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Zusammenfassung

Die vorliegende Dissertation dient dazu, das Verstandnis des Ladungstransportes in
organischen Solarzellen zu vertiefen. Mit Hilfe von Computersimulationen wird die
Bewegung von Ladungstrigern in organischen Materialien rekonstruiert, und zwar
ausgehend von den quantenmechanischen Prozessen auf mikroskopischer Ebene bis
hin zur makroskopischen Skala, wo Ladungstragermobilititen quantifizierbar werden.
Auf Grundlage dieses skaleniibergreifenden Ansatzes werden Beziehungen zwischen
der chemischen Struktur organischer Molekiile und der makroskopischen Mobilitat
hergestellt (Struktur-Eigenschafts-Beziehungen), die zu der Optimierung photovol-
taischer Wirkungsgrade beitragen. Das Simulationsmodell beinhaltet folgende drei
Schliisselkomponenten. Erstens eine Morphologie, d. h. ein atomistisch aufgeldstes
Modell der molekularen Anordnung in dem untersuchten Material. Zweitens ein Hiipf-
modell des Ladungstransportes, das Ladungswanderung als eine Abfolge von Ladungs-
transferreaktionen zwischen einzelnen Molekiilen beschreibt. Drittens ein nichtadia-
batisches Modell des Ladungstransfers, das Ubergangsraten durch drei Parameter aus-
driickt: Reorganisationsenergien, Lageenergien und Transferintegrale.

Die Ladungstransport-Simulationen richten sich auf die Materialklasse der dicyano-
vinyl-substituierten Oligothiophene und umfassen Morphologien von Einkristallen,
Diinnschichten sowie amorphen/smektischen Mesophasen. Ein allgemeiner Befund
ist, dass die molekulare Architektur, bestehend aus einer Akzeptor-Donor-Akzeptor-
Sequenz und einem flexiblen Oligomergeriist, eine erhebliche Variation molekularer
Dipolmomente und damit der Lageenergien bewirkt. Diese energetische Unordnung
ist ungewohnlich hoch in den Kristallen und umso hoher in den Mesophasen. Fiir
die Einkristalle wird beobachtet, dass Kristallstrukturen mit ausgeprégter n-Stapelung
und entsprechend grofler Transferintegrale zu verhiltnismaf3ig niedrigen Mobilitdten
fihren. Dieses Verhalten wird zuriickgefiithrt auf die Ausbildung bevorzugter Trans-
portrichtungen, die anfillig fiir energetische Stérungen sind. Fiir die Diinnschichten
bestitigt sich diese Argumentation und liefert ein mikroskopisches Verstandnis fiir
experimentelle Mobilitdten. In der Tat korrelieren die Simulationsergebnisse sowohl
mit gemessenen Mobilitdten als auch mit photovoltaischen Wirkungsgraden. Fiir die
amorphen/smektischen Systeme steigt die energetische Unordnung mit der Oligomer-
linge, sie fithrt aber auch zu einer unerwarteten Mobilitdtsabnahme in dem stérker
geordneten smektischen Zustand. Als Ursache dafiir erweist sich, dass die smektische
Schichtung der raumlichen Korrelation der energetischen Unordnung entgegensteht.
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Abstract

This thesis serves to deepen the understanding of charge transport in organic pho-
tovoltaic cells. Using computer simulations, the dynamics of charge carriers in or-
ganic materials is reconstructed, starting from the quantum mechanical processes
on the microscopic level up to the macroscopic scale, where charge carrier mobili-
ties can be quantified. Based on this multiscale approach, relationships between the
chemical structure of organic molecules and the macroscopic mobility are established
(structure-property relationships), which assist the improvement of photovoltaic effi-
ciencies. The simulation model includes the following three key components. First, a
morphology, i.e., an atomistically resolved model of the molecular arrangement within
the material of interest. Second, a hopping model of charge transport, describing
charge migration as a succession of charge transfer reactions between individual mol-
ecules. Third, a nonadiabatic model of charge transfer, expressing transition rates by
three parameters: reorganization energies, site energies, and transfer integrals.

The charge transport simulations focus on the material class of dicyanovinyl-sub-
stituted oligothiophenes and cover morphologies of single crystals, thin films, and
amorphous/smectic mesophases. A general result is that the molecular architecture,
consisting of an acceptor-donor-acceptor sequence and a flexible oligomer backbone,
gives rise to substantial variations of molecular dipole moments and hence of the site
energies. This energetic disorder is unusually high in the crystals and even higher in
the mesophases. For the single crystals, it is observed that crystal structures with a pro-
nounced 7nt-stacking and correspondingly large transfer integrals lead to relatively low
mobilities. This counterintuitive behavior is traced back to the formation of preferred
transport directions which are prone to energetic defects. For the thin films, this rea-
soning can be confirmed and provides a microscopic understanding for experimental
mobilities. In fact, the simulation results correlate with both measured mobilities and
photovoltaic efficiencies. For the amorphous/smectic systems, the energetic disorder
increases with the oligomer length, but also leads to an unexpected mobility reduction
in the more ordered smectic state. The reason for this is elucidated by showing that
the smectic layering conflicts with the spatial correlations of the energetic disorder.
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Introduction

The sun provides more energy to the earth every hour than mankind consumes in
an entire year. In fact, the energy resource of terrestrial solar radiation far exceeds
that of all other renewable and fossil energy sources combined." Harnessing the im-
mense solar energy resource not only has the potential to accommodate the increas-
ing global energy demand, but also holds promise to reshape the energy sector for
environmental sustainability. However, a widespread adoption of photovoltaic elec-
tricity generation is only achievable through competitive pricing on the energy market.
In fact, conventional inorganic photovoltaic cells, although technologically advanced,
are still limited to niche applications due to high costs. The emerging technology of
organic photovoltaic cells, in contrast, could quickly find a ubiquitous deployment since
organic materials offer strong potential for cost reduction. In addition to an inex-
pensive production, organic solar cells can inherit the advantageous physical prop-
erties of organic materials, such as light weight and mechanical flexibility. Although
organic photovoltaic technology is still far from the level of maturity required to de-
liver these promises, the field has recently experienced such a rapid progress that it
is currently transitioning from a phase of technology development to industrial pro-
duction. This dynamic development is the fruit of concerted efforts in several areas,
such as synthetic chemistry, producing increasingly fine-tuned organic compounds,
and material processing, constantly adapting to the demands of the field. Now that
organic photovoltaics is close to first commercialization, the scientific community is
more than ever demanded to address the still major challenges ahead. The most criti-
cal issues of organic solar cells, as compared to their inorganic counterparts, are their
shorter life spans and lower power conversion efficiencies. One of the greatest dif-
ficulties in improving such device properties is the widely lacking comprehension of
how these properties are linked to the constituent organic compounds. As a result, the
chemical synthesis of new or modified compounds is mostly guided by intuitive rather
than rational design rules. With the aim of a rational compound design, models relat-
ing the chemical structures to macroscopic properties, so-called structure-property
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relationships, become highly desired. Establishing such relationships is a central con-
cern of this work. This necessitates both a microscopic description of organic pho-
tovoltaic cells as well as methods for linking the macroscopic properties to this de-
scription. A more detailed discussion on the challenges for improving photovoltaic
device properties is provided after introducing the required background on organic
photovoltaic cells in Chapter 1.

A window into the microscopic world of chemical matter is opened by the field of
computational chemistry, which provides methods of computer simulation, or, in a
sense, a virtual laboratory. Most fundamentally, computational chemistry considers
matter as a many-particle system of two different constituents: atomic nuclei and elec-
trons, interacting through the electromagnetic force. Modeling this chemical reality
by computer simulations receives its justification and merit from the full understand-
ing of the underlying physical principles. In fact, already in 1929, Dirac realized that
“the underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too complicated
to be soluble”” Indeed, with the Dirac equation, and certainly today with quantum
electrodynamics, well-elaborated theories, accounting for both quantum mechanics
and relativity, have been developed. For many chemical systems, these levels of elabo-
ration are not even necessary and one can restrict the description to classical electrody-
namics and non-relativistic quantum mechanics, that is, to the Schrodinger equation.
The second part of the quotation might, due to the ever-increasing processing power of
computers, be seen in a different light today. Although certain approximations are in-
deed required in order to transform an exact quantum mechanical equation of motion
from its abstract form into actually tractable expressions (these fundamental approxi-
mations include in particular the Born-Oppenheimer approximation, which facilitates
a decoupling of the nuclear and electronic motions), the enormous amount of calcu-
lation required for solving the resulting expressions has become an increasingly feasi-
ble task. As of today, computational chemistry techniques which are solely based on
first principles of physics and fundamental approximations, so-called ab initio meth-
ods, are applicable to complex systems of microscopic size, such as molecular systems.
The background of these foundations of computational chemistry, covering in partic-
ular the separation of nuclear and electronic motions, their decoupling by means of
the Born-Oppenheimer approximation, as well as ab initio electronic structure theory
is discussed in Chapter 2.
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One of the most important macroscopic properties of organic photovoltaic cells is
their ability to produce an electrical current. The prerequisite for such a current flow is
the migration of charge carriers through the organic material. This process is denoted
as charge transport and is characterized in terms of the charge carrier mobility. This
quantity, which is associated with the average velocity of the charge carriers, can be
experimentally measured for a given sample of the organic material. However, when
it comes to optimizing the material for an improved mobility, one faces the problem of
missing structure-property relationships linking the mobility to the constituent mole-
cules. With the aim of closing this knowledge gap, this work applies computer simu-
lations to reconstruct the macroscopic process of charge transport based on its micro-
scopic origins. These charge transport simulations are based on a model including the
following three key components. First, a sufficiently large, but at the same time atom-
istically resolved model of the organic material, a so-called morphology. To generate
such a large-scale material morphology, ab initio methods need to be supplemented
by computational chemistry techniques operating on a higher level of approximation.
This is achieved by molecular dynamics simulations, where the motion of atoms is
governed by classical Newtonian mechanics, calibrated according to ab initio meth-
ods. The second ingredient is a model of charge transport which describes charge
carrier migration within the morphology as a sequence of charge hops between in-
dividual molecules. These microscopic processes of charge movement are referred
to as charge transfer reactions and the quantity characterizing their efficiency is the
charge transfer rate. Such a rate is influenced by several factors: the electronic struc-
ture of the two individual molecules, their relative positions and orientations, but also
their environment of surrounding molecules. The third component is an appropriate
model of charge transfer, which translates these dependences into a set of tangible
parameters, which are accessible by methods of computational chemistry. In some
cases, the applicability of ab initio methods may be limited by the large number of
molecular pairs for which charge transfer parameters need to be evaluated. The pa-
rametrization can then be assisted by semiempirical methods, which are still based
on the quantum mechanical level of description, but incorporate certain empirical
data to accelerate the computation. Altogether, the simulation of charge transport
invokes a hierarchy of methods to scan all the required length and time scales with
a manageable computational effort. While the theory of charge transfer in molecu-
lar systems is treated in Chapter 3, the complete methodology of charge transport in
organic solids is presented in Chapter 4.
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Chemical structures of buckminster
fullerene (Cso) and dicyanovinyl-sub-
stituted oligothiophenes (pcvnT).

At present, the most successful materials for building organic photovoltaic cells are
compositions of buckminster fullerene (Cg) and the novel class of dicyanovinyl-sub-
stituted oligothiophenes (DcvnT) or its derivatives. In fact, based on these compounds,
an ongoing series of world record power conversion efficiencies has been achieved be-
tween 2009 and 2013 by Heliatek GmbH.3 In addition to these proprietary cells, a wide
range of related devices has been published by the collaborating groups of Bauerle at
the Institute of Organic Chemistry II and Advanced Materials in Ulm, Germany, and
Leo at the Institute for Applied Photo Physics in Dresden, Germany. In this work,
charge transport is studied for a variety of bcvnT material morphologies associated
with these devices. A simulation study on single crystals and a further one on thin
films are presented in Chapter 5. For single crystals, charge transport is compared for
a set of four systems: the terthiophene and quaterthiophene, bcv3T and pcv4T, as well
as two methylated derivatives, bcv3T-m and pcv4T-m. For thin films, charge trans-
port is examined in systems of the bare and methylated quaterthiophenes, bcv4t and
DCV4T-m. A simulation study on amorphous and smectic systems of the compound
series of thiophene to sexithiophene, DCV1T to DCV6T, is presented in Chapter 6.

Parts of the methodology and the results reported in this work (Sections 4.2-6.1)
are the subject of prior publications, listed on Page 19. These studies are presented here
in significantly more detail. The background and the methodology (Sections 1.1-4.2)
have been developed based on the textbooks and review articles provided at the be-
ginning of the respective discussions. All chapters of this work employ a notation for
symbols summarized on Page 21.

'Lewis, N. S. Toward Cost-Effective Solar Energy Use. Science 315 (2007), 798.
*Dirac, P. A.M. Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. London, Ser. A 123 (1929), 714.
3Le Séguillon, T., and Pfeiffer, M. Efficiency Development. Heliatek, www.heliatek.com, 2013.
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In the course of these doctoral studies, the following journal articles were published.

The publications on charge transport [1-4] are related to the methodology for charge

transport simulations (Section 4.2) and to the results on single crystals (Section 5.1),

thin films (Section 5.2), and amorphous/smectic systems (Section 6.1) of dicyanovinyl-

substituted oligothiophenes. The independent study on proton transport [5] is not
addressed in this thesis.

1]

(5]

Schrader, M., Fitzner, R., Hein, M., Elschner, C., Baumeier, B., Leo, K., Riede,
M., Béuerle, P, and Andrienko, D. Comparative Study of Microscopic Charge
Dynamics in Crystalline Acceptor-Substituted Oligothiophenes. J. Am. Chem.
Soc. 134 (2012), 6052.

Schrader, M., Korner, C., Elschner, C., and Andrienko, D. Charge Transport
in Amorphous and Smectic Mesophases of Dicyanovinyl-Substituted Oligothio-
phenes. J. Mater. Chem. 22 (2012), 22258.

Elschner, C., Schrader, M., Fitzner, R., Levin, A. A., Biuerle, P, Andrienko, D.,
Leo, K., and Riede, M. Molecular Ordering and Charge Transport in a Dicyano-
vinyl-Substituted Quaterthiophene Thin Film. RSC Adv. 3 (2013), 12117.

Riihle, V., Lukyanov, A., May, E, Schrader, M., Vehoft, T., Kirkpatrick, J., Bau-
meier, B., and Andrienko, D. Microscopic Simulations of Charge Transport in
Disordered Organic Semiconductors. J. Chem. Theory Comput. 7 (2011), 3335.

Wehmeyer, C., Schrader, M., Andrienko, D., and Sebastiani, D. Water-Free Pro-
ton Conduction in Hexakis-(p-phosphonatophenyl)benzene Nano-Channels.
J. Phys. Chem. C 117 (2013), 12366.
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Notation

Indices
n,m electrons
a,b nuclei / atoms
i,j molecules / sites
o, p electronic states
+,—-/1,f adiabatic / diabatic electronic states
7,9 nuclear states
n, m molecular orbitals
o, T atomic orbitals
U, v general vector and matrix elements

Entity and Pair Properties

r,lr electronic coordinates / multi-index

Pn electronic momenta

Oy electronic spin

R, /R nuclear coordinates / multi-index

R, nuclear separations

P, nuclear momenta

vV, nuclear velocities

M, nuclear masses

Za atomic numbers

Pa atomic dipole moments

9./ 94 atomic partial charges of charged / neutral site
oy /oy atomic polarizabilities of charged / neutral site

Q/P/w® reaction coordinate / momentum / eigenfrequency
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ri

rij

pi

o /o
U/ Ug
ur ue
WP I W
E™ | AE
E?lsmt / AE?jlstat
E; | AE;
Aij I A

Jij

wij

C,‘j

site coordinates

site separations

site occupation probabilities

site polarizability tensor in neutral / charged state
internal site energies in neutral / charged state
internal site energies in neutral / charged state, opposite geometry
electrostatic site energies in neutral / charged state
internal site energies / differences

electrostatic site energies / differences

site energies / differences

reorganization energies / site contributions
transfer integrals

charge transfer rates

edge currents

System Properties and Observables

N e 2

~

(A)1(A)
>
0/ 0
Ce
Q"7 Q
D¥ | D
Zany’

electron density

number of electrons

number of nuclei / atoms

mass density

temperature

external electric field

time of nuclear motion

time of charge carrier motion

diagonal / oft-diagonal dynamic disorder

diagonal / oft-diagonal static (energetic / electronic) disorder
energetic disorder of neighbor list / reduced neighbor list
site energy correlation function

nematic order tensor

charge carrier diffusion tensor

charge carrier mobility tensor
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Operators
H Hamiltonian operator
Tnuc nuclear kinetic energy
Vnuc_nuc nuclear-nuclear interaction
Te [ ta(rn) electronic kinetic energy / for electron n
Ve ! Velel (T 'm ) electronic-electronic interaction / for electrons n, m
Viucoel / Viuc—el (1) nuclear-electronic interaction / for electron n
H(R) electronic Hamiltonian operator
HE,(R) nuclear Hamiltonian operator
@ﬁfc (R) nonadiabatic coupling (nonadiabaticity operator)
H: (Q)/HY (Q) adiabatic / diabatic nuclear Hamiltonian operator
0:c(Q)/7H(Q) /J;  nonadiabatic / nondiabatic coupling (transfer integral)
H /H, equilibrium / phononic Hamiltonian
Hs/ H, local / nonlocal electron-phonon coupling
Hye /| Hes | H Hartree-Fock / Kohn-Sham / one-particle operator

vu(r1) / 7x(r1) / xc(r1) Hartree / exchange / exchange-correlation operator

Wave Functions / Eigenstates

Y(R,r,t) total wave function
X¥1(R, t) nuclear wave functions
v*(r,R) electronic wave functions

lw*(Q)) /vy / |wi) adiabatic / diabatic electronic states
ot (r1) /o7 1¢F) molecular orbitals / frontier orbitals

ei(n)/lel) atomic orbitals

Eigenvalues and Potential Energy Surfaces

E3(R) electronic eigenvalues

U%(R) potential energy surface

E5(Q)/ Ei’lf adiabatic / diabatic electronic eigenvalues

U*(Q) /1 U(Q) adiabatic / diabatic potential energy surface
n

€ molecular orbital energies
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Functionals, Matrices, and Tensors

Ex[p]/ Eclp] ! Exc[p]

£ p)

U uv
Tab / Tab / ’I;zb
H°* | H
HgIII'\IDO / HZINDO
diag(e") / E
c"/cC
N

exchange / correlation / exchange-correlation functional
B3LYP exchange-correlation functional

multipole interaction tensor / first / second derivative
one-electron Hamiltonian matrix

zINDO Hamiltonian matrix

molecular orbital energy matrix

atomic orbital matrix

atomic orbital overlap matrix

Photovoltaic Cell Properties and Solar Parameters

Hece

NEeqQE

Her

J 1 jsc ! jue
VI Voc! Vup
Psolar

Dyolar (E)

Physical Constants
Mel
e

&0

power conversion efficiency

external quantum efficiency

fill factor

current density / at short circuit / for maximum power
voltage / at open circuit / for maximum power

solar power density

solar spectral photon flux density

electron mass
elementary charge
vacuum permittivity
speed of light
Planck constant

Boltzmann constant
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Chapter 1.

Organic Photovoltaic Cells

In contrast to their silicon-based inorganic counterparts, organic photovoltaic cells are
manufactured from organic, i.e., carbon-based molecules. Depending on the molecu-
lar weight, there is a common classification into organic solar cells produced from poly-
mers and from small molecules. This distinction refers to the processing techniques
used for preparing the desired layers of organic molecular solids: while polymers are
dissolved in solutions, which are solidified by solvent removal techniques, small mol-
ecules are mostly processed by vacuum evaporation or sublimation and subsequent
material deposition. However, both types of cells share the same working principle for
the photovoltaic power conversion. A third type of functionally different organic solar
cells, which is not related to this work, is the class of dye-sensitized solar cells.

The following discussion opens with a qualitative insight into the electronic struc-
ture of organic molecular solids (Section 1.1). Since organic solids possess relatively
weak cohesive intermolecular interactions, their electronic structure can be regarded
as a perturbed one of its constituent molecules. Molecules of particular interest are
those which comprise m-conjugated systems, since they can enable the desired semi-
conducting properties of the organic solid.

Then, the focus is directed to organic photovoltaic cells and their working principle
for the conversion of solar radiation into electrical power (Section 1.2). The power con-
version is based on four optical and electronic processes: optical absorption yielding
an exciton (a bound electron-hole pair), exciton diffusion, exciton dissociation into
free charge carriers, and charge transport towards the electrodes.

Finally, the most important metric of a photovoltaic cell - the power conversion
efficiency - is introduced (Section 1.3). After briefly reflecting on the theoretical up-
per limits for the efficiency, the currently achieved values and challenges for further
improvements are discussed. Among the main challenges are the improvement of the
light harvesting, the active layer morphologies, but also the fundamental understand-
ing of how the efficiency is linked to the properties of the constituent molecules.
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1.1. Electronic Structure of Organic Solids

In general, organic solids [6-10] are solid-state materials which are composed of mol-
ecules falling within the scope of organic chemistry. These organic molecules are pre-
dominantly composed of carbon atoms and exist, due to the versatile bonding capabil-
ities of carbon, in a myriad of architectures. This diversity of compounds is reflected in
a wide spectrum of observed solid state order, ranging from the perfect crystalline to
the amorphous phase and covering many intermediate forms, such as polycrystalline,
semicrystalline, or mesomorphic phases. While most organic solids are insulators,
the field of organic photovoltaics is primarily concerned with the subclass of materi-
als acting as (semi)conductors. These materials, capable of carrying an electric current,
are generally composed of molecules which have electrons delocalized over larger, so-
called conjugated systems of the molecular skeleton. Important building blocks for
such conjugated systems are aromatic hydrocarbons, such as the polyacenes, i.e., ben-
zene, naphthalene, anthracene, etc., or heterocyclic compounds, such as thiophene,
turane, pyrrole, etc., which are depicted in Figure 1.1.

To understand the origin of electronic delocalization in conjugated molecules, one
can start from the familiar viewpoint of independent electrons, described by individ-
ual wave functions, i.e., molecular orbitals. In addition, these molecular orbitals shall
be composed as linear combinations of atomic orbitals (Mo-LcA0). In fact, these con-
cepts constitute electronic structure theories (Section 2.2), which enable one to quan-
titatively derive the right linear combinations for composing the molecular orbitals.
One can then verify that there are indeed delocalized orbitals. For a qualitative un-
derstanding, however, the notion of valence bond theory may be illustrative. There,
pairs of overlapping atomic valence orbitals give rise to bonding molecular orbitals, i.e.,
shared electron pairslead to covalent bonds. This simple picture is accompanied by the

000 L

Benzene  Naphthalene Anthracene
Figure 1.1. Selection of basic conjugated organic

H

S o) N
i\ /7 &\ /7 &\ /7 molecules, acting as building blocks for small
molecules, oligomers, or polymers employed in

Thiophene Furan Pyrrole organic electronic devices.
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(a)

(b) — o+ Figure1.2. (a) Atomic valence or-
/ bitals of the carbon atoms in ben-

| — zene. Overlapping sp>orbitals give
PR Jpe— rise to o-bonding, while overlap-

6p, —f—«\’/ / LUMO ping p,-orbitals lead to m-bonding.
\ HOMO (b) Splitting of the energy levels of
LN —H two atomic sp’-orbitals leading to

il

p.-orbital  m-bonding

bonding and antibonding molecu-

y : /
2
é’ 2sp > lar o- and o*-orbitals as well as of
K six p,-orbitals yielding mt- and n*-or-
sp>-orbital  o-bonding “—H— 0o bitals. Adapted from Reference [11].

idea of hybridization: it allows one to transform each basis of standard (hydrogen-like)
atomic orbitals, by intuitive linear combinations, to equivalent bases of so-called hy-
brid atomic orbitals. Considering carbon, the ground state electron configuration in
terms of hydrogen-like atomic orbitals reads 1s*2s*2p, 2p , with two valence electrons.
Hybrid atomic orbitals are, however, derived from the excited electron configuration
1s22s 2p,2p,2p, with four valence electrons. This is because the energy expenditure
for the excitation is more than compensated by the formation of two additional bonds.
A simple linear combination of the 2s-, 2p,-, and 2p -orbitals leads to three hybrid
sp*-orbitals, which lie in the xy-plane at angles of 120°. The p,-orbital remains un-
changed and is perpendicular to the xy-plane. Using the example of benzene, con-
taining six carbon atoms in a hexagonal arrangement, these orbitals are illustrated in
Figure 1.2a. Now, pairs of overlapping atomic sp*orbitals in the xy-plane give rise
to molecular o-orbitals, which are localized between the respective pairs of nuclei.
Figure 1.2 b shows how the energy levels of an overlapping pair of sp*orbitals are split
into an energetically lower level, corresponding to a bonding o-orbital, which is dou-
bly occupied, and a higher level, corresponding to an antibonding o*-orbital, which
is vacant. Due to the strong overlap of sp>orbitals, the energy splitting and the result-
ing energetic advantage is large, and therefore the o-bonding a strong effect. In total,
the molecular backbone of the benzene molecule involves twelve sp*-orbitals form-
ing the hexagon and a further six linking the hydrogens. The remaining six atomic
p,-orbitals are also overlapping, namely above and below the xy-plane, which gives
rise to three bonding molecular 7-orbitals, which are doubly occupied, and three an-
tibonding m*-orbitals, which are empty. Obviously, the three m-orbitals cannot be lo-
calized between three pairs of nuclei, since all six pairs of nuclei are equivalent by the
molecular symmetry. In fact, the m-orbitals are instead delocalized over the molecular
skeleton. As the overlap of the p,-orbitals is weak, their energy splitting is small and
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Figure 1.3. Electronic structure of
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therefore the mechanism of m-bonding comparatively weak. In many conjugated or-
ganic molecules, the highest occupied molecular orbital (HomoO) is a m-orbital, while
the lowest unoccupied molecular orbital (Lumo) is a *-orbital.

The electronic structure discussed so far refers to isolated organic molecules, as they
are encountered in the gas phase. In an organic solid, formed upon condensation of
the molecules, the electronic structure changes, since molecules interact with each
other. The interaction between molecules, causing their cohesion, is dominated by
the van der Waals interaction, provided the molecules are neutral and are not form-
ing ionic bonds. Van der Waals interactions result from fluctuations in the molecular
charge distributions: such fluctuating dipole moments polarize adjacent molecules,
leading to an induced dipole-dipole attraction. Since these intermolecular interactions
are much weaker than the strong covalent binding forces within the molecules, the
molecular properties remain largely intact in an organic solid. Thus, the electronic
structure of the solid is only a moderately altered one of a free molecule. The main
differences are illustrated in Figure 1.3. First, one observes a general shift of the en-
ergy levels due to the polarizable environment. The HOMO and LUMO energies, i.e.,
the ionization potential E,, and electron affinity Eg, (in Koopmans approximation),
are displaced by the polarization energies P, and Py, respectively. Therefore, in the
solid, the difference between the ionization potential and electron affinity is usually
lowered. Second, the energy levels in the solid are slightly broadened due to the weak
overlap of the molecular orbitals. In the case of ordered solids, such as crystalline
phases at low temperatures, narrow energy bands can emerge. In analogy to inorganic
materials, these bands are sometimes referred to as the valence and conduction bands
of the organic solid and the region in between as the band gap. In the case of disor-
dered solids, such as amorphous or mesomorphic phases, the density of states (Dos)
is often described by Gaussian distributions. Then, the distribution tails extend into
the band gap and the band edges are no longer clearly defined.
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1.2. Conversion of Solar Radiation into Electric Power

Organic photovoltaic cells [12-18] make use of organic solids to convert solar pho-
tons into electric voltage and current. A major similarity to inorganic cells, which are
mostly based on silicon, is that the photoactive organic materials are semiconductors.
Therefore, the photovoltaic effect can be exploited for promoting electrons across the
band gap, which prevents the rapid decay back to the ground state by a series of pho-
nons, as would occur without the gap. A key difference in organic semiconductors,
on the other hand, is that a promoted electron is not free, but instead electrostatically
bound to the remaining hole. The bound electron-hole pair is denoted as exciton and
therefore organic solar cells sometimes as excitonic solar cells. For the separation of
excitons, the most common concept is to use a junction between two different organic
semiconductors, which is referred to as a heterojunction. This device design was first
proposed in 1986 by Tang in the much-cited Reference [19]. The basic working princi-
ple of a heterojunction solar cell involves four optical and electronic processes, which
are illustrated in Figure 1.4: optical absorption yielding an exciton, exciton diffusion to
the heterojunction, exciton dissociation into free charge carriers, and charge transport
to the electrodes.

