Sστ − Γab∑
n
CσnCτn . (4.27)

Ae values βa and βb are tabulated bonding parameters for the atoms a and b, which
depend on their atomic number, the atomic orbital overlap matrix Sστcontains specif-
ically weighted overlap terms that are related to the ordinary terms Sστ = ⟨φσ

i ∣φτ
j ⟩,

and Γab is the Mataga-Nishimoto potential [183]. Ae key insight regarding the zindo
Hamiltonianmatrix (4.27) is that the sum over the expansion coeBcients of themolec-
ular orbitals of the molecular pair, i.e., the right part, vanishes due to the speci>cation
of the molecular orbitals according to (4.25). Ais implies that the zindoHamiltonian
matrix is no longer dependent on its own eigenvectors, which enables its computation
without any iterative, self-consistent procedure, as is usually required. Ae remaining
task for calculating the required matrix elements is the comparatively facile determi-
nation of the weighted atomic orbital overlap terms, according to the parametrization
by the zindo technique.
To calculate the transfer integrals for the entire neighbor list, the zindomethod sig-

ni>cantly increases computational eBciency since self-consistent calculations are only
required for the individual molecules, while the calculations for the pairs, which are
computationally most demanding, are avoided. However, carrying out self-consistent
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Figure 4.11. Squared transfer integrals for a pair of dcv4t molecules in cofacial alignment, calculated
using the zindo and dipromethods for the highest occupied molecular orbital (homo) and the lowest
unoccupied molecular orbital (lumo). (a) Transfer integral as a function of the intermolecular distance.
(b) Transfer integral at a distance of .nm as function of an axial displacement.

calculations for all individual molecules may still pose a serious bottleneck in charge
transport simulations.Aerefore, a further simpli>cation is employed: calculations are
only performed once for each chemically diIerent type of molecule (or conjugated
segment). Aen, their division into rigid fragments is utilized to subject the result-
ing molecular orbitals to rotational coordinate transformations leading to the actual
molecular conformations within the morphology.
A comparison of the zindo and the dipro methods is drawn for a charge transfer

complex consisting of a pair of dcv4tmolecules in cofacial alignment and with vary-
ing mutual molecular positions. Ae ab initio calculations, performed for the dipro
method, are based on the b3lyp hybrid functional and the 6-311g∗∗ basis set. As an ex-
ample, Figure 4.10 visualizes the homo of a dcv4tmolecule. Figure 4.11 a depicts the
squared transfer integral Jij for thehomo and the lumo as a function of the intermolec-
ular distance ranging from . to .nm. It is seen that both the zindo and the dipro
methods lead to an exponential decrease of the transfer integral with increasing inter-
molecular distance. While this behavior is expected and qualitatively obtained by both
methods, the zindo method quantitatively underestimates the squared transfer inte-
gral by up to a factor of two, which is a well-known observation [132, 177]. Figure 4.11 b
illustrates the squared transfer integral at an intermolecular distance of .nm as a
function of an axial displacement ranging from  to nm. Again, both methods lead
to qualitatively similar behavior, in this case oscillations re?ecting the alternating in
and out of phase overlap of the frontier molecular orbitals.
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4.2.5. Site Energies

Ae site energy Ei is the energy which is absorbed or released due to the localization of
the charge carrier on themolecule i. According to charge transfermodels (Section 3.2),
the site energy can be decomposed into internal and electrostatic parts (3.19), which
refer to the molecule itself and to interactions with the environment, respectively:

Ei = Eint
i + Eelstat

i . (4.28)

Ae distribution of site energies for allmolecules in themorphology is usually a normal
distribution of Gaussian shape whose width de>nes the energetic disorder σ (4.6).

▸ Internal Site Energy Ae internal site energy is the total energy of themolecule i
in its charged state (c) with respect to its neutral state (n), as de>ned in (3.20):

Eint
i = Uc

i −Un
i . (4.29)

As such, the internal site energy corresponds to the molecular ionization potential in
the case of hole transfer, and to the electron aBnity in the case of electron transfer.Ae
contributions Uc

i and Un
i can be estimated by ab initio calculations with geometry op-

timization. Note that for one-component systems, internal site energies o5en need not
be evaluated since they cancel in the site energy diIerences, provided conformational
variations of the molecules are negligible, and elsewise they are o5en substantially
smaller than the electrostatic site energy [4, 132]. In donor-acceptor systems, internal
site energies should be treated with particular attention.

▸ Electrostatic Site Energy Ae electrostatic site energy is the diIerence in elec-
trostatic interaction energies of the charged and neutral molecule i with its neutral
environment, as de>ned in (3.20):

Eelstat
i =Wc

i −Wn
i . (4.30)

Due to the long-range nature of electrostatic interactions, the energies Wc
i and Wn

i
have to be determined based on a suBciently large volume surrounding themolecule i.
In this work, a spherical surrounding volume of radius .nm is employed. Within
this volume, electrostatic interactions are, in analogy to the force >eld (Section 4.2.1),
calculated between atomic partial charges qc,na on atoms a ∈ i of the charged or neutral



4.2. Charge Transport Simulations in Disordered Organic Solids 95

centralmolecule i and atoms a ∉ i of the neutral surroundingmolecules. In addition to
this Coulomb energy, it is essential to account for the induction energy resulting from
molecular polarization. To this end, the molecules are additionally equipped with
atomic polarizabilities αc,na , which allow for the induction of atomic dipole moments pa.
Note that a simple screened Coulomb potential containing the relative permittivity
of the macroscopic material is not adequate on a microscopic scale since energetic
contributions from the >rst coordination shell are then underestimated. Suppose the
atomic polarizabilities and induced dipole moments are all known, the electrostatic
interaction energies follow from the charge-charge and charge-dipole interactions,

Wc,n
i = ∑

j
∑
a∈ j∑k≠ j∑b∈k (Tab qa qb + Tµ

ab qa p
µ
b + Tµ

ab p
µ
a qb ) , (4.31)

with qa =
⎧⎪⎪⎨⎪⎪⎩
qc,na
qna

and αa =
⎧⎪⎪⎨⎪⎪⎩
αc,na , for a ∈ i ,
αna , for a ∉ i , (4.32)

where vector components aremarked by superscripts, i.e., pµa is the µ-component of pa,
for which summations will be implicitly assumed (Einstein’s summation convention).
Ae summations over molecules j and k and their atoms a ∈ j and b ∈ k are explicitly
given and refer to atomic partial charges qa and polarizabilities αa of the charged or
neutral molecule i and of the neutral surrounding molecules (4.32). Ae interaction
tensors for two multipoles on atoms a and b with separation Rab are expressed by the

▸#ole Model

Tab = 
πεRab

, Tµ
ab = −κ Rµ

ab
πεR

ab
, Tµν

ab = κ R
µ
abR

ν
ab

πεR
ab
−κ δµν

πεR
ab

, (4.33)

where damping coeBcients κ and κ smoothen the potential of the dipole moments
in order to prevent polarization catastrophes at short interatomic distances [184, 185].
In a modi>ed version, the damping coeBcients take the following form [186, 187]:

κ =  − e−wR
ab , κ =  − ( +wR

ab)e−wR
ab , Rab = Rab(αaαb)/ , (4.34)

where Rab is an eIective interatomic distance that depends on the atomic polarizabil-
ities and w is a damping constant, which is set to ..
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dcv1t dcv2t dcv3t dcv4t dcv5t dcv6t dcv3t-m dcv4t-m

αn
h . . . . . . . .

αn
n . . . . . . . .

αn
c . . . . . . . .

αn
s . . . . . . . .

αc⋅/αn⋅ . . . . . . . .

tr(αn) . . . . . . . .
tr(αc) . . . . . . . .
tr(αn

dft) . . . . . . . .
tr(αc

dft) . . . . . . . .

Table 4.3. Atomic polarizabilities αn⋅ for hydrogen, nitrogen, carbon, and sulfur atoms of neutral dcvnt
and dcvnt-mmolecules. Ae atomic polarizabilities αc⋅ for the chargedmolecules are scaled as speci>ed.
Also listed are the traces of the molecular polarizability tensors resulting from the atomic polarizabilities
and corresponding traces obtained from dft calculations. All values are given in units of Å .

▸ Atomic Polarizabilities To calculate the electrostatic interaction energies (4.31),
the >rst step is to determine the (isotropic) atomic polarizabilities αc,na . Aeir role is
to model the (anisotropic) molecular polarizability tensor αc,n of charged or neutral
molecules, which is expressed via the relay matrix A− by

αc,n = (αµν) with αµν =∑
ab
(A−)µνab and Aµν

ab =
⎧⎪⎪⎨⎪⎪⎩
(αc,na )− , for a = b ,
−Tµν

ab , for a ≠ b , (4.35)

as is deduced within the Applequist model of distributed polarizabilities [188–192].
Based on this relationship, the atomic polarizabilities for single charged and neutral
molecules are adjusted such that the molecular polarizability tensor is in accordance
with its counterpart obtained from dft calculations using the b3lyp functional and
the 6-311g∗∗ basis set. For a series of dcvnt and dcvnt-m molecules in charged and
neutral states, resulting atomic polarizabilities are listed in Table 4.3. Also provided
are traces of the associated molecular polarizability tensors (4.35) and of their dft
equivalents. Note that the atomic polarizabilities are >tted to the chemical elements of
the atoms, in this case hydrogen, nitrogen, carbon, and sulfur, and under constraining
the ratios for diIerent chemical elements to the ratios of model atomic polarizabilities
from the (revised)Aolemodel [185].Aesemodel atomic polarizabilities have proven
successful in reproducing molecular polarizability tensors simultaneously for several
representative test molecules.
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▸ Induced Atomic Dipole Moments Ae second step before evaluating the elec-
trostatic interactions of a charged or neutral molecule i with its environment (4.31)
is the determination of the induced atomic dipole moments pa. Ae prerequisite for
this are the atomic partial charges qa and polarizabilities αa of the charged or neutral
molecule i and of the neutral surrounding molecules – labeled according to (4.32).
Aen, the permanent electrostatic >eld arising from the atomic partial charges leads,
owing to the atomic polarizabilities, to the induction of atomic dipole moments pa
on the atoms a. Aese induced dipole moments are, however, created not only by
the permanent >eld due to the atomic partial charges but also from the polarization
>eld arising from the other induced atomic dipole moments [193]. Hence, the induced
atomic dipole moments are determined by

pµa = αa (∑
b∉ j

Tµ
ab qb +∑

b≠a
Tµν
ab pνb ) , (4.36)

where the >rst sum is the permanent >eld at atom a in molecule j originating from the
atomic partial charges qb on the othermolecules, each creating a >eld ∂

∂µ Tabqb = Tµ
abqb,

and the second sum is the polarization >eld at atom a due to the other, including in-
tramolecular, induced dipole moments pb, each contributing a >eld ∂

∂µ T
ν
ab p

ν
b = Tµν

ab p
ν
b.

To solve (4.36), a self-consistent polarization >eld needs to be determined, which is
achieved by iterativemethods [194]. At the beginning, the induced dipolemoments pa
are initialized by evaluating the permanent electric >eld due to the atomic partial
charges, i.e., the >rst sum, at the positions of the atoms a. Aen, the induced dipole
moments are re>ned iteratively, according to the second sum:

pµa() = αa∑
b∉ j

Tµ
ab qb , pµa(n+ ) = Ωαa∑

b≠a
Tµν
ab pνb(n) + (−Ω) pµa(n) . (4.37)

Ae iteration is stopped if the accuracy of the induced dipole moments is adequate:
∑a ∣pµa(n+ ) − pµa(n)∣ < −D. Note that the convergence of the iterative procedure
is enforced and accelerated by the technique of successive overrelaxation using a relax-
ation factor Ω [187, 195]. Figure 4.12 a illustrates, as an example, converged induced
atomic dipole moments for a system of three dcv4tmolecules, where the central mol-
ecule is positively charged. Also shown are inducedmolecular dipolemoments, which
are composed additively of the atomic dipole moments of the respective molecule.
Figure 4.12 b depicts, as another example, the induced molecular dipole moments on
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Figure 4.12. Induced dipole moments resulting from a positively charged molecule, illustrated in black.
(a) Induced atomic dipole moments, indicated by small arrows, and resultingmolecular dipole moments,
by large arrows, on two surrounding neutral molecules, shown in white. (b) Induced molecular dipole
moments in a crystalline dcv4t system.

dcv4tmolecules in a volume of radius .nm surrounding a positively charged mol-
ecule. For dcvnt systems, a relaxation factor Ω = . has proven to be a reliable com-
promise between speed and stability of the iterative convergence procedure.