First, upon optical absorption, a solar photon promotes an electron within one of
the two different organic semiconductors across the band gap. This is possible since,
due to the m-conjugation, organic semiconductors exhibit relatively low band gaps,
roughly between 1 and 4 eV, which lies within the spectrum of the solar radiation re-
ceived on earth. After the photoexcitation, the system rapidly relaxes to the band edges,
i.e., dissipates the energy exceeding the band gap via a series of phonons as heat, and
finally forms an exciton. The exciton binding energy, that is, the electrostatic inter-
action energy between the electron and hole, is of the order of 0.1 to 1eV in organic
materials, which is significantly higher than thermal energy at room temperature. As
a consequence, the electron and hole are not free. This strong electrostatic attraction is
a result of the low dielectric constants, i.e., the weak electrostatic screening of organic
materials. In inorganic semiconductors, in comparison, exciton binding energies are
of the order of 107 eV and photoexcited electrons and holes are free at room tempera-
ture. Compared to inorganic materials, organic semiconductors also have significantly
higher absorption coefficients. As a consequence, organic photoactive layers can be
much thinner. A thickness of the order of 100 nm is usually sufficient to absorb most
incident photons whose energy bridges the band gap.
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Figure 1.4. Optical and electronic
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Second, exciton diffusion to the heterojunction is required. As an exciton is a neutral
quasiparticle, which is not affected by any electric fields, its migration is a purely diffu-
sive process. The diffusion length is determined by the finite lifetime of the exciton and
is of the order of 10 nm. Within this length scale, the exciton, traveling within one of
the two semiconductors, must reach the interface to the other one, otherwise it is lost
due to radiative recombination. In planar heterojunction architectures, where the two
semiconductors are arranged in two layers on top of each other, the exciton diffusion
length obviously requires thinner layers than are needed for efficient photon absorp-
tion (100 nm). It is therefore necessary to find a compromise for the layer thickness. In
order to avoid such a trade-off, one can employ bulk heterojunction architectures [20],
where the two semiconductors are mixed to an interpenetrating network, as sketched
in Figure 1.4. This design allows the interface area to be increased, while at the same
time tuning the layer thickness for optimal absorption.

Third, exciton dissociation can take place once the exciton has reached the hetero-
junction of the two semiconductors. The rationale behind this heterojunction, as in-
troduced by Tang, is to provide appropriate energetic steps between the ionization po-
tentials and electron affinities, aligned such as to overcome the exciton binding energy
and therefore to facilitate the separation of the electron-hole pair. Figure 1.5 a depicts
the required level alignment of the two semiconductors, which are henceforth referred
to as the electron donor and acceptor, respectively. The energy difference between the
ionization potential of the donor and the electron affinity of the acceptor, E}, — E%,,
must be more than the binding energy lower than the band gap of either material, i.e.,
Ep —E}, and Ej, — E&,, provided excitons are generated in both materials. The illustra-
tion shows the case where the exciton is formed within the donor: since the energetic
step in the electron affinity at the donor-acceptor heterojunction exceeds the binding
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Figure 1.5. (a) Energy level alignment of a donor-acceptor heterojunction solar cell required to facilitate
exciton dissociation into charge carriers. (b) Schematic energy diagram of the solar cell under operating
conditions leading to drift currents of charge carriers towards the electrodes.

energy, the separation of the electron and hole is an energetically favorable process.
Therefore, the electron can be transferred from the donor to the acceptor, while the
hole remains on the donor. Conversely, if the exciton is formed within the acceptor,
the hole can be transferred from the acceptor to the donor, while the electron remains
on the acceptor.

Fourth, charge transport of the free electron and hole towards their respective elec-
trodes occurs as a result of diffusion and drift [12, 21]. While charge diffusion, similar
to the migration of excitons, occurs independently of electric fields, drift currents of
the charge carriers are a result of the electric potential gradient inherent in the device.
As illustrated in Figure 1.5 b, this potential gradient arises once the anode and cathode
are either short-circuited, as indicated by the dashed line, or connected to an external
circuit with a voltage drop V. The higher the voltage drop across the external circuit,
the lower the internal potential gradient and thus the drift currents. If the voltage drop
nearly cancels the internal potential gradient, the migration of electrons and holes is
dominated by diffusion currents.

Finally, the charge carriers are collected at their respective electrodes, i.e., the elec-
tron at the cathode and the hole at the anode. The electrodes, as conductors, are solely
characterized by their Fermi levels, or their work functions. In an idealized model,
the work function of the cathode matches the electron affinity of the electron accep-
tor, while the work function of the anode fits to the ionization potential of the donor.
In practice, the cathode is often manufactured from aluminum, while the common
choice for the anode is indium tin oxide (170), which is not only conductive, but also

transparent for the incident light.
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1.3. Power Conversion Efficiency

The power conversion efficiency of any photovoltaic cell [22-24] depends on the de-
vice characteristics when operating in an electric circuit. In principle, both inorganic
and organic devices generate a photocurrent under illumination, while they exhibit
rectifying properties of a diode in the dark. This similarity is because the energetic
step in an organic device, due to the heterojunction of two different semiconductors,
is essentially similar to the step arising in an inorganic device upon contacting a p- and
a n-doped material to a pn-homojunction [14]. As a consequence, any ideal solar cell
can be modeled by an equivalent circuit consisting of a current source in parallel with
a diode, as illustrated in Figure 1.6 a. The current-voltage characteristic of a solar cell ex-
posed to light thus corresponds to a shifted diode characteristic, as seen in Figure 1.6 b.
If the electrodes of the solar cell are connected, that is, R = 0, no voltage between them
can be established and the cell delivers the short-circuit current density jsc. (Note that
the current density j is used instead of the current I, since the photocurrent is ide-
ally proportional to the illuminated area.) Conversely, if the electrodes are isolated,
that is, R = oo, no current can flow and the cell develops the open-circuit voltage V.
This case corresponds to Figure 1.5a. For any intermediate applied resistance R, the
cell generates a voltage V and a current density j = j(V), according to the current-
voltage characteristic, such that R = V//I. This general case corresponds to Figure 1.5 b.
At any point on the current-voltage characteristic, the electric power density supplied
by the solar cell is given by the product of j and V. The point maximizing this product

(a) j T (®)

Maximum Power

Voo V

Nﬂ,
dark

Figure 1.6. (a) Equivalent circuit of an ideal solar cell consisting of a current source in parallel with a
diode. Under illumination, the cell generates a current density j and voltage V. (b) Current-voltage
characteristic j = j(V). In the light, a shifted characteristic of an ideal diode is encountered. In the dark,
the ideal diode characteristic is obtained when a voltage is applied.

light



1.3. Power Conversion Efficiency 35

determines the current density and voltage for maximum power, which are denoted
as jup and Vy,. Under these operating conditions, the ratio of the maximum electric
power density and the incident solar power density Py, defines the

» Power Conversion Efficiency

_ jMP Ve _ jsc Voc

Nece = FF
Psolar Psolar

(1.1)

Here, the fill factor # is introduced to easily reflect the shape of the current-voltage
characteristic. It is defined as the quotient of the two rectangular areas in Figure 1.6 b:

_ jMP Ve

FEOT T . (1.2)
1 Jsc Voc

» Upper Limits for the Efficiency As pointed out by Shockley and Queisser [25],
a theoretical limiting efficiency for an ideal solar cell can be determined by three basic
assumptions. First, the device exhibits perfect absorption, i.e., each incident photon
produces an exciton, provided the photon energy bridges the optical gap Eg,;, of the
absorbing semiconductor (i.e., the electronic gap minus the exciton binding energy).
Second, there is no internal device resistance and each electron-hole pair is instanta-
neously collected at the electrodes if they are short-circuited. With these assumptions,
the ideal short-circuit current density simply equals the elementary charge times the
number of absorbed photons per time, which can be written as

jsc = e/ dE (Dsolar(E)- (1.3)
Egap

Here, @1, is the solar photon flux density in spectral distribution and the lower inte-
gration limit reflects the minimum energy of absorbed photons, as shown in Figure 1.8.
The third assumption refers to the case where an external resistance is applied to the
electrodes and hence charge carriers can no longer be collected instantaneously. In
this case, an inevitable process, occurring in addition to absorption, is the sponta-
neous emission of photons as a result of radiative recombination of electron-hole pairs.
By relating generation and recombination rates according to the principle of detailed
balance, the current-voltage characteristic of the ideal solar cell (shown in Figure 1.6 b)
can be parametrized. With the current-voltage function j( V') at hand, the ideal open-
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circuit voltage is defined by the point of vanishing current, which is V(j=0) g %Egap.
Although this voltage represents a strict limit for the ideal solar cell, irrespective of its
inorganic or organic nature, one can argue more precisely for organic cells. In fact, ex-
citon dissociation in organic devices involves intermediate charge-transfer or charge-
separated states and thus entails further inevitable energy losses. To account for these
inherent losses, conceivable as the driving force for exciton dissociation, the consider-
ations of Shockley and Queisser can be extended by a voltage loss parameter A [26]:

Voo = V(j=0) - 4. (1.4)

With the short-circuit current (1.3) and the open-circuit voltage (1.4), the fill factor (1.2)
is, of course, determined and one realizes that the power conversion efficiency (1.1)
becomes a function of the optical gap Eg,p and the voltage loss A. This function, shown
in Figure 1.7, indicates that the maximum efficiency for a given A is achieved for some
intermediate gap Eg,p. This is because the short-circuit current goes to zero for large
gaps, while the open-circuit voltage vanishes for small gaps. For zero voltage loss, i.e.,
along the abscissa, the Shockley-Queisser limit for inorganic solar cells is reproduced,
which is 33.7% at an optical gap of 1.34eV. If the voltage loss is A = 0.2 eV, organic
cells can theoretically achieve efficiencies slightly above 25% for optical gaps between
1.1and 1.7 eV [26]. It should be mentioned that these upper limits apply to solar cells
with a single absorbing semiconductor and can be surpassed by tandem cells.
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Figure 1.8. Spectral distribution of the terrestrial solar photon flux density @so1or and external quantum
efficiency 7zqs 0f an organic photovoltaic cell prepared from a pcvsT-m donor and a Ce acceptor [28].

> Challenges for Efficiency Improvements The highest reported power conver-
sion efficiency of organic solar cells is currently 12%, reached by tandem cells devel-
oped by Heliatek GmbH [27]. The absorbers employed are proprietary derivatives of
dicyanovinyl-substituted oligothiophenes (DcvnT), acting as donor materials, while
fullerene Cg is the acceptor. For this class of compounds, depicted on Page 18, re-
markable efficiencies have also been published for single-absorber devices, the high-
est of which is 6.9%, reported for a methylated quinquethiophene (pcvsT-m) [28].
In view of the first donor-acceptor heterojunction device by Tang with 1% efficiency,
these achievements demonstrate the significant progress in the field of organic pho-
tovoltaics. Now that organic solar cells are close to commercialization, the scientific
community is more than ever challenged to further advance the power conversion ef-
ficiencies in the direction of the theoretical limiting efficiencies. This goal requires
improvements in all parameters entering the efficiency: the short-circuit current den-
sity, the open-circuit voltage, and the fill factor.

The short-circuit current density of a real solar cell is, contrary to the ideal form (1.3),
determined by the external quantum efficiency feqe, which is defined as the ratio of
collected charge carriers and incident photons of a given energy E:

Jsc = e/dE Neqe(E) Psolar (E) - (1.5)

Figure 1.8 depicts, as an example, the quantum efficiency of the mentioned solar cell
prepared from pcvsT-m and Cg. The path to improved quantum efficiencies is to



38 Chapter 1. Organic Photovoltaic Cells

minimize the losses of photons upon optical absorption, of excitons during exciton dif-
fusion and dissociation, and of charge carriers during charge transport; in short: losses
in all processes involved in the conversion of radiation into electricity (Section 1.2).

Optical absorption with little loss critically depends on an optimized optical gap
of the absorbing semiconductor. In fact, most organic semiconductors suffer from
overly large band gaps, resulting in a lack of light harvesting in the low-energy, i.e.,
the high-wavelength region of the solar spectrum. Fullerene Cg, for instance, can
only harvest a tiny fraction of solar photons, as can be seen in Figure 1.8. Fortunately,
in the last decade, great progress has been made in synthesizing absorbers with lower
optical gaps. The class of bcvnT compounds is one example, where this is realized by
attaching electron-withdrawing dicyanovinyl moieties to conjugated oligothiophene
cores. As a result, the light harvesting reaches the visible range of the solar spectrum,
as seen in Figure 1.8. However, synthetic chemistry still faces many challenges, in
particular in engineering materials extending the absorption to the infrared region.

Exciton diffusion and dissociation with little loss requires both efficient exciton
transport and an optimized solar cell architecture. In planar heterojunction layouts,
the thickness of the active layer must satisfy a compromise between optimal extinc-
tion of light and lossless exciton diffusion to the interface. In bulk heterojunction
layouts, the layer thickness can be optimized for light extinction, however, the scale
of the donor-acceptor phase separation in the morphology must meet a trade-off be-
tween maximum interfacial area and continuous percolation paths to the electrodes.
While optimal scales of phase separation have been determined theoretically [29, 30],
it remains a major challenge for the field of material processing to control the bulk
heterojunction morphology during layer preparation in the desired manner.

Charge transport with little loss requires, apart from proper percolation paths, high
electron and hole mobilities in the acceptor and donor domains, respectively. This is
particularly important since mobilities in organic semiconductors can vary by many
orders of magnitude. Among the materials with the highest electron mobilities are
fullerenes and its derivatives, which are therefore the most common candidates as ac-
ceptors. However, when engineering associated donors, these need to be primarily
tuned for optical absorption, making it problematic to simultaneously ensure optimal
hole mobilities. Although increased hole mobilities are often highly desirable, there
are few systematic strategies for this purpose. A major obstacle is the lack of structure-
property relationships, linking chemical structures to mobilities. Closing this knowl-
edge gap is an important challenge for computational chemistry.
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The open-circuit voltage of a real solar cell is, contrary to that of the ideal one (1.4),
usually approximated by the difference between the ionization potential of the donor
and the electron affinity of the acceptor, since these band edges are thought to charac-
terize the hole and electron energies after the exciton dissociation:

Voe = %(Eﬁ, - Ep-4"). (1.6)

However, several sometimes insufficiently understood effects lead to an empirical volt-
age loss A, which is typically within 0.3 to 0.7eV [31-33]. An important part of
this loss stems from the energy differences between the band edges and the actual
charge transport levels. In fact, band transport is seldom seen in organic materials.
This is because effects of disorder often influence the electronic structure of organic
solids (Section 1.1). Most particularly, disordered solids, such as amorphous or me-
somorphic materials, are typically characterized by Gaussian distributed densities of
states rather than by sharp energy bands. Then, hopping transport is observed, where
charge transport levels are located in the distribution tails. But even organic crystals, if
heated to room temperature, tend to exhibit hopping or so-called polaronic transport
rather than band transport. As a consequence, improving the open-circuit voltage can
benefit from an in-depth understanding of the nature of charge transport, as can be
provided by computational chemistry.

The fill factor of a real solar cell is, as opposed to the ideal cell, no longer a function of
the short-circuit current and the open-circuit voltage, since the current-voltage char-
acteristic has no predefined functional form. Instead, the shape of the current-voltage
characteristic is negatively affected by mainly two parasitic effects [14]. First, leakage
currents flowing in the opposite direction of the photocurrent lead to a reduction of
the maximum power current jy,. This effect is related to the quality of the solar cell
and may be reduced by careful device preparation. Second, the finite resistance of the
device leads to a voltage drop under operation, i.e., a reduction of the maximum power
voltage Vyp. This effect is mostly due to the finite conductivity of the semiconducting
materials and can thus be reduced by improving the charge carrier mobilities.

In light of these challenges for improving power conversion efficiencies, this work
is devoted to the field of charge transport using methods of computational chemistry.
While the characterization of morphological disorder allows the nature, or regime of
charge transport, to be specified, the simulation of charge carrier dynamics delivers
the missing links between chemical structures and mobilities.
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Chapter 2.

Foundations of Computational
Chemistry

Computational chemistry has its foundation in viewing the structure of matter as a
many-body system of point-like nuclei and electrons. These constituents carry an
electrical charge and thus interact through the electromagnetic force, expressed as
an instantaneous field according to classical electrodynamics. The quantum nature
of the constituents is taken into account by the equation of motion of non-relativistic
quantum mechanics, i.e., the Schroédinger equation, complemented by spin if required.
With this powerful framework, virtually all chemical and related physical system prop-
erties become, in principle, accessible by solving the Schrodinger equation.

In what follows, the initial step towards a solution is recalled: the separation of nu-
clear and electronic motions (Section 2.1). This approach is motivated by the large
mass ratio of nuclei and electrons, implying that nuclear positions remain nearly fixed
while the electronic motion takes place. The separate Schrodinger equation for the
electrons thus depends on the nuclear degrees of freedom only as a fixed parameter.
If this electronic Schrodinger equation is solved, i.e., the electronic states and ener-
gies are obtained, and that for a large set of fixed nuclear configurations, the separate
nuclear equation of motion can be parametrized. To solve the nuclear equation of
motion, one can often, but not always, neglect electronic state transitions, which is
known as the adiabatic or Born-Oppenheimer approximation. In the classical limit,
these approximations lead to the Newtonian equation of motion for the nuclei.

Subsequently, an insight into electronic structure theory is offered (Section 2.2).
This field focuses on finding solutions of the electronic Schrodinger equation at fixed
nuclear positions. Two formalisms are discussed: Hartree-Fock and Kohn-Sham den-
sity functional theory. Both theories reduce the many-electron Schrodinger equation
to a set of one-electron equations governed by an effective one-electron operator.
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2.1. Separation of Nuclear and Electronic Motions

A chemical system can be regarded as an assembly of electrostatically interacting atom-
ic nuclei and electrons, governed by quantum mechanical dynamics. The full Hamil-
tonian operator of such a system depends on the cartesian coordinate and conjugate
momentum operators of the nuclei, R, and P,, as well as on those of the electrons,
r, and p, [34-37]. It can be written as a sum

H = Tnuc + Vnuc—nuc + Vnuc—el + Tel + Vel—el (2-1)

of kinetic energy terms for the A nuclei with masses M, and atomic numbers z, as

well as the N electrons with masses m1,

Tnuc = zA: Paz > 7:el = ip_rzl’ (2.2)
a=1 2Mﬂ

=1 2Mel
turther, terms accounting for the repulsive electrostatic pair interaction of the nuclei
and of the electrons, respectively,
2

e R o e T
nuc nuc b L 7T£0|Ra—Rb|’ el el .
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where e is the elementary charge and ¢y the vacuum permittivity, and finally the at-
tractive electrostatic interaction between the nuclei and electrons,

Vauc-el = Z Z (2.4)

a=1n= 147{80 ’R _rn|

With the Hamiltonian operator 7 of the system, the dynamics of nuclei and electrons
are governed by the Schrodinger equation

HY(R,rt) = ih% Y(R,r1,t), (2.5)

where the full wave function of the system (which is sought after) is denoted as ¥ and
the sets of nuclear and electronic coordinates are combined in the multi-indices

RE(RI,...,RA) E(R1,...,R3A),

.6
r=(r,....ry) = (r,....73n) - (26)
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> Adiabatic Electronic Basis Since nuclei have more than three orders of mag-
nitude larger mass than electrons, one expects only little variations in nuclear coor-
dinates while the electronic motion takes place. If the nuclei were entirely fixed, the
dynamics of electrons would be governed by an electronic Schrodinger equation

Ha(R) y*(r,R) = E§(R) y*(r.R), (2.7)
where the electronic Hamiltonian operator (including the interaction with the nuclei)
ﬁel(R) = ﬁ - 7:nuc - Vnuc—nuc = Vnuc—el + j:el + Vel—ela (2-8)

its eigenfunctions y*, and the associated energy eigenvalues E;} depend on the nuclear
configuration R only parametrically. These eigenfunctions y* are known as adiabatic
electronic wave functions and their complete orthonormal set as adiabatic electronic
basis. The naming stems from the conceptual correspondence between moving elec-
trons at fixed nuclear positions on the one hand and electrons responding instanta-
neously, or adiabatically, to the much slower movements of the nuclei on the other.

To study the slow nuclear motion in this adiabatic picture, the full wave function ¥
of the system (2.5) can be expanded in the adiabatic electronic basis,

Y(R,r,t) = Z x“(R, t) y*(r,R), (2.9)

where the expansion coeflicients y* can be identified with the nuclear wave functions
of the system in the respective adiabatic electronic states y*. Inserting the expan-
sion (2.9) in the full Schrodinger equation (2.5), applying the product rule of differ-
ential calculus for the nuclear momentum operators P, = —-i#V,, and making use of
the electronic Schrodinger equation (2.7) leads to a nuclear equation of motion

H (R) x*(R 1) + > 0% (R) Y’ (R, 1) = ih% Y*(R, ) (2.10)
Pra

for each nuclear wave function x“. Clearly, such a wave function carries a functional
dependence on the nuclear coordinates R. The same applies to the two operators in-
troduced in (2.10): the nuclear Hamiltonian operator,

+V

H\guc(R) = j—'\Il nuc—-nuc + @a“(R) + EZI(R) ’ (2‘11)

uc

U(R)
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acting on y” and depending in particular on the electronic energy eigenvalue E}, and
the so-called nonadiabaticity operator,

@5"‘ﬂ(R)=(vf“(R)\imc\w’f(k))+i_1 (V' (R) [Pa|yF(R)) Py, (212)

M,

which acts on the other nuclear wave functions y? and thereby couples the nuclear
equations of motion. Here integrals over electronic coordinates are abbreviated by

(V@R[ [v¥(®) = [ary* (r.R) - yF(r.R) . (213)

The dynamics of the nuclei, governed by the nuclear equation of motion (2.10), can be
understood as follows: while the system is in a specific adiabatic electronic state y*,
the nuclear motion is determined by the related nuclear Hamiltonian operator (2.11),
hence evolves in the effective potential U%. The function of this potential defines a
hypersurface in the space of nuclear coordinates, which is called adiabatic potential
energy surface (PES) [34]. However, while the nuclear motion proceeds, it may occur
that the system transitions into another adiabatic electronic state y* with associated
pEs UP. Such transitions, for example from the electronic ground state to the first
excited state, are mediated by the nonadiabaticity operator (2.12).

Technically, solutions of the full Schrodinger equation (2.5) follow from the expan-
sion (2.9), once solutions of the nuclear equation of motion (2.10), that is, wave func-
tions x*, with 5 being the nuclear quantum number, are obtained. The solving of
the nuclear equation of motion requires, in turn, the prior determination of the elec-
tronic wave functions y* and energy eigenvalues E}. These solutions of the electronic
Schrodinger equation (2.7) are needed for each parameter R, i.e., nuclear configura-
tion, covered by the motion of the nuclei. Solving the electronic Schrodinger equation
for specific nuclear positions is the remit of electronic structure theory (Section 2.2).

> Adiabatic Approximation For many chemical systems, the ratio of electronic
and nuclear energy scales is approximately given by (M, /m¢)"/? as follows from sim-
ple arguments [34, 35]. In cases where this estimate is reliable, the large mass difference
between electrons and nuclei leads to an electronic energy spacing at least two orders
of magnitude larger than the energy scale of nuclear motion. These systems remain
during nuclear motion, in good approximation, in the same eigenstate of the electronic
Hamiltonian; in other words, electronic transitions due to the nonadiabaticity opera-
tor are negligible. The neglect of the nonadiabaticity operator ®*# in the nuclear equa-
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tion of motion (2.10) is referred to as the adiabatic approximation. If in addition the
diagonal terms ©% in the nuclear Hamiltonian operator (2.11) are disregarded, the
approximation is known as the Born-Oppenheimer approximation [38]." In both cases,
the nuclear equation of motion becomes decoupled, yielding for each adiabatic elec-
tronic state y* an individual nuclear Schrédinger equation:

[Tt U R (R1) = 102 4 (R.1). @19

Note that these approximations are not applicable if electronic energy levels become so
close that nuclear vibrational energy suffices for initiating electronic transitions, which
is exactly the case in charge transfer reactions in molecular systems (Chapter 3).

» Classical Nuclei Approximation For nuclei at room temperature, the range of
quantum phase coherence, provided by the de Broglie wavelength (2rth/M ks T)"?,
is at least an order of magnitude shorter than typical interatomic distances [35]. Hence,
nuclei can often be treated as classical particles, which is accomplished by considering
a nuclear wave function y“ as Hartree product of incoherent wave functions for indi-
vidual nuclei, localized at the classical particle positions R, (identified with the mean
of the coordinate operator). Then, owing to the Ehrenfest theorem [39], the Schro-

dinger equation (2.14) transforms into a Newtonian equation of motion for the nuclei:

o’R,

a5 T -VaU%(R). (2.15)

Numerical integration requires knowledge of the PEs U” of the selected electronic
state ¥ as a function of R. In principle, one can construct an interpolation by solving
the electronic subsystem for a grid of sampling points in the space of nuclear coordi-
nates. However, since the number of sampling points scales exponentially with the di-
mension of this space, such an approach is prohibitive in practice. A viable option is to
approximate the PEs as truncated expansion in terms of many-body interactions [37],

A A A
U*(R) » YU (Ry) + 3> Us(RasRy) + ¢ > US(Ra, Ry Re) + ..., (216)
a=1 a,b a,b,c

denoted as force field (Section 4.2.1). The determination of expressions for the included
many-body terms allows for classical molecular dynamics simulations (Section 4.2.2).

"Note that in literature, the Born-Oppenheimer approximation is occasionally not clearly distinguished
from the adiabatic approximation, or even the introduction of the adiabatic electronic basis.
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2.2. Electronic Structure Theory

Electronic structure theory [35, 40-43] aims at finding solutions to the electronic Schro-
dinger equation of a many-body problem, such as a molecular system, with fixed nu-
clear positions. This electronic Schrédinger equation, provided in (2.7), implies that
for any solution v, the associated electronic energy is determined by

Ealv] = (v|Halv) = [ary’(r) Hay(n), (17)

that is, the expectation value of the electronic Hamiltonian operator (2.8), which reads

N N N N
Hy = Z‘A’nuc—el(rn) + Zfel(rn) + %Z Z Vel-el (T T'm) - (2.18)
n=1 n=1 m#n

n=1

[ —

Viuc—el T Vel-el

Here, the following terms, corresponding to the definitions (2.2) to (2.4), are intro-
duced: V.o, denoting the one-electron energies in the potential of the fixed nuclei,
f1, the one-electron kinetic energies, and ¥|_|, the two-electron interaction energies.>
The following discussion is limited to the task of retrieving the electronic ground state,
that is, the wave function with lowest energy. For this case, a solving strategy is the min-
imization of the energy functional (2.17) with respect to a trial set of wave functions.
Wave functions coming into consideration are normalized as well as antisymmetric
under the exchange of two electrons. The latter originates from the Pauli principle
applying to fermions.? In principle, the most general antisymmetric wave function,
defining a complete trial set, can be represented as a linear combination of an infinite
set of Slater determinants. In practice, however, tractable approximations are required.
In what follows, the traditional Hartree-Fock theory is outlined (Section 2.2.1). Here,
the simplest antisymmetric wave function is constructed, a single Slater determinant.
This yields a model of independent electrons, each moving in a mean field of all other
electrons. While this approach includes the exchange interaction between electrons,
their dynamical correlation is neglected. In the subsequently discussed Kohn-Sham
density functional theory (Section 2.2.2), these exchange and correlation contributions
are separated in an energy functional of the electron density. This so-called exchange-
correlation functional allows the dynamical correlation of electrons to be treated in an
approximate way. Finally, the basis set approximation is introduced (Section 2.2.3).

*Note that in (2.17) and (2.18) the parametric dependences on the nuclear coordinates are omitted.
*The Pauli principle represents an independent postulate within non-relativistic quantum mechanics.
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2.2.1. Hartree-Fock Theory

A multi-electron wave function of N electrons can be constructed as a product, a so-
called Hartree product, of N independent wave functions for the individual electrons.
These one-electron wave functions ¢” are denoted as molecular orbitals, each describ-
ing a single electron with space and spin coordinate r,,.# To ensure the antisymmetry
of the N-electron wave function, i.e., that the exchange of two electron coordinates
causes only a sign change, the Hartree product can be antisymmetrized by a Slater de-
terminant. This simplest antisymmetric wave function is used in Hartree-Fock theory:

¢'(r) ¢*(n) - V()
oL ¢'(r2) ¢*(r2) - ¢N(r2)
Yur (1) N : . )

(2.19)

Fr) ¢2r) — ()

Inserting this N-electron wave function in the energy functional (2.17), with the elec-
tronic Hamiltonian operator provided by (2.18), that is, working out the expression

Eqlyur] = (V/HF ‘ vnuc—el ‘ l//HF> + (WHF ‘ il ‘ l//HF> + (V/HF ‘ Vel—el ‘ V’HF) ,  (2.20)

allows one to collect similar integrals over the N individual electronic coordinates and
to abandon their numbering. The first two terms of (2.20), comprising the one-elec-
tron energy contributions V¢ and £, simply become sums of these contributions:

<I//HF ’ Vnuc—el | I//HF) Z::l /drl ¢n*(rl) 1A’nuc—el(rl) ¢n(r1) > (2.21)

(e | T ye) = 22 [an ¢ () fa(n) ¢"(n) (2.22)

The third term of (2.20), that is, the electron-electron interaction composed of the

two-electron contributions v¢|_¢|, yields two parts:
(e | Veroe | Wr ) = % > fdﬁ dry ¢"* (1) 9" (r2) Vel-el (11, 12) ¢"(r1) 9" (r2)  (2.23)

- % i /dn dry @™ ()¢ (r2) Vet (1, 12) "' (1) 9"(r2), (2.24)

“Here, r, = (ri,, rf,, rf,, 0, ) captures the three spatial and one spin coordinate for electron n collectively.
°In Hartree-Fock literature the terms (2.21) and (2.22) are typically combined into a core Hamiltonian.
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where the first part, denoted as the Hartree energy, represents the Coulomb energy due
to all independent electrons and the second part is referred to as the exchange energy.
Now, to find the wave function y; with lowest energy, the energy functional (2.20)
is minimized with respect to variations of the orbitals ¢", which are constrained to
orthonormality. Employing Lagrange multipliers ¢”, henceforth interpreted as orbital
energies, allows the derivation of an eigenvalue equation for the orbitals, known as the

» Hartree-Fock Equation

—

Hyr ¢" (1) = €" ¢"(n1), (2.25)

ﬁHF = fel(rl) + ‘A/nuc—el(rl) + 1A/H(”l) + lA’x(”l)’ (2.26)

where Hy; is called the Fock operator. Its four contributions are related to the four en-
ergy terms (2.21) to (2.24) and the newly specified ones act on the orbitals as follows:

Vu(r) ¢"(r) = [ ZN_:I /df’z ¢"*(12) Vel (11, 12) ¢m(72)] ¢"(r), (2.27)

Ux(r1) ¢"(n) =—[ EN_:I /drz " (12) Vel (11, 12) ¢”(1‘2):| ¢" (1) . (2.28)

The Fock operator is an effective one-electron operator that governs the dynamics of
the independent electrons. Each electron experiences the fixed nuclear potential v,,,c_el,
as well as the Hartree potential vy, and the exchange potential vx. The Hartree potential
mimics the exact electron-electron interaction by a mean field of all other independent,
or noninteracting electrons, whose charge can be seen as spread over the system. The
exchange potential describes a certain interaction - the exchange interaction: it pre-
vents the near vicinity of parallel-spin electrons, and thus reflects the Pauli principle
enforced by the antisymmetrization of the wave function. However, the Fock operator
neglects any dynamical correlation of electrons due to their electrostatic interaction. In
other words, opposite-spin electrons can come arbitrarily close to each other.
Technically, the Fock operator depends on its own eigenfunctions, i.e., the orbitals
which are actually determined by the Hartree-Fock equation. Hence, the Hartree-
Fock eigenvalue equation needs to be solved self-consistently (Section 2.2.3). Once
self-consistent solutions are obtained, the Slater determinant yy; constructed from
the N orbitals with lowest orbital energies provides the Hartree-Fock ground state.
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2.2.2. Kohn-Sham Density Functional Theory

The electronic Hamiltonian operator (2.18), describing a many-body system such as a
molecular system, is completely defined by the specification of both the fixed nuclear
coordinates, i.e., the nuclear potential Viueel, and the number of electrons N. The
key insight giving rise to density functional theory is that the Hamiltonian operator is
alternatively determined by the knowledge of the ground state electron density p, that
is, the probability of finding any of the N electrons at a particular point in space:

/drl p(r) = N. (2.29)

This is proven by the first Hohenberg-Kohn theorem [44], providing the equivalent
statement that the electron density p (which already specifies N) uniquely determines
the nuclear potential Vi uc_el, thus the Hamiltonian operator, and therefore all informa-
tion of the system, in particular its ground state energy through a necessarily existing
functional (2.30). A second theorem states that this functional obeys the variational
principle, i.e., is minimized by p yielding the ground state energy:

Eel[P] = /drlp(rl) 1gnuc—el(rl) + Tel[P] + Vel—ell:P] . (2.30)

As opposed to the nuclear potential, one lacks explicit expressions of the kinetic en-
ergy T and the electron-electron interaction Vg_ in terms of the electron density.
Within the Kohn-Sham approach [45], this central problem of density functional the-
ory is addressed by introducing an auxiliary system of independent, noninteracting
electrons with molecular orbitals ¢”, representing the same electron density:

p(r) = i_lsb"*(m 8"(r). (231)

In this way, portions of the unknown energy functionals, corresponding to the nonin-
teracting auxiliary system, can be expressed in terms of the orbitals using the results
of Hartree-Fock theory for the kinetic energy (2.22) and the Hartree energy (2.23),

Talp) = 3 [dn ¢ () ta(r) () + Talp], (32)

Va-alp] = 3 / dridry p(n) p(r2) Vera(r1,12) + Veralp] s (2.33)
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while all remaining many-body contributions, due to the exchange interaction and
dynamical correlation, are incorporated in the exchange-correlation energy functional
of the density, which is a purely formal expression at this point:

Exc[p] = Talp] + Veralp]. (2.34)

To find an expression of the ground state density (2.31), the energy functional (2.30)
is minimized with respect to variations of the auxiliary orbitals ¢", constrained to or-
thonormality. The method of Lagrange multipliers ¢” leads to an eigenvalue equation
for the orbitals, which requires self-consistent solving (Section 2.2.3) and is called the

» Kohn-Sham Equation
Hys ¢"(n1) = " ¢"(n), (2.35)

HKS = fel(rl) + 1gnuc—el(rl) + 1)>H(r1) + 1A/Xc(rl) . (236)

Here, the effective one-electron operator HKS, denoted as the Kohn-Sham operator, de-
scribes the electron-electron interaction by the Hartree potential ¥y, representing the
electronic mean-field, plus the exchange-correlation potential vy, which is the func-
tional derivative of the exchange-correlation energy functional (2.34):

8Exc[p]
dp(r1)

Pl = / dry p(r2) Vaa(rors),  Fxe(r) = (2:37)

» Exchange-Correlation Energy Functional In principle, self-consistent solu-
tions of the Kohn-Sham equation give access to the exact ground state of the inter-
acting many-body system, provided an exact expression for the exchange-correlation
energy functional Ex. is used. Unfortunately, such an expression is unknown - but
a number of approximations are available. The simplest of these is the local density
approximation (LDA), where the electron density is approximated as locally homoge-
neous in order to use the model of the homogeneous electron gas at the same density,
for which the exchange functional E;"* is known analytically [46] and the correlation
functional EZ"* can be parametrized with high accuracy [47]. To address the issue of
the still neglected nonlocal density dependences of the exchange-correlation energy,
improved approximations can be performed. In a first step, semilocal dependences can
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be taken into account by establishing expressions for the density gradient and higher
order derivatives, referred to as the generalized gradient approximation (GGA); exam-
ples are the exchange functional E{* of Becke [48] and the correlation functional EZ¢*
of Lee, Yang, and Parr [49]. The next step of accounting for truly nonlocal density de-
pendences poses the greatest challenge; however, at least for the exchange energy, the
nonlocal expression given by Hartree-Fock theory E}* (2.24) can be incorporated in
the description, resulting in hybrid Hartree-Fock Kohn-Sham exchange-correlation
energy functionals. Particularly successful is the Becke three-parameter hybrid func-
tional with Lee, Yang, and Parr correlation (B3LYP) [50], which is composed as

EQ™ = B+ B + oy (BT - E™) + ap(BX™ = E™) + a(EC™ - E™) - (238)

The parameters «; = 0.2, a; = 0.72 and a3 = 0.81 are determined by fitting to experi-
mental data for atomization energies, ionization potentials, and proton affinities of up
to 56 different molecules, and total energies of 10 atoms [50].

In this work, Kohn-Sham density functional theory with the B3Lyp hybrid func-
tional is used, inter alia, to obtain many-body terms, as in (2.16), for the parametriza-
tion of force fields (Section 4.2.1), to determine molecular point charge distributions
and polarizabilities for the calculation of site energies (Section 4.2.5), and to assess the
nuclear rearrangement of molecules upon electron attachment for the quantification
of reorganization energies (Section 4.2.6).

2.2.3. Basis Set Approximation

The discussed electronic structure theories reduce the electronic Schrédinger equation
of the N-electron system to the Hartree-Fock (2.25) and Kohn-Sham equation (2.35).
Both of these represent a set of one-electron eigenvalue equations for molecular or-
bitals ¢” and associated orbital energies ¢”, governed by an effective one-electron
Hamiltonian operator H, which depends on its own eigenfunctions:

H¢"(rn) = " ¢"(n). (2.39)

This type of equation is routinely solved after conversion into an algebraic equation
by means of a finite set of predefined basis functions ¢". These basis functions are
often chosen as atomic orbitals of the isolated atoms of the system, or are based on
them, and are therefore conventionally denoted as atomic orbitals. By expanding the
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unknown molecular orbitals as a linear combination of the atomic orbitals (MO-LcAO),
only the expansion coefficients C™ remain to be determined:

" (n) = ZCTH¢T(71). (2.40)
T
Now, inserting this expansion in the eigenvalue equation (2.39), multiplying from the
left with ¢ and integrating over r; leads to the desired algebraic equation, also known
as the Roothaan-Hall matrix equation [s51, 52],

HC =SCE, (2.41)

for the expansion coeflicients C = (C™) and molecular orbital energies E = diag(e").
H = (H°") is the Hamiltonian matrix and § = (S°7) the atomic orbital overlap matrix,

H = (o7 |H|¢) = [dng™ () Ho'(n), (2.42)

ST = {9%l") = [dn ™ (n) ¢"(r). (.43)

where the latter arises, since atomic orbitals are generally nonorthogonal, which im-
plies that nonvanishing terms of differential overlap, that is, for o # 7, exist. The appli-
cation of a similarity transformation T, which orthogonalizes the basis set of atomic
orbitals TTST = I, leading to a new coefficient matrix C’ = T™!'C and a transformed
one-electron Hamiltonian matrix H' = T'HT, results in a matrix equation [40],

HC =CE, (2.44)

which yields the new coefficients and the orbital energies by diagonalization of H'.
Of course, this matrix still depends itself on the coefficients sought, hence the diagonal-
ization process requires an initial guess of the coeflicients. To obtain a self-consistent
solution, i.e., coefficients matching the initial guess, the diagonalization process needs
to be iterated until the coefficient matrix is converged to a desired level of precision.
These iterative methods are implemented in standard software packages for computa-
tional chemistry, such as the GaussiaN package [53], which is used in this work. These
methods of electronic structure theory are often referred to as ab initio or first prin-
ciples methods, although density functional theory may include certain empirical pa-
rameters, depending on the employed exchange-correlation energy functional.
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> Basis Sets In practice, computational chemistry packages provide a comprehen-
sive choice of basis sets. Particularly popular are the Pople style basis sets [54], whose
basis functions are, as is customary, based on the atomic orbitals of the isolated atoms
of the system. The correct functional form for describing atomic orbitals are Slater type
orbitals, whose radial part decays exponentially with the distance from the atomic nu-
cleus. However, for computational efficiency, it is beneficial to approximate a Slater
type orbital by multiple Gaussian type orbitals, which decay exponentially with the
squared distance. According to this approximation, the minimal Pople style basis sets,
designated as sTO-nG, describe the Slater type orbitals by n Gaussian type orbitals.
These minimal basis sets are, however, often unsuitable for molecular systems, since
chemical bonding in molecules breaks the spherical symmetry of the atomic orbitals.
To address this issue, the valence orbitals, which facilitate the bonding effects, can
be split into two or more functions with varying decay factors. The corresponding
split-valence Pople style basis sets are designated as n-mlG, where n indicates the num-
ber of Gaussian type orbitals used to represent the core orbitals, while each of the
subsequent variables m, I, etc. refers to one of the functions into which the valence
orbitals are split. The basis sets can be further improved by including polarization
functions, indicated by an asterisk, while two asterisks signify that they are added to
light atoms as well. In this work, the 6-3116** basis set is typically employed.

» Semiempirical Methods Based on Hartree-Fock theory, there exists a variety of
semiempirical methods [55-58], which incorporate further approximations and empir-
ical information in order to reduce the computational expense of ab initio methods.
On the one hand, such semiempirical methods often involve what is called the ne-
glect of differential overlap (NDO), where the calculation of the atomic orbital overlap
matrix (2.43) is initially avoided, that is, S°7 = §?". This implies that the Roothaan-
Hall matrix equation (2.41) is directly in the standard eigenvalue form (2.44). On the
other hand, the matrix elements (2.42) of the Fock operator (2.26) are replaced by sig-
nificantly simplified expressions including empirical relationships. These simplified
expressions may also include some special, again empirically parametrized, atomic or-
bital overlap terms §”" to compensate for the major errors resulting from the NDO.
An example is Zerner’s intermediate neglect of differential overlap (zINpO) [59, 60],
which is referred to at a later point; in this work, it is employed to calculate coupling
strengths between electronic states, specifically the transfer integrals (Section 4.2.4).
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Chapter 3.

Charge Transfer in Molecular Systems

Charge transfer [34, 61-64] refers to a microscopic process of electron movement,
which is elementary for many macroscopic charge transport phenomena. The mi-
croscopic systems hosting charge transfer processes are molecular systems, such as
molecular fragments, entire molecules, or their aggregates. A more precise definition
of such a microscopic system is the charge transfer complex. It denotes a molecular
system comprising a negative or positive excess charge, i.e., an electron or hole, which
is localized to a certain degree, such that (in the simplest case) two spatial localization
centers can be identified: the donor and the acceptor. The process of charge transfer
is then understood as the spatial displacement of the excess charge from the donor to
the acceptor part of the charge transfer complex, and is written, in the case of electron
transfer, as D-A — D A™. Since such a charge redistribution alters the electrostatic field
within the complex, it is associated with a rearrangement of the nuclear coordinates
of the molecular system. This leads to a central property of charge transfer: the two
nuclear configurations corresponding to the charge localization at the donor and ac-
ceptor can be thought of as minima in the potential energy surfaces for the nuclear
motion. The energetic barrier separating these two minima acts as reaction barrier
for the transfer process and critically determines the characteristic reaction time, in
other words the charge transfer rate. The formulation of analytical expressions for the
charge transfer rate is the main objective of charge transfer theories. To this end, the
key features characterizing the charge transfer complex and its environment need to
be translated into tangible parameters.

The discussion starts by introducing the regimes of charge transfer (Section 3.1).
This overview illustrates that a charge transfer reaction should be treated on a different
theoretical basis, depending on the degree of localization of the excess charge. Based
on these considerations, it follows the explicit formulation of charge transfer rates in
the regime of strongly localized charges (Section 3.2).
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3.1. Regimes of Charge Transfer

The microscopic processes occurring in a charge transfer complex are governed by
the Schrodinger equation of its constituent electrons and atomic nuclei (Section 2.1).
Such a full Schrédinger equation (2.5) can be expanded by an adiabatic electronic basis
of delocalized states, defined by an electronic motion with fixed nuclei, i.e., a paramet-
ric dependence on the nuclear coordinates. This leads to separate but coupled equa-
tions of motion for electrons (2.7) and nuclei (2.10), which may be decoupled by the
Born-Oppenheimer (or adiabatic) approximation. Now, considering a charge transfer
reaction, the validity of the Born-Oppenheimer approximation is not expectable in
general since the charge displacement and nuclear rearrangement occur concertedly.
Moreover, even the use of the adiabatic electronic basis can be unsuitable for repre-
senting electronic wave functions describing the shift of charge localization.

Hereafter, the adiabatic electronic basis is applied to describe the transfer of rather
delocalized charges, which is the regime of adiabatic charge transfer (Section 3.1.1). The
transfer of rather localized charges, in contrast, falls into the regime of nonadiabatic
charge transfer (Section 3.1.2). In this case, it proves beneficial to choose an electronic
basis of localized states, which is denoted as diabatic electronic basis.

3.1.1. Adiabatic Charge Transfer

To treat the present case of two localization centers (the donor and acceptor), it suf-
fices to introduce an adiabatic electronic basis in two-state approximation, consisting
of two delocalized states |y*(Q)). These states correspond to adiabatic wave functions
y*(r,R) = (r|y*(R)) defined in (2.7), which are parametrically dependent on the nu-
clear coordinates R. Note that this 34-dimensional set of nuclear coordinates is here
expressed by a one-dimensional linear combination Q, the reaction coordinate. While
detailed later, it can for now be imagined to pass through the two nuclear configura-
tions, where the excess charge is localized at the donor and the acceptor.

» Hamiltonian in Adiabatic Representation In the thus-defined adiabatic elec-
tronic basis, the full Hamiltonian of the charge transfer complex expands as follows:'

= gﬁﬁuc<o)lw“(o)><w“(e)| + 30 (Q) Iy (Q) (W (Q). G

a=x+f

"This results from the nuclear equation of motion (2.10), as seen by taking 3>, (3.1) [y”(Q)) ¥’ (Q),
using the full Schrédinger equation (2.5) and the expanded full wave function (2.9).
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Figure 3.1. Adiabatic potential energy surfaces of
a charge transfer complex as functions of the reac-
tion coordinate Q. The potentials U~ and U™ gov-
ern the nuclear motion in the adiabatic electronic
basis states [~ ) and |y*). At the nuclear configu-

l ; ration Q7 the functions approach to a minimum
separation of 2] and the potential U~ exhibits an
v AE* ) energetic barrier AE”, separating two minima.
Q" Q

This implicates that the electronic coupling between the two adiabatic basis states
ly~) and |y*) is caused by the nonadiabaticity operator @*¥, which is given in (2.12).
If the system is in one of these basis states, its nuclear motion is governed by the re-
spective nuclear Hamiltonian operator, which, according to (2.11), reads

—

I:I\I:;:UC(Q) = Tnuc + Vnuc—nuc + @ii(Q) + E::I(Q) ° (3'2)
U*(Q)

A prototypical example of the corresponding adiabatic potential energy surfaces (PES)
U~ and U™ is depicted in Figure 3.1. Here, the PEs of the electronic ground state U~
exhibits two minima, separated by a barrier AE™ at the nuclear configuration Q.

» Adiabatic Charge Transfer Reaction Now;, if the excess charge is rather delo-
calized, the charge transfer complex is in the almost pure electronic ground state |y~),
while electronic coupling to the next state is only a small term.> Then, the nuclear dy-
namics is governed by the PEs U™ and is conceivable as a vibration around the, say, left
minimum until, after a characteristic time, the barrier to the right minimum can be
surmounted. During this nuclear rearrangement along the reaction coordinate Q, the
electronic state |y~ ) - which is a parametric function of Q - is continuously deformed,
such that the excess charge moves from the donor to the acceptor part of the charge
transfer complex. This continuous modification of the electronic probability density
of a single electronic state is denoted adiabatic charge transfer. The associated charge
transfer rate is proportional to the nuclear transition rate, and hence takes, according
to transition state theory [65, 66], the simple form of an Arrhenius relation:

_ *
o AE*[keT

w ~ (3.3)

*In Figure 3.1 this corresponds to an energy splitting larger than nuclear energy quanta: J > hw*™.
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3.1.2. Nonadiabatic Charge Transfer

If the excess charge, in contrast to the preceding case, is rather localized, the system is
no longer in an almost pure delocalized state of the adiabatic electronic basis. Instead,
one expects substantial mixing of these states, in other words strong electronic cou-
pling, mediated by the nonadiabaticity operator. As the nonadiabaticity operator (2.12)
is a differential operator with respect to Q, the derivation of an eligible charge trans-
fer rate is no simple task. It is therefore advisable to introduce an electronic basis of
localized states, which is referred to as diabatic electronic basis.

> Diabatic Electronic Basis Staying in the two-state approximation, diabatic elec-
tronic states |y") are inferred from the adiabatic ones [y*) by a basis transformation,

@)l -

where the unitary matrix T is chosen such as to eliminate their parametric dependence
on the nuclear coordinates Q, in other words to inhibit any electronic coupling due to
the Q-derivative nonadiabaticity operator [67-69], which, in turn, enables electronic
localization.> Typically, the diabatic states depend on a fixed nuclear reference con-
figuration Q° (henceforth omitted), irrespective of the actual nuclear positions. Thus,
they are no longer eigenstates of the electronic Hamiltonian (2.8), except at Q° [34],

—~ ” i
Ha(Q") y™) = Eg lv*") . (3.5)
with eigenvalues Ei’lf, while the parametric dependence on Q is separated in a term V,

Ha(Q%) = Ha(Q) - V(Q,Q"). (3.6)

» Hamiltonian in Diabatic Representation In the thus-defined diabatic elec-
tronic basis, the full Hamiltonian of the charge transfer complex expands as follows:*

= B QW) ] + B Q) ]+ 77(Q) (1) (vl + o) (W) - )

3One can show that the absence of the nonadiabatic coupling terms is related to the diagonalization of
operators associated with charge localization, such as the dipole moment operator [70-75].

“The expression (3.7) results from expanding H = T H T using the completeness relation of the diabatic
electronic basis and the definition of the electronic Hamiltonian operator (2.8).
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Figure 3.2. Diabatic potential energy surfaces of a
charge transfer complex as functions of a reaction
coordinate Q. The potentials U' and Uf (solid
black and red lines) govern the nuclear motion in
the diabatic electronic basis states |y') and [y').
The functions are crossing at the nuclear configu-
ration Q*, defining the energetic barrier AE™. In
contrast, the adiabatic potential energy surfaces
(dashed gray lines) avoid crossing at Q” with an
. energetic separation of 2J.
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While any terms with the nonadiabaticity operator vanish by definition, one now en-
counters electronic coupling between the diabatic basis states |y') and |yf) due to the

» Transfer Integral
7(Q) = (V' [Ha(Qv') = (v'[V(Q Q") [¥) - (.8)

If the system is in one of the diabatic basis states, the nuclear dynamics is described by
the respective nuclear Hamiltonian operator, which is given by

ﬁ:’;{lc(Q) = Tnuc"" Vnuc—nuc + ]ii)ff(Q) + E(ig)lf . (3'9)

Ui,f(Q)

Prototypical diabatic potential energy surfaces U' and U’ are depicted in Figure 3.2.
Apparently, these two functions are crossing at the nuclear configuration Q™ and give
rise to the shape of their adiabatic counterparts, which avoid crossing at this point.

» Nonadiabatic Charge Transfer Reaction Now, if the excess charge is rather lo-
calized, the charge transfer complex is in an almost pure diabatic basis state, say, [y'),
while the electronic coupling to the other one, i.e., the transfer integral, is only a small
term.5 Then, nuclear vibrational motion is governed by the pes U' and leads, after a
certain time, to the nuclear transition state Q. There, an electronic transition to the
state |y/f) can take place,® such that nuclear motion proceeds in the pEs U'. Note that

5In Figure 3.2 this corresponds to an energy splitting smaller than nuclear energy quanta: J < haw"™.

One can show that this splitting equals the transfer integral at the transition state: J = J'' (Q*) [34].

% An electronic transition is restricted to this diabatic crossing point due to the simultaneous fulfillment
of the Franck-Condon principle [76], i.e., the condition of constant nuclear coordinates (vertical
transition in Figure 3.2), and the energy conservation (horizontal transition).
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nuclear motion along the reaction coordinate Q causes no alteration of the basis states,
which follows from their independence of Q. Instead, it is the transition between the
basis states which describes the movement of the excess charge from the donor to the
acceptor. This instantaneous modification of the electronic probability density due to
the transition between electronic states is denoted nonadiabatic charge transfer. The
associated charge transfer rate not only reflects the probability of reaching the nuclear
transition state Q*, which is the familiar Arrhenius relation (3.3), but also the proba-
bility for the occurrence of the electronic transition mediated by the transfer integral:

w ~ Uif ’2 o AE* [ksT (3.10)
When deriving rate expressions of this type, the transfer integral as a small quantity
can be conveniently treated as a perturbation to the initial state (Section 3.2).

> Reaction Coordinate What follows is a supplement to the one-dimensional re-
action coordinate Q, which combines the 34-dimensional set of nuclear coordinates R.
To describe nuclear vibrational motion in a PEs U(R) around some minimum R’, one
may approximate the PEs in the vicinity of R® by a second order Taylor expansion [34],

U(R) = U"+3 3 hap (R,=RO) (Ry=R§) = U3 3 (0f(Qe-Q1))* = U(Q)., (3.11)
a,b ¢

which allows the transformation, by diagonalization of the Hessian matrix (), to
34 — 6 (mass weighted) normal mode coordinates Q with eigenfrequencies w‘gb. Note
that 6 eigenvectors represent overall translational and rotational motions. Then, along
with the conjugate momentum operators Py, the nuclear Hamiltonian operator reads

Hue(Q) =3 Y. PE+U(Q) . (3.12)
14

A charge transfer reaction is usually triggered by the nuclear motion of a small subset
of normal mode coordinates, the active normal mode coordinates. An appropriate
linear combination of these active coordinates often yields a suitable one-dimensional
reaction coordinate Q with average eigenfrequency w*"® and conjugate momentum
operator P, such that the nuclear Hamiltonian (3.12) takes the simple form

Hue(Q) = 1P2+U(Q), UQ)=U"+1(«™(Q-Q%)°.  (u3)
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3.2. Charge Transfer Rates

A charge transfer reaction can take place in numerous variants, which is reflected in
the existence of a wide variety of rate expressions, tailored to the characteristics of the
charge transfer complex. These distinctive features are worth mentioning. A first dis-
tinction is the degree of localization of the excess charge: according to the discussion
on the regimes of charge transfer (Section 3.1), this specifies if the charge transfer reac-
tion is an adiabatic or nonadiabatic process and suggests the appropriate, i.e., adiabatic
or diabatic, representation of the Hamiltonian operator. A second factor is the actual
composition of the molecular system: for unimolecular systems, where the donor and
acceptor are parts of the same molecule, the nuclear vibrational dynamics can be de-
scribed by a common set of normal mode coordinates, which usually leads to a single
reaction coordinate. For bimolecular systems, in contrast, it is generally required to
introduce two separate sets of normal mode coordinates with independent reaction
coordinates. A third aspect is the surrounding of the charge transfer complex: if the
complex is embedded in a static environment, it suffices to account for changes in the
electrostatic interactions with the environment, related to the charge redistribution
in the complex. However, if the complex is formed in a polar solvent, the reorienta-
tion of surrounding solvent molecules causes significant nuclear adjustments, which
requires the introduction of an outer-sphere reaction coordinate in addition to the
internal ones. A fourth important system property is the temperature: it allows the
determination of whether the nuclear vibrations along the internal and outer-sphere
reaction coordinates should be described by classical or quantum mechanics. In a high-
temperature limit, the vibrations related to all reaction coordinates can be treated clas-
sically. At medium temperatures, the high-frequency vibrations along the internal re-
action coordinates should be treated quantum mechanically, while the low-frequency
dynamics related to the outer-sphere reaction coordinate may still be described classi-
cally. In a low-temperature limit, the nuclear vibrations may be entirely neglected.

In the studies of this work, charge transfer occurs between individual molecules, i.e.,
in bimolecular systems, surrounded by solid material, i.e., a static environment, which
is at room temperature, identified as high-temperature limit, and exhibits structural
disorder, causing strong charge localization and hence nonadiabatic charge transfer.
For this particular type of charge transfer, the derivation of an appropriate rate expres-
sion is detailed (Section 3.2.1). This is followed by a brief comparison to rates in the
medium and low temperature limits of nonadiabatic charge transfer (Section 3.2.2).
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3.2.1. Bimolecular High-Temperature Nonadiabatic Charge Transfer

The theoretical elaboration of the charge transfer reaction starts from the Hamiltonian

operator of the charge transfer complex in diabatic representation (3.7). Accordingly,
the electronic basis consists of an initial and a final electronic state (i and f), corre-
sponding to charge localization at the donor and acceptor, respectively. In treating

the bimolecular case, the donor and acceptor are taken as two independent molecules

(i and j), whose nuclear vibrational motions are described by two separate sets of nor-
mal mode coordinates, which are collected in two independent (mass weighted) reac-
tion coordinates Q; and Q; with conjugate momentum operators P; and P;. Hence,
the nuclear Hamiltonian operators for the initial and the final electronic states (3.9)

contain two independent contributions of kinetic energy, potential energy and of inter-
action energy with the environment, where the latter accounts for a static environment
of the charge transfer complex by constant electrostatic interactions W;* with the two

molecules in their charged and neutral states (c and n):

. . . . .
Hue(Qi, Q) = 3PP + 3 PF + Ui(Q)) + Uj(Q)) + Wi + W},

Ei(Qi,Q;))

HE(Qi, Q) = 3P+ 3 P7+ UL(Q) + US(Q)) + Wi + Wy .

(3.14)

Ef(Qi,Q))

Here, E' and E' represent two-dimensional potential energy surfaces, which, in a har-
monic oscillator approximation, are expressed by quadratic functions with respect to
the individual reaction coordinates of the two molecules, such as in (3.13):

. ‘ 2
Ull':g(Qi,j) = Ui/ + %(“’zy,l}?(Qi,j - ch]n)) . (3.15)

Figure 3.3 provides an illustration of these four quadratic functions and defines the
minimum energies UfJn at the nuclear equilibrium configurations Qf]n given in (3.15).
The functions U; and U}, drawn in black, govern the nuclear vibrations of the two
molecules (around the configurations Qf and Q}l) in the initial electronic state of the
charge transfer complex, where the excess charge is localized at the donor molecule i.
In the final electronic state of the complex, where the charge has passed to the accep-
tor molecule j, the nuclear vibrations of the two molecules (around Q}' and QJC.) are

described by the functions Uf and U]f-, marked in red.
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Figure 3.3. (a) Diabatic potential energy surfaces for the donor molecule i, (b) for the acceptor molecule j.
For each molecule, the potential energy surface of the initial electronic state is drawn in black, while that
of the final electronic state is drawn in red. Adapted from Reference [4].