▸ Site Energy Difference According to theories of charge transfer (Section 3.2),
a charge transfer reaction between a pair ofmolecules i and j is driven by the diIerence
in their site energies (3.19),

∆Eij = Ei − Ej = ∆Eint
ij + ∆Eelstat

ij + ∆Eext
ij . (4.38)

Here, the site energy diIerence is decomposed into internal and electrostatic contri-
butions, and an additional term accounting for an externally applied electric >eld F ,

∆Eint
ij = Eint

i − Eint
j , ∆Eelstat

ij = Eelstat
i − Eelstat

j , ∆Eext
ij = q F ⋅rij , (4.39)

where q = ±e is the charge and rij = r j − ri a vector connecting the molecules i and j.
For typical distances between small molecules, of the order of nm, and moderate
>elds, of up to about V/cm, this term is always smaller than . eV.
Ae distribution of site energy diCerences for all molecular pairs of the neighbor list

provides an alternative de>nition of energetic disorder:

σ =√⟨∆E⟩ − ⟨∆E⟩ . (4.40)
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Since site energies are o5en spatially correlated, this standard deviation of site energy
diIerences (4.40) is usually smaller than the deviation of site energies (4.6), i.e., σ ≤ σ .
In fact, charge transport is only aIected by neighbor list pairs of molecules, thus σ is
generally a more appropriate quantity to characterize the energetic disorder. In cases
where only a subset of the neighbor list contributes to charge transport, for example
when the charge carrier visits only correlated low-energy regions of a disordered site
energy landscape, a reduced neighbor list should be employed to calculate an eCective
energetic disorder σeI ≤ σ (Chapter 6).

4.2.6. Reorganization Energies

In an energy-conserving charge transfer complex formed of two molecules i and j,
charge transfer occurs at an instant of coincidingmolecular energies, which is induced
by the site energy modulations due to nuclear vibrations. In the high-temperature
limit (Section 3.2.1), the required change of nuclear coordinates is described by the
reorganization energy (3.21),

λij = λi + λ j = Un′
i −Un

i + Uc′
j −Uc

j , (4.41)

whereUn′
i is the energy of the neutralmolecule i in the nuclear geometry of its charged

state, and similarly Uc′
j is the energy of the charged molecule j in the nuclear con>gu-

ration of its neutral state. Un
i and Uc

j are the usual energies at the nuclear equilibrium
geometries, which also contribute to the internal site energy (4.29). To compute a re-
organization energy (4.41), four ab initio calculations are required: two with geometry
optimization, yielding the energies at the nuclear equilibrium con>gurations, and two
with geometry constraints to the respective opposite nuclear con>guration.

Ae determination of the reorganization energies for allmolecular pairs of the neigh-
bor list is a computationally intensive task. However, for one-component systems
with negligible conformational variations, the reorganization energies are identical
and only a single evaluation is required. Ais is still a good approximation if molecu-
lar conformations vary, but energetic disorder is substantially larger than the variance
of the reorganization energies. Nonetheless, from a general point of view, where po-
tential energy surfaces are diIerent for each molecule, the reorganization energies are
properties of the charge transfer complexes: λij ≠ λii . Moreover, the molecular reorga-
nization energies λi and λ j can vary for charging and discharging a molecule, hence
the reorganization energies of the reverse processes may be diIerent: λij ≠ λ ji .
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4.2.7. Charge Dynamics

Having determined the list of hopping sites and for each pair i and j the charge transfer
parameters as well as the rates ωij, the next step is to study the dynamics of the charge
carrier using the master equation. As already introduced, the master equation (4.8)
is a set of coupled diIerential equations in time τ for the occupation probabilities pi
that are associated with the localized electronic states ∣ψi⟩. A stochastic solving ap-
proach is provided by the kinetic Monte Carlo method.7 In this procedure, the time
evolution of the charge carrier is explicitly simulated leading to a realization of the
master equation, a so-called Markov chain. A Markov chain refers to a sequence of
states ∣ψk⟩, starting from a random initial state,

∣ψk⟩ ∆τ`̀ → ∣ψk⟩ ∆τ`̀ → ∣ψk⟩ ∆τ`̀ → ⋯ , (4.42)

which comprises time intervals of residence ∆τ, such that at time τ a speci>c state ∣ψi⟩
occurs with the probability pi that satis>es the master equation. Aus, generating an
ensemble of Markov chains allows the deduction of the occupation probabilities at
time τ by pi = ni/n, where n is the total number ofMarkov chains and ni is the number
of chains in the state ∣ψi⟩ at time τ.Ae stationary solution of themaster equation is ob-
tained for large times τ →∞, where occupation probabilities become time-invariant,
∂pi/∂τ = . In the case of ergodic systems, where Markov chains at large times τ →∞
become independent of the randomly chosen initial state, the stationary occupation
probabilities can be alternatively derived from a single, suBciently longMarkov chain,
which is evaluated over its time.Ae stationary probabilities then follow from pi = ℓi/ℓ,
where ℓ is the temporal length of the Markov chain and ℓi is the accumulated time of
residence in the state ∣ψi⟩.
Note that in the case of isolated systems, i.e., systemswithout sources, sinks, or circu-

lar currents, the stationary solution corresponds to the thermodynamic equilibrium,
where rates are known to obey the condition of detailed balance, that is, pjω ji = piωij.
In practice, this can be used to test whether the system is ergodic or not by correlating
ln(pi) and the site energy Ei . Indeed, the ratios of the forward and backward rates
are determined solely by the site energy diIerences since ω ji/ωij = exp(−∆Eij/kBT),
as follows from the Marcus rate (3.18) and the assumption that the reorganization en-
ergies are equal for both directions, λij = λ ji .
7Alternatively, the master equation can be solved numerically [196]. Numerical algorithms may, how-
ever, become unstable for strongly varying rates, as occurs in systems with high energetic disorder.
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Figure 4.13. (a) Flowchart of the kinetic Monte Carlo scheme according to the variable step size method.
(b, c) Graphical representation of the target site selection (step 3). Adapted from Reference [197].

▸ Kinetic Monte Carlo Simulation Ae kinetic Monte Carlo method [197, 198]
is tasked to simulate the charge carrier dynamics and generate desired Markov chains.
A suitable simulation algorithm is the variable step sizemethod [199–201], also known
as the n-fold way, which is depicted as a ?owchart in Figure 4.13 a. In the >rst step, the
initially occupied site i is selected, the starting time τ is set, without loss of generality
τ = , and the stopping time ℓ is speci>ed, de>ning the length of the Markov chain.
Ae second step is the determination of the residence time before the charge carrier is
propagated. According to the Markov approximation underlying the master equation,
the charge carrier is memoryless and has in each short time interval the same prob-
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ability of escaping from site i, which gives rise to exponential decay statistics [197].
Hence, the probability that site i is still occupied at a later time τ + ∆τ is given by
exp (−ωi∆τ), where ωi is the total escape rate from site i to all accessible sites from
the neighbor list. Ae time interval of residence ∆τ can thus be obtained by solving
exp (−ωi∆τ) = r with r being a random number in the unit interval. Ae third step is
the determination of the target site to which the carrier is propagated. Based on the
set of all accessible sites kγ, the target site j has to be selected with a probability pro-
portional to ωij/ωi . Figure 4.13 b illustrates this selection scheme by a stack of objects,
each representing, by its object height, a possible escape rate ωikγ from site i to an ac-
cessible neighboring site kγ, such that the total stack height is ωi [197]. Generating a
random number r′ in the unit interval yields a random position r′ ⋅ωi along the stack,
which points with the desired probability to one of the objects, say ωij, and therefore
indicates the selected target site j. Figure 4.13 c illustrates the practical implementa-
tion of this scheme, employing an array of successively extending partial sums, where
each array element contains the accumulated height of all preceding objects up to the
current object. Consequently, the target site j is obtained by the array element with
the biggest index j whose partial sum is not larger than r′ ⋅ωi . A5er propagating the
the charge carrier from site i to j, the situation corresponds to the starting point of the
algorithm. Aus, in the fourth step, the procedure is continued, provided the stopping
time ℓ is not yet reached.

4.2.8. Macroscopic Observables

Knowing the occupation probabilities pi of the ensemble of states ∣ψi⟩ at the time τ,
and thus the density operator ρ̂ (4.7), one is in the position to determine ensemble
averages of observable quantities a with associated operators â:

⟨a⟩ = tr (â ρ̂ ) = ∑
i
pi ⟨ψi ∣ â ∣ψi⟩ = ∑

i
pi ai , (4.43)

where ai denotes the expectation value of a in the pure state ∣ψi⟩. If the observable a
does not explicitly depend on time, themaster equation (4.8) can be invoked to express
the average ⟨a⟩ by the following relation:

∂ ⟨a⟩
∂τ

= ∑
i , j
(p jω ji − piωij) ai = ∑

i , j
piωij (aj − ai) . (4.44)
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▸ Electric Current If the position of the charge r is an observable, the time deriva-
tive of its average is the charge velocity

⟨v⟩ = ∂ ⟨r⟩
∂τ

= ∑
i , j

piωij(r j − ri) = 
∑

i , j
(piωij − p jω ji) rij , (4.45)

where rij = r j−ri corresponds to a vector pointing from site i to j and the symmetriza-
tion of the summation on the right hand side follows from rij = −r ji . Multiplication
with the charge q = ±e yields the total current in the system,

j = q ⟨v⟩ = 
∑

i , j
cij rij , cij = q (piωij − p jω ji) , (4.46)

and the contribution from a speci>c pair of sites i and j is denoted as edge current cij.

▸ Charge Carrier Mobility Ae zero->eld mobility tensor µ of the charge carrier
is associated with the diIusion tensor D by the Einstein relation,

µ = 
kBT

D , (4.47)

and can thus be obtained by studying particle diIusion in the absence of external >elds.
Using the squared particle displacement ∆r as an observable, the diIusion tensor
takes the following form, with superscripts indicating the Cartesian components:

Dµν = ∂⟨∆rµ∆rν⟩
∂τ

=∑
i , j

p jω ji(∆rµi ∆rνi − ∆rµj ∆rνj ) =∑
i , j

p jω ji(rµi rνi − rµj rνj ) . (4.48)

Alternatively, the diIusion tensor can be directly determined from the ensemble of
Markov chains with temporal length ℓ, each yielding a charge displacement vector ∆r
by the vector connecting the initially and >nally occupied sites, such that

Dµνℓ = ⟨∆rµ∆rν⟩ . (4.49)

Ais method has the advantage that it can be immediately extended to systems with
periodic boundary conditions. In this case, the charge displacement vector is obtained
by unwrapping the diIusion trajectory de>ned by the Markov chain, as is exempli>ed
in Figure 4.14 for a crystalline system of 2880 dcv4tmolecules.
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Figure 4.14. Unwrapped charge dif-
fusion trajectory in a crystalline sys-
tem of 2880 dcv4t molecules with
periodic boundaries, indicated as a
cuboid.Ae charge displacement vec-
tor ∆r connects the initially and >-
nally occupied sites, marked in vio-
let and red, respectively. Ae Markov
chain has a temporal length ℓ = − s
and the axes are given in units of nm.

Ae charge carrier mobility tensor µ under an externally applied electric >eld F can
be calculated by the following relation using the average charge velocity (4.45):

⟨v⟩ = µ F . (4.50)

Alternatively, the >eld-dependent mobility tensor can be directly determined from a
Markov chain. To this end, the charge velocity is calculated from the charge displace-
ment vector between the initially and>nally occupied sites divided by the time length ℓ.
Projecting this velocity on the direction of the >eld yields the >eld-dependent charge
carrier mobility in this particular direction. To ensure adequate statistics, the mobility
can be averaged over an ensemble ofMarkov chains. Again, thismethod is particularly
suitable if periodic boundary conditions are employed, where the charge displacement
vector follows from the unwrapped charge carrier trajectory.
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Chapter 5.

Charge Transport Simulations in
Organic Crystals

Within the >eld of organic photovoltaic cells based on small molecules (Chapter 1),
a particular successful class of donor compounds are dicyanovinyl-substituted oligo-
thiophenes (dcvnt). When preparing puredcvntmaterial samples, as used in planar
heterojunction cells, the substances typically adopt crystalline phases. Here, a com-
parative charge transport simulation study is performed for the crystalline phases of
the terthiophene (dcv3t), a methylated derivative (dcv3t-m), the quaterthiophene
(dcv4t), and a methylated derivative (dcv4t-m), all of which are shown in Figure 5.1.