The high-temperature limit refers to the limiting case in which the energy spacing
of the harmonic oscillators is small compared to the thermal energy (hw‘i’,i}? < kgT)
and the nuclear vibrations can be treated classically. Then, an average treatment of the
kinetic energy is possible by the reaction coordinate distribution functions

fii(Qij) = %e’UU(Q”J)/kBT, Zij= /in,j e Vii(@/ksT (3.16)
ihj

Characteristic for nonadiabatic charge transfer is a weak electronic coupling between
the initial and final diabatic electronic states: this allows the transfer integral J if (3.8)
to be treated as a perturbation to the initial state, switched on at time zero. Hence, the
time-dependent electronic Schrodinger equation, describing the localization shift of
the electronic probability density from the donor to the acceptor, can be expressed by
means of time-dependent perturbation theory. In first-order approximation, Fermi’s
golden rule [76-78] provides the transition rate from the initial electronic state with
energy E' to the final state with energy Ef, where summations over quantum level

manifolds can be replaced by integrations over the averaged vibrational energies:

o = PP [4QidQ; fi(@0) £(Q) 8 (F(Q Q) - E(Qu@)) - G7)

7To apply Ferm{’s golden rule, the transfer integral J'* is considered constant with respect to the reaction
coordinate, which is referred to as the Condon approximation [79].
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To carry out the integration (3.17), one inserts the expressions (3.14), (3.15), and (3.16)
and demands that the argument of the delta function vanishes [80-82]. This leads to
a charge transfer rate that is referred to as the

» Marcus Rate

7 AE;j - 1;)°
w,-jzz—n—]exp —u . (3.18)
h \/[AndijksT 4);jkp T

Notice that the rate w;; and the transfer integral J;; are henceforth labeled by the index
pair of the molecules at which the excess charge is localized (i and j) in the respective
diabatic electronic state (i and f). The same applies to the energy difference between
the nuclear equilibrium configurations of these electronic states, that is, the driving
force for the charge transfer reaction, which can be expressed as the

» Site Energy Difference

AEij _ (Ei-nt-kE?lStat) _ (E;_nt +E§15tat) , (3.19)

Ei E]
where energetic contributions are grouped with respect to molecules i and j, defining
the site energies E; and E;. The site energy of a particular molecule comprises an inter-
nal and an electrostatic contribution, each of which characterizing the charged state (c)
of the molecule relative to its neutral state (n), as indicated in Figure 3.3:
int c n elstat C n

B =Up;-Ubj, Ei;" =Wr-W. (3.20)
In addition, the Marcus rate accounts for the energetic expense associated with the
nuclear rearrangement from the equilibrium configurations to the nuclear transition
states, located at the diabatic crossing points. This is covered by the

» Reorganization Energy

Aij = (U?' - Uzn) + (U;, - U]C) . (3.21)

/\i /11
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The reorganization energy A;; of the charge transfer complex can be considered as a
sum of reorganization energies A; and A; for the donor and acceptor molecules. These
molecular reorganization energies denote the energy of a molecule in the final elec-
tronic state, but at the nuclear equilibrium configuration of the initial electronic state,
as is indicated in Figure 3.3 by gray dots. In other words, the reorganization energy A;
represents the energy of molecule i in its neutral state with nuclear configuration of its
charged state (n’), and A; is the energy of molecule j in its charged state with nuclear
configuration of its neutral state (c). These energetic values contain the information
about the curvature and mutual offset of the potential energy surfaces and hence about
the height of the energetic barrier at their diabatic crossing points.®

To summarize, the Marcus rate (3.18) is a simple yet powerful analytical rate expres-
sion for charge transfer that depends on three parameters of the charge transfer com-
plex. First, the transfer integral J;; (3.8), specifying the electronic coupling between the
two diabatic electronic states, in which the excess charge is localized at the molecules
i and j, respectively. Second, the site energy difference AE;; (3.19), denoting the differ-
ence between the energies of these two electronic states with molecules being in their
nuclear equilibrium configurations. And third, the reorganization energy A;; (3.21),
accounting for the energetic barrier between these nuclear equilibrium configurations,
which needs to be overcome by nuclear vibrational motion. Note that the latter is also
referred to as electron-phonon coupling.

Depending on the relation of the site energy difference and the reorganization en-
ergy, one distinguishes between two regimes of the Marcus rate. If the site energy dif-
ference is smaller than the reorganization energy (AE;; < A;;), the rate is an increasing
function with the site energy difference, which is denoted as the normal regime. How-
ever, if the site energy difference exceeds the reorganization energy (AE;; > 1), the
rate turns into a decreasing function with increasingly favorable driving force, which
is called the inverted regime [83]. This is because high site energy differences lead to
the formation of final states with high vibrational energy, which is experimentally es-
tablished [84]. In Figure 3.3, the inverted regime corresponds to situations where the
lower potentials cross the energetically higher ones on the left, and no longer on the
right side with respect to their minima.

¥Note that the values have no direct physical meaning; rather, one can imagine a process in which a
molecule in its nuclear equilibrium configuration of the initial electronic state (black dot) experiences,
by violation of energy conservation, a vertical transition into the final electronic state (gray dot)
and then reorganizes its nuclear coordinates to the new equilibrium configuration (red dot) under
dissipation of the reorganization energy.
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3.2.2. Further Limits of Nonadiabatic Charge Transfer

The previously derived Marcus rate of nonadiabatic charge transfer covers bimolecu-
lar reactions under the constraints of a static environment and high temperature. To
highlight the resulting scope of the Marcus rate, a comparison to closely related ex-
pressions is instructive. To this end, two prominent examples are presented: the more
general Marcus-Levich-Jortner rate and the simpler Miller-Abrahams rate.

A generalization of the Marcus rate should, on the one hand, account for the nu-
clear relaxation of the environment associated with the charge transfer reaction. This
is achieved by introducing outer-sphere normal mode coordinates, which are common
to both molecules and are therefore treated by a single outer-sphere reaction coordi-
nate, coupled to the internal ones. The outer-sphere reaction coordinate captures com-
paratively slow reorientations of molecules surrounding the charge transfer complex,

vib

vut is much lower than the eigenfrequencies of the

vib
i

embrace medium temperatures, where internal nuclear vibrations have large energy
vib
i
tum mechanically. The nuclear dynamics related to the low-frequency outer-sphere

hence its average eigenfrequency w
vib

internal reaction coordinates, w}" and w?". On the other hand, a generalization may

quanta compared to thermal energy (Aw!"? > kg T) and are therefore treated quan-

reaction coordinate may, however, still be described classically (hw!% <« kgT). This
situation implies that in the initial electronic state, the molecules i and j are restricted
to their vibrational ground states with quantum numbers 0, while the final electronic
state can be formed in a manifold of vibrational states with quantum numbers 7 and 9,
respectively. Consequently, Fermi’s golden rule comprises two summations over quan-
tized manifolds of vibrational states and one integral over a reaction coordinate distri-
bution function, such as (3.16), describing the continuous outer-sphere energy. Car-
rying out the integration over the outer-sphere reaction coordinate [4, 85, 86], which

ensures energy conservation, yields a generalized (to the bimolecular case)

» Marcus-Levich-Jortner Rate

2n J; = 2

Wy = ————— > ‘(X?‘X?)‘ZRX?‘X?H
. . 2
(AEij - h(nw'® + 9w‘j’lb) - /\0.‘“)

fe\ Ak T 5%
ij

- exp{ — . (3.22)
4N kp T
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Here, the transition between the initial and final electronic states is associated with a
nuclear rearrangement of the environment, captured by an outer-sphere reorganization
energy A?jm, and with nuclear coupling terms for molecule i (and similarly for j), relat-
ing the nuclear ground state wave function y? in the initial electronic state with the nu-
clear wave functions x/ in the final electronic state, known as Franck-Condon factors:

2 1 A,’ n /\,‘
‘(X?‘X?)‘ = E(hw‘lnb) exp(_hw;rib

) : (3.23)

The Marcus-Levich-Jortner rate (3.22) should be preferred to the Marcus rate (3.18)
if the classical treatment of the internal nuclear vibrations is no longer appropriate.
In fact, internal normal mode frequencies are often comparable to the frequency of
carbon-carbon bond stretching with vibrational energy quanta hw' ~ 0.2 eV, which
is nearly an order of magnitude larger than thermal energy at room temperature [63].
However, it has been shown for these cases that the Marcus rate still yields quantita-
tively comparable results, as long as the site energy difference is not large compared
to the internal reorganization energy, i.e., charge transfer does not occur far outside
of the normal regime [4]. If the nuclear relaxation of the environment remains to be
taken into account, one can extend the Marcus rate by adding the outer-sphere reorga-
nization energy /\?j“t to the internal reorganization energy A;; given in (3.21). However,
in solid materials, contrary to polar solvents, the outer-sphere reorganization energy
is typically only a small contribution [87-89]. For these reasons, the studies of this
work can rely on the Marcus rate.

A simpler expression than the Marcus rate arises in the limit of low temperatures
with weak electron-phonon coupling. This comprises the neglect of nuclear reorgani-
zation towards a nuclear transition state, where the charge transfer reaction actually
takes place, as well as the sole consideration of vibrational ground states, which are
bridged exclusively by tunneling. Note that energy conservation of the reaction is con-
sidered as satisfied by the absorption or emission of a single lattice phonon. In this
limiting case, time-dependent perturbation theory leads to a rate [9o] known as the

» Miller-Abrahams Rate

kg T
1, for AE,’j <0.

exp (—%) , for AE; >0,
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Here, the electronic coupling is expressed as ]izj = exp(-2yjjrij), where y;; denotes the
inverse localization radius of the excess charge and r;; is the distance between its lo-
calization centers, i.e., between the donor and acceptor molecules. The prefactor wy,
referred to as the hopping attempt frequency, can be set as the ground state vibrational
frequency or be considered as a material constant. For fixed electronic coupling, the
Miller-Abrahams rate decreases exponentially for a transfer reaction upwards in the
energy (AE;; > 0), while a reaction downwards in energy (AE;; < 0) is independent of
the site energy difference. Contrary to the Marcus rate, the Miller-Abrahams rate lacks
a parameter for the reorganization energy. Hence, it precludes a quantitative calcula-
tion of charge transfer rates at ambient temperatures and is therefore unsuitable for
this work. Nonetheless, it is often used in conjunction with phenomenological charge
transport models, such as the Gaussian disorder models (Section 4.1.2).



Chapter 4.
Charge Transport in Organic Solids

The electrical conductivity of organic solids depends on their ability to support charge
carrier migration over macroscopic distances, that is, charge transport [6, 7, 91-96].
The efficiency of charge transport is specified by the charge carrier mobility, defined
as the drift velocity attained by a charge carrier per unit electric field applied. The
charge carrier mobility in organic materials depends significantly on the electronic
structure of the constituent molecules, but no less critically on their packing scheme
on a large scale. In addition, for a given material sample, the mobility is influenced by
further parameters, such as the applied electric field and the temperature. While the
molecular packing of the material, being somewhere in between perfectly crystalline
and completely amorphous, is related to so-called static disorder, the temperature of
the system gives rise to dynamic disorder. The absolute and relative strengths of these
types of disorder are often employed to distinguish between several regimes of charge
transport. Within these regimes, charge carrier migration differs in its very nature,
which is a reason that, as of today, there is no unified theory of charge transport for or-
ganic solids, but instead a variety of different theories. Many of these charge transport
theories are based on charge transfer as an elementary process. While some theories
lead to generic, material-independent expressions of the mobility as a function of, for
example, the electric field and temperature, others further aim at predicting mobility
magnitudes for concrete material morphologies.

The following discussion starts with an overview of charge transport regimes and
the related transport theories (Section 4.1). For their classification, a general charge
transport Hamiltonian is introduced which formalizes both static and dynamic disor-
der. Then, particular attention is directed to a predictive charge transport model which
includes both types of disorder and is the core methodology of this work (Section 4.2).
To parametrize the charge transport Hamiltonian, this model relies on the extensive
use of computational chemistry methods, all of which are presented in detail.
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4.1. Regimes of Charge Transport

From a microscopic point of view, charge transport of a single excess charge in a large-
scale organic solid can be described by a generalization of the two-state charge transfer
Hamiltonian, such as (3.7), to a large basis of electronic states. In the diabatic repre-
sentation, these are localized states |y;) with non-vanishing amplitude at spatial local-
ization centers, or sites i, and the charge transport Hamiltonian can be written as

H = ﬁl + FIZ + Hg, + H4, where (4.1)

H, = ;Ei lyi) (il + iZjhjlwinA ; (4.2)

H, = ;%(Png (0y°Qe)%), (4.3)

H; = iz;/\y; Wy Qe i) (wil » (4.4)

Hy = ZEA:J/? 0y Qe lyi) (wjl - (4.5)
i

H, is the equilibrium energy of the system, where all nuclear positions are fixed at their
energetic minimum. This energy is determined by the site energies E; and transfer
integrals ;. H, represents the nuclear vibrational energy in terms of phonons with fre-
quencies w‘gib, normal mode coordinates Q;, and conjugate momentum operators P;.!
This term collectively describes low-frequency intermolecular vibrations, i.e., mutual
displacements of entire molecules, and high-frequency intramolecular vibrations, and
that by means of reference oscillators which are centered at the origin in the space
of normal mode coordinates. Hs, known as local electron-phonon coupling, accounts
(in linear approximation) for modulations of the site energies E; due to intramolec-
ular vibrations and reflects the offset of intramolecular oscillators from the origin.?
The coupling constants A, are thus associated with the reorganization energies (3.21),
generally by a relationship A; ~ 3°; A;¢, where the sum vanishes under the assumption
that each site is only coupled to a single phonon branch. Hj, referred to as nonlocal
electron-phonon coupling, describes modulations of the transfer integrals J;; due to low-
frequency intermolecular vibrations with the coupling constants A ;.

*Alternatively, a conjugate pair of dimensionless operators Cz and Cg for the creation and annihilation

of phonons with energy hw?b may be introduced, as usual, by C; = Q¢ ( w‘gb J2h)"2+ iPe(1/ 2hw‘?b )2
*Hy+ H, + H; corresponds to the two-state Hamiltonian (3.7), where the nuclear Hamiltonians (3.14)
are linearly expanded in the offset from the nuclear equilibrium configurations Q7.
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(a) Band Transport
Ay < (J) A Figure 4.1. In ordered organic solids, the periodic
. - crystal lattice (gray) allows for delocalization of

the charge carrier (red) over multiple sites. (a) For
weak dynamic disorder, i.e., (1) < (J), the carrier
(b) Polaron Transport rarely interacts with the lattice and migrates by

band transport. (b) For strong dynamic disorder,
M)z (N ie., (1) 2 (J), the carrier deforms the lattice, lead-

ing to polaronic transport.

The charge transport Hamiltonian H (4.1) allows the distinction between static and
dynamic disorder. Static disorder, which refers to fluctuations evolving slowly com-
pared to the motion of a charge carrier, is described by the equilibrium Hamiltonian H,.
The variations of site energies E; and transfer integrals J;; are denoted as diagonal and
oft-diagonal static disorder, or as energetic disorder o and electronic disorder X:

o= V) - (B, ==VP)-(p. (4.6)

Dynamic disorder, which refers to rapid fluctuations relative to charge dynamics, is
captured by the local and nonlocal electron-phonon couplings Hs and H,. The related
modulations of site energies and transfer integrals are denoted as diagonal and oft-
diagonal dynamic disorder and are quantified by the coupling constants (1) and (A).
Note that the discrimination between static and dynamic disorder is often not obvious,
since organic solids may comprise phononic modes which evolve slower than charge
dynamics and should be treated as static disorder. This is particularly important for
organic crystals, where static disorder due to frozen molecular motion is absent.
Charge transport in organic solids may not only differ in the magnitude of the
charge carrier mobility y, but also in the functional dependence of y on the temper-
ature T or external field F, and therefore by its very nature. The nature of transport
depends on the interplay of the average electronic coupling (), which enables charge
migration and delocalization, and the influences of disorder, that is, o, %, (1), and (A),
which may counteract these effects. The overview of charge transport regimes is divi-
ded into statically ordered (Section 4.1.1) and disordered organic solids (Section 4.1.2).

4.1.1. Ordered Organic Solids

Ordered organic solids are devoid of any static disorder, that is, ¢ < (J) and ¥ < (J),
including phonon modes evolving slower than charge carrier dynamics. This applies
to certain molecular crystals which have no structural imperfections whatsoever.
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» Weak Dynamic Disorder If dynamic disorder is weak, (1) << (J) and (A) < (]),
the charge carrier leaves the periodic crystal lattice almost unaffected, as is sketched
in Figure 4.1a. This gives rise to the formation of an electronic band structure of al-
lowed and forbidden energy regions. The charge carrier is then completely delocalized,
described by Bloch states extending over the entire crystal, and charge transport is un-
derstood as band transport [97-99]. Transitions between different Bloch states are ini-
tiated by rare events of phonon scattering, i.e., perturbative lattice vibrations. As the
scattering probability increases with the temperature, the charge carrier mobility is a
decreasing function with temperature, y ~ T~°, where s > 1 depends on the type of scat-
tering processes. The concepts of band transport, originally developed for inorganic
materials, apply to organic solids only in a few cases of ultrapure single crystalline
phases of rigid small molecules at low temperatures, where charge carrier mobilities
of 10! cm?/V's and higher are observed.

» Strong Dynamic Disorder If dynamic disorder is strong, (1) > (J) and (A) > (J),
where the latter is usually neglected, a charge carrier can induce local lattice distor-
tions, which act back on the carrier and impede extended delocalization, as indicated
in Figure 4.1b. Such a self-trapped charge carrier together with its surrounding lattice
deformation is termed a polaron [100, 101]. Charge carrier migration is then conceiv-
able as polaron transport, which is extensively discussed by a large number of polaron
theories [102-109]. At low temperatures, polaron theories typically result in charge
delocalization over multiple sites, adiabatic transport, and a band-like temperature
dependence, i.e., y ~ T~°. In this case, experimental low-temperature mobilities of or-
ganic crystals, typically of the order of 107! to 10' cm?/Vs, can often be reproduced.
At ambient temperatures, it is predicted that polarons can localize on individual sites
and transport occurs by nonadiabatic hopping processes, which are thermally acti-
vated, thus leading to an increasing mobility with temperature: y ~exp(—(1)/kgT).
In this case, quantitative results often disagree with experiments and even the quali-
tative model is inconsistent with certain room-temperature experiments, where small
charge carrier mean-free paths point to strong charge localization, but a band-like tem-
perature dependence is observed at the same time [93, 110]. Indications suggest that
these inconsistencies can be resolved by accounting for the usually neglected nonlocal
electron-phonon coupling (A). A corresponding charge transport model, known as
diffusion limited by dynamic disorder, has only been developed in recent years, first in
one-dimensional [111], then in two-dimensional space [112], allowing the reproduction
of room-temperature mobilities in rubrene crystals of the order of 10' cm?/Vs.
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4.1.2. Disordered Organic Solids

Disordered organic solids possess significant static disorder, i.e., 0 2 (J) and X 2 (]),
which can apply to different phase states of matter. In organic crystals, static disorder
can arise if nuclear dynamics is rich in time scales and low-frequency vibrations fall
below the time scale of charge carrier dynamics [113-115]. Further sources of static
disorder are structural imperfections, such as lattice dislocations, residual impurities
of foreign molecules, and, in polycrystalline materials, grain boundaries between ad-
joining crystallites. In mesomorphic or amorphous organic solids, where molecules
are arranged irregularly, static disorder is, of course, particularly strong.

Unlike in perfectly ordered semiconductors, where energetic bands are sharply de-
limited from the forbidden gap, static disorder leads to a broadening of the band edges,
i.e., the formation of band tails extending in the forbidden gap. The tail states located
in the forbidden gap correspond to strong charge carrier localization on the individual
sites i, known as Anderson localization [116]. The formation of these trap states results
in hopping transport occurring as a sequence of nonadiabatic charge transfer reactions
between diabatic electronic basis states |y;).

To describe the evolution of the charge carrier in time 7, one adopts a quantum sta-
tistical picture, where each diabatic state is associated with an occupation probability p;,
i.e., statistical weight, and the statistical mixture of these pure states is characterized
by a density operator p. It is recalled that the time-dependent Schrodinger equation
for the pure states leads to the von Neumann equation for the time evolution of p:

0P g1~
sl = [Ap], 7= Yol tvil. (47)
Under the Markov approximation of incoherent charge transfer processes, this can be

cast into an equation of motion for the occupation probabilities p; [34, 117], known as

> Master Equation

dpi :
J J

where nonadiabatic charge transfer rates wj, associated with transitions between elec-
tronic states |y;) and |y;), take the form of Fermi’s golden rule. In order to apply
explicitly derived rate expressions (Section 3.2), it is required to specify the strength
of dynamic disorder in the statically disordered organic solid.
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(2) Hopping Transport - Miller-Abrahams Regime Figure 4.2. In disordered organic solids, the un-
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e ergy modulations, according to the Marcus rate.

» Weak Dynamic Disorder For weak dynamic disorder, (1) <« (J) and (A) < (]),
and low temperatures, the master equation contains the Miller-Abrahams rate (3.24),
leading to hopping transport by tunneling, as is illustrated in Figure 4.2 a. Obviously,
when aiming at wide temperature ranges, this regime can only constitute phenomeno-
logical charge transport theories. Such theories are in particular the Gaussian disorder
models [118], which use simple and intuitive relations to determine the parameters in
the transport Hamiltonian (4.1) entering the rate expressions. First, site energies E;
are drawn from a Gaussian distribution of postulated width o. Second, a distribution
of transfer integrals J;; with standard deviation X is determined by the isotropic ex-
pression | 121 = exp(—2y;jrij), where the inverse charge localization radius y;; = y; + y;
is composed of site-specific contributions, drawn from empirical Gaussian distribu-
tions. The inter-site distances r;; are typically obtained by arranging the hopping sites
on a regular lattice. Numerical calculations solving the master equation have led to an
empirical mobility function of the temperature T and electric field F [119, 120],3

u(T,F) = yoexp{—(z—o)er BVF ((L)z— 22)} , (4.9)

3kgT kgT

including the static disorder o and X as well as coeflicients yo and f as parameters.
While the mobility increases with temperature, following a super-Arrhenius relation,
the field dependence In i ~ F'/? is referred to as the Poole-Frenkel relationship. Within
certain ranges, these relations are observed experimentally for numerous disordered
organic materials [120, 124], and respective field ranges often become reproducible by
imposing spatial correlations of site energies [125-129]. The analytic function obtained
by Gaussian disorder models (4.9) can be fitted to temperature and field-dependent
mobility measurements of many materials, e.g., to characterize their static disorder,
however it provides no material-specific structure-property relationship.

* A relation for the charge carrier density is established by extended Gaussian disorder models [121-123].
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» Strong Dynamic Disorder For strong dynamic disorder, (1) > (J) and (A) 2 (]),
where the oft-diagonal part is typically negligible compared to its static pendant X,
charge transfer is activated by intramolecular vibrations, as is sketched in Figure 4.2 b.
Hence, at high temperatures, where vibrational motion behaves classically, the master
equation (4.8) is equipped with the Marcus rate (3.18), while at medium temperatures,
where quantum mechanical effects are important, the more general Marcus-Levich-
Jortner rate (3.22) is applied. Since this regime, often with the Marcus rate, has its
physical justification at ambient temperatures, one can formulate charge transport the-
ories that transcend the phenomenological model of Gaussian disorder with randomly
drawn transport parameters. In this spirit, microscopic charge transport models start
from atomistically resolved molecular arrangements, i.e., material morphologies for
specific chemical compounds [4, 130, 131]. With the knowledge of the chemical struc-
tures and atomistic morphologies, and the aid of computational chemistry methods,
it becomes possible to explicitly determine the parameters of the charge transport
Hamiltonian (4.1), i.e., the site energies E;, transfer integrals J;;, and reorganization
energies )Lij, that enter the transfer rates. Thus, for a specific pair of sites, the transfer
rate no longer depends only on the inter-site distance, but is also sensitive to the actual
arrangement of the underlying molecular system. Solving the master equation now al-
lows one to predict the material-specific charge transport properties, in other words to
link the chemical structure and the material morphology to the macroscopic charge
carrier mobility. A realization of this microscopic modeling paradigm, establishing
structure-property relationships, is the core methodology of this work (Section 4.2).

Microscopic charge transport studies have already been performed in recent years
for a variety of disordered organic solids. In amorphous phases of conjugated poly-
mers [132] and small molecules [133-135], experimentally measured charge carrier mo-
bilities in the range of 107 to 107> cm?/ Vs are reproduced with often considerable accu-
racy. In mesomorphic phases of columnarly arranged discotic molecules [136-141] and
carbazole macrocycles [142], both theoretical and experimental mobilities lie in simi-
lar ranges of 102 to 10° cm?/Vs. In semicrystalline phases of conjugated polymers [143]
and crystalline phases of several small molecules [144-147], theoretical mobilities in
the range of 107! to 10' cm?/Vs show reliable directional dependences. Since charge
transport models typically neglect grain boundaries and impurities, they tend to sys-
tematically overestimate experimental results for crystals. In cases where experimental
mobility measurements are performed on highly ordered and pure material samples,
such as rubrene, mobilities of the order of 10! cm?/V's agree very well.
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4.2, Charge Transport Simulations in Disordered
Organic Solids

Charge transport models for disordered organic solids, which are aimed at establishing
structure-property relationships, engage atomistic material morphologies for specific
chemical compounds in order to parametrize the charge transport Hamiltonian (4.1).
Once a compound of interest is selected, this concept requires computational chem-
istry techniques, such as ab initio methods (Section 2.2) but also, in order to overcome
prohibitive computing times, semiempirical and classical approximations.

In what follows, the workflow of charge transport simulations, depicted in Figure 4.3,
and the employed computational methods are presented. Any charge transport study
starts from the chemical structure of a particular organic semiconductor, e.g., DCV4T.
On the experimental side, chemical synthesis, material processing, and structure analy-
sis may lead to the crystal structure, provided that crystallization occurs. For amor-
phous substances, experiments may identify other expedient material characteristics,
such as the density or glass transition temperature. On the computational side, density
functional theory (DFT) serves as the basis for developing an atomistic force field for the
chemical structure (Section 4.2.1). Using both the force field and an experimentally in-
spired starting configuration, molecular dynamics simulations yield an atomistically
resolved morphology of the material (Section 4.2.2). The morphology allows for the
identification of charge localization centers, that is, the hopping sites, and the charge
transfer complexes, which define a neighbor list of hopping site pairs (Section 4.2.3).
Then follows, for each pair of hopping sites, the explicit evaluation of the charge trans-
fer parameters. The transfer integrals J;j can be determined using the semiempirical
zINDO method (Section 4.2.4). The site energy differences AE;; = E;— E result from the
site energies E; and Ej, which are derived from distributed point charges and dipole mo-
ments interacting via the Thole model (Section 4.2.5). The reorganization energies A;;
are computed by DFT calculations on the charge transfer complexes (Section 4.2.6).
These parameters lead to the charge transfer rates and thus to the parametrization of
the master equation. Solving the master equation can be performed by the kinetic
Monte Carlo method and results in the time-dependent site occupation probabilities,
i.e., the charge dynamics (Section 4.2.7). This information can finally be related to
macroscopic observables, such as the charge carrier mobility (Section 4.2.8).

This workflow is the subject of prior publication [4] and is presented below in more
detail using partially similar terms. As part of this and many other works, the meth-
ods were implemented in the voTca-cTP software package, while DFT and molecular
dynamics methods stem from the GAussIAN [53] and GRoMAcs packages [148].
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Figure 4.3. Workflow for microscopic simulations of charge transport in disordered organic solids.



80 Chapter 4. Charge Transport in Organic Solids

Figure 4.4. Atomic interactions con-
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4.2.1. Force Field

The molecular modeling of a material morphology at an atomistic scale relies on simu-
lating the dynamics of the atoms, or equivalently of the nuclei, which are adiabatically
followed by the electrons, according to the Born-Oppenheimer (or adiabatic) approxi-
mation (2.14). To describe this nuclear or atomic motion, one needs knowledge about
the potential energy surface U(R), which captures, for each atomic configuration R,
the ground state energy of the electronic system. However, using ab initio methods to
globally determine the PEs is an infeasible endeavor for practical systems with high-
dimensional atomic configuration space. A simplified yet very effective alternative is
to employ a force field: it refers to an analytical function, decomposed into empirical
atomic few-body contributions that are fitted to ab initio or experimental results [54].
The underlying notion is to fit the function only to the minima of the PEs that corre-
spond to atomic configurations of covalent bonding to the desired molecules, while
effects of bond breaking and formation are neglected. Hence, the bonding pattern is
defined a priori, which allows the distinction between few-body contributions for co-
valently bonded and not directly bonded atoms. Most force fields employ a two-body
term for nonbonded and two-, three-, and four-body terms for bonded contributions:

UFF(R) = Z Unb(Rab) + Z Ubond(Rab) + Z Uang(eabc) + Z Udih(eahcd) . (4.10)
a,b a,b a,b,c a,b,c,d
nonbonded bonds angles dihedrals

Figure 4.4 illustrates the meaning of these few-body terms. Uy, is the potential energy
associated with interactions between two nonbonded atoms, which comprises the very
short-range Pauli repulsion emerging from overlapping electron orbitals, the short-
range van der Waals attraction due to induced dipole-dipole interactions, and the long-
range electrostatic interaction between atomic multipole moments arising from in-
tramolecular charge redistributions. Upeng describes the energy for stretching a bond
from its equilibrium length, U,y for bending a bond angle formed of three serially
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linked atoms, and Ugi, for rotating a dihedral angle defined by four serially connected
atoms. An energy penalty for out-of-plane bending defined by four radially bonded
atoms, as seen in Figure 4.4 e, may be incorporated by “improper” dihedral angles.
Many popular force fields, such as AMBER [149], CHARMM [150], GROMOS [151], or
OPLS-AA [152], employ energy potentials which are essentially of the prototypical form

Aab Bah n 9,49

Unb(Rap) = - — , a1
nb( ab) Rluzh Rgb 47T€0Rab (4 )
2
Ubond(Rab) = 3Cap(Rap = RY) ™ (4.12)
1 2
Uang(eabc) = Ecabc(eabc_egbc) ’ (4.13)
> k
Udih(e“bc‘i) = anbcd,k(_coseabcd) > (4.14)
k=0

where the Pauli and van der Waals interactions are modeled by the Lennard-Jones po-
tential [153], the electrostatic interaction is described by atomic partial charges, i.e., dis-
tributed monopole moments, the bond and angle terms are represented by harmonic
potentials, and the dihedral torsion is expressed by a periodic function, here the Ryck-
aert-Belleman potential [154]. While force fields may share the same functional form,
they differ in the parametrization of the potentials. Such a parametrization is based
on atom types, defined not only by the atomic number, i.e., the chemical element, but
also by the bonding situation, hybridization state, or local environment. This enables
the identification of recurring units within different molecules, thus gives force fields
a versatile applicability to various chemical compounds, but also limits their accuracy.
In particular for organic small molecules, a compound-specific refinement is essential.

In this work, a customized force field for dicyanovinyl-substituted oligothiophenes
(pcvnr) is developed [1], which is based on the opLs-AA force field and the atom types
defined in Figure 4.5. Regarding the nonbonded interaction energy (4.11), the Lennard-
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Figure 4.6. Atomic partial charges q, for rotamers of dicyanovinyl-substituted quaterthiophene (Dcv4T),
obtained by the cHELPG method and DFT calculations using the B3LYP functional and 6-311G** basis set.

Jones parameters A, and B, are adopted from the opLs-AA force field, where two
atoms a and b of different types are treated by the geometric combination rules
Ay = (AgaApy)? and By = (BaaByy)Y?. The atomic partial charges q,, which are
representing the molecular charge distribution, are specifically determined for the
pcvnT molecules. To this end, the molecular geometries are first optimized using
DFT calculations with the B3LYP functional and the 6-311G** basis set resulting in the
atomic coordinates of the stable molecules, the corresponding electron densities, and
the associated electrostatic potentials. Then, point charges at the atomic coordinates
are fitted to reproduce the molecular electrostatic potentials on cubic grids according
to the cHELPG method [155, 156]. Finally, the partial charges are averaged for atoms
of the same type and adjusted to ensure charge neutrality of the pcv and thiophene
units [1], resulting in the values listed in Table 4.1. To verify that their validity is not
significantly affected by conformational variations, the procedure is repeated for ro-
tamers of the pcv4T molecule, defined by torsions around the bonds linking pcv and
thiophene units. Figure 4.6 shows that the pcv4T rotamers have very similar partial
charges. Concerning the bonded interaction energies (4.12) to (4.14), all equilibrium
bond lengths R?, and bond angles 6, are obtained from the optimized molecular

N CN cc C HN s CA cB HC
qa -0.49 0.49 -0.14 0.00 0.14 0.00 0.00 -0.14 0.14
Table 4.1. Atomic partial charges q, for dicyanovinyl-substituted oligothiophenes (DcvnT), obtained by

the cHELPG method and DFT calculations using the B3LYP functional and 6-311G** basis set. The values
are given in units of e.
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Figure 4.7. Potential energy for the dihedrals 6, and 6,,  for the pcvnT dihedral angles 61, 6, and 0,
from density functional theory, Ugin > and the initial as defined in Figure 4.5. The values are given
and final force fields, Ugy, and Ugj,, respectively [1]. in units of eV.

geometries, while the force constants for bond stretching C,;, and angle bending C,,.
are adopted from the opLs-aA force field. This is justified since these degrees of free-
dom are fairly rigid, so that only small deviations from the equilibrium values are ex-
pected. The dihedral angles, in contrast, have often comparatively low torsional energy
barriers and therefore a major impact on molecular conformations. For this reason,
the Ryckaert-Belleman parameters C,;.4 x are specifically determined for the pcvnt
molecules. It is essential that such a parametrization takes into account the existing
nonbonded interactions as they are intimately coupled to a torsional potential. There-
fore, constrained geometry optimizations for a set of fixed dihedral values need to be
performed by both density functional theory and also the tentative force field, which
yields functions Ug;" and Ugf};, respectively. Then, the Ryckaert-Belleman potential
Ugin, given in (4.14), can be fitted to the difference U}’ - dFlF};, such that the final
force field results in a function U}, that resembles the pFT curve. This procedure
is performed for the three dihedral angles indicated in Figure 4.5, 0, (cc-c-ca-s),
0, (s—-ca-ca-s), and 03 (cN-cc-c-ca), using DFT calculations with the B3LYP func-
tional and the 6-311G** basis set. The obtained Ryckaert-Belleman parameters are
listed in Table 4.2, while the aforementioned functions are depicted in Figure 4.7 for
the two dihedrals 6; and 0,, which have comparatively low energies. The potential en-
ergy of the pcv-thiophene dihedral 6, has a global minimum at 0°, which corresponds
to the cis configuration, while the thiophene-thiophene dihedral 0, prefers the trans
configuration [157, 158]. Both potentials have local minima in the opposite state, sepa-
rated by energetic barriers which can be overcome at elevated temperatures.
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4.2.2. Morphology

In a microscopic charge transport model, the transport Hamiltonian is parametrized
based on an atomistic material morphology of the organic solid of interest. Partic-
ularly important is that the morphology provides a realistic picture of the disorder
inherent to the material. Hence, to capture the related characteristic length scales and
achieve adequate statistics, system sizes much larger than a unit cell are required. For
the generation of such mesoscopic morphologies, ab initio methods are generally too
complex; instead, methods of choice are Monte Carlo [159, 160] or, as used in this work,
molecular dynamics simulations [161, 162].

» Molecular Dynamics Simulation The classical molecular dynamics simulation
refers to the study of atomic movements based on a potential energy surface in force
field representation (4.10) and an equation of motion (2.14) in classical approximation,
which is the Newtonian equation of motion (2.15). This differential equation in time ¢ is
numerically solved, subject to appropriate boundary conditions, typically of periodic
nature, and initial conditions for the atomic coordinates R, and velocities V, = dR,,/dt.
The numerical integration is performed iteratively and over discrete time steps: at the
future time t + At the coordinates are expressed by the Taylor expansion

——At

ot 2 ot?

2
Ry, 19R )At, (4.15)

Ru(t+At) ~ Ro(t) + (

where the term in the bracket can be identified with a Taylor expansion of the velocities
at time ¢ + %At yielding the relation (4.17). Performing a similar expansion of the ve-
locities at time  — %At and using the Newtonian law (2.15) to express the accelerations
by forces, i.e., gradients of the force field potential, leads to an integration scheme

VuUn(R)

a

Ri(t) + Vu(t+3A1) At (4.17)

Va(t+3At) Va(t-3At) - (4.16)

R, (t+ At)

known as the leap-frog algorithm [163]. In this scheme, velocities and coordinates are
alternately evaluated at time points that are mutually shifted by half a time step. In one
step, previous velocities and current forces are used to calculate new velocities, and in
the next step, these new velocities are used to determine new coordinates. If velocities
at the integer time points are required, a third evaluation step can be included [164].
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An atomistic trajectory generated in this way describes a point sequence in phase
space, and as such samples microstates of a statistical ensemble. The natural ensem-
ble which is maintained when solving the energy-conserving Newtonian equation is
the microcanonical ensemble, which corresponds to systems with constant number of
particles, volume, and energy, i.e., isolated systems. In experiments, however, systems
are usually in contact with an environment, which, as the time evolves, leads to fluc-
tuations in some of these extensive variables and to conservation of their respective
intensive variables, i.e., chemical potential, pressure, or temperature. In other words,
the environment can act as chemostat, barostat, or thermostat. In fact, most experi-
ments are performed under conditions of constant particle number, temperature, and
either volume or pressure. To conduct corresponding simulations, the leap-frog in-
tegration scheme needs to be adapted to simulate a thermostat, which appropriately
rescales the velocities, i.e., the kinetic energies, thus leading to a canonical ensemble,
or an additional barostat, which also rescales the coordinates, i.e., the box volume, lead-
ing to an isobaric-isothermal ensemble. In this work, a stochastic velocity-rescaling
thermostat [165] and a Berendsen barostat [166] are employed. The implementation
of the adjusted leap-frog algorithm is provided by the GRomacs package [148].

Any molecular dynamics integration scheme is afflicted with an error resulting from
the discretization of time. In order to keep this error small, the time step At must be
significantly shorter than the vibration period of the fastest processes in the system.
Since carbon-hydrogen bond stretching vibrations have a period of roughly 10 fs, and
carbon-carbon bonds still have about 20 fs, the time step is typically set in the order
of 1fs. This time interval limits the real time a simulation can achieve, given a certain
computing power. When performing a number of 10° time steps, which is perfectly
feasible for mesoscopic systems these days, a real time of 1 ns is reached.*

» Starting Configuration In order to integrate the equation of motion, initial con-
ditions for the atomic coordinates and velocities are required. In principle, one might
consider a random point in phase space, which complies with the fixed ensemble vari-
ables, and rely on the simulation to drive the conjugate thermodynamic variables to
their (fluctuating) equilibrium values and the thermodynamic potential associated
with the ensemble to its global minimum. However, when simulating molecular solids
at fixed temperatures, one is in a regime, where the thermodynamic potential, i.e., the

*If such time scales are insufficient to equilibrate the atomistic morphologies of interest, coarse-graining
techniques can be employed, provided they allow for back-mapping to the atomistic resolution [167].
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Figure 4.8. Crystalline morphology of
DCV4T molecules at room temperature,
obtained by a molecular dynamics sim-
ulation.

free energy surface, is landscape-dominated by the potential energy surface Uy and
has highly complex energy barriers on many scales. This implies that an equilibration
to the global minimum is impeded by both short real times in the nanosecond range
and also insufficient kinetic energy for barrier crossing. In other words, ergodicity is
violated and the region of the configuration space, which is sampled during the simula-
tion, is critically determined by the initial conditions. While the starting velocities are
typically straightforwardly assigned by a Maxwell-Boltzmann distribution, the start-
ing configuration must be carefully prepared in view of the desired morphology.

For molecular crystalline morphologies, which typically represent the global energy
minimum, one depends on experimental x-ray scattering results providing lattice spac-
ings, or ideally the exact atomic-scale crystal structure.’ A starting configuration is
then prepared as a supercell of perfectly arranged molecules on a lattice. For mesomor-
phic or amorphous systems, which are kinetically arrested in a metastable nonequilib-
rium state, it is customary to perform a preceding simulation at elevated temperatures,
where a liquid crystalline or liquid phase is adopted. Representative starting configu-
rations can then be obtained by annealing the system to lower temperatures.

With a starting configuration at hand, the molecular dynamics simulation at the
desired temperature is performed, comprising an equilibration and a subsequent pro-
duction run. As an example, Figure 6.2 depicts a snapshot of a DCv4T organic crystal.
The trajectories generated in a production run can be employed to investigate the time
scales of static and dynamic disorder.

> Alternatively, crystal structure prediction may be facilitated by advanced free energy sampling tech-
niques, such as metadynamics [168], or Monte-Carlo-based umbrella sampling [169, 170].
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4.2.3. Hopping Sites

The morphology allows the construction of the charge transport Hamiltonian (4.1),
H, + H, + Hs, and the parametrization of the master equation for charge carrier dy-
namics (4.8). The first step is the identification of hopping sites for the charge carrier,
in other words subsystems of the morphology where the diabatic electronic states are
spatially localized. Typically, the morphology is partitioned into individual conjugated
molecules or, more generally, into conjugated segments on which charge localization is
expected by physical intuition.

The conjugated segments can often be further divided into relatively rigid, planar
n-conjugated systems, which are referred to as rigid fragments. The bonded degrees of
freedom linking these fragments often evolve on time scales much slower than charge
carrier dynamics. In some cases, e.g., mesomorphic or amorphous systems, these slow
motions are frozen due to nonbonded interactions with the surrounding molecules.
Within a rigid fragment, in contrast, motions of bonded interactions, such as bond
length vibrations, are often much faster than the dynamics of charge carriers. There-
fore, rigid fragments can help to separate the effects of static and dynamic disorder.
To this end, the rigid fragments in the morphology are replaced by corresponding
geometry-optimized equilibrium copies, obtained from ab initio calculations; their
alignment is achieved by matching the centers of mass and gyration tensors. This
enables the separate construction of the equilibrium Hamiltonian ﬁl, i.e., the transfer
integrals and the site energies, on the one hand and the dynamic contribution H, + H3,
i.e., the reorganization energies, on the other hand.

To illustrate the concept of conjugated segments and rigid fragments, three repre-
sentative molecular architectures are presented. Figure 4.9 a depicts the first: a benzo-
thienobenzothiophene molecule consisting of three benzene and two thiophene units
fused to a rigid, planar n-conjugated structure. This molecule is both a single conju-
gated segment and a rigid fragment. Figure 4.9 b shows a compound relevant for this
work: a dicyanovinyl-substituted quaterthiophene (Dcv4T), i.e., a short m-conjugated
oligomer comprising four thiophene and two bcv moieties. Since a charge carrier
is delocalized over the whole oligomer, the molecule is again a single conjugated seg-
ment. However, while the individual thiophene and DcV units are relatively rigid, the
dihedral angles in between can be reoriented at ambient temperatures, as results from
the previously developed force field (Section 4.2.1). Hence, each of the six units is a

%In principle, more fundamental deductive approaches for obtaining diabatic electronic states may as-
sist the partitioning of the morphology [171].
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Figure 4.9. The concept of conjugated segments and rigid fragments. Conjugated segments are indicated
by red and gray, rigid fragments by blue and cyan colors. (a) A benzothienobenzothiophene molecule is
both a single conjugated segment and a rigid fragment. (b) A dicyanovinyl-substituted quaterthiophene
molecule is a conjugated segment comprising six rigid fragments. (c) A polythiophene molecule can
consist of multiple conjugated segments, while each repeat unit is a rigid fragment.

separate rigid fragment. Figure 4.9 c illustrates a more general example, a long conju-
gated polymer, such as polythiophene. In this case, one molecule consists of multiple
conjugated segments, since the m-conjugation along the polymer backbone can be bro-
ken due to large out-of-plane twists between adjacent repeat units. The partitioning of
a molecule on individual conjugated segments can be performed by empirical criteria
[172-175], such as the dihedral angle [132].

» Neighbor List of Hopping Sites Having determined the hopping sites, repre-
sented by the molecules or their conjugated segments, the next step is the generation
of a list of selected pairs of hopping sites which are sufficiently close to form a charge
transfer complex. To this end, a distance criterion is employed which is based on the
centers of mass of the rigid fragments: a pair of molecules, or conjugated segments, is
included in the neighbor list if the distance between the centers of mass of any pair of
mutual rigid fragments is below a certain cutoft. In this way, pairs are selected based
on their minimum distance, rather than their center-of-mass distance, which is useful
for molecules with anisotropic shapes. For each pair of the neighbor list, the charge
transfer parameters and rates are evaluated, as discussed below.
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4.2.4. Transfer Integrals

A pair of molecules i and j forming a charge transfer complex provides two localiza-
tion centers for the charge carrier, which are associated with the diabatic electronic
states |y;) and |y;). In this diabatic representation (Section 3.1.2), the transfer inte-
gral (3.8) describes the electronic inter-state coupling and is mediated by the electronic
Hamiltonian operator H of the charge transfer complex:

Ji = (vi|Ha|v;) - (4.18)

To determine the transfer integral, electronic structure methods are employed to ac-
quire information about the three objects: the Hamiltonian of the molecular pair and
the two diabatic states localized on the individual molecules. If the diabatic states are
expressed by one-electron wave functions ¢ (r;) = (11| ¢!") and gb;”(rl) =(n| (p;”),
i.e., molecular orbitals m, the frozen core approximation can be employed to argue
that the charge transfer is accomplished exclusively by the frontier molecular orbitals F:
|¢7) and [¢). Such a frontier molecular orbital refers to the highest occupied molecu-
lar orbital (HoMO) in the case of hole transfer, and to the lowest unoccupied molecular
orbital (Lumo) in the case of electron transfer. Under this assumption, the transfer in-
tegral (4.18) takes the simplified form

Ji = (¢7|H|¢5) . (419)

where H is an effective one-particle Hamiltonian operator of the pair of molecules,
such as a Fock or Kohn-Sham operator, introduced before (Section 2.2) as Hyp (2.26)
and H, ks (2.36), respectively. Note that the transfer integral is very sensitive to the ar-
rangement of the pair of molecules within the morphology, that is, to their distance
and mutual orientation. As a consequence, the electronic disorder X (4.6), resulting
from the distribution of transfer integrals for the neighbor list, is typically several or-
ders of magnitude large.

» Dipro Method The two diabatic electronic states required for calculating a spe-
cific transfer integral can be obtained by performing ab initio calculations subject to
electron density constraints [171]. A common approach is to strictly constrain the
density to the individual molecules by simply isolating the molecules and carrying
out two separate ab initio calculations. Then, the adiabatic electronic ground states
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of the isolated systems are identified with the diabatic states of the charge transfer
complex and yield in particular the desired frontier molecular orbitals |¢7) and |¢%).
To determine the Hamiltonian operator H, one can perform a third, unconstrained
ab initio calculation on the molecular pair. With the resulting molecular orbitals |¢")
and corresponding orbital energies €”, the one-particle Hamiltonian operator can be
written in its spectral representation:

H=Ye o) (). (4:20)

n
With these results, the definition of the transfer integral (4.19) immediately becomes
Ji = (¢7[H|95) = 2" (¢il9") (¢"]¢5) - (4.21)

Hence, the transfer integral follows from projecting the frontier molecular orbitals
|¢7) and [¢7) of the monomers onto the molecular orbitals [¢") of the dimer. This pro-
cedure, denoted as the dimer projection method (DIPRO), is typically realized within
the framework of Hartree-Fock [176] or density functional theory [177]. To calculate
the transfer integrals for the entire neighbor list, an extensive series of ab initio cal-
culations on all individual and all pairs of molecules is required [177-182]. Such a
brute-force ab initio scheme is computationally demanding and may not be practica-
ble. An alternative approach, offering a compromise between quantitative accuracy
and computational effort, is the zINDO method.

» Zindo Method An approximate method for computing a transfer integral [176]

can be formulated within Zerner’s intermediate neglect of differential overlap (zINpO),
a semiempirical electronic structure theory (Section 2.2.3). This approximate method

eliminates the need for a self-consistent calculation on the molecular pair, such that
only self-consistent calculations on the individual molecules i and j are required. Per-
forming these two calculations leads, similarly to the prPRO method, to the molecular
orbitals of the individual molecules,

¢7") = 2C"lei) > 1o7) = 22C"lej) (4.22)

T T

which includes in particular the required frontier molecular orbitals |¢7) and |¢7).
Here, the molecular orbitals are expanded in respective basis sets of atomic orbitals
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{lp7}} and {|¢7)}, according to the previous definition (2.40). Now, before construct-
ing the Hamiltonian operator of the pair, two preliminary considerations are necessary.
First, the basis set for the pair of molecules is given by the joint basis set {|¢7) } U{| (p]T)},
where the atomic orbitals from the individual molecules are numbered sequentially.
Hence, in this joint basis set, the molecular orbitals of the individual molecules (4.22)
are represented by zero-extended column vectors

o _ 1 Gm
cm=(Ccim,...,C?

1

.0 L., 0 ),
(4.23)
(§+1)m

cm=(0,..., 0 ,C

T
; e, G

The second aspect concerns the unknown molecular orbitals of the pair of molecules:
each pair of molecular orbitals of this combined system, for instance |¢") and |¢"*1),
is assumed to be formed from a bonding-antibonding combination of a pair of molec-
ular orbitals of the individual molecules [176]:

[¢") = [gi") +1of") > 10" = l¢i") —1o]") - (4.24)

This is reasonable, since the pair of molecules is expected to be characterized by two
charge localization centers on the individual molecules. The implication is that the
molecular orbitals of the pair are represented by column vectors

(%)m (%H)m

c"=(cm,....,c;”", C

T
} s )

(4.25)

ct = (L, ¢

(% +1)m

A oD

Now;, inserting the frontier molecular orbitals of the individual molecules |¢%) and |¢§ ),
expressed as linear combination of atomic orbitals (4.22), into the definition of the
transfer integral (4.19) leads to

5 0N R
> Y crcit (o7 |H|gj) (4.26)

Jij = (97| H| ) =
o=1 7=5+1
2
where the one-particle Hamiltonian operator H of the pair of molecules appears in
its matrix representation in the joint basis set of atomic orbitals: HT = (¢?| H 7).
Obviously, due to definition (4.23), reflected in the summation indices, only the oft-
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Figure 4.10. Highest occupied molec-
ular orbital of a bcv4T molecule, de-
picted as an isosurface of the proba-
bility density with red and gray col-
ors representing the positive and neg-
ative phases of the wave function, re-
spectively. The orbital extends phase-
alternating over the entire molecule.

diagonal elements o # 7 need to be evaluated for calculating the transfer integral.
According to the semiempirical Fock matrix provided by the ziINpo technique [59, 60],
off-diagonal matrix elements associated with atomic orbitals |¢7) and [¢}), located on
different atoms a and b, which is necessarily the case here, since the atoms belong to
the different molecules a € i and b € j, take the form

H(ZTILDO = %(ﬂﬂ + ﬂb)gaT — lab Z core™. (4.27)
n

The values f3, and f3;, are tabulated bonding parameters for the atoms a and b, which
depend on their atomic number, the atomic orbital overlap matrix S " contains specif-
ically weighted overlap terms that are related to the ordinary terms S°" = (¢7|¢}),
and I, is the Mataga-Nishimoto potential [183]. The key insight regarding the zINDO
Hamiltonian matrix (4.27) is that the sum over the expansion coefficients of the molec-
ular orbitals of the molecular pair, i.e., the right part, vanishes due to the specification
of the molecular orbitals according to (4.25). This implies that the zINpDo Hamiltonian
matrix is no longer dependent on its own eigenvectors, which enables its computation
without any iterative, self-consistent procedure, as is usually required. The remaining
task for calculating the required matrix elements is the comparatively facile determi-
nation of the weighted atomic orbital overlap terms, according to the parametrization
by the zINDO technique.

To calculate the transfer integrals for the entire neighbor list, the zINDO method sig-
nificantly increases computational efficiency since self-consistent calculations are only
required for the individual molecules, while the calculations for the pairs, which are
computationally most demanding, are avoided. However, carrying out self-consistent
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Figure 4.11. Squared transfer integrals for a pair of bcv4T molecules in cofacial alignment, calculated
using the zINDO and p1PRO methods for the highest occupied molecular orbital (Homo) and the lowest
unoccupied molecular orbital (Lumo). (a) Transfer integral as a function of the intermolecular distance.
(b) Transfer integral at a distance of 0.35 nm as function of an axial displacement.

calculations for all individual molecules may still pose a serious bottleneck in charge
transport simulations. Therefore, a further simplification is employed: calculations are
only performed once for each chemically different type of molecule (or conjugated
segment). Then, their division into rigid fragments is utilized to subject the result-
ing molecular orbitals to rotational coordinate transformations leading to the actual
molecular conformations within the morphology.

A comparison of the zINDO and the p1PRO methods is drawn for a charge transfer
complex consisting of a pair of bcv4T molecules in cofacial alignment and with vary-
ing mutual molecular positions. The ab initio calculations, performed for the p1prO
method, are based on the B3LYP hybrid functional and the 6-311G** basis set. As an ex-
ample, Figure 4.10 visualizes the HOMO of a DCv4T molecule. Figure 4.11a depicts the
squared transfer integral | 12] for the Homo and the LuMo as a function of the intermolec-
ular distance ranging from 0.3 to 0.4 nm. It is seen that both the ziNpo and the pIPRO
methods lead to an exponential decrease of the transfer integral with increasing inter-
molecular distance. While this behavior is expected and qualitatively obtained by both
methods, the zINpDO method quantitatively underestimates the squared transfer inte-
gral by up to a factor of two, which is a well-known observation [132, 177]. Figure 4.11b
illustrates the squared transfer integral at an intermolecular distance of 0.35nm as a
function of an axial displacement ranging from 0 to 1nm. Again, both methods lead
to qualitatively similar behavior, in this case oscillations reflecting the alternating in
and out of phase overlap of the frontier molecular orbitals.
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4.2.5. Site Energies

The site energy E; is the energy which is absorbed or released due to the localization of
the charge carrier on the molecule i. According to charge transfer models (Section 3.2),
the site energy can be decomposed into internal and electrostatic parts (3.19), which
refer to the molecule itself and to interactions with the environment, respectively:

E; = EMt 4 gt (4.28)

The distribution of site energies for all molecules in the morphology is usually a normal
distribution of Gaussian shape whose width defines the energetic disorder o (4.6).

» Internal Site Energy The internal site energy is the total energy of the molecule i
in its charged state (c) with respect to its neutral state (n), as defined in (3.20):

EM-uUs-UP. (4.29)

As such, the internal site energy corresponds to the molecular ionization potential in
the case of hole transfer, and to the electron affinity in the case of electron transfer. The
contributions U; and U}' can be estimated by ab initio calculations with geometry op-
timization. Note that for one-component systems, internal site energies often need not
be evaluated since they cancel in the site energy differences, provided conformational
variations of the molecules are negligible, and elsewise they are often substantially
smaller than the electrostatic site energy [4, 132]. In donor-acceptor systems, internal
site energies should be treated with particular attention.

> Electrostatic Site Energy The electrostatic site energy is the difference in elec-
trostatic interaction energies of the charged and neutral molecule i with its neutral
environment, as defined in (3.20):

E?lstat — M/ic _ VVin . (4.30)

Due to the long-range nature of electrostatic interactions, the energies W and W;"
have to be determined based on a sufficiently large volume surrounding the molecule i.
In this work, a spherical surrounding volume of radius 3.5nm is employed. Within
this volume, electrostatic interactions are, in analogy to the force field (Section 4.2.1),
calculated between atomic partial charges g5 on atoms a € i of the charged or neutral
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central molecule i and atoms a ¢ i of the neutral surrounding molecules. In addition to
this Coulomb energy, it is essential to account for the induction energy resulting from
molecular polarization. To this end, the molecules are additionally equipped with
atomic polarizabilities a;", which allow for the induction of atomic dipole moments p,,.
Note that a simple screened Coulomb potential containing the relative permittivity
of the macroscopic material is not adequate on a microscopic scale since energetic
contributions from the first coordination shell are then underestimated. Suppose the
atomic polarizabilities and induced dipole moments are all known, the electrostatic
interaction energies follow from the charge-charge and charge-dipole interactions,

W NN NS (L0 + Tha, b+ Thpla) G
j aejk+jbek

. (4.32)

with qa={qa and «a, = ; ‘i
ab, oraé¢i,

{afl’“, foraei,
9a

where vector components are marked by superscripts, i.e., p; is the y-component of p,,
for which summations will be implicitly assumed (Einstein’s summation convention).
The summations over molecules j and k and their atoms a € j and b € k are explicitly
given and refer to atomic partial charges g, and polarizabilities «a, of the charged or
neutral molecule i and of the neutral surrounding molecules (4.32). The interaction
tensors for two multipoles on atoms a and b with separation R, are expressed by the

» Thole Model

u b pv v

T = 1 U _ Rab wv 3RabRab d

ah_4 R ’ ab__K34 3 2 ab — 54 5 _K34 3
TEgRap negRap negRayp negRayp

, (4.33)

where damping coefficients k3 and x5 smoothen the potential of the dipole moments
in order to prevent polarization catastrophes at short interatomic distances [184, 185].
In a modified version, the damping coefficients take the following form [186, 187]:

5 Rab

ks =1-e"Riv | ks =1 (1+wR3,)e "R, =—% _
3 5 ( ab) ab (Ola(xh)l/6

(4.34)

where R, is an effective interatomic distance that depends on the atomic polarizabil-
ities and w is a damping constant, which is set to 0.39.
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DCV1T DCV2T DCV3T DCV4T DCV5T DCVOT DCV3T-m DCV4T-m

o 0.89 0.99 1.09 1.19 1.24 1.29 0.99 0.99
o 1.93 2.15 2.36 2.58 2.68 2.79 2.15 2.15
a 2.40 2.67 2.93 3.20 3.33 3.47 2.67 2.67
oy 5.94 6.60 7.62 7.92 8.25 8.58 6.60 6.60
as /ol 1.16 1.35 1.50 1.75 2.12 2.54 1.55 1.85
tr(a™) 33.9 52.6 74.3 99.1 123.0 148.5 75.0 98.9
tr(a®) 38.1 65.7 99.6 146.8 205.7 277.4 102.7 153.1
tr(@per) 335 53.3 oM 98.6 123.7 148.3 74.2 99.2
tr(ager) 37.7 65.2 100.3 147.5 205.2 277.5 101.9 152.0

Table 4.3. Atomic polarizabilities «” for hydrogen, nitrogen, carbon, and sulfur atoms of neutral pcvaT
and pcvnT-m molecules. The atomic polarizabilities a for the charged molecules are scaled as specified.
Also listed are the traces of the molecular polarizability tensors resulting from the atomic polarizabilities
and corresponding traces obtained from DFT calculations. All values are given in units of A°.