First, attention is directed to single crystals of all four compounds (Section 5.1).
Comparing the charge transport behavior leads to the conclusion that crystal struc-
tures characterized by a well-de>ned π-stacking are disadvantageous for an eBcient
transport. Ae microscopic origins of this counterintuitive >nding are elucidated and
provide an explanation for a similar trend observed in experimental measurements.
Second, the study is extended to thin Dlms of the two quaterthiophenes (Section 5.2).
Such thin >lm layers can exhibit molecular packings diIerent than the single crys-
tals and thus altered charge transport capabilities. Taking into account the thin >lm
molecular packings yields charge carrier mobilities with a systematically improved
agreement with experimental device measurements.
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Figure 5.1. Chemical structures
of terminally dicyanovinyl-sub-
stituted terthiophene (dcv3t), a
methylated derivative compound
(dcv3t-m), dicyanovinyl-substi-
tuted quaterthiophene (dcv4t),
and a methylated derivative com-
pound (dcv4t-m).
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5.1. Dicyanovinyl-Substituted Oligothiophenes:
Single Crystals

Within the collaborating group of Bäuerle at the Institute of Organic Chemistry II and
Advanced Materials in Ulm, Germany, the dicyanovinyl-substituted terthiophenes,
dcv3t and dcv3t-m, and quaterthiophenes, dcv4t and dcv4t-m, have been puri>ed
via vacuum sublimation at temperatures well below their melting points [202, 203].
In these processes, highly pure molecular crystals of up to macroscopic size (linear
dimensions of roughly .mm) could be grown, which is suBciently large for an in-
vestigation by single crystal x-ray crystallography. In this technique, a crystal sample
is mounted in a goniometer for gradual rotation around the three axes, while being
exposed to an incident x-ray beam. From the scattered radiation one obtains a diIrac-
tion pattern with angular dependence on the crystal orientation, which allows one
to infer the periodic structure of the crystal on an atomic length scale. Ais crystal
structure includes both the unit cell, i.e., the parallelepiped de>ning the crystal lat-
tice, and the repeating motif, i.e., the precise molecular arrangement at each lattice
point. Such crystallographic information is publicly available for dcv4t and dcv4t-m
in Reference [202] and [203], respectively, and is expected to be published in the near
future for dcv3t and dcv3t-m.
In what follows, the four crystal structures are taken as a basis to perform micro-

scopic charge transport simulations (Section 4.2). First, mesoscopic morphologies at
room temperature are generated and the inherent disorder is quanti>ed (Section 5.1.1).
Subsequently, the charge transfer parameters between the neighboring molecules are
evaluated (Section 5.1.2). And >nally, charge transport is investigated by calculating
the charge carrier mobility tensors and relating the results to the energetic disorder
and the charge transporting networks built from the transfer integrals (Section 5.1.3).
Ae reported scienti>c results are the subject of prior publication [1], and are presented
below in more detail using partially similar terms and illustrations.

5.1.1. Morphological Disorder

As starting con>gurations for molecular dynamics simulations, supercells with 2880
molecules in crystalline arrangement (and periodic boundary conditions) are created
by the multiplication of the crystal repeating motifs. To this end, the motifs are trans-
lated multiple times along the base vectors a, b, and c of the (primitive) unit cells:
12×12×5 for dcv3t, 24×5×6 for dcv4t, 15×16×6 for dcv3t-m, 16×15×12 for dcv4t-m.
Note that additional orthogonal coordinate systems are introduced which are de>ned
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Figure 5.2. Morphology of the dcv4t molecular crystal at room temperature, truncated in the y-direc-
tion for clarity. In the le5 third, the molecules are drawn explicitly, in the middle third, only their molec-
ular backbones are shown, and in the right third, only their centers of mass are depicted. Ae parallel-
epiped indicates the (primitive) unit cell of the dcv4t crystal, which is nearly orthogonal and contains a
repeating motif of four molecules.

by the x-axis along the a-vector, the y-axis within the ab-plane, and the z-axis orthog-
onal to the prior two axes. Aen, the prepared supercells are subjected to molecular
dynamics simulations (Section 4.2.2) at a pressure of bar, a temperature of K and
for a duration of ns. Ais yields realistically disordered morphologies, as is illus-
trated for dcv4t in Figure 5.2. Ae view shows a slice of the y-direction and indicates
molecular backbones and centers ofmass by gray tubes and black spheres, respectively.
In addition, the dcv4t unit cell, which contains four molecules, is shown. For all com-
pounds, an overview of unit cells is provided in Figure 5.12 a on Page 122/123.

▸ Molecular Conformations Ae molecular conformations within the room-tem-
perature morphologies are analyzed by evaluating the dcv-thiophene (cc–c–ca–s)
and thiophene-thiophene dihedral angles (s–ca–ca–s) as de>ned in the force >eld
(Section 4.2.1). Ae ensemble distributions of all dihedral angles in one molecular dy-
namics snapshot are shown in Figure 5.3. As can be seen, the molecules are almost ?at
on average, which is in agreement with the experimentally obtained crystal structures.
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Figure 5.3. Distributions of the dcv-thiophene and thiophene-thiophene dihedral angles in molecular
crystals at K. Ae dcv-thiophene dihedrals are shown in red and yellow, while thiophene-thiophene
dihedrals are shown in blue, green, and cyan. Ae insets illustrate distributions of the molecular dipole
moment components. Adapted from Reference [1].

Ais observation is expected for the bare oligomers, dcv3t and dcv4t, since ab initio
calculations with geometry optimization performed on single molecules in vacuum
result in planar conformations. Ae methylated compounds, dcv3t-m and dcv4t-m,
however, have signi>cantly twisted vacuum-optimized geometries and, consequently,
the conformational planarization in the crystal arises due to non-bonded interactions
with the neighboring molecules. As will be discussed below, this planarization eIect
has an important consequence for the reorganization energies.
Ae deviations from the planar average geometries of the molecules, as a conse-

quence of thermal ?uctuations, result in conformational disorder.Ais conformational
disorder can be quanti>ed by the widths of the dihedral angle distributions. As seen
in Figure 5.3, the widths are of the order of ° for the dcv-thiophene and ° for the
thiophene-thiophene dihedral angles.
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Figure 5.4. Alternately oriented mol-
ecular dipole moments in a dcv3t
molecular crystal, shown as arrows at
the molecular centers of mass (black
spheres). Ae dipole moments are
color-coded according to their di-
rection, that is, opposite directions
have complementary colors.Ae hue
represents the azimuth angle, while
lightness re?ects the elevation angle
(hsv color model). Adapted from
Reference [1].

▸ Molecular Dipole Moments Based on the atomic partial charges of the dcvnt
molecules, as de>ned in the force >eld (Section 4.2.1), permanent molecular dipole
moments can be evaluated for the molecules in the room-temperature morphologies.
Ae insets of Figure 5.3 show the ensemble distributions of molecular dipole moments,
resolved into their components (in the orthogonal xyz-coordinates). For the terthio-
phenes, dcv3t and dcv3t-m, one observes bimodal distributions, which indicates
that the dipole moments are non-zero on average. Indeed, the planar average confor-
mations of the terthiophenes have an asymmetric or mirror-symmetric alignment of
the electron-withdrawing dcv substituents, which leads to non-vanishing dipole mo-
ments. In contrast, the quaterthiophenes, dcv4t and dcv4t-m, are centro-symmetric
and thus have zero dipolemoments on average.Ais observation is in accordance with
the experimental crystal structures: the unit cells of the terthiophenes contain an even
number of molecules with alternating orientation, such that the dipole moments are
mutually compensating.
Ae deviations of the molecular dipole moments from their average values and ori-

entations, which result from the conformational disorder, give rise to dipolar disorder.
Figure 5.4 illustrates for the bare terthiophene, dcv3t, the ?uctuating alternately ori-
ented dipole moments in a small section of a molecular dynamics snapshot. Figure 5.5
shows similarly for the bare quaterthiophene, dcv4t, the ?uctuating randomly ori-
ented dipole moments. As will be discussed below, the dipolar disorder is closely re-
lated to disorder in the site energies.
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Figure 5.5. Randomly oriented mol-
ecular dipole moments in a dcv4t
molecular crystal, shown as arrows at
the molecular centers of mass (black
spheres). Ae dipole moments are
color-coded according to their di-
rection, that is, opposite directions
have complementary colors.Ae hue
represents the azimuth angle, while
lightness re?ects the elevation angle
(hsv color model). Adapted from
Reference [1].

5.1.2. Charge Transfer Parameters

In order to construct the charge transport Hamiltonian, the morphologies are parti-
tioned on conjugated segments and rigid fragments (Section 4.2.3). Accordingly, the
π-conjugated dcvnt molecules are represented by separate rigid fragments for each
dcv or (methylated) thiophene unit, and by single conjugated segments, whose cen-
ters of mass correspond to the hopping sites i. Ae neighbor list of adjacent hopping
sites i and j is created from all suBciently close molecular pairs, characterized in that
any pair of associated mutual rigid fragments is below a cutoI of .nm.

▸ Reorganization Energies Ae computation of reorganization energies is based
on ab initio calculations for single charged and neutral molecules, once with and once
without geometry optimization (Section 4.2.6). In the present case of one-component
systems, it is suBcient to compute for each system a universal reorganization energy λ.
To account for the conformational planarization of the molecules in the bulk, the cal-
culations with geometry optimization are carried out while the dihedral angles are
constrained to their average values in the molecular crystals. As a result, similar reor-
ganization energies λ for all four compounds are obtained, which are listed in Table 5.1.
Ae calculations are conducted by dft, the b3lyp functional, and the 6-311g∗∗basis set.
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dcv3t dcv4t dcv3t-m dcv4t-m

λ . . . .
σ . . . .

Table 5.1. Reorganization energy λ
and energetic disorder σ for pairs
from the neighbor list, both given in
units of eV.

Note that unconstrained geometry optimization calculations, as are usually carried
out, lead to an increase of the reorganization energies of the methylated compounds,
dcv3t-m and dcv4t-m, by . eV and . eV, respectively. Ais is a consequence of
their twisted neutral, but planar charged geometry, contrary to the bare compounds,
which are ?at in either charge state. Aese higher values of the reorganization energies
would lead to an order of magnitude decrease in the charge carrier mobilities, which
are determined later on.

▸ Site Energies Ae observed dipolar disorder is an indication of disorder in site
energies: for instance, in phenomenological Gaussian disorder models (Section 4.1.2),
randomly oriented dipoles are known to cause correlated energetic disorder [125–129].
To quantify the energetic disorder in the molecular crystals, the site energies Ei of all
molecules i are determined based on the electrostatic interactions between atomic par-
tial charges and induced dipolemoments according to theAolemodel (Section 4.2.5).
As an example, Figure 5.6 visualizes the resulting site energies in a dcv4tmorphology
bymeans of color-coded hopping sites, i.e., molecular centers of mass. Ae range from
low to high site energies is indicated by a color range from blue to red. Obviously, site
energies are spatially correlated, but energetic defects also exist, as can be seen by sin-
gular blue or red hopping sites.
For all compounds, the distributions of the site energy diIerences, ∆Eij = Ei − Ej,

for pairs from the neighbor list are shown in Figure 5.7. In addition, the insets provide
the spatial and temporal correlation functions,

CE = ⟨ (Ei − ⟨E⟩) (Ej − ⟨E⟩) ⟩
⟨ (Ei − ⟨E⟩) ⟩ , (5.1)

which are one if site energies are fully correlated and zero if they are uncorrelated.
Ae widths of Gaussian functions >tted to the distributions yield the neighbor-list-
based energetic disorder σ , as de>ned in (4.40). Ae results, summarized in Table 5.1,
indicate that the four systems are characterized by fairly similar energetic disorder,
which is substantial and approximately comparable to many amorphous systems [4].



114 Chapter 5. Charge Transport Simulations in Organic Crystals

x

z
-y

Figure 5.6. Hopping sites (molecular
centers of mass) in a dcv4t molecu-
lar crystal, colored according to their
site energy. Ae range from low to
high site energies is indicated by a
color range from blue to red. Evi-
dently, the site energies are spatially
correlated and occasionally exhibit
energetic defects. Adapted from Ref-
erence [1].

Such signi>cant energetic disorder is unexpected for crystalline systems, but is a conse-
quence of the molecular architecture of the dcv-substituted oligothiophenes, having
the electron-withdrawing dcv groups attached in non-axial orientation and the dcv
and thiophene units connected by single bonds. Such an acceptor-donor-acceptor ar-
chitecture combined with ?uctuations of the dihedral angles leads to substantial vari-
ations of the local electric >elds.
As mentioned before, the terthiophenes, dcv3t and dcv3t-m, have equilibrium

conformations with non-zero permanent dipole moments, which are compensated in
a unit cell. If the energetic disorder in the terthiophene molecular crystals is calcu-
lated based on the atomic partial charges only, thus neglecting eIects of molecular
polarization, the width of the site energy distribution becomes . eV and . eV,
respectively. Aese signi>cantly higher values reveal that not only the compensation
of dipole moments in a unit cell [204], but also the large polarizabilities of the mol-
ecules (Section 4.2.5) play an important role in reducing the energetic disorder. For
the quaterthiophenes, dcv4t and dcv4t-m, which have zero dipole moments in their
equilibrium conformations, the neglect of polarization eIects has no signi>cant in?u-
ence on the energetic disorder.
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Figure 5.7. Distributions of the site energy diIerences for pairs from the neighbor list. Ae width of
Gaussian >t functions yields values of energetic disorder σ , listed in Table 5.1. Ae insets show spatial
correlation functions and time correlation functions. Ae latter are calculated frommolecular dynamics
simulations of .ps and bare Coulomb interactions. Adapted from Reference [1].