» Atomic Polarizabilities To calculate the electrostatic interaction energies (4.31),
the first step is to determine the (isotropic) atomic polarizabilities a". Their role is
to model the (anisotropic) molecular polarizability tensor a“" of charged or neutral
molecules, which is expressed via the relay matrix A~! by

(a5™)7!, fora=0b,

/w
_Tab , fora+b,

@ = (@) with @ = $3(A™)" and A" - (4.35)
ab

as is deduced within the Applequist model of distributed polarizabilities [188-192].
Based on this relationship, the atomic polarizabilities for single charged and neutral
molecules are adjusted such that the molecular polarizability tensor is in accordance
with its counterpart obtained from DFT calculations using the B3LYP functional and
the 6-311G** basis set. For a series of DcvnT and DcvnT-m molecules in charged and
neutral states, resulting atomic polarizabilities are listed in Table 4.3. Also provided
are traces of the associated molecular polarizability tensors (4.35) and of their DFT
equivalents. Note that the atomic polarizabilities are fitted to the chemical elements of
the atoms, in this case hydrogen, nitrogen, carbon, and sulfur, and under constraining
the ratios for different chemical elements to the ratios of model atomic polarizabilities
from the (revised) Thole model [185]. These model atomic polarizabilities have proven
successful in reproducing molecular polarizability tensors simultaneously for several
representative test molecules.
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» Induced Atomic Dipole Moments The second step before evaluating the elec-
trostatic interactions of a charged or neutral molecule i with its environment (4.31)
is the determination of the induced atomic dipole moments p,. The prerequisite for
this are the atomic partial charges g, and polarizabilities a, of the charged or neutral
molecule i and of the neutral surrounding molecules - labeled according to (4.32).
Then, the permanent electrostatic field arising from the atomic partial charges leads,
owing to the atomic polarizabilities, to the induction of atomic dipole moments p,
on the atoms a. These induced dipole moments are, however, created not only by
the permanent field due to the atomic partial charges but also from the polarization
field arising from the other induced atomic dipole moments [193]. Hence, the induced
atomic dipole moments are determined by

i - aa(ZTJL Maﬁpz), (430

béj b+a

where the first sum is the permanent field at atom a in molecule j originating from the
atomic partial charges g;, on the other molecules, each creating a field % T.oqp = Tipqns
and the second sum is the polarization field at atom a due to the other, including in-
tramolecular, induced dipole moments py,, each contributing a field % Towpy = Tiy Pb-
To solve (4.36), a self-consistent polarization field needs to be determined, which is
achieved by iterative methods [194]. At the beginning, the induced dipole moments p,
are initialized by evaluating the permanent electric field due to the atomic partial
charges, i.e., the first sum, at the positions of the atoms a. Then, the induced dipole
moments are refined iteratively, according to the second sum:

Pa(0) =) Thq,, pa(n+1) = Qagy. T p,(n) + (1-Q) ph(n) . (4.37)
bé¢j b+a

The iteration is stopped if the accuracy of the induced dipole moments is adequate:
Ya ‘ ph(n+1) - ph (n)| <107*D. Note that the convergence of the iterative procedure
is enforced and accelerated by the technique of successive overrelaxation using a relax-
ation factor Q [187, 195]. Figure 4.12a illustrates, as an example, converged induced
atomic dipole moments for a system of three bcv4T molecules, where the central mol-
ecule is positively charged. Also shown are induced molecular dipole moments, which
are composed additively of the atomic dipole moments of the respective molecule.
Figure 4.12b depicts, as another example, the induced molecular dipole moments on
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Figure 4.12. Induced dipole moments resulting from a positively charged molecule, illustrated in black.
(a) Induced atomic dipole moments, indicated by small arrows, and resulting molecular dipole moments,

by large arrows, on two surrounding neutral molecules, shown in white. (b) Induced molecular dipole
moments in a crystalline Dcv4T system.

DCv4T molecules in a volume of radius 3.5 nm surrounding a positively charged mol-
ecule. For pcvnT systems, a relaxation factor 2 = 0.3 has proven to be a reliable com-
promise between speed and stability of the iterative convergence procedure.

> Site Energy Difference According to theories of charge transfer (Section 3.2),
a charge transfer reaction between a pair of molecules i and j is driven by the difference
in their site energies (3.19),

AE; = Ei-Ej = AEJ" + AE™ + AE". (4.38)

Here, the site energy difference is decomposed into internal and electrostatic contri-
butions, and an additional term accounting for an externally applied electric field F,

AEglt _ E}nt _ E;nt , AE?}Stat _ Elglstat _ E]e}stat , AEZ?(t =g F'rij , (4.39)

where q = +e is the charge and r;; = r; — r; a vector connecting the molecules i and j.
For typical distances between small molecules, of the order of 1nm, and moderate
fields, of up to about 10° V/cm, this term is always smaller than 0.1€V.

The distribution of site energy differences for all molecular pairs of the neighbor list
provides an alternative definition of energetic disorder:

0 =+/(AE?) - (AE)>. (4.40)
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Since site energies are often spatially correlated, this standard deviation of site energy
differences (4.40) is usually smaller than the deviation of site energies (4.6), i.e., 0 < 0.
In fact, charge transport is only affected by neighbor list pairs of molecules, thus o is
generally a more appropriate quantity to characterize the energetic disorder. In cases
where only a subset of the neighbor list contributes to charge transport, for example
when the charge carrier visits only correlated low-energy regions of a disordered site
energy landscape, a reduced neighbor list should be employed to calculate an effective
energetic disorder o < 0 (Chapter 6).

4.2.6. Reorganization Energies

In an energy-conserving charge transfer complex formed of two molecules i and j,
charge transfer occurs at an instant of coinciding molecular energies, which is induced
by the site energy modulations due to nuclear vibrations. In the high-temperature
limit (Section 3.2.1), the required change of nuclear coordinates is described by the
reorganization energy (3.21),

Nij = Ai+d; = UY - UP + US - US, (4.41)

where U?’ is the energy of the neutral molecule i in the nuclear geometry of its charged
state, and similarly UJ?’ is the energy of the charged molecule j in the nuclear configu-
ration of its neutral state. U" and U; are the usual energies at the nuclear equilibrium
geometries, which also contribute to the internal site energy (4.29). To compute a re-
organization energy (4.41), four ab initio calculations are required: two with geometry
optimization, yielding the energies at the nuclear equilibrium configurations, and two
with geometry constraints to the respective opposite nuclear configuration.

The determination of the reorganization energies for all molecular pairs of the neigh-
bor list is a computationally intensive task. However, for one-component systems
with negligible conformational variations, the reorganization energies are identical
and only a single evaluation is required. This is still a good approximation if molecu-
lar conformations vary, but energetic disorder is substantially larger than the variance
of the reorganization energies. Nonetheless, from a general point of view, where po-
tential energy surfaces are different for each molecule, the reorganization energies are
properties of the charge transfer complexes: A;; # A;;. Moreover, the molecular reorga-
nization energies A; and A; can vary for charging and discharging a molecule, hence
the reorganization energies of the reverse processes may be different: A;; # 1;.
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4.2.7. Charge Dynamics

Having determined the list of hopping sites and for each pair i and j the charge transfer
parameters as well as the rates w;;, the next step is to study the dynamics of the charge
carrier using the master equation. As already introduced, the master equation (4.8)
is a set of coupled differential equations in time 7 for the occupation probabilities p;
that are associated with the localized electronic states |y;). A stochastic solving ap-
proach is provided by the kinetic Monte Carlo method.” In this procedure, the time
evolution of the charge carrier is explicitly simulated leading to a realization of the
master equation, a so-called Markov chain. A Markov chain refers to a sequence of
states |y ), starting from a random initial state,

AT3

AT1 A‘l’z
W/k1> |Vlkz> ija) ) (442)

which comprises time intervals of residence A, such that at time 7 a specific state |y;)
occurs with the probability p; that satisfies the master equation. Thus, generating an
ensemble of Markov chains allows the deduction of the occupation probabilities at
time 7 by p; = n;/n, where n is the total number of Markov chains and #; is the number
of chains in the state |y;) at time 7. The stationary solution of the master equation is ob-
tained for large times 7 — oo, where occupation probabilities become time-invariant,
dpi/0t = 0. In the case of ergodic systems, where Markov chains at large times 7 — oo
become independent of the randomly chosen initial state, the stationary occupation
probabilities can be alternatively derived from a single, sufficiently long Markov chain,
which is evaluated over its time. The stationary probabilities then follow from p; = ¢;/¢,
where ¢ is the temporal length of the Markov chain and ¢; is the accumulated time of
residence in the state |y;).

Note that in the case of isolated systems, i.e., systems without sources, sinks, or circu-
lar currents, the stationary solution corresponds to the thermodynamic equilibrium,
where rates are known to obey the condition of detailed balance, that is, p;jwj; = p;wj;.
In practice, this can be used to test whether the system is ergodic or not by correlating
In(p;) and the site energy E;. Indeed, the ratios of the forward and backward rates
are determined solely by the site energy differences since wj;/w;; = exp(-AE;;/kgT),
as follows from the Marcus rate (3.18) and the assumption that the reorganization en-
ergies are equal for both directions, ;; = Aj;.

7 Alternatively, the master equation can be solved numerically [196]. Numerical algorithms may, how-
ever, become unstable for strongly varying rates, as occurs in systems with high energetic disorder.
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Figure 4.13. (a) Flowchart of the kinetic Monte Carlo scheme according to the variable step size method.
(b, ¢) Graphical representation of the target site selection (step 3). Adapted from Reference [197].

» Kinetic Monte Carlo Simulation The kinetic Monte Carlo method [197, 198]
is tasked to simulate the charge carrier dynamics and generate desired Markov chains.
A suitable simulation algorithm is the variable step size method [199-201], also known
as the n-fold way, which is depicted as a flowchart in Figure 4.13 a. In the first step, the
initially occupied site i is selected, the starting time 7 is set, without loss of generality
7 = 0, and the stopping time ¢ is specified, defining the length of the Markov chain.
The second step is the determination of the residence time before the charge carrier is
propagated. According to the Markov approximation underlying the master equation,
the charge carrier is memoryless and has in each short time interval the same prob-
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ability of escaping from site i, which gives rise to exponential decay statistics [197].
Hence, the probability that site i is still occupied at a later time 7+ A7 is given by
exp (—w; A1), where w; is the total escape rate from site i to all accessible sites from
the neighbor list. The time interval of residence At can thus be obtained by solving
exp (—w; A7) = r with r being a random number in the unit interval. The third step is
the determination of the target site to which the carrier is propagated. Based on the
set of all accessible sites k), the target site j has to be selected with a probability pro-
portional to w;j/w;. Figure 4.13 b illustrates this selection scheme by a stack of objects,
each representing, by its object height, a possible escape rate w;y, from site i to an ac-
cessible neighboring site ky, such that the total stack height is w; [197]. Generating a
random number 7’ in the unit interval yields a random position 7’ w; along the stack,
which points with the desired probability to one of the objects, say w;;, and therefore
indicates the selected target site j. Figure 4.13 ¢ illustrates the practical implementa-
tion of this scheme, employing an array of successively extending partial sums, where
each array element contains the accumulated height of all preceding objects up to the
current object. Consequently, the target site j is obtained by the array element with
the biggest index j whose partial sum is not larger than r’- w;. After propagating the
the charge carrier from site i to j, the situation corresponds to the starting point of the
algorithm. Thus, in the fourth step, the procedure is continued, provided the stopping
time ¢ is not yet reached.

4.2.8. Macroscopic Observables

Knowing the occupation probabilities p; of the ensemble of states |y;) at the time 7,
and thus the density operator p (4.7), one is in the position to determine ensemble
averages of observable quantities a with associated operators a:

(a) = tr(@p) = Y pi{vilalyi) = Xopiai, (4.43)

where a; denotes the expectation value of a in the pure state |y;). If the observable a
does not explicitly depend on time, the master equation (4.8) can be invoked to express
the average (a) by the following relation:

d
;? = 2 (pjwji = piwy) ai = 3 piwij(a; - ai) . (4-44)
L)

i.j
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» Electric Current If the position of the charge r is an observable, the time deriva-
tive of its average is the charge velocity

0
(v) = o) ZPiwij(rj_ri) = %Z(Piwij_ijji)rij) (4.45)
irj

or

i,j

where r;; = r;j—r; corresponds to a vector pointing from site i to j and the symmetriza-
tion of the summation on the right hand side follows from r;; = —r;;. Multiplication
with the charge g = +e yields the total current in the system,

. 1
j=av)=3Yciri, cij=q(piwi-pjwi), (4.46)
hj
and the contribution from a specific pair of sites i and j is denoted as edge current c;;.

» Charge Carrier Mobility The zero-field mobility tensor g of the charge carrier
is associated with the diffusion tensor D by the Einstein relation,

1
u=—>-D, (4.47)

kgT
and can thus be obtained by studying particle diffusion in the absence of external fields.
Using the squared particle displacement Ar* as an observable, the diffusion tensor
takes the following form, with superscripts indicating the Cartesian components:

o(ArtAr") U v WA pv_ uv
— Q5 - ijwj,-(Ari Ar,; —ArjArj) = ija)j,-(ri =1 rj). (4.48)
1,] 3y

6D*" =

Alternatively, the diffusion tensor can be directly determined from the ensemble of
Markov chains with temporal length ¢, each yielding a charge displacement vector Ar
by the vector connecting the initially and finally occupied sites, such that

6DV e = (ArtArY) . (4.49)

This method has the advantage that it can be immediately extended to systems with
periodic boundary conditions. In this case, the charge displacement vector is obtained
by unwrapping the diffusion trajectory defined by the Markov chain, as is exemplified
in Figure 4.14 for a crystalline system of 2880 bcv4T molecules.
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Figure 4.14. Unwrapped charge dif-

fusion trajectory in a crystalline sys-

0 tem of 2880 Dcv4T molecules with

periodic boundaries, indicated as a

55 cuboid. The charge displacement vec-

tor Ar connects the initially and fi-
nally occupied sites, marked in vio-
let and red, respectively. The Markov

-50 . -3
chain has atemporallength € =107"s
L L L L L z and the axes are given in units of nm.

The charge carrier mobility tensor g under an externally applied electric field F can
be calculated by the following relation using the average charge velocity (4.45):

(v)=uF. (4.50)

Alternatively, the field-dependent mobility tensor can be directly determined from a
Markov chain. To this end, the charge velocity is calculated from the charge displace-
ment vector between the initially and finally occupied sites divided by the time length .
Projecting this velocity on the direction of the field yields the field-dependent charge
carrier mobility in this particular direction. To ensure adequate statistics, the mobility
can be averaged over an ensemble of Markov chains. Again, this method is particularly
suitable if periodic boundary conditions are employed, where the charge displacement
vector follows from the unwrapped charge carrier trajectory.
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Chapter 5.

Charge Transport Simulations in
Organic Crystals

Within the field of organic photovoltaic cells based on small molecules (Chapter 1),
a particular successful class of donor compounds are dicyanovinyl-substituted oligo-
thiophenes (bcvnT). When preparing pure bcvnT material samples, as used in planar
heterojunction cells, the substances typically adopt crystalline phases. Here, a com-
parative charge transport simulation study is performed for the crystalline phases of
the terthiophene (Dcv3T), a methylated derivative (Dcv3T-m), the quaterthiophene
(Dcv4T), and a methylated derivative (Dcv4T-m), all of which are shown in Figure 5.1.

First, attention is directed to single crystals of all four compounds (Section 5.1).
Comparing the charge transport behavior leads to the conclusion that crystal struc-
tures characterized by a well-defined n-stacking are disadvantageous for an efficient
transport. The microscopic origins of this counterintuitive finding are elucidated and
provide an explanation for a similar trend observed in experimental measurements.
Second, the study is extended to thin films of the two quaterthiophenes (Section 5.2).
Such thin film layers can exhibit molecular packings different than the single crys-
tals and thus altered charge transport capabilities. Taking into account the thin film
molecular packings yields charge carrier mobilities with a systematically improved

agreement with experimental device measurements.

NC_CN
[ \__s /S\ s /S\ s_ A1\ Figure 5.1. Chemical structures
NG Y NC\ CN \/ \/ SNC\ cN of terminally dicyanovinyl-sub-

oN stituted terthiophene (pcv3T), a
methylated derivative compound
(pcv3T-m), dicyanovinyl-substi-
tuted quaterthiophene (pcv4r),

s\ /] s \ 7 s" L) s and a methylated derivative com-
NCTeN mé Me NG~ CN Me  Me NG CN pound (DCV4T-m).

DCV3T-m DCV4T-m
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5.1. Dicyanovinyl-Substituted Oligothiophenes:
Single Crystals

Within the collaborating group of Bauerle at the Institute of Organic Chemistry IT and
Advanced Materials in Ulm, Germany, the dicyanovinyl-substituted terthiophenes,
pcv3T and DCv3T-m, and quaterthiophenes, bcv4T and bcv4T-m, have been purified
via vacuum sublimation at temperatures well below their melting points [202, 203].
In these processes, highly pure molecular crystals of up to macroscopic size (linear
dimensions of roughly 0.1 mm) could be grown, which is sufficiently large for an in-
vestigation by single crystal x-ray crystallography. In this technique, a crystal sample
is mounted in a goniometer for gradual rotation around the three axes, while being
exposed to an incident x-ray beam. From the scattered radiation one obtains a diffrac-
tion pattern with angular dependence on the crystal orientation, which allows one
to infer the periodic structure of the crystal on an atomic length scale. This crystal
structure includes both the unit cell, i.e., the parallelepiped defining the crystal lat-
tice, and the repeating motif, i.e., the precise molecular arrangement at each lattice
point. Such crystallographic information is publicly available for bcv4t and bcv4T-m
in Reference [202] and [203], respectively, and is expected to be published in the near
future for pcv3T and DCV3T-m.

In what follows, the four crystal structures are taken as a basis to perform micro-
scopic charge transport simulations (Section 4.2). First, mesoscopic morphologies at
room temperature are generated and the inherent disorder is quantified (Section 5.1.1).
Subsequently, the charge transfer parameters between the neighboring molecules are
evaluated (Section 5.1.2). And finally, charge transport is investigated by calculating
the charge carrier mobility tensors and relating the results to the energetic disorder
and the charge transporting networks built from the transfer integrals (Section 5.1.3).
The reported scientific results are the subject of prior publication [1], and are presented
below in more detail using partially similar terms and illustrations.

5.1.1. Morphological Disorder

As starting configurations for molecular dynamics simulations, supercells with 2880
molecules in crystalline arrangement (and periodic boundary conditions) are created
by the multiplication of the crystal repeating motifs. To this end, the motifs are trans-
lated multiple times along the base vectors a, b, and ¢ of the (primitive) unit cells:
12x12%5 for DCV3T, 24x5%6 for DCV4T, 15%16x6 for DCV3T-m, 16x15x12 for DCV4T-m.
Note that additional orthogonal coordinate systems are introduced which are defined
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Figure 5.2. Morphology of the bcv4T molecular crystal at room temperature, truncated in the y-direc-
tion for clarity. In the left third, the molecules are drawn explicitly, in the middle third, only their molec-
ular backbones are shown, and in the right third, only their centers of mass are depicted. The parallel-
epiped indicates the (primitive) unit cell of the bcv4T crystal, which is nearly orthogonal and contains a
repeating motif of four molecules.

by the x-axis along the a-vector, the y-axis within the ab-plane, and the z-axis orthog-
onal to the prior two axes. Then, the prepared supercells are subjected to molecular
dynamics simulations (Section 4.2.2) at a pressure of 1bar, a temperature of 300 K and
for a duration of 10 ns. This yields realistically disordered morphologies, as is illus-
trated for pcv4T in Figure 5.2. The view shows a slice of the y-direction and indicates
molecular backbones and centers of mass by gray tubes and black spheres, respectively.
In addition, the Dcv4T unit cell, which contains four molecules, is shown. For all com-
pounds, an overview of unit cells is provided in Figure 5.12 a on Page 122/123.

» Molecular Conformations The molecular conformations within the room-tem-
perature morphologies are analyzed by evaluating the pcv-thiophene (cc-c-ca-s)
and thiophene-thiophene dihedral angles (s—ca-ca-s) as defined in the force field
(Section 4.2.1). The ensemble distributions of all dihedral angles in one molecular dy-
namics snapshot are shown in Figure 5.3. As can be seen, the molecules are almost flat
on average, which is in agreement with the experimentally obtained crystal structures.
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Figure 5.3. Distributions of the pcv-thiophene and thiophene-thiophene dihedral angles in molecular
crystals at 300 K. The pcv-thiophene dihedrals are shown in red and yellow, while thiophene-thiophene
dihedrals are shown in blue, green, and cyan. The insets illustrate distributions of the molecular dipole
moment components. Adapted from Reference [1].

This observation is expected for the bare oligomers, Dcv3T and bcv4T, since ab initio
calculations with geometry optimization performed on single molecules in vacuum
result in planar conformations. The methylated compounds, pcv3T-m and pcv4T-m,
however, have significantly twisted vacuum-optimized geometries and, consequently,
the conformational planarization in the crystal arises due to non-bonded interactions
with the neighboring molecules. As will be discussed below, this planarization effect
has an important consequence for the reorganization energies.

The deviations from the planar average geometries of the molecules, as a conse-
quence of thermal fluctuations, result in conformational disorder. This conformational
disorder can be quantified by the widths of the dihedral angle distributions. As seen
in Figure 5.3, the widths are of the order of 30° for the pcv-thiophene and 20° for the
thiophene-thiophene dihedral angles.



5.1. Dicyanovinyl-Substituted Oligothiophenes: Single Crystals 111

Figure 5.4. Alternately oriented mol-
ecular dipole moments in a pCV3T
molecular crystal, shown as arrows at
the molecular centers of mass (black
spheres). The dipole moments are
color-coded according to their di-
rection, that is, opposite directions
have complementary colors. The hue
represents the azimuth angle, while
lightness reflects the elevation angle
(asv color model). Adapted from
Reference [1].

» Molecular Dipole Moments Based on the atomic partial charges of the pcvaT
molecules, as defined in the force field (Section 4.2.1), permanent molecular dipole
moments can be evaluated for the molecules in the room-temperature morphologies.
The insets of Figure 5.3 show the ensemble distributions of molecular dipole moments,
resolved into their components (in the orthogonal xyz-coordinates). For the terthio-
phenes, Dcv3T and DCV3T-m, one observes bimodal distributions, which indicates
that the dipole moments are non-zero on average. Indeed, the planar average confor-
mations of the terthiophenes have an asymmetric or mirror-symmetric alignment of
the electron-withdrawing pcv substituents, which leads to non-vanishing dipole mo-
ments. In contrast, the quaterthiophenes, bcv4T and bcv4T-m, are centro-symmetric
and thus have zero dipole moments on average. This observation is in accordance with
the experimental crystal structures: the unit cells of the terthiophenes contain an even
number of molecules with alternating orientation, such that the dipole moments are
mutually compensating.

The deviations of the molecular dipole moments from their average values and ori-
entations, which result from the conformational disorder, give rise to dipolar disorder.
Figure 5.4 illustrates for the bare terthiophene, pcv3r, the fluctuating alternately ori-
ented dipole moments in a small section of a molecular dynamics snapshot. Figure 5.5
shows similarly for the bare quaterthiophene, pcv4r, the fluctuating randomly ori-
ented dipole moments. As will be discussed below, the dipolar disorder is closely re-
lated to disorder in the site energies.
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Figure 5.5. Randomly oriented mol-
ecular dipole moments in a bcv4T
molecular crystal, shown as arrows at
the molecular centers of mass (black
spheres). The dipole moments are
color-coded according to their di-
rection, that is, opposite directions
have complementary colors. The hue
represents the azimuth angle, while
N\ N lightness reflects the elevation angle
= . N (asv color model). Adapted from
- Reference [1].
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5.1.2. Charge Transfer Parameters

In order to construct the charge transport Hamiltonian, the morphologies are parti-
tioned on conjugated segments and rigid fragments (Section 4.2.3). Accordingly, the
n-conjugated bcvaT molecules are represented by separate rigid fragments for each
pcv or (methylated) thiophene unit, and by single conjugated segments, whose cen-
ters of mass correspond to the hopping sites i. The neighbor list of adjacent hopping
sites i and j is created from all sufficiently close molecular pairs, characterized in that
any pair of associated mutual rigid fragments is below a cutoff of 0.7 nm.

» Reorganization Energies The computation of reorganization energies is based
on ab initio calculations for single charged and neutral molecules, once with and once
without geometry optimization (Section 4.2.6). In the present case of one-component
systems, it is sufficient to compute for each system a universal reorganization energy A.
To account for the conformational planarization of the molecules in the bulk, the cal-
culations with geometry optimization are carried out while the dihedral angles are
constrained to their average values in the molecular crystals. As a result, similar reor-
ganization energies A for all four compounds are obtained, which are listed in Table 5.1.
The calculations are conducted by DFT, the B3LYP functional, and the 6-311G** basis set.
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DCV3T DCV4T DCV3T-m DCV4T-m Table 5.1. Reorganization energy A
and energetic disorder ¢ for pairs
A 0.21 0.19 0.16 0.19 . . . .
- from the neighbor list, both given in
o 0.11 0.10 0.08 0.07

units of eV.

Note that unconstrained geometry optimization calculations, as are usually carried
out, lead to an increase of the reorganization energies of the methylated compounds,
Dpcv3T-m and Dcv4T-m, by 0.15eV and 0.13 eV, respectively. This is a consequence of
their twisted neutral, but planar charged geometry, contrary to the bare compounds,
which are flat in either charge state. These higher values of the reorganization energies
would lead to an order of magnitude decrease in the charge carrier mobilities, which
are determined later on.

> Site Energies The observed dipolar disorder is an indication of disorder in site
energies: for instance, in phenomenological Gaussian disorder models (Section 4.1.2),
randomly oriented dipoles are known to cause correlated energetic disorder [125-129].
To quantify the energetic disorder in the molecular crystals, the site energies E; of all
molecules 7 are determined based on the electrostatic interactions between atomic par-
tial charges and induced dipole moments according to the Thole model (Section 4.2.5).
As an example, Figure 5.6 visualizes the resulting site energies in a bcv4T morphology
by means of color-coded hopping sites, i.e., molecular centers of mass. The range from
low to high site energies is indicated by a color range from blue to red. Obviously, site
energies are spatially correlated, but energetic defects also exist, as can be seen by sin-
gular blue or red hopping sites.

For all compounds, the distributions of the site energy differences, AE;j = E; - Ej,
for pairs from the neighbor list are shown in Figure 5.7. In addition, the insets provide
the spatial and temporal correlation functions,

o A(E-B) (5~ (5) o

((Ei-(E))")

which are one if site energies are fully correlated and zero if they are uncorrelated.
The widths of Gaussian functions fitted to the distributions yield the neighbor-list-
based energetic disorder o, as defined in (4.40). The results, summarized in Table 5.1,

indicate that the four systems are characterized by fairly similar energetic disorder,
which is substantial and approximately comparable to many amorphous systems [4].
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Figure 5.6. Hopping sites (molecular
centers of mass) in a DCv4T molecu-
lar crystal, colored according to their
site energy. The range from low to
high site energies is indicated by a
color range from blue to red. Evi-
dently, the site energies are spatially
correlated and occasionally exhibit
energetic defects. Adapted from Ref-
erence [1].

Such significant energetic disorder is unexpected for crystalline systems, but is a conse-
quence of the molecular architecture of the pcv-substituted oligothiophenes, having
the electron-withdrawing pDcv groups attached in non-axial orientation and the pcv
and thiophene units connected by single bonds. Such an acceptor-donor-acceptor ar-
chitecture combined with fluctuations of the dihedral angles leads to substantial vari-
ations of the local electric fields.

As mentioned before, the terthiophenes, pcv3t and pcv3T-m, have equilibrium
conformations with non-zero permanent dipole moments, which are compensated in
a unit cell. If the energetic disorder in the terthiophene molecular crystals is calcu-
lated based on the atomic partial charges only, thus neglecting effects of molecular
polarization, the width of the site energy distribution becomes 0.17eV and 0.30eV,
respectively. These significantly higher values reveal that not only the compensation
of dipole moments in a unit cell [204], but also the large polarizabilities of the mol-
ecules (Section 4.2.5) play an important role in reducing the energetic disorder. For
the quaterthiophenes, bcv4T and bcv4T-m, which have zero dipole moments in their
equilibrium conformations, the neglect of polarization effects has no significant influ-
ence on the energetic disorder.
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Figure 5.7. Distributions of the site energy differences for pairs from the neighbor list. The width of
Gaussian fit functions yields values of energetic disorder o, listed in Table 5.1. The insets show spatial
correlation functions and time correlation functions. The latter are calculated from molecular dynamics
simulations of 0.5 ps and bare Coulomb interactions. Adapted from Reference [1].

> Transfer Integrals The transfer integrals J;; between pairs of molecules i and j
from the neighbor list are determined by means of the zINDO method (Section 4.2.4).
The set of transfer integrals constitutes a percolating network, which provides infor-
mation about the directionality and dimensionality of charge transport. In Figure 5.8,
this charge transporting network is illustrated for a bcv4t snapshot. To highlight its
topological connectivity pattern, an enlarged view of a ten unit cell volume is also
shown. Here, hopping sites are depicted by black spheres and transfer integrals are
represented by intermediate colored bonds; their thickness displays the electronic cou-
pling strength, while their color indicates the crystallographic direction. The discrim-
ination of the distinct crystallographic directions is accomplished by shifting all bond
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Figure 5.8. Charge transporting network of a bcv4T molecular crystal, truncated in the y-direction for
clarity. Hopping sites (molecular centers of mass) are depicted as black spheres, while transfer integrals

between molecular pairs are illustrated as colored bonds. The bond thickness reflects the electronic cou-
pling strength, while the bond color indicates the crystallographic direction. The enlarged view corre-

sponds to a volume of ten unit cells.
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Figure 5.9. Vectors between all hop-
ping site pairs from the neighbor list,
shifted to the origin (at the center).
Groups are defined by the smallest
cuboids enclosing clusters of vector
endpoints. The groups are identified
with distinct crystallographic direc-
tions, indicated by different cuboid
colors. If directions are equivalent
by the crystal symmetry, groups are
united. Adapted from Reference [1].

vectors to the origin and finding groups of vector endpoints by an agglomerative hi-
erarchical cluster algorithm [205]. This scheme is illustrated for the pcv4T system in
Figure 5.9: all bond vectors of the system are drawn simultaneously pointing from
the center to the exterior. The vector endpoints form clusters, which are enclosed by
cuboids, whose coloring corresponds to the respective crystallographic directions.

For all molecular crystals, an overview of charge transporting networks is shown
in Figure 5.12b on Page 122/123. For a quantitative analysis, Figure 5.10 depicts the
associated total and direction-resolved transfer integral distributions, drawn in black
and the above-defined colors, respectively. The total distributions comprise several
peaks, which are clearly attributable to the underlying directional distributions, char-
acterized by single pronounced peaks (the only exception is the direction in pcv3T-m
marked in red, along which electronic coupling alternates). In addition, Table 5.2 lists
the average directional transfer integrals as well as the average hopping site separations.
One recognizes that the molecular crystals of the bare compounds, pcv3T and pcv4T,
have a well-defined mt-stacking direction (red) with an average coupling of 10> eV?
and center-of-mass separation of 0.4 nm, while other crystallographic directions (blue
and green) have several orders of magnitude lower coupling strengths. This demon-
strates that the presence of the strongly coupled one-dimensional nt-stacking direc-
tion is at the expense of the coupling strength of other directions. Moreover, these
other directions are oriented almost perpendicular to the nt-stacking, as seen in Fig-
ure 5.12 b on Page 122/123. In contrast, analyzing the methylated compounds, bcv3T-m
and DCv4T-m, reveals the absence of a comparably pronounced n-stacking direction;
instead, their charge transporting networks comprise multiple crystallographic direc-
tions of moderate coupling strengths.
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Figure 5.10. Total and direction-resolved distributions of the transfer integrals, drawn in black and dis-
tinct colors, respectively. The coloring of directional transfer integrals corresponds to the topological
connectivity patterns in Figure 5.12b on Page 122/123. Average values of the distributions are listed in
Table 5.2. Adapted from Reference [1].