▸ Transfer Integrals Ae transfer integrals Jij between pairs of molecules i and j
from the neighbor list are determined by means of the zindomethod (Section 4.2.4).
Ae set of transfer integrals constitutes a percolating network, which provides infor-
mation about the directionality and dimensionality of charge transport. In Figure 5.8,
this charge transporting network is illustrated for a dcv4t snapshot. To highlight its
topological connectivity pattern, an enlarged view of a ten unit cell volume is also
shown. Here, hopping sites are depicted by black spheres and transfer integrals are
represented by intermediate colored bonds; their thickness displays the electronic cou-
pling strength, while their color indicates the crystallographic direction. Ae discrim-
ination of the distinct crystallographic directions is accomplished by shi5ing all bond
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x

z
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Figure 5.8. Charge transporting network of a dcv4t molecular crystal, truncated in the y-direction for
clarity. Hopping sites (molecular centers of mass) are depicted as black spheres, while transfer integrals
between molecular pairs are illustrated as colored bonds. Ae bond thickness re?ects the electronic cou-
pling strength, while the bond color indicates the crystallographic direction. Ae enlarged view corre-
sponds to a volume of ten unit cells.
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Figure 5.9. Vectors between all hop-
ping site pairs from the neighbor list,
shi5ed to the origin (at the center).
Groups are de>ned by the smallest
cuboids enclosing clusters of vector
endpoints. Ae groups are identi>ed
with distinct crystallographic direc-
tions, indicated by diIerent cuboid
colors. If directions are equivalent
by the crystal symmetry, groups are
united. Adapted from Reference [1].

vectors to the origin and >nding groups of vector endpoints by an agglomerative hi-
erarchical cluster algorithm [205]. Ais scheme is illustrated for the dcv4t system in
Figure 5.9: all bond vectors of the system are drawn simultaneously pointing from
the center to the exterior. Ae vector endpoints form clusters, which are enclosed by
cuboids, whose coloring corresponds to the respective crystallographic directions.
For all molecular crystals, an overview of charge transporting networks is shown

in Figure 5.12 b on Page 122/123. For a quantitative analysis, Figure 5.10 depicts the
associated total and direction-resolved transfer integral distributions, drawn in black
and the above-de>ned colors, respectively. Ae total distributions comprise several
peaks, which are clearly attributable to the underlying directional distributions, char-
acterized by single pronounced peaks (the only exception is the direction in dcv3t-m
marked in red, along which electronic coupling alternates). In addition, Table 5.2 lists
the average directional transfer integrals as well as the average hopping site separations.
One recognizes that the molecular crystals of the bare compounds, dcv3t and dcv4t,
have a well-de>ned π-stacking direction (red) with an average coupling of − eV

and center-of-mass separation of .nm, while other crystallographic directions (blue
and green) have several orders of magnitude lower coupling strengths. Ais demon-
strates that the presence of the strongly coupled one-dimensional π-stacking direc-
tion is at the expense of the coupling strength of other directions. Moreover, these
other directions are oriented almost perpendicular to the π-stacking, as seen in Fig-
ure 5.12 b onPage 122/123. In contrast, analyzing themethylated compounds,dcv3t-m
and dcv4t-m, reveals the absence of a comparably pronounced π-stacking direction;
instead, their charge transporting networks comprise multiple crystallographic direc-
tions of moderate coupling strengths.
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Figure 5.10. Total and direction-resolved distributions of the transfer integrals, drawn in black and dis-
tinct colors, respectively. Ae coloring of directional transfer integrals corresponds to the topological
connectivity patterns in Figure 5.12 b on Page 122/123. Average values of the distributions are listed in
Table 5.2. Adapted from Reference [1].

dcv3t dcv4t dcv3t-m dcv4t-m

⟨J⟩ ⟨r⟩ ⟨J⟩ ⟨r⟩ ⟨J⟩ ⟨r⟩ ⟨J⟩ ⟨r⟩
. ⋅ − . . ⋅ − . . ⋅ − . . ⋅ − .
. ⋅− . . ⋅ − . . ⋅− . . ⋅ − .
. ⋅ − . . ⋅ − . . ⋅ − . . ⋅ − .
. ⋅ − . . ⋅ − . . ⋅ − .
. ⋅− . . ⋅ − . . ⋅ − .

. ⋅− .
. ⋅ − .

Table 5.2. Average direction-resolved transfer integrals ⟨J⟩, given in eV , and associated average hop-
ping site separations ⟨r⟩, given in nm. Ae coloring of crystallographic directions corresponds to the
topological connectivity patterns in Figure 5.12 b on Page 122/123.
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dcv3t dcv4t dcv3t-m dcv4t-m

µ
σ= . ⋅ − . ⋅ − . ⋅  . ⋅ 

µ
σ= . ⋅ − . ⋅ − . ⋅ − . ⋅ −

µ
σ= . ⋅ − . ⋅ − . ⋅ − . ⋅ −

µ . ⋅ − . ⋅ − . ⋅ − . ⋅ −
µ . ⋅ − . ⋅ − . ⋅ − . ⋅ −
µ . ⋅ − . ⋅ − . ⋅ − . ⋅ −
µexp — . ⋅ − — . ⋅ −

Table 5.3. Eigenvalues of the zero-
>eld mobility tensors µσ= and µ,
calculated in the absence and pres-
ence of energetic disorder, respec-
tively. Experimentally measured or-
ganic >eld-eIect transistor mobili-
ties µexp are available for dcv4t and
dcv4t-m [203]. All values are given
in units of cm/Vs.

5.1.3. Charge Carrier Mobility

In crystalline phases, charge transport generally exhibits anisotropic behavior, i.e., the
charge carrier mobility is dependent on the crystallographic direction. In order to de-
termine the main transport directions and link them to the packing motifs, charge
diIusion without an externally applied electric >eld is studied >rst. Based on the ki-
netic Monte Carlo method (Section 4.2.7), the diIusion tensor (Section 4.2.8) of each
molecular crystal is determined by averaging over  charge displacement vectors
for time intervals of − s. Aen, the zero->eld mobility tensor follows from the Ein-
stein relation (4.47).
In order to assess the eIects of the energetic disorder on charge transport, the zero-

>eld mobility tensor is determined for each crystalline system twice. On the one hand
it is calculated for a simpli>ed model system where energetic disorder is turned oI,
i.e., the site energies are set to zero, and on the other hand it is calculated for the full
model system including the site energies. Aese two zero->eld tensors are denoted as
µσ= and µ, respectively, and their eigenvalues are provided in Table 5.3.Ae bounding
eigenvalues, i.e., the >rst and the third, specify the highest and lowest mobilities and
de>ne the mobility ranges which are displayed in the le5 panels of Figure 5.11. Ae
striped and >lled areas correspond to the mobility ranges in the absence and presence
of energetic disorder, respectively.
To link the topological connectivity of the systems to the anisotropy of the charge

carrier mobility, the mobility tensors of the four molecular crystals are depicted as
ellipsoids in Figure 5.12 c on Page 122/123; the colored arrows originating from the
center of the ellipsoids indicate the crystallographic directions which were identi>ed
previously (Figure 5.12 b). Each ellipsoid is de>ned by its three principle axes pointing
along the eigenvectors of the associated mobility tensor and by the associated equa-
torial radii given by the square root of the tensor eigenvalues (Table 5.3). Hence, the
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Figure 5.11. Le5 panels: ranges of the zero->eld hole mobilities with and without energetic disorder,
shown by >lled and striped areas, respectively. Ae ranges are bounded by the largest and smallest eigen-
values of the mobility tensors. For dcv4t and dcv4t-m, experimentally measured organic >eld eIect
transistor mobilities are indicated by stars [203]. Right panels: hole mobilities as a function of an elec-
tric >eld applied along diIerent directions. Directions of the largest and smallest principal axes of the
zero->eld tensors are indicated by dashed, and other crystallographic directions by solid lines, colored
according to Figure 5.12 b, c on Page 122/123. Adapted from Reference [1].

transport direction with the maximum mobility, i.e., the >rst eigenvalue, is given by
the longest ellipsoidal principle axis. Ae ellipsoids drawn in red correspond to the
disregard of site energy variations, while those in gray include the eIects of energetic
disorder. If red ellipsoids are omitted, their orientation is similar to gray ones.
First, the results obtained in the absence of energetic disorder (striped areas in Fig-

ure 5.11 and red ellipsoids in Figure 5.12 c) are analyzed and the diIerent crystal struc-
tures compared. As regards the main transport directions, i.e., the longest ellipsoidal
axes, the following observation can be made. Ae crystals of the bare compounds,
dcv3t and dcv4t, exhibit their maximum mobility along the π-stacking direction
where the electronic coupling is the strongest (red). Ae crystals of the methylated
compounds, dcv3t-m and dcv4t-m, where π-stacking is not well de>ned, show the
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highest mobility along a superposition direction of multiple crystallographic direc-
tions with moderate couplings (red and blue). When comparing the mobility values
along themain transport direction, a rather counterintuitive result is observed. In spite
of weaker electronic couplings, the crystals of the methylated dcv3t-m and dcv4t-m
have an order of magnitude higher (maximum) mobilities as compared to the bare
dcv3t and dcv4t. Since energetic disorder is switched oI, this eIect can only be
attributed to a favorable connectivity pattern of the dcv3t-m and dcv4t-m charge
transporting networks. In other words, the pronounced π-stacking with strong elec-
tronic couplings, found for the bare dcv3t and dcv4t, is disadvantageous for eBcient
charge transport. When analyzing the transfer integrals, it was discovered that this one-
dimensional π-stacking of the bare compounds leads to poorly coupled perpendicular
transport directions, and inhibits electronic coupling in other directions completely
(Figure 5.12 b). Aus, the topological connectivity of the methylated compounds with
weaker couplings but better interconnection is favorable.1

Second, charge transport is analyzed in the presence of energetic disorder (>lled ar-
eas in Figure 5.11 and gray ellipsoids in Figure 5.12 c). As expected, the incorporation
of energetic disorder leads to a reduction of the mobility values for all crystals. How-
ever, the mobility of the bare dcv3t and dcv4t crystals decreases by two orders of
magnitude, while for the methylated dcv3t-m and dcv4t-m systems, it is only re-
duced by one order of magnitude. Ais discrepancy cannot be completely attributed
to the slightly smaller energetic disorder present in themethylated systems, butmainly
results from the aforementioned topological diIerences of their charge transporting
networks. Indeed, considering the longest ellipsoidal principal axis, one realizes that
the main transport directions of the bare dcv3t and dcv4t crystals are no longer
aligned with the π-stacks. Instead, the maximum mobility is now along a superpo-
sition direction of the strongly coupled π-stacking (red) and other crystallographic
directions with poor coupling (green). Ais reorientation of the mobility tensors is a
consequence of energetic defects in the one-dimensional π-stacks, as seen in Figure 5.6.
To bypass defective sites, a charge carrier has to escape to an adjacent π-stack by hop-
ping along one of the perpendicular side directions with poor coupling. To illustrate
this behavior, an external electric >eld of  (V/cm)/ is applied along the main

1Another aspect of the favorable topological connectivity for the methylated dcv3t-m and dcv4t-m
crystals are the larger average separations of hopping sites. O5en, the transfer integrals (and hence
the rates) decay exponentially with the separation, thus, larger site-site separations lead to lower mo-
bilities (which are proportional to the rate times the separation). However, molecules with extended
π-conjugation can have relative lateral shi5s which barely change the transfer integral, but increase
the center-of-mass (site-site) separation, resulting in longer charge hops and higher mobilities.
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Figure 5.12. (a) Unit cells and crystal repeating motifs. (b) Charge transporting networks based on the
transfer integrals. Ae transfer integrals between the hopping sites are shown as bonds connecting black
spheres. Ae bond color indicates the crystallographic direction, while the bond thickness re?ects the
electronic coupling strength. (c) Zero->eld mobility tensors. Without energetic disorder, tensors are
depicted as red ellipsoids, with energetic disorder as gray ellipsoids. For dcv3t-m and dcv4t-m, red
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and gray ellipsoids have similar orientations, hence only the gray ones are shown. Ae colored arrows
indicate the crystallographic directions of the charge transporting network. (d) Edge currents under an
electric >eld of  (V/cm)/ applied in the direction of the longest ellipsoidal principle axis, i.e., the
main transport direction. Ae arrowheads indicate the direction of the current, while the thickness and
color of the arrowsha5s re?ect the current amplitude. Adapted from Reference [1].
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transport directions, and the edge currents between neighboring hopping sites are cal-
culated (Section 4.2.8). Ae ?ow of electric current is visualized in Figure 5.12 d on
Page 122/123, where the arrowheads indicate the direction of the current, while the
thickness and color of the arrowsha5s are proportional to the logarithm of the current
amplitude. As expected, the average charge carrier in the bare dcv3t and dcv4t sys-
tems follows the one-dimensional π-stacking direction until a defect is reached, enforc-
ing an escape hop to a neighboring π-stack. In contrast, the methylated dcv3t-m and
dcv4t-m crystals show pathways consisting of hops along multiple crystallographic
directions of moderate couplings. Aese multi-dimensional composite pathways en-
able the charge carrier to easily avoid energetic defects. To summarize, substantial
energetic disorder combined with a strong π-stacking is detrimental to an eBcient
transport. Ae methylation preventing the molecules from a strong π-stacking leads
to a bene>cial topology of the charge transporting network with slightly lower cou-
plings but a better interconnection of the sites.
Another typical implication of spatially correlated energetic disorder is a non-linear

dependence of the mobility µ on an externally applied electric >eld F. For example, in
phenomenological Gaussian disorder models (Section 4.1.2), the Poole-Frenkel rela-
tionship ln µ ∼ F/ (4.9) is reproduced [125–129]. To validate this eIect in the present
molecular crystals, charge dynamics is studied for a charge carrier dri5-diIusing un-
der the in?uence of external electric >elds. To this end, the kinetic Monte Carlo
method (Section 4.2.7) is employed while applying >eld magnitudes in steps of 
from  to  (V/cm)/ along several directions. Ae directional mobility for a
given systemwith speci>ed>eld vector is determined from the projection of the charge
carrier velocity (Section 4.2.8) and is averaged over three independent time intervals
of − s for both the forward and backward directions. Ae >eld-dependent charge
carrier mobility is shown in the Poole-Frenkel plots, provided in the right panels of
Figure 5.11. Ae solid lines correspond to >eld directions along the distinct crystallo-
graphic directions (indicated by their colors), while the dotted lines are the directions
of the two extremal axes of the zero->eld mobility tensor. For all systems, the onset
of a Poole-Frenkel dependence can be observed at moderate >elds of approximately
 (V/cm)/, which is typical for correlated energetic disorder.
Finally, the calculatedmobilities are compared with experimental mobilities, which

are obtained frommeasurements performed on organic >eld-eIect transistors (ofet).
Experimental ofet mobilities are available for the bare and methylated quaterthio-
phenes, dcv4t and dcv4t-m [203]. Aey are listed in Table 5.3 and indicated by stars
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in the le5 panels of Figure 5.11. Qualitatively, the experimental measurements support
the simulation results in yielding a higher hole mobility for themethylated compound.
A direct quantitative comparison cannot be performed for two reasons. First, theofet
devices comprise thin >lm layers with polycrystalline rather than single crystalline or-
der [203]. Hence, grain boundaries between adjoining crystallites impair charge trans-
port, which is a reason for the systematically lower measured mobilities as compared
to the calculated ones. Second, and more importantly, crystallites in thin >lms can
have diIerent molecular packing than the single crystal structure and thus inherently
altered charge transport capabilities. To address this issue, thin >lms need to be crystal-
lographically analyzed and the implications on charge transport studied (Section 5.2).
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5.2. Dicyanovinyl-Substituted Quaterthiophenes:
Thin Films

Ae fabrication of organic photovoltaic cells based on dicyanovinyl-substituted oligo-
thiophenes (dcvnt) involves several processing steps of the dcvnt raw substances.
In an initial step, raw substances are puri>ed by vacuum sublimation leading to crys-
talline powder materials. Previously, attention was focused on the single crystals iden-
ti>ed within these powders, i.e., the few crystallites coming close to millimeter size
(Section 5.1). Active layers of photovoltaic cells are, however, based on thin Dlms of
nanometer thickness, which are prepared by further processing the powders and de-
positing the materials on speci>c substrates. Hence, in situ, one might >nd molecular
ordering diIerent from the single crystal structure, and therefore altered charge trans-
port capabilities.
Based on the dicyanovinyl-substituted quaterthiophene (dcv4t) and itsmethylated

derivative (dcv4t-m), thin >lm active layers have been produced and crystallograph-
ically analyzed [3, 203]. While this analysis indicates that thin >lms of methylated
dcv4t-m possess the same crystalline arrangement as its single crystals, it is indeed
found that thin >lms of the bare dcv4t exhibit a packing motif diIerent than its sin-
gle crystal structure. Ais new dcv4t thin >lm crystal structure can be reconstructed
based on x-ray diIraction measurements, as is addressed initially (Section 5.2.1). Sub-
sequently, the previous single crystal study is complemented by a comparative analysis
of charge transport in thin >lms and its impact on solar cell eBciencies (Section 5.2.2).
Ae reported scienti>c results are the subject of prior publication [3], and are presented
below in more detail using partially similar terms and illustrations.

5.2.1. Crystal Structure Analysis

Ae following crystallographic investigations were performed within the collaborat-
ing group of Leo at the Institute for Applied Photo Physics in Dresden, Germany. Ae
studies involve two experimental methods of x-ray diIraction (xrd), which, contrary
to the single crystal x-ray crystallography (Section 5.1), can only provide limited infor-
mation about the molecular packing. Ae >rst method is Bragg-Brentano xrd, which
is applied to crystalline powders. Similar to the Debye-Scherrer method, an incident
x-ray beam is directed on a powder sample containing randomly oriented crystallites.
Hence, the Bragg re?ections for varying lattice orientations are simultaneously ob-
served in the resulting diIraction pattern. Ae second method is grazing incidence
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Figure 5.13. X-ray diIraction patterns of the dcv4t thin >lm, the dcv4t powder, and the dcv4t single
crystal. If the two dominant re?ections of the dcv4t powder pattern are Gaussian-broadened and super-
posed, the red dotted curve is obtained. For clarity the ordinate axis has a diIerent scale for low and high
scattering angles. Ae inset has an adjusted ordinate axis to visualize small peaks of the dcv4t powder
pattern. Adapted from Reference [3].

x-ray diIraction (gixrd), which is applied to thin Dlms. Here, an incident x-ray beam
strikes nearly parallel onto the surface of the thin >lm in order to increase the sur-
face sensitivity and decrease the substrate sensitivity. For not too large scattering an-
gles, only lattice spacings which are almost perpendicular to the surface (out-of-plane)
contribute to the resulting diIraction pattern. Ais means in particular that patterns
comprising the information on all lattice orientations are only obtained from polycrys-
talline thin >lms of randomly oriented crystallites. Given this brief methodology, an
outline of the crystal structure analysis of the dcv4t thin >lm is provided below.

▸ X-Ray Diffraction Measurements Ae analysis of dcv4t thin >lms by gixrd
measurements results in the diIraction pattern displayed in Figure 5.13 (black curve).
Ae pattern shows a strong Bragg re?ection at a scattering angle of .° and several
weaker ones at .° and .°.2 While the absence of diIuse scattering indicates a
high crystallinity of the thin >lm, the small number of Bragg re?ections reveals that
crystallites have a preferred orientation and no random alignment. Ae broadness of
the re?ections is a consequence of the small layer thickness of nm and the resulting
small crystallite sizes.

2Notice that the weakness of the re?ection at .° is an artifact of the gixrdmethod. Ais is because
the corresponding lattice spacing is parallel to the thin >lm surface (in-plane) and does therefore not
contribute to the diIraction pattern. In fact, two-dimensional giwaxs measurements on thin >lms
of dcv4t and C show not only a strong Bragg re?ection at .° in the out-of-plane direction but
also a strong Bragg re?ection at .° in the in-plane direction [206].
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In addition to the dcv4t thin >lm, the dcv4t powder is investigated using Bragg-
Brentano xrd resulting in the diIraction pattern depicted in Figure 5.13 (red curve).
Ae pattern shows not onlymore Bragg re?ections, as expected, but alsomuch sharper
ones, which is due to larger crystallite sizes. Apparently, the intense re?ections of the
dcv4t powder are at similar scattering angles as the visible re?ections of the dcv4t
thin >lm. Moreover, if the two dominant powder re?ections at .° and .° are
Gaussian-broadened and superposed (red dotted curve), the dominant thin >lm re?ec-
tion can be reproduced. From these >ndings, it is concluded that the dcv4t powder
has the same crystal structure as the dcv4t thin >lm.
Lastly, the diIraction patterns of both the dcv4t thin >lm and the dcv4t powder

are compared to the pattern of thedcv4t single crystal studied previously (Section 5.1).
Ais single crystal pattern, which is obtained from a powder xrd simulation, is visu-
alized in Figure 5.13 (gray curve). It is obviously very diIerent: it does not match the
dominant thin >lm re?ection (or the superposition of the two powder re?ections),
but instead exhibits four prominent Bragg re?ections for scattering angles below .°.
Upon closer inspection, three of these re?ections are found to have a very low inten-
sity in the powder pattern, as is seen in the inset of Figure 5.13, which has an adjusted
scale of the ordinate axis. Ais suggests that the dcv4t powder actually consists of two
crystallographic phases, with thedcv4t single crystal phase being theminor phase. In
fact, this minor phase and the major dcv4t thin >lm phase have a weight content of
wt.% and wt.%, respectively [3].

▸ Crystal Structure Reconstruction Now it is brie?y outlined how the crystal
structure of the dcv4t thin >lm is reconstructed from the measured diIraction data.
To this end, one should remember that a diIraction pattern is given in reciprocal space
and re?ects the long-range periodicity of molecular packing (by Bragg re?ections).
Also, by performing a Fourier transformation into real space, one obtains an atomic
pair distribution function (pdf), which directly represents the short-range order of
the molecular arrangement. For crystal structure analysis on an atomic scale, the data
representation as a pdfmay be considered the more appropriate representation [207].
Here, a pdf-based algorithm for crystal structure reconstruction is employed which
was developed at the Institute for Applied Photo Physics in Dresden, Germany [208].
Without going into details, the algorithm aims at reproducing a reference pdf by a
best->tting model pdf, which is obtained by iteratively re>ning atomic model crystal
structures. Ae model crystal structures are generated based on prede>ned triclinic
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dcv4t model crystal structure. Ae dcv4t
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transformation. Ae dcv4t model pdf is
calculated from a model crystal structure.
Adapted from Reference [3].

lattices combined with a repeating motif of a single molecule with rigid molecular
geometry. A5er convergence of the iteration, the >nal unit cell parameters are addi-
tionally re>ned using the Rietveld analysis [209].
In order to reconstruct the dcv4t thin >lm crystal structure, the dcv4t powder

diIraction pattern, which has a signi>cantly higher resolution, is Fourier transformed
into a reference pdf. Ais dcv4t powder pdf, shown in Figure 5.14 (red curve), is,
a5er applying the reconstruction algorithm, well reproduced by the best->tting dcv4t
model pdf (black curve). Note that there are several reasons why the two functions do
not perfectly agree [3]. Aese include in particular that the dcv4t powder is actually a
mixture of two phases and that the algorithm treats the repeatingmotif as a rigid body.
Ae reconstructed dcv4t thin >lm crystal structure is depicted in Figure 5.16 a–c on
Page 132/133, together with the previously studied single crystal structures (Section 5.1).
Obviously, the new dcv4t thin >lm crystal structure (second column) is very diIerent
from the dcv4t single crystal structure (>rst column). Interestingly, however, it is
remarkably similar to the dcv4t-m single crystal structure (third column).

5.2.2. Charge Carrier Mobility

Ae identi>ed dcv4t thin >lm crystal structure is used tomodel amesoscopicmolecu-
lar crystal and examine its charge transport properties bymicroscopic charge transport
simulations (Section 4.2). Ae starting point are molecular dynamics simulations per-
formed on amorphology of 2880molecules (with periodic boundary conditions), pre-
pared by a 15×12×16-fold translation of the crystal repeating motif. Ais is followed by
evaluating the charge transfer parameters (i.e., the reorganization energies, site energy
diIerences, and transfer integrals) and the Marcus rates for neighboring molecules.
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µ . ⋅ − . ⋅ − . ⋅ −
µ . ⋅ − . ⋅ − . ⋅ −
µ . ⋅ − . ⋅ − . ⋅ −
µ⊥ . ⋅ − . ⋅ −
µ′⊥ — . ⋅ − . ⋅ −
µexp — . ⋅ − . ⋅ −

Table 5.4. Eigenvalues of the zero-
>eld mobility tensor, i.e., values for
the principle axis directions, and val-
ues for the direction perpendicular
to thedcv4t anddcv4t-m thin >lm
substrates. Also provided are exper-
imentally measured organic->eld ef-
fect transistor mobilities µexp [203].
All values are given in units of
cm/Vs.