DCV3T DCV4T DCV3T-m DCV4T-m
() (r) () (r) () (r) (") (r)
— 26-107° 0.4 3.4-107° 0.4 6.1-107° 1.3 1.9-107* 1.2
— 46-10°° 0.8 3.4-107° 0.6 6.4-107* 0.8 1.0-107° 2.0
- 14-10° 1.7 1.2-107° 2.2 9.1-107° 2.0 1.7-107° 0.9
5.9-1077 0.9 5.7-107¢ 0.7 5.0-1078 11
4.4.107° 1.8 2.7-1077 14 45.107° 2.3

— 9.4.1078 1.6

2.1-107° 2.3

Table 5.2. Average direction-resolved transfer integrals (J?), given in eV?, and associated average hop-
ping site separations (r), given in nm. The coloring of crystallographic directions corresponds to the
topological connectivity patterns in Figure 5.12b on Page 122/123.
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DCV3T DCVAT DCV3T-m  DCV4T-m
b 45.10"! 3.7.10"" 3.7.10° 17.10° Table 5.3. Eigenvalues of the zero-
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5.1.3. Charge Carrier Mobility

In crystalline phases, charge transport generally exhibits anisotropic behavior, i.e., the
charge carrier mobility is dependent on the crystallographic direction. In order to de-
termine the main transport directions and link them to the packing motifs, charge
diffusion without an externally applied electric field is studied first. Based on the ki-
netic Monte Carlo method (Section 4.2.7), the diffusion tensor (Section 4.2.8) of each
molecular crystal is determined by averaging over 2000 charge displacement vectors
for time intervals of 1073 s. Then, the zero-field mobility tensor follows from the Ein-
stein relation (4.47).

In order to assess the effects of the energetic disorder on charge transport, the zero-
field mobility tensor is determined for each crystalline system twice. On the one hand
it is calculated for a simplified model system where energetic disorder is turned off,
i.e., the site energies are set to zero, and on the other hand it is calculated for the full
model system including the site energies. These two zero-field tensors are denoted as
po=o and p, respectively, and their eigenvalues are provided in Table 5.3. The bounding
eigenvalues, i.e., the first and the third, specify the highest and lowest mobilities and
define the mobility ranges which are displayed in the left panels of Figure 5.11. The
striped and filled areas correspond to the mobility ranges in the absence and presence
of energetic disorder, respectively.

To link the topological connectivity of the systems to the anisotropy of the charge
carrier mobility, the mobility tensors of the four molecular crystals are depicted as
ellipsoids in Figure 5.12 c on Page 122/123; the colored arrows originating from the
center of the ellipsoids indicate the crystallographic directions which were identified
previously (Figure 5.12b). Each ellipsoid is defined by its three principle axes pointing
along the eigenvectors of the associated mobility tensor and by the associated equa-
torial radii given by the square root of the tensor eigenvalues (Table 5.3). Hence, the
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Figure 5.11. Left panels: ranges of the zero-field hole mobilities with and without energetic disorder,
shown by filled and striped areas, respectively. The ranges are bounded by the largest and smallest eigen-
values of the mobility tensors. For bcv4T and DCv4T-m, experimentally measured organic field effect
transistor mobilities are indicated by stars [203]. Right panels: hole mobilities as a function of an elec-
tric field applied along different directions. Directions of the largest and smallest principal axes of the
zero-field tensors are indicated by dashed, and other crystallographic directions by solid lines, colored
according to Figure 5.12b, c on Page 122/123. Adapted from Reference [1].

transport direction with the maximum mobility, i.e., the first eigenvalue, is given by
the longest ellipsoidal principle axis. The ellipsoids drawn in red correspond to the
disregard of site energy variations, while those in gray include the effects of energetic
disorder. If red ellipsoids are omitted, their orientation is similar to gray ones.

First, the results obtained in the absence of energetic disorder (striped areas in Fig-
ure 5.11 and red ellipsoids in Figure 5.12 ¢) are analyzed and the different crystal struc-
tures compared. As regards the main transport directions, i.e., the longest ellipsoidal
axes, the following observation can be made. The crystals of the bare compounds,
DCv3T and DCv4T, exhibit their maximum mobility along the n-stacking direction
where the electronic coupling is the strongest (red). The crystals of the methylated
compounds, DCV3T-m and DCv4T-m, where n-stacking is not well defined, show the
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highest mobility along a superposition direction of multiple crystallographic direc-
tions with moderate couplings (red and blue). When comparing the mobility values
along the main transport direction, a rather counterintuitive result is observed. In spite
of weaker electronic couplings, the crystals of the methylated bcv3T-m and bcv4T-m
have an order of magnitude higher (maximum) mobilities as compared to the bare
pcv3T and Dcv4T. Since energetic disorder is switched off, this effect can only be
attributed to a favorable connectivity pattern of the pcv3T-m and pcv4T-m charge
transporting networks. In other words, the pronounced nt-stacking with strong elec-
tronic couplings, found for the bare pcv3Tt and pcv4r, is disadvantageous for efficient
charge transport. When analyzing the transfer integrals, it was discovered that this one-
dimensional n-stacking of the bare compounds leads to poorly coupled perpendicular
transport directions, and inhibits electronic coupling in other directions completely
(Figure 5.12b). Thus, the topological connectivity of the methylated compounds with
weaker couplings but better interconnection is favorable.!

Second, charge transport is analyzed in the presence of energetic disorder (filled ar-
eas in Figure 5.11 and gray ellipsoids in Figure 5.12 ¢). As expected, the incorporation
of energetic disorder leads to a reduction of the mobility values for all crystals. How-
ever, the mobility of the bare pcv3T and Dcv4T crystals decreases by two orders of
magnitude, while for the methylated pcv3T-m and pcv4T-m systems, it is only re-
duced by one order of magnitude. This discrepancy cannot be completely attributed
to the slightly smaller energetic disorder present in the methylated systems, but mainly
results from the aforementioned topological differences of their charge transporting
networks. Indeed, considering the longest ellipsoidal principal axis, one realizes that
the main transport directions of the bare bcv3T and pcv4t crystals are no longer
aligned with the m-stacks. Instead, the maximum mobility is now along a superpo-
sition direction of the strongly coupled nt-stacking (red) and other crystallographic
directions with poor coupling (green). This reorientation of the mobility tensors is a
consequence of energetic defects in the one-dimensional rt-stacks, as seen in Figure 5.6.
To bypass defective sites, a charge carrier has to escape to an adjacent n-stack by hop-
ping along one of the perpendicular side directions with poor coupling. To illustrate
this behavior, an external electric field of 800 (V/cm)"? is applied along the main

"Another aspect of the favorable topological connectivity for the methylated pcv3T-m and pcv4T-m
crystals are the larger average separations of hopping sites. Often, the transfer integrals (and hence
the rates) decay exponentially with the separation, thus, larger site-site separations lead to lower mo-
bilities (which are proportional to the rate times the separation). However, molecules with extended
n-conjugation can have relative lateral shifts which barely change the transfer integral, but increase
the center-of-mass (site-site) separation, resulting in longer charge hops and higher mobilities.
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Figure 5.12. (a) Unit cells and crystal repeating motifs. (b) Charge transporting networks based on the
transfer integrals. The transfer integrals between the hopping sites are shown as bonds connecting black
spheres. The bond color indicates the crystallographic direction, while the bond thickness reflects the
electronic coupling strength. (c) Zero-field mobility tensors. Without energetic disorder, tensors are
depicted as red ellipsoids, with energetic disorder as gray ellipsoids. For pcv3T-m and DCv4T-m, red
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and gray ellipsoids have similar orientations, hence only the gray ones are shown. The colored arrows
indicate the crystallographic directions of the charge transporting network. (d) Edge currents under an
electric field of 800 (V/cm)"/? applied in the direction of the longest ellipsoidal principle axis, i.e., the
main transport direction. The arrowheads indicate the direction of the current, while the thickness and
color of the arrowshafts reflect the current amplitude. Adapted from Reference [1].
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transport directions, and the edge currents between neighboring hopping sites are cal-
culated (Section 4.2.8). The flow of electric current is visualized in Figure 5.12d on
Page 122/123, where the arrowheads indicate the direction of the current, while the
thickness and color of the arrowshafts are proportional to the logarithm of the current
amplitude. As expected, the average charge carrier in the bare bcv3T and DCv4T sys-
tems follows the one-dimensional nt-stacking direction until a defect is reached, enforc-
ing an escape hop to a neighboring n-stack. In contrast, the methylated bcv3T-m and
DCV4T-m crystals show pathways consisting of hops along multiple crystallographic
directions of moderate couplings. These multi-dimensional composite pathways en-
able the charge carrier to easily avoid energetic defects. To summarize, substantial
energetic disorder combined with a strong m-stacking is detrimental to an eflicient
transport. The methylation preventing the molecules from a strong n-stacking leads
to a beneficial topology of the charge transporting network with slightly lower cou-
plings but a better interconnection of the sites.

Another typical implication of spatially correlated energetic disorder is a non-linear
dependence of the mobility ¢ on an externally applied electric field F. For example, in
phenomenological Gaussian disorder models (Section 4.1.2), the Poole-Frenkel rela-
tionship In p ~ F/2 (4.9) is reproduced [125-129]. To validate this effect in the present
molecular crystals, charge dynamics is studied for a charge carrier drift-diffusing un-
der the influence of external electric fields. To this end, the kinetic Monte Carlo
method (Section 4.2.7) is employed while applying field magnitudes in steps of 100
from 200 to 1000 (V/cm)"? along several directions. The directional mobility for a
given system with specified field vector is determined from the projection of the charge
carrier velocity (Section 4.2.8) and is averaged over three independent time intervals
of 1073 s for both the forward and backward directions. The field-dependent charge
carrier mobility is shown in the Poole-Frenkel plots, provided in the right panels of
Figure 5.11. The solid lines correspond to field directions along the distinct crystallo-
graphic directions (indicated by their colors), while the dotted lines are the directions
of the two extremal axes of the zero-field mobility tensor. For all systems, the onset
of a Poole-Frenkel dependence can be observed at moderate fields of approximately
400 (V/cm)"2, which is typical for correlated energetic disorder.

Finally, the calculated mobilities are compared with experimental mobilities, which
are obtained from measurements performed on organic field-effect transistors (OFET).
Experimental OFET mobilities are available for the bare and methylated quaterthio-
phenes, bcv4T and Dcv4T-m [203]. They are listed in Table 5.3 and indicated by stars
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in the left panels of Figure 5.11. Qualitatively, the experimental measurements support
the simulation results in yielding a higher hole mobility for the methylated compound.
A direct quantitative comparison cannot be performed for two reasons. First, the OFET
devices comprise thin film layers with polycrystalline rather than single crystalline or-
der [203]. Hence, grain boundaries between adjoining crystallites impair charge trans-
port, which is a reason for the systematically lower measured mobilities as compared
to the calculated ones. Second, and more importantly, crystallites in thin films can
have different molecular packing than the single crystal structure and thus inherently
altered charge transport capabilities. To address this issue, thin films need to be crystal-
lographically analyzed and the implications on charge transport studied (Section 5.2).
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5.2. Dicyanovinyl-Substituted Quaterthiophenes:
Thin Films

The fabrication of organic photovoltaic cells based on dicyanovinyl-substituted oligo-
thiophenes (DcvnT) involves several processing steps of the bcvnT raw substances.
In an initial step, raw substances are purified by vacuum sublimation leading to crys-
talline powder materials. Previously, attention was focused on the single crystals iden-
tified within these powders, i.e., the few crystallites coming close to millimeter size
(Section 5.1). Active layers of photovoltaic cells are, however, based on thin films of
nanometer thickness, which are prepared by further processing the powders and de-
positing the materials on specific substrates. Hence, in situ, one might find molecular
ordering different from the single crystal structure, and therefore altered charge trans-
port capabilities.

Based on the dicyanovinyl-substituted quaterthiophene (bcv4T) and its methylated
derivative (Dcv4T-m), thin film active layers have been produced and crystallograph-
ically analyzed [3, 203]. While this analysis indicates that thin films of methylated
DCV4T-m possess the same crystalline arrangement as its single crystals, it is indeed
found that thin films of the bare bcv4T exhibit a packing motif different than its sin-
gle crystal structure. This new Dcv4T thin film crystal structure can be reconstructed
based on x-ray diffraction measurements, as is addressed initially (Section 5.2.1). Sub-
sequently, the previous single crystal study is complemented by a comparative analysis
of charge transport in thin films and its impact on solar cell efficiencies (Section 5.2.2).
The reported scientific results are the subject of prior publication [3], and are presented
below in more detail using partially similar terms and illustrations.

5.2.1. Crystal Structure Analysis

The following crystallographic investigations were performed within the collaborat-
ing group of Leo at the Institute for Applied Photo Physics in Dresden, Germany. The
studies involve two experimental methods of x-ray diffraction (xrD), which, contrary
to the single crystal x-ray crystallography (Section 5.1), can only provide limited infor-
mation about the molecular packing. The first method is Bragg-Brentano XrD, which
is applied to crystalline powders. Similar to the Debye-Scherrer method, an incident
x-ray beam is directed on a powder sample containing randomly oriented crystallites.
Hence, the Bragg reflections for varying lattice orientations are simultaneously ob-
served in the resulting diffraction pattern. The second method is grazing incidence
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Figure 5.13. X-ray diffraction patterns of the pcv4T thin film, the bcv4T powder, and the pcv4T single
crystal. If the two dominant reflections of the bcv4T powder pattern are Gaussian-broadened and super-
posed, the red dotted curve is obtained. For clarity the ordinate axis has a different scale for low and high
scattering angles. The inset has an adjusted ordinate axis to visualize small peaks of the bcv4T powder
pattern. Adapted from Reference [3].

x-ray diffraction (GIxrp), which is applied to thin films. Here, an incident x-ray beam
strikes nearly parallel onto the surface of the thin film in order to increase the sur-
face sensitivity and decrease the substrate sensitivity. For not too large scattering an-
gles, only lattice spacings which are almost perpendicular to the surface (out-of-plane)
contribute to the resulting diffraction pattern. This means in particular that patterns
comprising the information on all lattice orientations are only obtained from polycrys-
talline thin films of randomly oriented crystallites. Given this brief methodology, an
outline of the crystal structure analysis of the bcv4T thin film is provided below.

» X-Ray Diffraction Measurements The analysis of bcv4T thin films by Gixrp
measurements results in the diffraction pattern displayed in Figure 5.13 (black curve).
The pattern shows a strong Bragg reflection at a scattering angle of 12.8° and several
weaker ones at 26.0° and 29.0°.> While the absence of diffuse scattering indicates a
high crystallinity of the thin film, the small number of Bragg reflections reveals that
crystallites have a preferred orientation and no random alignment. The broadness of
the reflections is a consequence of the small layer thickness of 50 nm and the resulting
small crystallite sizes.

*Notice that the weakness of the reflection at 26.0° is an artifact of the GIxrRD method. This is because
the corresponding lattice spacing is parallel to the thin film surface (in-plane) and does therefore not
contribute to the diffraction pattern. In fact, two-dimensional GTwaxs measurements on thin films
of pcv4T and Ceo show not only a strong Bragg reflection at 12.8° in the out-of-plane direction but
also a strong Bragg reflection at 26.0° in the in-plane direction [206].
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In addition to the pcv4T thin film, the Dcv4T powder is investigated using Bragg-
Brentano XRD resulting in the diffraction pattern depicted in Figure 5.13 (red curve).
The pattern shows not only more Bragg reflections, as expected, but also much sharper
ones, which is due to larger crystallite sizes. Apparently, the intense reflections of the
DCV4T powder are at similar scattering angles as the visible reflections of the pcv4T
thin film. Moreover, if the two dominant powder reflections at 12.7° and 13.3° are
Gaussian-broadened and superposed (red dotted curve), the dominant thin film reflec-
tion can be reproduced. From these findings, it is concluded that the pcv4T powder
has the same crystal structure as the bcv4rt thin film.

Lastly, the diffraction patterns of both the pcv4r thin film and the pcv4t powder
are compared to the pattern of the Dcv4T single crystal studied previously (Section 5.1).
This single crystal pattern, which is obtained from a powder xrD simulation, is visu-
alized in Figure 5.13 (gray curve). It is obviously very different: it does not match the
dominant thin film reflection (or the superposition of the two powder reflections),
but instead exhibits four prominent Bragg reflections for scattering angles below 12.0°.
Upon closer inspection, three of these reflections are found to have a very low inten-
sity in the powder pattern, as is seen in the inset of Figure 5.13, which has an adjusted
scale of the ordinate axis. This suggests that the pbcv4T powder actually consists of two
crystallographic phases, with the bcv4T single crystal phase being the minor phase. In
fact, this minor phase and the major pcv4r thin film phase have a weight content of
2wt.% and 98 wt.%, respectively [3].

> Crystal Structure Reconstruction Now it is briefly outlined how the crystal
structure of the bcv4r thin film is reconstructed from the measured diffraction data.
To this end, one should remember that a diffraction pattern is given in reciprocal space
and reflects the long-range periodicity of molecular packing (by Bragg reflections).
Also, by performing a Fourier transformation into real space, one obtains an atomic
pair distribution function (pDE), which directly represents the short-range order of
the molecular arrangement. For crystal structure analysis on an atomic scale, the data
representation as a PDF may be considered the more appropriate representation [207].
Here, a pDF-based algorithm for crystal structure reconstruction is employed which
was developed at the Institute for Applied Photo Physics in Dresden, Germany [208].
Without going into details, the algorithm aims at reproducing a reference pPDF by a
best-fitting model pDF, which is obtained by iteratively refining atomic model crystal
structures. The model crystal structures are generated based on predefined triclinic
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lattices combined with a repeating motif of a single molecule with rigid molecular
geometry. After convergence of the iteration, the final unit cell parameters are addi-
tionally refined using the Rietveld analysis [209].

In order to reconstruct the pcv4rt thin film crystal structure, the pcv4t powder
diffraction pattern, which has a significantly higher resolution, is Fourier transformed
into a reference PDF. This DCv4T powder PDF, shown in Figure 5.14 (red curve), is,
after applying the reconstruction algorithm, well reproduced by the best-fitting bcv4T
model PDF (black curve). Note that there are several reasons why the two functions do
not perfectly agree [3]. These include in particular that the pcv4T powder is actually a
mixture of two phases and that the algorithm treats the repeating motif as a rigid body.
The reconstructed bcv4T thin film crystal structure is depicted in Figure 5.16 a-c on
Page 132/133, together with the previously studied single crystal structures (Section 5.1).
Obviously, the new pcv4T thin film crystal structure (second column) is very different
from the pcv4r single crystal structure (first column). Interestingly, however, it is
remarkably similar to the bcv4T-m single crystal structure (third column).

5.2.2. Charge Carrier Mobility

The identified Dcv4T thin film crystal structure is used to model a mesoscopic molecu-
lar crystal and examine its charge transport properties by microscopic charge transport
simulations (Section 4.2). The starting point are molecular dynamics simulations per-
formed on a morphology of 2880 molecules (with periodic boundary conditions), pre-
pared by a 15x12x16-fold translation of the crystal repeating motif. This is followed by
evaluating the charge transfer parameters (i.e., the reorganization energies, site energy
differences, and transfer integrals) and the Marcus rates for neighboring molecules.
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Finally, kinetic Monte Carlo simulations are employed to calculate the zero-field mo-
bility tensor and a set of directional mobilities with electric field dependence. Unless
otherwise stated, all methods and parameters employed are analogous to those used
in the previous study on single crystals (Section 5.1).

Before linking the efficiency of charge transport to the microscopic material prop-
erties, the simulation results of the bcv4r thin film are summarized. The energetic
disorder, i.e., the width of the site energy difference distribution, is ¢ = 0.10 eV, which
is identical to that of the bcv4T single crystal (Section 5.1). The topology of the charge
transporting network, i.e., the three-dimensional assembly of the transfer integrals,
and the zero-field mobility tensor are displayed in Figure 5.16 d, e (second column)
on Page 132/133. The eigenvalues of the zero-field mobility tensor, i.e., the mobilities
along the ellipsoidal principle axes, are provided in Table 5.4, together with values for
the previously studied single crystal structures. The bounding eigenvalues define the
mobility ranges indicated by the gray areas in the left panels of Figure 5.15. The right
panels show corresponding field-dependent mobilities.

A firstimportant observation can be made by comparing the charge transport in the
two different crystal phases of Dcv4T, i.e., the single crystal (first column) and the thin
film (second column). The bcv4T single crystal exhibits a charge transporting network
characterized by a distinct transport direction with strong electronic couplings (red),
as discussed previously (Section 5.1). Counterintuitively, this network topology turned
out to be disadvantageous. On the one hand, the strong electronic couplings in one
direction lead to poorly coupled perpendicular directions and suppress couplings in
other directions completely, and on the other hand, the one-dimensional strongly cou-
pled direction is prone to defects due to the substantial energetic disorder. Contrary,
the pcvy4T thin film has a network topology with less pronounced one-dimensional
character, hence the system is less sensitive to the energetic disorder. This has an imme-
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Figure 5.15. Left panels: ranges of the zero-field hole mobilities, bounded by the largest and smallest
eigenvalues of the mobility tensors. Zero-field mobilities for the direction perpendicular to the pcv4r
and pcv4T-m thin film substrates are indicated by red stars. Experimentally measured organic field effect
transistor mobilities are indicated by black stars [203]. Right panels: hole mobilities as a function of an
electric field applied along the largest and smallest principal axes of the zero-field tensors.

diate implication on the charge carrier mobility: the maximum mobility of the pcv4T
thin film is more than an order of magnitude higher than that of the pcv4t single
crystal. It should be emphasized that this higher mobility is the exclusive result of the
advantageous network topology since energetic disorder is identical in both systems.

A second important finding follows from comparing the charge transport for the
two different compounds with similar crystal structures, i.e., the pcv4t thin film
(second column) and the bcv4T-m single crystal (third column). The bcv4T-m single
crystal provides a charge transporting network characterized by multiple directions of
moderate couplings, as discussed previously (Section 5.1). The longest principle axis
of the mobility ellipsoid in Figure 5.16 e indicates that the main transport direction
is a superposition of two completely symmetrical directions (both in red). Therefore,
a charge carrier moving in a plane spanned by these two directions has two equally
coupled hopping options at each site. This truly two-dimensional freedom of hopping
allows for an effective bypassing of energetic defects. In contrast, the bcv4r thin film
has its main transport direction along a superposition of two directions with asymmet-
ric coupling (red and blue). Hence, this network topology adopts a hybrid character:
although it is not strongly one-dimensional, it is not truly two-dimensional either. As
a consequence it is more affected by the energetic disorder. This is reflected in the
charge carrier mobility: the maximum mobility of the bcv4T-m single crystal is nearly
an order of magnitude higher than that of the pcv4T thin film.
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For the aforementioned pcv4T thin film (second column) and bcv4T-m single crys-
tal structure (third column) - remember that the latter equals its thin film structure -,
charge transport is additionally analyzed in the respective direction perpendicular to
the film substrate, i.e., the direction of interest in an organic photovoltaic cell (opvc).
Since Bragg reflections in the GIXRD patterns correspond to lattice spacings perpendic-
ular to the substrate, each Bragg reflection is linked to a crystallographic direction of
interest. The GIXRD pattern of the pcv4T thin film, shown in Figure 5.13 (black curve),
has only a single dominant reflection at 12.8°, which is, however, a superposition of
two reflections at 12.7° and 13.3° observable in the bcv4T powder pattern (red curve).
The lattice spacing of the stronger and the weaker of these two reflections can be iden-
tified with the 10 0 and 10 2 crystallographic directions of the reconstructed pcv4r
thin film structure, respectively. In other words, the pcv4T thin film comprises two
preferred orientations of crystallites: a major one, defined by the 10 o direction, and
a minor one, defined by the 10 2 direction being perpendicular to the substrate. Note
that the 1 0 o direction corresponds to the a-vector in Figure 5.16 a-c (second column).
The zero-field mobilities along both directions are listed in Table 5.4 as y, and u/,
respectively, and are indicated by red stars in the left panels of Figure 5.15. The situa-
tion is very similar for the bcv4T-m thin film: again, the GIXRD pattern is dominated
by a superposed Bragg reflection, which can be identified with two crystallographic di-
rections, here the 010 and o011 directions of the Dcv4T-m single crystal structure [3].
Note that the former corresponds to the b-vector in Figure 5.16 a-c (third column).
The zero-field mobilities of both directions are analogously presented in Table 5.4 and
Figure 5.15. Comparing the results for both systems reveals a similar trend as observed
for the tensorial maximum mobility: the bcv4T-m system has nearly an order of mag-
nitude higher mobility perpendicular to the substrate than the bcv4T system.

Finally, the calculated mobilities for the pcv4T thin film (second column) and the
DCV4T-m single crystal structure (third column) - which equals its thin film structure -
are compared to experimentally measured thin film mobilities. The experimental mo-
bilities originate from organic field-effect transistors (OFET) [203] and are listed in
Table 5.4 and indicated by black stars in the left panels of Figure 5.15. As expected
and previously discussed (Section 5.1), the experimental mobilities are systematically
lower than the calculated ones since they are measured on polycrystalline samples
containing grain boundaries, which are an impediment to charge transport. In fact,
this mobility reduction is particularly strong in OFET devices, where charge transport
occurs parallel to the substrate over long distances and thus many grain boundaries.
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In opvc devices, in contrast, charge transport occurs perpendicular to the substrate
over short distances, which corresponds more closely to the simulated situation. Apart
from the expected offset, the experiments and simulations agree in yielding a higher
thin film mobility for the methylated bcv4T-m as compared to the bare bcv4T com-
pound. Moreover, opvc devices based on the methylated bcv4T-m show power con-
version efficiencies of 3.8%, while those based on the bare bcv4T exhibit 1.5% [203],
which also correlates with the calculated mobilities.
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Chapter 6.

Charge Transport Simulations in
Organic Mesophases

Among the most notable materials for building organic photovoltaic cells (Chapter 1)
is the combination of dicyanovinyl-substituted oligothiophenes (pcvnT) and buck-
minster fullerene (Cep) as a donor-acceptor pair. For instance, devices prepared from
a methylated bcvsT-m and Cgo have shown power conversion efficiencies of 6.9% [28]
and with proprietary derivatives record efficiencies of 12% have been established [27].
An important aspect for achieving these high efficiencies is the use of bulk heterojunc-
tion device architectures where the donor and acceptor compounds are mixed in a
blend layer. However, contrary to pure layers, which typically show crystalline order,
these blend layers often exhibit increased disorder [206, 210]. Due to the molecular
geometries, such disorder particularly affects the pcvnT donor domain of the blend
and deteriorates its hole transport capabilities. To study this effect, the previous charge
transport simulations in organic crystals (Chapter 5) are now complemented by sim-
ulations in organic mesophases of dicyanovinyl-substituted thiophene (pcviT) up to
sexithiophene (Dcvé6T). This series of compounds has been experimentally synthe-
sized [202, 211] and is depicted in Figure 6.1.
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Figure 6.1. Chemical structures of terminally dicyanovinyl-substituted oligothiophenes.
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6.1. Dicyanovinyl-Substituted Oligothiophenes:
Amorphous/Smectic

The present charge transport simulation study covers on the one hand amorphous
mesophases of DCV1T to DCV6T, that is, systems with completely disordered molec-
ular alignment, and on the other hand a more ordered smectic mesophase of DCV6T.
An important result for the series of amorphous systems is that increasing oligomer
length leads to increasing energetic disorder and hence to decreasing charge carrier
mobility (anti-correlation). The smectic bcv6T mesophase, however, exhibits not only
a lower energetic disorder than the amorphous pcveéT phase, but also a significantly
lower mobility (correlation). This finding is not only inconsistent but also contradicts
the common belief that a higher mesophase order should promote charge transport.
The microscopic origins of this inconsistency are elucidated by analyzing the energetic
landscapes of site energies and their interrelations to the charge transporting networks
of transfer integrals.

The study is performed by microscopic charge transport simulations (Section 4.2).
As a starting point, mesoscopic morphologies are generated as well as characterized
with respect to their disorder (Section 6.1.1). This is followed by the evaluation of the
charge transfer parameters between neighboring molecules (Section 6.1.2). Based on
the resulting Marcus rates, charge carrier dynamics is simulated leading to the charge
carrier mobilities (Section 6.1.3). The discussion concludes with the identification and
analysis of electric current pathways (Section 6.1.4). The reported scientific results
are the subject of prior publication [2], and are presented below in more detail using
partially similar terms and illustrations.

6.1.1. Morphological Disorder

The morphologies, comprising 4096 molecules, are prepared by first distributing rigid
molecules with random orientations in boxes (with periodic boundary conditions)
and then running molecular dynamics simulations (Section 4.2.2) in the isobaric-iso-
thermal ensemble. For each compound of the bcviT to Dcve6T series, an amorphous
mesophase is generated by starting with a preliminary equilibration process well above
the glass transition temperature, performed at a temperature of 800K, a pressure of
1bar, and for a duration of 10 ns, and then initiating a quenching step to 300 K, after
which a further equilibration for 10 ns takes place. A final room temperature morphol-
ogy of the bcv4T system is illustrated in Figure 6.2.
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Figure 6.2. Amorphous morphology of
DCV4T molecules at room temperature,
obtained by a molecular dynamics sim-
ulation.