Finally, kinetic Monte Carlo simulations are employed to calculate the zero->eld mo-
bility tensor and a set of directional mobilities with electric >eld dependence. Unless
otherwise stated, all methods and parameters employed are analogous to those used
in the previous study on single crystals (Section 5.1).
Before linking the eBciency of charge transport to the microscopic material prop-

erties, the simulation results of the dcv4t thin >lm are summarized. Ae energetic
disorder, i.e., the width of the site energy diIerence distribution, is σ = . eV, which
is identical to that of the dcv4t single crystal (Section 5.1). Ae topology of the charge
transporting network, i.e., the three-dimensional assembly of the transfer integrals,
and the zero->eld mobility tensor are displayed in Figure 5.16 d, e (second column)
on Page 132/133. Ae eigenvalues of the zero->eld mobility tensor, i.e., the mobilities
along the ellipsoidal principle axes, are provided in Table 5.4, together with values for
the previously studied single crystal structures. Ae bounding eigenvalues de>ne the
mobility ranges indicated by the gray areas in the le5 panels of Figure 5.15. Ae right
panels show corresponding >eld-dependent mobilities.
A >rst important observation can bemade by comparing the charge transport in the

two diIerent crystal phases of dcv4t, i.e., the single crystal (>rst column) and the thin
>lm (second column).Aedcv4t single crystal exhibits a charge transporting network
characterized by a distinct transport direction with strong electronic couplings (red),
as discussed previously (Section 5.1). Counterintuitively, this network topology turned
out to be disadvantageous. On the one hand, the strong electronic couplings in one
direction lead to poorly coupled perpendicular directions and suppress couplings in
other directions completely, and on the other hand, the one-dimensional strongly cou-
pled direction is prone to defects due to the substantial energetic disorder. Contrary,
the dcv4t thin >lm has a network topology with less pronounced one-dimensional
character, hence the system is less sensitive to the energetic disorder.Ais has an imme-
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Figure 5.15. Le5 panels: ranges of the zero->eld hole mobilities, bounded by the largest and smallest
eigenvalues of the mobility tensors. Zero->eld mobilities for the direction perpendicular to the dcv4t
anddcv4t-m thin >lm substrates are indicated by red stars. Experimentallymeasured organic >eld eIect
transistor mobilities are indicated by black stars [203]. Right panels: hole mobilities as a function of an
electric >eld applied along the largest and smallest principal axes of the zero->eld tensors.

diate implication on the charge carrier mobility: the maximummobility of the dcv4t
thin >lm is more than an order of magnitude higher than that of the dcv4t single
crystal. It should be emphasized that this higher mobility is the exclusive result of the
advantageous network topology since energetic disorder is identical in both systems.
A second important >nding follows from comparing the charge transport for the

two diIerent compounds with similar crystal structures, i.e., the dcv4t thin >lm
(second column) and the dcv4t-m single crystal (third column).Ae dcv4t-m single
crystal provides a charge transporting network characterized bymultiple directions of
moderate couplings, as discussed previously (Section 5.1). Ae longest principle axis
of the mobility ellipsoid in Figure 5.16 e indicates that the main transport direction
is a superposition of two completely symmetrical directions (both in red). Aerefore,
a charge carrier moving in a plane spanned by these two directions has two equally
coupled hopping options at each site. Ais truly two-dimensional freedom of hopping
allows for an eIective bypassing of energetic defects. In contrast, the dcv4t thin >lm
has its main transport direction along a superposition of two directions with asymmet-
ric coupling (red and blue). Hence, this network topology adopts a hybrid character:
although it is not strongly one-dimensional, it is not truly two-dimensional either. As
a consequence it is more aIected by the energetic disorder. Ais is re?ected in the
charge carriermobility: themaximummobility of thedcv4t-m single crystal is nearly
an order of magnitude higher than that of the dcv4t thin >lm.
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Figure 5.16. (a–c) Unit cells and crystal re-
peatingmotifs.Ae orientations are chosen to
emphasize the similarity between the two crys-
tal structures of the dcv4t thin >lm and the
dcv4t-m single crystal. (d) Charge transport-
ing networks based on the transfer integrals.
Ae transfer integrals between the hopping
sites are shown as bonds connecting black
spheres. Ae bond color indicates the crys-
tallographic direction while the bond thick-
ness re?ects the electronic coupling strength.
(e) Zero->eld mobility tensors depicted as el-
lipsoids. Ae colored arrows indicate the crys-
tallographic directions of the charge trans-
porting network. Adapted fromReference [3].
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For the aforementioned dcv4t thin >lm (second column) anddcv4t-m single crys-
tal structure (third column) – remember that the latter equals its thin >lm structure –,
charge transport is additionally analyzed in the respective direction perpendicular to
the Dlm substrate, i.e., the direction of interest in an organic photovoltaic cell (opvc).
Since Bragg re?ections in the gixrd patterns correspond to lattice spacings perpendic-
ular to the substrate, each Bragg re?ection is linked to a crystallographic direction of
interest. Ae gixrd pattern of the dcv4t thin >lm, shown in Figure 5.13 (black curve),
has only a single dominant re?ection at .°, which is, however, a superposition of
two re?ections at .° and .° observable in the dcv4t powder pattern (red curve).
Ae lattice spacing of the stronger and the weaker of these two re?ections can be iden-
ti>ed with the 1 0 0 and 1 0 2 crystallographic directions of the reconstructed dcv4t
thin >lm structure, respectively. In other words, the dcv4t thin >lm comprises two
preferred orientations of crystallites: a major one, de>ned by the 1 0 0 direction, and
a minor one, de>ned by the 1 0 2 direction being perpendicular to the substrate. Note
that the 1 0 0 direction corresponds to the a-vector in Figure 5.16 a–c (second column).
Ae zero->eld mobilities along both directions are listed in Table 5.4 as µ⊥ and µ′⊥,
respectively, and are indicated by red stars in the le5 panels of Figure 5.15. Ae situa-
tion is very similar for the dcv4t-m thin >lm: again, the gixrd pattern is dominated
by a superposed Bragg re?ection, which can be identi>ed with two crystallographic di-
rections, here the 0 1 0 and 0 1 1 directions of the dcv4t-m single crystal structure [3].
Note that the former corresponds to the b-vector in Figure 5.16 a–c (third column).
Ae zero->eld mobilities of both directions are analogously presented in Table 5.4 and
Figure 5.15. Comparing the results for both systems reveals a similar trend as observed
for the tensorial maximummobility: the dcv4t-m system has nearly an order of mag-
nitude higher mobility perpendicular to the substrate than the dcv4t system.
Finally, the calculated mobilities for the dcv4t thin >lm (second column) and the

dcv4t-m single crystal structure (third column) –which equals its thin>lm structure –
are compared to experimentally measured thin >lm mobilities. Ae experimental mo-
bilities originate from organic >eld-eIect transistors (ofet) [203] and are listed in
Table 5.4 and indicated by black stars in the le5 panels of Figure 5.15. As expected
and previously discussed (Section 5.1), the experimental mobilities are systematically
lower than the calculated ones since they are measured on polycrystalline samples
containing grain boundaries, which are an impediment to charge transport. In fact,
this mobility reduction is particularly strong in ofet devices, where charge transport
occurs parallel to the substrate over long distances and thus many grain boundaries.
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In opvc devices, in contrast, charge transport occurs perpendicular to the substrate
over short distances, which correspondsmore closely to the simulated situation. Apart
from the expected oIset, the experiments and simulations agree in yielding a higher
thin >lm mobility for the methylated dcv4t-m as compared to the bare dcv4t com-
pound. Moreover, opvc devices based on the methylated dcv4t-m show power con-
version eBciencies of .%, while those based on the bare dcv4t exhibit .% [203],
which also correlates with the calculated mobilities.
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Chapter 6.

Charge Transport Simulations in
Organic Mesophases

Among the most notable materials for building organic photovoltaic cells (Chapter 1)
is the combination of dicyanovinyl-substituted oligothiophenes (dcvnt) and buck-
minster fullerene (C) as a donor-acceptor pair. For instance, devices prepared from
amethylateddcv5t-m andC have shown power conversion eBciencies of .% [28]
and with proprietary derivatives record eBciencies of % have been established [27].
An important aspect for achieving these high eBciencies is the use of bulk heterojunc-
tion device architectures where the donor and acceptor compounds are mixed in a
blend layer. However, contrary to pure layers, which typically show crystalline order,
these blend layers o5en exhibit increased disorder [206, 210]. Due to the molecular
geometries, such disorder particularly aIects the dcvnt donor domain of the blend
and deteriorates its hole transport capabilities. To study this eIect, the previous charge
transport simulations in organic crystals (Chapter 5) are now complemented by sim-
ulations in organic mesophases of dicyanovinyl-substituted thiophene (dcv1t) up to
sexithiophene (dcv6t). Ais series of compounds has been experimentally synthe-
sized [202, 211] and is depicted in Figure 6.1.
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Figure 6.1. Chemical structures of terminally dicyanovinyl-substituted oligothiophenes.
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6.1. Dicyanovinyl-Substituted Oligothiophenes:
Amorphous/Smectic

Ae present charge transport simulation study covers on the one hand amorphous
mesophases of dcv1t to dcv6t, that is, systems with completely disordered molec-
ular alignment, and on the other hand a more ordered smectic mesophase of dcv6t.
An important result for the series of amorphous systems is that increasing oligomer
length leads to increasing energetic disorder and hence to decreasing charge carrier
mobility (anti-correlation).Ae smecticdcv6tmesophase, however, exhibits not only
a lower energetic disorder than the amorphous dcv6t phase, but also a signi>cantly
lower mobility (correlation). Ais >nding is not only inconsistent but also contradicts
the common belief that a higher mesophase order should promote charge transport.
Aemicroscopic origins of this inconsistency are elucidated by analyzing the energetic
landscapes of site energies and their interrelations to the charge transporting networks
of transfer integrals.
Ae study is performed by microscopic charge transport simulations (Section 4.2).

As a starting point, mesoscopic morphologies are generated as well as characterized
with respect to their disorder (Section 6.1.1). Ais is followed by the evaluation of the
charge transfer parameters between neighboring molecules (Section 6.1.2). Based on
the resulting Marcus rates, charge carrier dynamics is simulated leading to the charge
carrier mobilities (Section 6.1.3). Ae discussion concludes with the identi>cation and
analysis of electric current pathways (Section 6.1.4). Ae reported scienti>c results
are the subject of prior publication [2], and are presented below in more detail using
partially similar terms and illustrations.

6.1.1. Morphological Disorder

Aemorphologies, comprising 4096molecules, are prepared by >rst distributing rigid
molecules with random orientations in boxes (with periodic boundary conditions)
and then running molecular dynamics simulations (Section 4.2.2) in the isobaric-iso-
thermal ensemble. For each compound of the dcv1t to dcv6t series, an amorphous
mesophase is generated by startingwith a preliminary equilibration process well above
the glass transition temperature, performed at a temperature of K, a pressure of
bar, and for a duration of ns, and then initiating a quenching step to K, a5er
which a further equilibration for ns takes place. A >nal room temperature morphol-
ogy of the dcv4t system is illustrated in Figure 6.2.
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Figure 6.2. Amorphous morphology of
dcv4t molecules at room temperature,
obtained by a molecular dynamics sim-
ulation.

For the longest oligomer, i.e., the sexithiophene dcv6t, the system is isotropic at
K, but it spontaneously transitions into a smectic mesophase upon reducing the
temperature to K. In order to avoid having defects in the smectic layers, a non-
random initial con>guration is created where molecules are arranged in regular layers.
Ais con>guration is equilibrated at K for ns and then quenched to K, where
it is equilibrated for another ns. Ae resulting molecular arrangement has the same
spacing between the smectic layers as the one emanating from the isotropic phase.

▸ Molecular Conformations During the equilibration of the systems at high tem-
peratures, cis-trans isomerization of thedcvntmolecules occurs due to the rotation of
dcv-thiophene (cc–c–ca–s) and thiophene-thiophene dihedral angles (s–ca–ca–s).
Ais is a consequence of the energetic barrier between cis and trans states of these di-
hedrals, which is . eV and . eV, respectively, as determined within the force >eld
development (Section 4.2.1). In fact, each amorphous or smectic system contains all
possible molecular rotamers arising from the combinations of the two dihedral states.
For a dcv4t snapshot, the rotamer distribution of the 4096 molecules is exempli>ed
in Figure 6.3 (top panel).1 Ais conformational, or rotameric disorder leads, due to
the acceptor-donor-acceptor molecular architecture of dcvnt molecules, to a strong
dipolar disorder. As can be seen in Figure 6.3 (bottom panel), the diIerent conform-
ers exhibit ?uctuations in their permanent molecular dipole moments of up to D,
as estimated from the atomic partial charges.Ais signi>cant dipolar disorder is closely
related to energetic disorder, as will be discussed below.

1Note that the incidence of rotamers is roughly anti-correlated with their internal site energy (4.29) [2].
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Figure 6.3. Top panel: distribution of dcv4t rotamers in an amorphous morphology of 4096molecules.
Bottom panel: permanent molecular dipole moments of dcv4t rotamers, calculated from atomic partial
charges, given in units of Debye. Adapted from Reference [2].

▸ Molecular Orientational Order In order to illustrate the diIerences in molecu-
lar ordering of the two diIerent dcv6tmesophases, i.e., the amorphous and smectic
dcv6t mesophases, Figure 6.4 a visualizes the molecular backbones within slices of
their morphologies.
For all systems, the molecular orientational order is quanti>ed by means of the ori-

entational order parameter, which is zero for ideal isotropic and one for perfect parallel
alignment of the molecules. Ae orientational order parameter s of a system is de>ned
as the largest eigenvalue of its order tensor Q, given by the components

Qµν = 
 ⟨uµuν − δµν⟩ , (6.1)

where the unit vectors u, with components uµ, point along the direction of themolecu-
lar backbones and the averaging is performed over all molecules of the system.
Here, the unit vector is de>ned by the two branching carbons of the dcv groups (c),
as de>ned in the force >eld (Section 4.2.1). For the amorphous systems of dcv1t to
dcv6t, the evaluation of the order tensor (6.1) yields values s < ., which con>rms
almost complete isotropy of the molecular orientations. For the smectic mesophase
of dcv6t, a value of s > . is obtained, which re?ects the strong orientational order.
Ae preferred molecular orientation in the smectic mesophase is along the x-axis, as
follows from the director, that is, the eigenvector associated with the eigenvalue s. Ae
exact order parameter values s are summarized in Table 6.1, together with the mass
densities d of all systems.
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Figure 6.4. (a)Morphologies of amorphous and smectic dcv6tmesophases at room temperature. Ae il-
lustrations showmolecular backbones within nm thick slices oriented perpendicular to the y-direction,
as well as to the x-direction for the smectic mesophase. (b) Cross-sections of the site energy landscapes,
visualized as density plots. Ae underlying hopping sites (molecular centers of mass) are indicated by
black dots. (c) Charge transporting networks based on the transfer integrals. Ae transfer integrals be-
tween the hopping sites are shown as bonds connecting black dots. Ae bond color and thickness re?ects
the electronic coupling strength. Adapted from Reference [2].
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s . . . . . . .
d . . . . . . .

Table 6.1. Orientational order parameters s, obtained from the orientational order tensors, and mass
densities d, given in units of g/cm .

6.1.2. Charge Transfer Parameters

To construct the charge transport Hamiltonians, the morphologies are partitioned on
conjugated segments and rigid fragments (Section 4.2.3). Accordingly, thedcvntmol-
ecules are represented by separate rigid fragments for each dcv or thiophene unit, and
by single conjugated segments, acting as the hopping sites i. Ae neighbor list of hop-
ping sites i and j contains molecular pairs, subject to the condition that the distance
between any pair of associated mutual rigid fragments is below a cutoI of .nm.

▸ Reorganization Energies Evaluating the reorganization energies (Section 4.2.6)
is performed by dft calculations on isolated molecules using the b3lyp functional
and the 6-311g∗∗ basis set. Since the systems under consideration are homogeneous, a
universal reorganization energy λ is determined for each compound. For the series of
dcv1t to dcv6t, the resulting values range from . eV to . eV, as is summarized
in Table 6.3 on Page 148. In order to estimate the error resulting from the neglect of
geometry variations in the bulk, reorganization energies are calculated for all diIerent
dcv4t rotamers yielding a standard deviation of . eV, which is negligible.

▸ Site Energies Ae observed ?uctuations inmolecular dipolemoments are a clear
indication of variations of the site energies. To quantify this energetic disorder in
the mesomorphic systems, the site energies Ei of all molecules i are explicitly calcu-
lated from the electrostatic interaction energy including polarization eIects. To this
end, electrostatic interactions are determined self-consistently between atomic partial
charges as well as induced atomic dipole moments (enabled by atomic polarizabilities)
using the Aole model (Section 4.2.5). To achieve viable runtimes for these calcula-
tions, a spherical interaction cutoI of .nm is employed. For the amorphous and
smectic mesophases of dcv6t, cross-sections of the energetic landscapes are visual-
ized in Figure 6.4 b. Here, the range from low to high site energies is indicated by a
color range from blue to red. As can be seen, the site energies are spatially correlated,
which is a result of the long-range nature of electrostatic interactions.
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Figure 6.5. Direction-resolved distri-
butions of neighboring hopping sites.
Ais sketch corresponds to the set
of endpoints of all coupling vectors
shi5ed to the origin. Adapted from
Reference [2].

For all studied systems, the distributions of site energy diIerences, ∆Eij = Ei − Ej,
for molecular pairs from the neighbor list are displayed in Figure 6.9 a on Page 148.
Ae widths of Gaussian functions >tted to these distributions yield the neighbor-list-
based values of energetic disorder σ , as de>ned in (4.40), which are listed in Table 6.3.
Obviously, all systems possess substantial energetic disorder, which increases with the
number of thiophene units per molecule. As might be expected, the more ordered
smectic mesophase of dcv6t exhibits a lower energetic disorder than the amorphous
phase of dcv6t.

▸ Transfer Integrals Ae transfer integrals Jij between pairs of molecules i and j
from the neighbor list are determined by means of the zindomethod (Section 4.2.4).
Ae topological graph de>ned by the transfer integrals represents a percolating net-
work for charge transport which is characteristic for each system. For the amorphous
and smecticmesophases of dcv6t, representative slices of the charge transporting net-
works are visualized in Figure 6.4 c. Here, hopping sites (molecular centers of mass)
are drawn as black spheres, while transfer integrals are represented by intermediate
bonds, whose color and thickness re?ect the magnitude of the electronic coupling
strength. As can be seen, the amorphous mesophase has a spatially uniform distribu-
tion of hopping sites. Contrary to this, the smectic mesophase comprises a set of two-
dimensional layers parallel to the yz-planewith strong intra-layer, but weak inter-layer
couplings. For both systems, Figure 6.5 illustrates the direction-resolved distribution
of neighboring hopping sites, which corresponds to the set of endpoints of all coupling
vectors shi5ed to the origin. For a charge carrier located at the central site, the aver-
age set of accessible sites is a spherical shell in the case of the amorphous dcv6t, and
a ring with two islands in the case of the smectic dcv6t. While the ring represents
the hopping options within the same layer, the islands correspond to the neighboring
layers. Apparently the layer formation in the smectic system leads to a dimensionality
reduction of the charge transporting network.
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µσ= . . . . . . . / .
µ . ⋅ − . ⋅ − . ⋅ − . ⋅ − . ⋅ − . ⋅ − . ⋅ −

Table 6.2. Zero->eld mobilities µσ= and µ, calculated in the absence and presence of energetic disorder,
respectively. For the smectic dcv6t phase, it is distinguished between the directions along the x-axis and
within the yz-plane (>rst/second value). Ais distinction is waived in the presence of energetic disorder,
where the mobility becomes isotropic. All values are given in units of cm/Vs.

For all systems, the distributions of transfer integrals are displayed in Figure 6.9 c
on Page 148. Ae average values ⟨J⟩ are listed in Table 6.3, together with the average
center-of-mass separations ⟨r⟩. For the smectic dcv6t system, the inter-layer and
intra-layer transfer integrals are distinguished between (>rst/second value reported).
A general observation is that the average electronic coupling strength is anti-correlated
with the average separations. For the amorphous dcv1t to dcv6t systems, increasing
molecular chain length causes an increase in separations and a decrease in electronic
couplings. For the smectic dcv6t system, there are smaller separations and larger
electronic couplings within the layers than in between layers.

6.1.3. Charge Carrier Mobility

Based on the charge transfer parameters, the charge carrier dynamics can be studied.
In order to explore the eIects of energetic disorder on charge transport, the zero->eld
mobility is evaluated for each system twice. First, energetic disorder is turned oI and
the zero->eld mobility µσ= is calculated from charge diIusion without external >elds.
Second, energetic disorder is included and the zero->eld mobility µ is extrapolated
from the >eld-dependent charge carrier mobility, determined from charge dri5-diIu-
sion under externally applied electric>elds. Note that an external>eld is required to ac-
celerate the charge carrier motion since energetic disorder is particularly strong. Tech-
nically, the evaluation of charge carrier mobilities is based on kineticMonte Carlo sim-
ulations (Section 4.2.7) and the relations to macroscopic observables (Section 4.2.8).
Without an external >eld, averages of  charge displacements for diIusion times
of − s are carried out. When applying an electric >eld, its magnitude is increased in
steps of  from  to  (V/cm)/. For each >eld magnitude, an averaging over
independent time intervals (of . s for dcv1t and dcv2t,  s for dcv3t and dcv4t,
 s for dcv5t and dcv6t, and  s for the smectic dcv6t) for  >eld directions
(along and against the axes and main diagonals of the simulation box) is performed.
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Figure 6.6. Right panel: hole mobilities as
function of an external electric >eld, plotted
in a logarithmic scale and given as a square
root, respectively (Poole-Frenkel chart). Lin-
ear >ts are employed to extract the zero->eld
mobilities. Le5 panel: zero->eld mobilities.
Adapted from Reference [2].

In the absence of energetic disorder, the zero->eld mobilities of all systems lie in the
range of . to . cm/Vs, as summarized in Table 6.2. Hence, the mobility is al-
most independent of both the molecular length and the mesophase ordering. When
analyzing the transfer integrals, it was found that the electronic coupling strength anti-
correlates with the average separations between molecular centers of mass. Since this
relationship is roughly linear, variations in these two quantities balance each other in
the expression for the charge carrier mobility tensor (4.48), leading to uniform mobil-
ities. It is particular noteworthy that this applies equally to the smectic system, which
does not show a substantially increased mobility as compared to the amorphous sys-
tems, not even within the smectic layers. Ais is due to the still disordered, i.e., liquid-
like, molecular arrangement in the smectic layers. One can generalize this >nding by
stating that the charge transport eBciency depends on the local molecular ordering,
e.g., the crystallization within smectic layers, just as on the long-range ordering, e.g.,
the formation of a smectic mesophase.
In the presence of energetic disorder, the charge carrier mobilities depend exponen-

tially on the square root of the external electric >eld F, as is seen in the right panel of
Figure 6.6. Ais relationship, known as the Poole-Frenkel eIect, is used to extrapolate
the zero->eld mobilities, provided in the le5 panel as well as in Table 6.2. In the amor-
phous systems it is expectedly found that the strong energetic disorder leads to amobil-
ity reduction by several orders ofmagnitude, alongwith a systematicmobility decrease
as the energetic disorder increases. Ais is in agreement with the results of Gaussian
disorder models (Section 4.1.2), where higher energetic disorder leads to lower charge
carrier mobilities. Ae situation is, however, markedly diIerent in the smectic meso-
phase of dcv6t. Here, the reduction in mobility is exceptionally large, resulting in
values substantially lower than those of the amorphous dcv6t, in spite of the lower en-
ergetic disorder. Ais inconsistency, apparent in Figure 6.10 a on Page 149, contradicts
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Figure 6.7. Distributions of absolute values
of edge currents. Each >lled area indicates
the partial distribution of highest edge cur-
rents which contribute to % of the total
current. Adapted from Reference [2].

both the Gaussian disorder models and the common belief that higher mesophase or-
der should improve charge transport eBciency. In order to understand this behavior,
the microscopic channels of electric current ?ow are analyzed below.

6.1.4. Electric Current Pathways

To identify the preferred channels of charge ?ow in a system, the >rst step is the evalu-
ation of the edge currents cij, as de>ned in (4.46), for all molecular pairs i and j from
the neighbor list. Subsequently, the absolute values ∣cij∣ are sorted and the molecular
pairs with small currents are removed until the remaining sum of currents reaches
% of the original total current. In this way, a subset of the neighbor list is created,
containing only the molecular pairs which conduct % of the total current, i.e., that
contribute to the charge transport to an appreciable extent. Ais subset of pairs, which
is actually used by a dri5-diIusing charge carrier, is only a small fraction of the total
neighbor list, as can be seen in Figure 6.7. Here, the contributing edge currents are
indicated by a >lled area of the total current distribution. Aese contributing edge cur-
rents are visualized in Figure 6.8 a for an amorphous dcv4t morphology, where it is
clearly seen that they form >lamentary pathways of electric current.
Ae signi>cant reduction of molecular pairs participating in charge transport can

be attributed to the spatial correlations of site energies, caused by the long-range na-
ture of electrostatic interactions. Aese correlations lead to extended areas of low site
energies in which the charge carrier migration takes place. To illustrate this behavior,
Figure 6.8 b shows the current >lament in combination with a cross-section of the
site energy landscape. Ae >lament is clearly percolating within the energetic valleys,
colored in blue, while avoiding the energetically unfavorable regions, colored in red.
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Figure 6.8. (a) Edge currents contributing to % of the total current in an amorphous dcv4t system.
An electric >eld of  (V/cm)/ is applied in the z-direction. Ae arrowheads indicate the direction
of the current while the thickness and color of the arrowsha5s re?ect the current amplitude. (b) Current
>lament and cross-section of the site energy landscape. Adapted from Reference [2].

On the basis of the reduced neighbor list, which contains themolecular pairs k and ℓ
conducting % of the total current, the distributions of the site energy diIerences,
∆Ekℓ = Ek − Eℓ, are evaluated again. Aese distributions are displayed for all systems
in Figure 6.9 b. Ae widths of Gaussian functions >tted to these distributions pro-
vide values of an eIective energetic disorder σeI, which are summarized in Table 6.3.
Evidently, this eIective energetic disorder is signi>cantly lower than the previously de-
termined energetic disorder σ , which was evaluated based on the entire neighbor list.
Hence, a >rst conclusion is that, even for amorphous systems, the characterization of
energetic disorder by site energies alone can be misleading.
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λ . . . . . . .

σ . . . . . . .
σ eff . . . . . . .

⟨J⟩ . ⋅ − . ⋅ − . ⋅ − . ⋅ − . ⋅ − . ⋅ − . ⋅/ . ⋅ −⟨J⟩eff . ⋅ − . ⋅ − . ⋅ − . ⋅ − . ⋅ − . ⋅ − . ⋅ −
⟨r⟩ . . . . . . . / .⟨r⟩eff . . . . . . .

Table 6.3. Reorganization energy λ, given in eV, energetic disorder σ and σ eff , given in eV, average trans-
fer integrals ⟨J⟩ and ⟨J⟩eff , given in eV , and associated average hopping site separations ⟨r⟩ and ⟨r⟩eff ,
given in nm. Ae eIective values are calculated for pairs from the reduced neighbor list.
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Figure 6.10. (a) Zero->eld mobility versus energetic disorder. (b) Zero->eld mobility versus eIective
energetic disorder. Adapted from Reference [2].