For the longest oligomer, i.e., the sexithiophene pcv6T, the system is isotropic at
800K, but it spontaneously transitions into a smectic mesophase upon reducing the
temperature to 700 K. In order to avoid having defects in the smectic layers, a non-
random initial configuration is created where molecules are arranged in regular layers.
This configuration is equilibrated at 700 K for 10 ns and then quenched to 300 K, where
it is equilibrated for another 10 ns. The resulting molecular arrangement has the same
spacing between the smectic layers as the one emanating from the isotropic phase.

» Molecular Conformations During the equilibration of the systems at high tem-
peratures, cis-trans isomerization of the pcvaT molecules occurs due to the rotation of
pcv-thiophene (cc-c-ca-s) and thiophene-thiophene dihedral angles (s-ca-ca-s).
This is a consequence of the energetic barrier between cis and trans states of these di-
hedrals, which is 0.45 eV and 0.15 eV, respectively, as determined within the force field
development (Section 4.2.1). In fact, each amorphous or smectic system contains all
possible molecular rotamers arising from the combinations of the two dihedral states.
For a Dcv4T snapshot, the rotamer distribution of the 4096 molecules is exemplified
in Figure 6.3 (top panel).! This conformational, or rotameric disorder leads, due to
the acceptor-donor-acceptor molecular architecture of bcvnT molecules, to a strong
dipolar disorder. As can be seen in Figure 6.3 (bottom panel), the different conform-
ers exhibit fluctuations in their permanent molecular dipole moments of up to 15D,
as estimated from the atomic partial charges. This significant dipolar disorder is closely
related to energetic disorder, as will be discussed below.

"Note that the incidence of rotamers is roughly anti-correlated with their internal site energy (4.29) [2].
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Figure 6.3. Top panel: distribution of DCv4T rotamers in an amorphous morphology of 4096 molecules.
Bottom panel: permanent molecular dipole moments of Dcv4T rotamers, calculated from atomic partial
charges, given in units of Debye. Adapted from Reference [2].
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» Molecular Orientational Order In order to illustrate the differences in molecu-
lar ordering of the two different Dcv6T mesophases, i.e., the amorphous and smectic
DCV6T mesophases, Figure 6.4 a visualizes the molecular backbones within slices of
their morphologies.

For all systems, the molecular orientational order is quantified by means of the ori-
entational order parameter, which is zero for ideal isotropic and one for perfect parallel
alignment of the molecules. The orientational order parameter s of a system is defined
as the largest eigenvalue of its order tensor Q, given by the components

Q" = L (3utu’ - o), (6)

where the unit vectors u, with components 1, point along the direction of the molecu-
lar backbones and the averaging is performed over all molecules of the system.
Here, the unit vector is defined by the two branching carbons of the pcv groups (c),
as defined in the force field (Section 4.2.1). For the amorphous systems of bcvit to
DCV6T, the evaluation of the order tensor (6.1) yields values s < 0.1, which confirms
almost complete isotropy of the molecular orientations. For the smectic mesophase
of DCcV6T, a value of s > 0.8 is obtained, which reflects the strong orientational order.
The preferred molecular orientation in the smectic mesophase is along the x-axis, as
follows from the director, that is, the eigenvector associated with the eigenvalue s. The
exact order parameter values s are summarized in Table 6.1, together with the mass
densities d of all systems.
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Figure 6.4. (a) Morphologies of amorphous and smectic DCV6T mesophases at room temperature. The il-
lustrations show molecular backbones within 2 nm thick slices oriented perpendicular to the y-direction,
as well as to the x-direction for the smectic mesophase. (b) Cross-sections of the site energy landscapes,
visualized as density plots. The underlying hopping sites (molecular centers of mass) are indicated by
black dots. (c) Charge transporting networks based on the transfer integrals. The transfer integrals be-
tween the hopping sites are shown as bonds connecting black dots. The bond color and thickness reflects
the electronic coupling strength. Adapted from Reference [2].
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DCVIT DCV2T DCV3T DCV4T DCV5T DCV6T DCV6T smectic
s 0.02 0.02 0.02 0.02 0.06 0.04 0.81
d 1.17 1.22 1.25 1.27 1.29 1.30 1.33

Table 6.1. Orientational order parameters s, obtained from the orientational order tensors, and mass
densities d, given in units of g/cm”.

6.1.2. Charge Transfer Parameters

To construct the charge transport Hamiltonians, the morphologies are partitioned on
conjugated segments and rigid fragments (Section 4.2.3). Accordingly, the bcvnT mol-
ecules are represented by separate rigid fragments for each bcv or thiophene unit, and
by single conjugated segments, acting as the hopping sites i. The neighbor list of hop-
ping sites i and j contains molecular pairs, subject to the condition that the distance
between any pair of associated mutual rigid fragments is below a cutoff of 0.8 nm.

» Reorganization Energies Evaluating the reorganization energies (Section 4.2.6)
is performed by DFT calculations on isolated molecules using the B3LYP functional
and the 6-311G** basis set. Since the systems under consideration are homogeneous, a
universal reorganization energy A is determined for each compound. For the series of
DCVIT to DCV6T, the resulting values range from 0.17 eV to 0.23 eV, as is summarized
in Table 6.3 on Page 148. In order to estimate the error resulting from the neglect of
geometry variations in the bulk, reorganization energies are calculated for all different
DCV4T rotamers yielding a standard deviation of 0.01 eV, which is negligible.

> Site Energies The observed fluctuations in molecular dipole moments are a clear
indication of variations of the site energies. To quantify this energetic disorder in
the mesomorphic systems, the site energies E; of all molecules i are explicitly calcu-
lated from the electrostatic interaction energy including polarization effects. To this
end, electrostatic interactions are determined self-consistently between atomic partial
charges as well as induced atomic dipole moments (enabled by atomic polarizabilities)
using the Thole model (Section 4.2.5). To achieve viable runtimes for these calcula-
tions, a spherical interaction cutoff of 3.5nm is employed. For the amorphous and
smectic mesophases of DCV6T, cross-sections of the energetic landscapes are visual-
ized in Figure 6.4b. Here, the range from low to high site energies is indicated by a
color range from blue to red. As can be seen, the site energies are spatially correlated,
which is a result of the long-range nature of electrostatic interactions.
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DCV6T DCV6T smectic

z

Figure 6.5. Direction-resolved distri-
butions of neighboring hopping sites.

x x  This sketch corresponds to the set
of endpoints of all coupling vectors
shifted to the origin. Adapted from
Reference [2].

For all studied systems, the distributions of site energy differences, AE;; = E; - Ej,
for molecular pairs from the neighbor list are displayed in Figure 6.9 a on Page 148.
The widths of Gaussian functions fitted to these distributions yield the neighbor-list-
based values of energetic disorder o, as defined in (4.40), which are listed in Table 6.3.
Obviously, all systems possess substantial energetic disorder, which increases with the
number of thiophene units per molecule. As might be expected, the more ordered
smectic mesophase of Dcv6T exhibits a lower energetic disorder than the amorphous
phase of Dcve6T.

> Transfer Integrals The transfer integrals J;; between pairs of molecules i and j
from the neighbor list are determined by means of the ziNpo method (Section 4.2.4).
The topological graph defined by the transfer integrals represents a percolating net-
work for charge transport which is characteristic for each system. For the amorphous
and smectic mesophases of DCV6T, representative slices of the charge transporting net-
works are visualized in Figure 6.4 c. Here, hopping sites (molecular centers of mass)
are drawn as black spheres, while transfer integrals are represented by intermediate
bonds, whose color and thickness reflect the magnitude of the electronic coupling
strength. As can be seen, the amorphous mesophase has a spatially uniform distribu-
tion of hopping sites. Contrary to this, the smectic mesophase comprises a set of two-
dimensional layers parallel to the yz-plane with strong intra-layer, but weak inter-layer
couplings. For both systems, Figure 6.5 illustrates the direction-resolved distribution
of neighboring hopping sites, which corresponds to the set of endpoints of all coupling
vectors shifted to the origin. For a charge carrier located at the central site, the aver-
age set of accessible sites is a spherical shell in the case of the amorphous pcvéT, and
a ring with two islands in the case of the smectic bcvéT. While the ring represents
the hopping options within the same layer, the islands correspond to the neighboring
layers. Apparently the layer formation in the smectic system leads to a dimensionality
reduction of the charge transporting network.
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DCVIT DCV2T DCV3T DCV4T DCV5T DCV6T DCV6T smectic
Homo 0.40 0.35 0.30 0.25 0.24 0.22 0.21/0.11
7 1L1-107*  11-107°  6.8-10° 35.107° 85.10" 13-107" 1.8-107*

Table 6.2. Zero-field mobilities y,-o and p, calculated in the absence and presence of energetic disorder,
respectively. For the smectic DCV6T phase, it is distinguished between the directions along the x-axis and
within the yz-plane (first/second value). This distinction is waived in the presence of energetic disorder,
where the mobility becomes isotropic. All values are given in units of cm?®/Vs.

For all systems, the distributions of transfer integrals are displayed in Figure 6.9 ¢
on Page 148. The average values (J?) are listed in Table 6.3, together with the average
center-of-mass separations (r). For the smectic DCV6T system, the inter-layer and
intra-layer transfer integrals are distinguished between (first/second value reported).
A general observation is that the average electronic coupling strength is anti-correlated
with the average separations. For the amorphous DCViT to DCV6T systems, increasing
molecular chain length causes an increase in separations and a decrease in electronic
couplings. For the smectic DCV6T system, there are smaller separations and larger
electronic couplings within the layers than in between layers.

6.1.3. Charge Carrier Mobility

Based on the charge transfer parameters, the charge carrier dynamics can be studied.
In order to explore the effects of energetic disorder on charge transport, the zero-field
mobility is evaluated for each system twice. First, energetic disorder is turned off and
the zero-field mobility - is calculated from charge diffusion without external fields.
Second, energetic disorder is included and the zero-field mobility y is extrapolated
from the field-dependent charge carrier mobility, determined from charge drift-diffu-
sion under externally applied electric fields. Note that an external field is required to ac-
celerate the charge carrier motion since energetic disorder is particularly strong. Tech-
nically, the evaluation of charge carrier mobilities is based on kinetic Monte Carlo sim-
ulations (Section 4.2.7) and the relations to macroscopic observables (Section 4.2.8).
Without an external field, averages of 2000 charge displacements for diffusion times
of 107 s are carried out. When applying an electric field, its magnitude is increased in
steps of 100 from 200 to 1000 (V/cm)"/2. For each field magnitude, an averaging over
independent time intervals (of 0.1s for bcviT and pcvaT, 1s for pcv3T and pCv4T,
10's for pcvst and Dcv6T, and 10° s for the smectic pcver) for 14 field directions
(along and against the axes and main diagonals of the simulation box) is performed.
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In the absence of energetic disorder, the zero-field mobilities of all systems lie in the
range of 0.40 to 0.11cm?/Vs, as summarized in Table 6.2. Hence, the mobility is al-
most independent of both the molecular length and the mesophase ordering. When
analyzing the transfer integrals, it was found that the electronic coupling strength anti-
correlates with the average separations between molecular centers of mass. Since this
relationship is roughly linear, variations in these two quantities balance each other in
the expression for the charge carrier mobility tensor (4.48), leading to uniform mobil-
ities. It is particular noteworthy that this applies equally to the smectic system, which
does not show a substantially increased mobility as compared to the amorphous sys-
tems, not even within the smectic layers. This is due to the still disordered, i.e., liquid-
like, molecular arrangement in the smectic layers. One can generalize this finding by
stating that the charge transport efficiency depends on the local molecular ordering,
e.g., the crystallization within smectic layers, just as on the long-range ordering, e.g.,
the formation of a smectic mesophase.

In the presence of energetic disorder, the charge carrier mobilities depend exponen-
tially on the square root of the external electric field F, as is seen in the right panel of
Figure 6.6. This relationship, known as the Poole-Frenkel effect, is used to extrapolate
the zero-field mobilities, provided in the left panel as well as in Table 6.2. In the amor-
phous systems it is expectedly found that the strong energetic disorder leads to a mobil-
ity reduction by several orders of magnitude, along with a systematic mobility decrease
as the energetic disorder increases. This is in agreement with the results of Gaussian
disorder models (Section 4.1.2), where higher energetic disorder leads to lower charge
carrier mobilities. The situation is, however, markedly different in the smectic meso-
phase of bcveéT. Here, the reduction in mobility is exceptionally large, resulting in
values substantially lower than those of the amorphous DCV6T, in spite of the lower en-
ergetic disorder. This inconsistency, apparent in Figure 6.10 a on Page 149, contradicts
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both the Gaussian disorder models and the common belief that higher mesophase or-
der should improve charge transport efficiency. In order to understand this behavior,
the microscopic channels of electric current flow are analyzed below.

6.1.4. Electric Current Pathways

To identify the preferred channels of charge flow in a system, the first step is the evalu-
ation of the edge currents c;j, as defined in (4.46), for all molecular pairs i and j from
the neighbor list. Subsequently, the absolute values |c;j| are sorted and the molecular
pairs with small currents are removed until the remaining sum of currents reaches
90% of the original total current. In this way, a subset of the neighbor list is created,
containing only the molecular pairs which conduct 90% of the total current, i.e., that
contribute to the charge transport to an appreciable extent. This subset of pairs, which
is actually used by a drift-diffusing charge carrier, is only a small fraction of the total
neighbor list, as can be seen in Figure 6.7. Here, the contributing edge currents are
indicated by a filled area of the total current distribution. These contributing edge cur-
rents are visualized in Figure 6.8 a for an amorphous bcv4T morphology, where it is
clearly seen that they form filamentary pathways of electric current.

The significant reduction of molecular pairs participating in charge transport can
be attributed to the spatial correlations of site energies, caused by the long-range na-
ture of electrostatic interactions. These correlations lead to extended areas of low site
energies in which the charge carrier migration takes place. To illustrate this behavior,
Figure 6.8 b shows the current filament in combination with a cross-section of the
site energy landscape. The filament is clearly percolating within the energetic valleys,
colored in blue, while avoiding the energetically unfavorable regions, colored in red.
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Figure 6.8. (a) Edge currents contributing to 90% of the total current in an amorphous DCV4T system.
An electric field of 1000 (V/cm)"/? is applied in the z-direction. The arrowheads indicate the direction
of the current while the thickness and color of the arrowshafts reflect the current amplitude. (b) Current
filament and cross-section of the site energy landscape. Adapted from Reference [2].

On the basis of the reduced neighbor list, which contains the molecular pairs k and ¢
conducting 90% of the total current, the distributions of the site energy differences,
AEy, = Ej — Eg, are evaluated again. These distributions are displayed for all systems
in Figure 6.9b. The widths of Gaussian functions fitted to these distributions pro-
vide values of an effective energetic disorder o.g, which are summarized in Table 6.3.
Evidently, this effective energetic disorder is significantly lower than the previously de-
termined energetic disorder o, which was evaluated based on the entire neighbor list.
Hence, a first conclusion is that, even for amorphous systems, the characterization of
energetic disorder by site energies alone can be misleading.
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Figure 6.9. (a) Distributions of the site energy differences for pairs from the neighbor list (b) Effective
distributions from the reduced neighbor list. (c) Distributions of the transfer integrals for pairs from
the neighbor list. (d) Effective distributions from the reduced neighbor list. Note that Table 6.3 lists
corresponding values of energetic disorder and average transfer integrals. Adapted from Reference [2].

DCVIT DCV2T DCV3T DCV4T DCV5T DCV6T DCV6T smectic
A 0.17 0.17 0.18 0.21 0.22 0.23 0.23
G 0.254 0.278 0.290 0.299 0.327 0.347 0.328
et 0.144 0.150 0.154 0.163 0.170 0.176 0.205
() 49-107* 38-10* 31-100* 26-100* 221007 18-1007* 0.1-/4.4-107*
(e 14-107° 99.10* 76-107* 85-107* 7.1-1000*  11-107° 7.3-107*
(r) 0.88 1.02 L15 1.29 1.42 1.54 2.54/0.90
(r)est 0.81 0.91 1.02 1.10 L1 117 113

Table 6.3. Reorganization energy A, given in eV, energetic disorder ¢ and 0., given in eV, average trans-
fer integrals (J*) and (J*)efr, given in eV?, and associated average hopping site separations {(r) and (r).f,
given in nm. The effective values are calculated for pairs from the reduced neighbor list.
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Figure 6.10. (a) Zero-field mobility versus energetic disorder. (b) Zero-field mobility versus effective
energetic disorder. Adapted from Reference [2].

An even more important conclusion can be drawn when considering the smectic
DCV6T phase: this system now has an effective energetic disorder higher than that of
the amorphous pDcv6T and by far the highest of all systems. In fact, there is now a
systematic relationship between the effective energetic disorder and the charge carrier
mobility, no longer just for the set of amorphous systems, but for all systems, includ-
ing the smectic one. As is seen in Figure 6.10b, the logarithm of the mobility anti-
correlates linearly with the effective energetic disorder. This eliminates the previously
identified inconsistency, arising if the spatial correlations of the site energies and the
topologies of charge transporting networks are neglected.

One can also analyze the distributions of transfer integrals Ji, for pairs k and ¢
from the reduced neighbor list, that is, transfer integrals participating in charge trans-
port. These distributions are shown in Figure 6.9 d, while their average values (J?).g
are listed in Table 6.3. It can be seen that the distributions for the amorphous systems
are very similar. In contrast, the distribution for the smectic system shows a bimodal
character. The peak at higher values corresponds to transfer integrals within the smec-
tic layers and the peak at lower values to transfer integrals perpendicular to these layers,
which enable inter-layer hops of the charge carrier.

To summarize, the effectively higher energetic disorder and the bimodal distribu-
tion of the transfer integrals are the microscopic origins of the mobility reduction
in the smectic mesophase. The energetic landscape in both amorphous and smectic
mesophases is characterized by spatial correlations in all three dimensions. Hence,
the filamentary charge carrier pathways, which percolate within the energetic valleys,
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can be thought of as three-dimensional random walks. This is also consistent with
the observation that the mobility is practically isotropic not only in the amorphous
phases but also in the smectic phase. In the smectic phase, however, the transfer in-
tegrals between the layers are significantly smaller than those within the layers. Thus,
on a short length scale, a charge carrier is biased to migrate within the layers, that is,
within two-dimensional cross-sections of the energetic landscape. As a consequence,
the energetic disorder is effectively higher. Of course, on a longer length scale, where
the carrier follows the energetic valleys, also inter-layer hops via small transfer inte-
grals take place, which is reflected by the peak at lower values in the distribution of
transfer integrals. Ultimately, both the effectively higher energetic disorder and the
use of small transfer integrals impair the mobility in the smectic phase.



Chapter 7.
Conclusion and Outlook

This work addressed the analysis of charge transport in organic photovoltaic cells by
methods of computational chemistry. The description of charge transport took place
within the regime of charge hopping, in which the elementary processes of charge
movement are charge transfer reactions in molecular systems. The fundamental mod-
eling paradigm was the formulation of relationships between the molecular chemical
structures and the charge carrier mobilities, that is, the establishment of structure-
property relationships. Accordingly, the charge transport model which was employed
starts with the chemical structure of a specific compound and results in its mobility,
while the bridging of these entities is achieved by a workflow of multiple steps. The key
steps are the development of a force field, the generation of an atomistic material mor-
phology, the identification of hopping sites, the computation of charge transfer param-
eters, the evaluation of charge transfer rates, and the simulation of charge dynamics.
The penultimate two steps were linked by the high-temperature limit of nonadiaba-
tic charge transfer, where the charge transfer rates are defined by three parameters:
the reorganization energies, the site energy differences, and the transfer integrals. As
the entire workflow spans a wide range of lengths and time scales, its execution re-
quired computational chemistry techniques on a hierarchy of approximation, involv-
ing ab initio, semiempirical, and empirical methods.

The organic materials studied in this work belong to the novel class of dicyanovinyl-
substituted oligothiophenes (pcvnT). In addition to their industrial application in
the currently most efficient organic solar cells, the bcvnT materials are experimentally
investigated by the two collaborating work groups of Bauerle at the Institute of Organic
Chemistry II and Advanced Materials in Ulm, Germany, and Leo at the Institute for
Applied Photo Physics in Dresden, Germany. In line with experimental observations,
simulations of charge transport were performed for single crystals, thin films, and
amorphous/smectic systems of several DcvnT compounds.
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For single crystals, charge transport simulations were performed for the bare ter-
thiophene and quaterthiophene, Dcv3T and bcv4T, and their methylated derivatives,
pcv3T-m and Dcv4T-m. A first result obtained is that the acceptor-donor-acceptor
architecture of the pcvnT molecules combined with thermal fluctuations of dihedral
angles results in large fluctuations of molecular dipole moments and hence substan-
tial energetic disorder, which is unexpected for crystalline materials. A main result is
that crystal structures which are characterized by a well-defined n-stacking with large
electronic couplings and small intermolecular distances are disadvantageous for an ef-
ficient charge transport. The microscopic origins of this counterintuitive observation
were elucidated: for the bare compounds, bcv3Tt and pcv4T, the presence of a pro-
nounced m-stacking direction inhibits other transport directions and therefore leads
to a strong one-dimensional character of the respective charge transporting networks.
These network topologies turn out to be particularly inferior in combination with the
large energetic disorder since energetic defects are difficult to bypass for a charge car-
rier. Contrary, for the methylated compounds, bcv3T-m and pcv4Tr-m, the alkyla-
tion prevents the formation of pronounced nt-stacks, which leads to charge transport-
ing networks with smaller electronic couplings but a better interconnection of sites.
Charge transport in these networks is less sensitive to energetic defects and therefore
displays higher charge carrier mobilities.

For thin films, charge transport was studied for the bare and methylated quaterthio-
phenes, pcv4T and pDcv4T-m. A first result, achieved by the work group of Leo, is
that thin films of the bare bcv4T exhibit a different crystal structure than respective
single crystals, while thin films of the methylated bcv4T possess the same molecu-
lar packing as its single crystals. Interestingly, the reconstruction of the new pcv4r
thin film structure reveals a high degree of similarity to the structure of the methy-
lated DCcv4T-m system. A main result, obtained by comparing the charge transport-
ing networks, is that the reconstructed pcv4T thin film structure has no pronounced
n-stacking as present in the Dcv4T single crystal, but has an inferior interconnection
of sites than the pcv4T-m system. Accordingly, the reconstructed pcv4t thin film
structure exhibits an intermediate charge carrier mobility, which is higher than that
of the bcv4r single crystal but lower than that of the bcv4T-m thin film. This result
is fully consistent with the findings of the single crystal study and reconfirms the thus
obtained understanding of how charge carrier mobilities are microscopically consti-
tuted. When comparing the simulated mobilities to experimental OFET mobilities, it
is unanimously found that the bcv4T-m thin film has a higher mobility than the pcv4t
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thin film. This agreement also holds for mobilities perpendicular to the film substrate,
which is essential in photovoltaic cells, and also correlates with the power conversion
efficiencies of bcv4T-m- and pcv4T-based organic photovoltaic cells.

For amorphous and smectic systems, charge transport simulations were performed
for the series of thiophene to sexithiophene, DCV1T to DCV6T. A first result obtained
is that the acceptor-donor-acceptor molecular architecture combined with the large
morphological disorder results in particularly strong and spatially correlated energetic
disorder. For the amorphous systems, increasing oligomer length causes an increase
of the energetic disorder and hence a decrease of the charge carrier mobility. A main
result is that a more ordered smectic mesophase of Dcv6T exhibits less energetic disor-
der than the amorphous pDcv6T phase, but a significantly lower mobility. This behav-
ior, which is both inconsistent and contrary to the belief that increasing mesophase
order improves the mobility, was elucidated: the energetic landscape in both amor-
phous and smectic mesophases is characterized by serious barriers and valleys in the
form of three-dimensional random walks, which confines charge carrier migration
to the energetic valleys. In the amorphous phase, this percolation in the valleys is
facilitated by a charge transporting network with isotropically distributed transport
directions. In the smectic mesophase, however, the network has a two-dimensional
character with large intra-layer and small inter-layer couplings. This network topol-
ogy impedes the charge migration in two ways: on the one hand the carrier is biased to
travel within the layers, which amplifies energetic obstacles, and on the other hand the
small electronic couplings in between the layers act as bottlenecks. Both effects were
highlighted by introducing the concept of a reduced neighbor list, which disregards
inaccessible spatial system regions and thus allows effective distributions of charge
transfer parameters to be obtained. In the smectic phase, as compared to the amor-
phous one, the effective energetic disorder is higher and the effective distribution of
transfer integrals exhibits a peak at low values. A further result applying to all studied
systems is that the values of the effective energetic disorder consistently correlate with
their charge carrier mobilities.

Altogether, this work provides a profound microscopic understanding for macro-
scopic charge carrier mobilities of DcvanT materials, observed in both simulations and
experiments. Moreover, the formulated structure-property relationships can be gen-
eralized to charge transport in other organic materials which are characterized by en-
ergetic disorder and certain structural order at the same time. For this kind of mate-
rial, charge transport may not only be determined by energetic landscapes and charge
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transporting networks as individual factors, but can depend on their interrelation to a
far greater extent than often believed and previously reported. In the presented exam-
ples, such interrelations are manifested in both crystals, where energetic defects im-
pair charge transporting networks with one-dimensional character, and in a smectic
system, where energetic barriers derogate a network with two-dimensional character.
An important difference between these two situations, however, is the relative impact
of energetic landscapes and charge transporting networks. While charge transport in
the crystals can be described as network-dominated and landscape-influenced, as evi-
denced by anisotropic mobility tensors, the situation is reversed in the smectic system,
where charge transport is landscape-dominated and network-influenced, as reflected
by an isotropic mobility.

As part of the presented studies, several extensions to the methods for charge trans-
port simulations were introduced. This methodological work includes, first, contri-
butions to the implementation of the kinetic Monte Carlo method according to the
variable step size method, which was the basis for simulating charge carrier dynamics.
Second, the implementation of the tensorial evaluation of charge carrier mobilities,
which was employed for analyzing the anisotropy of charge transport and visualizing
mobility ellipsoids. Third, the implementation of an identification method for crys-
tallographic directions using a hierarchical cluster algorithm, and a link for the direc-
tional analysis of simulation data. This method was applied to determine direction-
resolved distributions of transfer integrals, hopping site distances, and charge carrier
mobilities, and to visualize charge transporting networks. Fourth, the development
and implementation of the concept of a reduced neighbor list based on the spatial sys-
tem regions, a charge carrier actually traversed. This concept allows for a detailed in-
sight into the charge carrier dynamics by linking it to the energetic disorder conquered
and the transfer integrals exploited. In addition to its usage to determine values of ef-
fective energetic disorder and effective distributions of transfer integrals, the reduced
neighbor list was utilized to visualize electric current pathways.

Beyond the employed methods for charge transport simulations, it is worth men-
tioning a number of strategies and challenges for future improvements. As discussed
in this work, both the model of charge transfer and the schemes for evaluating the
charge transfer parameters can be refined for higher accuracy, provided the issues ad-
dressed justify the higher computational effort. In this respect, the Marcus rate un-
derlying the presented studies can be substituted by more accurate rate expressions
such as the Marcus-Levich-Jortner rate, which is particularly important if the quan-
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tum nature of nuclear vibrations needs to be considered. The reorganization energies,
herein determined by a single evaluation, can also be explicitly calculated for each
pair of molecules, which is especially relevant if the variations of the reorganization
energies are comparable to the energetic disorder. The transfer integrals, in this work
computed using the semiempirical zINDo method, can alternatively be determined
by ab initio calculations and the pipro method, which may even be inevitable for
chemical compounds for which the zinpo Hamiltonian is not parametrized. The site
energies were calculated herein based on distributed monopole moments, character-
izing the Coulomb energy, as well as induced dipole moments related to distributed
isotropic polarizabilities, accounting for the induction energy due to molecular polar-
ization. Although these models of distributed low-order multipole moments allow for
reliable and robust descriptions of molecular charge densities, increased accuracy is ex-
pected by including higher-order multipole moments and anisotropic polarizabilities.
In addition, hybrid quantum-classial schemes may be employed to treat molecular
charge densities close to the sites quantum mechanically while their surroundings are
still described classically. Besides the refinement of the charge transfer parameters, a
particularly tough challenge is the reproduction, or even prediction, of realistic mor-
phologies. This difficulty arises from the many scales involved when modeling the
donor-acceptor phase segregation as well as the phase diversity observed at interfaces
and within domains. Valuable approaches in this respect are methods of systematic
coarse graining, gradual deposition of molecules, or crystal structure prediction.
With the long-term goal of a device model for organic photovoltaic cells, the im-
provement of charge transport simulations is only one among several challenges which
need to be addressed. Of particular importance is a description of exciton transport,
which benefits from existing methods, but also requires significant extensions. A spe-
cific difficulty lies in the diversity of excitonic states, including Frenkel-type, charge-
transfer, and charge-separated species as well as singlet or triplet spin configurations.
While the computation of excitonic states and energies can be achieved using advanced
methods of computational chemistry, such as many-body perturbation theory within
the Gw-approximation and the Bethe-Salpeter equation, exciton dynamics can be mod-
eled by means of Forster and Dexter energy transfer rates. Ultimately, processes of exci-
ton formation, conversion, and dissociation need to be additionally taken into account
and included in multi-particle kinetic Monte Carlo simulations for both excitons and
charge carriers. Such a multi-particle description entails further challenges since the
precalculation of rates may need to be replaced by efficient on-the-fly techniques.
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