An even more important conclusion can be drawn when considering the smectic
dcv6t phase: this system now has an eIective energetic disorder higher than that of
the amorphous dcv6t and by far the highest of all systems. In fact, there is now a
systematic relationship between the eIective energetic disorder and the charge carrier
mobility, no longer just for the set of amorphous systems, but for all systems, includ-
ing the smectic one. As is seen in Figure 6.10 b, the logarithm of the mobility anti-
correlates linearly with the eIective energetic disorder. Ais eliminates the previously
identi>ed inconsistency, arising if the spatial correlations of the site energies and the
topologies of charge transporting networks are neglected.
One can also analyze the distributions of transfer integrals Jkℓ for pairs k and ℓ

from the reduced neighbor list, that is, transfer integrals participating in charge trans-
port. Aese distributions are shown in Figure 6.9 d, while their average values ⟨J⟩eI
are listed in Table 6.3. It can be seen that the distributions for the amorphous systems
are very similar. In contrast, the distribution for the smectic system shows a bimodal
character. Ae peak at higher values corresponds to transfer integrals within the smec-
tic layers and the peak at lower values to transfer integrals perpendicular to these layers,
which enable inter-layer hops of the charge carrier.

To summarize, the eIectively higher energetic disorder and the bimodal distribu-
tion of the transfer integrals are the microscopic origins of the mobility reduction
in the smectic mesophase. Ae energetic landscape in both amorphous and smectic
mesophases is characterized by spatial correlations in all three dimensions. Hence,
the >lamentary charge carrier pathways, which percolate within the energetic valleys,
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can be thought of as three-dimensional random walks. Ais is also consistent with
the observation that the mobility is practically isotropic not only in the amorphous
phases but also in the smectic phase. In the smectic phase, however, the transfer in-
tegrals between the layers are signi>cantly smaller than those within the layers. Aus,
on a short length scale, a charge carrier is biased to migrate within the layers, that is,
within two-dimensional cross-sections of the energetic landscape. As a consequence,
the energetic disorder is eIectively higher. Of course, on a longer length scale, where
the carrier follows the energetic valleys, also inter-layer hops via small transfer inte-
grals take place, which is re?ected by the peak at lower values in the distribution of
transfer integrals. Ultimately, both the eIectively higher energetic disorder and the
use of small transfer integrals impair the mobility in the smectic phase.



Chapter 7.

Conclusion and Outlook

Ais work addressed the analysis of charge transport in organic photovoltaic cells by
methods of computational chemistry. Ae description of charge transport took place
within the regime of charge hopping, in which the elementary processes of charge
movement are charge transfer reactions in molecular systems. Ae fundamental mod-
eling paradigm was the formulation of relationships between the molecular chemical
structures and the charge carrier mobilities, that is, the establishment of structure-
property relationships. Accordingly, the charge transport model which was employed
starts with the chemical structure of a speci>c compound and results in its mobility,
while the bridging of these entities is achieved by a work?ow ofmultiple steps.Ae key
steps are the development of a force >eld, the generation of an atomistic material mor-
phology, the identi>cation of hopping sites, the computation of charge transfer param-
eters, the evaluation of charge transfer rates, and the simulation of charge dynamics.
Ae penultimate two steps were linked by the high-temperature limit of nonadiaba-
tic charge transfer, where the charge transfer rates are de>ned by three parameters:
the reorganization energies, the site energy diIerences, and the transfer integrals. As
the entire work?ow spans a wide range of lengths and time scales, its execution re-
quired computational chemistry techniques on a hierarchy of approximation, involv-
ing ab initio, semiempirical, and empirical methods.
Ae organic materials studied in this work belong to the novel class of dicyanovinyl-

substituted oligothiophenes (dcvnt). In addition to their industrial application in
the currentlymost eBcient organic solar cells, thedcvntmaterials are experimentally
investigated by the two collaboratingwork groups of Bäuerle at the Institute ofOrganic
Chemistry II and Advanced Materials in Ulm, Germany, and Leo at the Institute for
Applied Photo Physics in Dresden, Germany. In line with experimental observations,
simulations of charge transport were performed for single crystals, thin >lms, and
amorphous/smectic systems of several dcvnt compounds.
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For single crystals, charge transport simulations were performed for the bare ter-
thiophene and quaterthiophene, dcv3t and dcv4t, and their methylated derivatives,
dcv3t-m and dcv4t-m. A >rst result obtained is that the acceptor-donor-acceptor
architecture of the dcvntmolecules combined with thermal ?uctuations of dihedral
angles results in large ?uctuations of molecular dipole moments and hence substan-
tial energetic disorder, which is unexpected for crystalline materials. A main result is
that crystal structures which are characterized by a well-de>ned π-stacking with large
electronic couplings and small intermolecular distances are disadvantageous for an ef-
>cient charge transport. Ae microscopic origins of this counterintuitive observation
were elucidated: for the bare compounds, dcv3t and dcv4t, the presence of a pro-
nounced π-stacking direction inhibits other transport directions and therefore leads
to a strong one-dimensional character of the respective charge transporting networks.
Aese network topologies turn out to be particularly inferior in combination with the
large energetic disorder since energetic defects are diBcult to bypass for a charge car-
rier. Contrary, for the methylated compounds, dcv3t-m and dcv4t-m, the alkyla-
tion prevents the formation of pronounced π-stacks, which leads to charge transport-
ing networks with smaller electronic couplings but a better interconnection of sites.
Charge transport in these networks is less sensitive to energetic defects and therefore
displays higher charge carrier mobilities.
For thin >lms, charge transport was studied for the bare andmethylated quaterthio-

phenes, dcv4t and dcv4t-m. A >rst result, achieved by the work group of Leo, is
that thin >lms of the bare dcv4t exhibit a diIerent crystal structure than respective
single crystals, while thin >lms of the methylated dcv4t possess the same molecu-
lar packing as its single crystals. Interestingly, the reconstruction of the new dcv4t
thin >lm structure reveals a high degree of similarity to the structure of the methy-
lated dcv4t-m system. A main result, obtained by comparing the charge transport-
ing networks, is that the reconstructed dcv4t thin >lm structure has no pronounced
π-stacking as present in the dcv4t single crystal, but has an inferior interconnection
of sites than the dcv4t-m system. Accordingly, the reconstructed dcv4t thin >lm
structure exhibits an intermediate charge carrier mobility, which is higher than that
of the dcv4t single crystal but lower than that of the dcv4t-m thin >lm. Ais result
is fully consistent with the >ndings of the single crystal study and recon>rms the thus
obtained understanding of how charge carrier mobilities are microscopically consti-
tuted. When comparing the simulated mobilities to experimental ofet mobilities, it
is unanimously found that thedcv4t-m thin>lmhas a highermobility than thedcv4t
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thin >lm. Ais agreement also holds for mobilities perpendicular to the >lm substrate,
which is essential in photovoltaic cells, and also correlates with the power conversion
eBciencies of dcv4t-m- and dcv4t-based organic photovoltaic cells.
For amorphous and smectic systems, charge transport simulations were performed

for the series of thiophene to sexithiophene, dcv1t to dcv6t. A >rst result obtained
is that the acceptor-donor-acceptor molecular architecture combined with the large
morphological disorder results in particularly strong and spatially correlated energetic
disorder. For the amorphous systems, increasing oligomer length causes an increase
of the energetic disorder and hence a decrease of the charge carrier mobility. A main
result is that a more ordered smectic mesophase of dcv6t exhibits less energetic disor-
der than the amorphous dcv6t phase, but a signi>cantly lower mobility. Ais behav-
ior, which is both inconsistent and contrary to the belief that increasing mesophase
order improves the mobility, was elucidated: the energetic landscape in both amor-
phous and smectic mesophases is characterized by serious barriers and valleys in the
form of three-dimensional random walks, which con>nes charge carrier migration
to the energetic valleys. In the amorphous phase, this percolation in the valleys is
facilitated by a charge transporting network with isotropically distributed transport
directions. In the smectic mesophase, however, the network has a two-dimensional
character with large intra-layer and small inter-layer couplings. Ais network topol-
ogy impedes the chargemigration in twoways: on the one hand the carrier is biased to
travel within the layers, which ampli>es energetic obstacles, and on the other hand the
small electronic couplings in between the layers act as bottlenecks. Both eIects were
highlighted by introducing the concept of a reduced neighbor list, which disregards
inaccessible spatial system regions and thus allows eIective distributions of charge
transfer parameters to be obtained. In the smectic phase, as compared to the amor-
phous one, the eIective energetic disorder is higher and the eIective distribution of
transfer integrals exhibits a peak at low values. A further result applying to all studied
systems is that the values of the eIective energetic disorder consistently correlate with
their charge carrier mobilities.
Altogether, this work provides a profound microscopic understanding for macro-

scopic charge carrier mobilities of dcvntmaterials, observed in both simulations and
experiments. Moreover, the formulated structure-property relationships can be gen-
eralized to charge transport in other organic materials which are characterized by en-
ergetic disorder and certain structural order at the same time. For this kind of mate-
rial, charge transport may not only be determined by energetic landscapes and charge
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transporting networks as individual factors, but can depend on their interrelation to a
far greater extent than o5en believed and previously reported. In the presented exam-
ples, such interrelations are manifested in both crystals, where energetic defects im-
pair charge transporting networks with one-dimensional character, and in a smectic
system, where energetic barriers derogate a network with two-dimensional character.
An important diIerence between these two situations, however, is the relative impact
of energetic landscapes and charge transporting networks. While charge transport in
the crystals can be described as network-dominated and landscape-in?uenced, as evi-
denced by anisotropic mobility tensors, the situation is reversed in the smectic system,
where charge transport is landscape-dominated and network-in?uenced, as re?ected
by an isotropic mobility.
As part of the presented studies, several extensions to the methods for charge trans-

port simulations were introduced. Ais methodological work includes, >rst, contri-
butions to the implementation of the kinetic Monte Carlo method according to the
variable step size method, which was the basis for simulating charge carrier dynamics.
Second, the implementation of the tensorial evaluation of charge carrier mobilities,
which was employed for analyzing the anisotropy of charge transport and visualizing
mobility ellipsoids. Aird, the implementation of an identi>cation method for crys-
tallographic directions using a hierarchical cluster algorithm, and a link for the direc-
tional analysis of simulation data. Ais method was applied to determine direction-
resolved distributions of transfer integrals, hopping site distances, and charge carrier
mobilities, and to visualize charge transporting networks. Fourth, the development
and implementation of the concept of a reduced neighbor list based on the spatial sys-
tem regions, a charge carrier actually traversed. Ais concept allows for a detailed in-
sight into the charge carrier dynamics by linking it to the energetic disorder conquered
and the transfer integrals exploited. In addition to its usage to determine values of ef-
fective energetic disorder and eIective distributions of transfer integrals, the reduced
neighbor list was utilized to visualize electric current pathways.
Beyond the employed methods for charge transport simulations, it is worth men-

tioning a number of strategies and challenges for future improvements. As discussed
in this work, both the model of charge transfer and the schemes for evaluating the
charge transfer parameters can be re>ned for higher accuracy, provided the issues ad-
dressed justify the higher computational eIort. In this respect, the Marcus rate un-
derlying the presented studies can be substituted by more accurate rate expressions
such as the Marcus-Levich-Jortner rate, which is particularly important if the quan-
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tum nature of nuclear vibrations needs to be considered. Ae reorganization energies,
herein determined by a single evaluation, can also be explicitly calculated for each
pair of molecules, which is especially relevant if the variations of the reorganization
energies are comparable to the energetic disorder. Ae transfer integrals, in this work
computed using the semiempirical zindo method, can alternatively be determined
by ab initio calculations and the dipro method, which may even be inevitable for
chemical compounds for which the zindoHamiltonian is not parametrized. Ae site
energies were calculated herein based on distributed monopole moments, character-
izing the Coulomb energy, as well as induced dipole moments related to distributed
isotropic polarizabilities, accounting for the induction energy due to molecular polar-
ization. Although these models of distributed low-order multipole moments allow for
reliable and robust descriptions ofmolecular charge densities, increased accuracy is ex-
pected by including higher-order multipole moments and anisotropic polarizabilities.
In addition, hybrid quantum-classial schemes may be employed to treat molecular
charge densities close to the sites quantummechanically while their surroundings are
still described classically. Besides the re>nement of the charge transfer parameters, a
particularly tough challenge is the reproduction, or even prediction, of realistic mor-
phologies. Ais diBculty arises from the many scales involved when modeling the
donor-acceptor phase segregation as well as the phase diversity observed at interfaces
and within domains. Valuable approaches in this respect are methods of systematic
coarse graining, gradual deposition of molecules, or crystal structure prediction.
With the long-term goal of a device model for organic photovoltaic cells, the im-

provement of charge transport simulations is only one among several challengeswhich
need to be addressed. Of particular importance is a description of exciton transport,
which bene>ts from existing methods, but also requires signi>cant extensions. A spe-
ci>c diBculty lies in the diversity of excitonic states, including Frenkel-type, charge-
transfer, and charge-separated species as well as singlet or triplet spin con>gurations.
While the computation of excitonic states and energies can be achieved using advanced
methods of computational chemistry, such as many-body perturbation theory within
thegw-approximation and theBethe-Salpeter equation, excitondynamics can bemod-
eled bymeans of Förster andDexter energy transfer rates. Ultimately, processes of exci-
ton formation, conversion, and dissociation need to be additionally taken into account
and included in multi-particle kinetic Monte Carlo simulations for both excitons and
charge carriers. Such a multi-particle description entails further challenges since the
precalculation of rates may need to be replaced by eBcient on-the-?y techniques.
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