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Abstract
In this work models capable to describe non-reactive and reactive liquid chromatography

are investigated numerically and theoretically. These models have a wide range of industrial

applications e.g. to produce pharmaceuticals, food ingredients, and fine chemicals. Two

established models of liquid chromatography, the equilibrium dispersive model and the

lumped kinetic model, are analyzed using Dirichlet and Robin boundary conditions to solve

the column balances. The models consist of systems of convection-diffusion-reaction partial

differential equations with dominating convective terms coupled via differential or algebraic

equations. The Laplace transformation is used to solve them analytically for the special case

of single component linear adsorption. Statistical moments of step responses are calculated

and compared with numerical predictions generated by using the methods studied in this

thesis for both sets of boundary conditions. For nonlinear adsorption isotherms, only

numerical techniques provide solutions. However, the strong nonlinearities of realistic

thermodynamic functions and the stiffness of reaction terms pose major difficulties for the

numerical schemes. For this reason, computational efficiency and accuracy of numerical

methods are of large relevance and a focus of this work. Another goal is to analyze the

influence of temperature gradients on reactive liquid chromatography, which are typically

neglected in theoretical studies. By parametric calculations the influence of temperature

gradients on conversion and separation processes during reactive liquid chromatography are

analyzed systematically. Additionally, the complex coupling of concentration and thermal

fronts is illustrated and key parameters influence the reactor performance are identified.

Two numerical schemes, namely the finite volume scheme of Koren and the discontinuous

Galerkin finite element method, are applied to numerically approximate the models con-

sidered. These schemes give a high order accuracy on coarse grids, resolve sharp fronts,

and avoid numerical diffusion and dispersion. Several case studies to analyze non-reactive

and reactive liquid chromatographic processes are carried out. The results of the suggested

numerical methods are validated qualitatively and quantitatively against some finite vol-

ume schemes from the literature. The results achieved verify that the proposed methods

are robust and well suited for dynamic simulations of chromatographic processes.





Zusammenfassung
In dieser Arbeit geht es um die numerische und theoretische Untersuchung von Modellen,

welche die reaktive und die nichtreaktive Flüssig-Chromatographie beschreiben. Diese

Modelle finden in einem großen Rahmen industrielle Anwendungen, z.B. bei der Pro-

duktion von Arzneimitteln, Nahrungsmitteln und Feinchemikalien. Zwei gängige Mod-

elle der Flüssig-chromatographie, das “Equilibrium Dispersive Model” und das “Lumped

Kinetic Model”, werden mit Hilfe der von Dirichlet- und Robin-Randbedingungen unter-

sucht. Die Modelle bestehen aus Systemen von partiellen Differentialgleichungen, welche

die Konvektions-Diffusions-Reaktion sprozesse beschreiben, bei denen der konvektive Term

dominiert und die mit Differentialgleichungen oder algebraischen Gleichungen gekoppelt

werden. Um diese modellgleichungen analytisch für den Spezialfall der linearen Adsorption

von Einzelkomponenten zu lösen, wird die Laplace-Transformation benutzt. Dabei werden

die statistischen Momente der Übergangsfunktion berechnet und mit den numerischen Vo-

raussagen verglichen, die mit Hilfe der hier untersuchten Methoden für beide Randbedin-

gungen gewonnen wurden. Für nichtlinearen Adsorptionsisothermen können Lösungen nur

mit numerischen Methoden gewonnen werden. Die starke Nichtlinearität von realen ther-

modynamischen Funktionen und die Steifigkeit der Reaktionsterme stellen im Allgemeinen

eine große Schwierigkeit für numerischen Methoden dar. Aus diesem Grund stehten die

Effizienz bei der Berechnung sowie die Genauigkeit der numerischen Methoden im Fokus

dieser Arbeit. Ein weiteres Ziel ist die Analyse des Einflusses von Temperaturgradienten auf

die reaktive Flüssig-chromatographie, welcher bicher in theoretischen Arbeiten nur selten

betrachtet werden. Mit Hilfe von parametrischen Berechnungen wurde der Einfluss von

Temperaturgradienten auf Konversions- und Seperationsprozesse, die während der reak-

tiven Flüssigchromatographie stattfinden, systematisch untersucht. Zusätzlich wird die

komplexe Kopplung von Konzentrations- und Wärmefronten erklärt und es die werden

Parameter identifiziert, die einen wesentlichen Einfluss auf die Reaktorleistung haben.

Zwei numerische Methoden, die Finite Volumenmethode von Koren und die diskontinuier-

liche Galerkin-Finite-Elementemethode, werden hier vorgeschlagen, um die betrachteten



Modellgleichungen numerisch zu approximieren. Diese Methoden erlauben eine hohe Genau-

igkeit auf groben Gittern, lösen scharfe Fronten auf und vermeiden numerische Diffu-

sion und Dispersion. Es wurden verschiedene Fallstudien durchgeführt, um reaktive und

nichtreaktive chromatographische Prozesse zu analysieren. Die mit den hier vorgeschlage-

nen Methoden erreichten Ergebnisse wurden qualitativ und quantitativ im Vergleich mit

von Resultaten der Finiten-Volumen-Methoden aus der Literatur validiert. Die Ergeb-

nisse zeigen, dass die hier vorgeschlagenen Methoden robust und gut geeignet sind für die

dynamische Simulation von chromatographischen Prozessen.
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Chapter 1

Introduction

This chapter presents a general overview regarding chromatographic separation processes

and limitations of existing numerical techniques for chromatographic models capable to

describe front propagation phenomena taking place in chromatographic columns. In ad-

dition, numerical solution techniques, such as finite-difference, finite-element and finite

volume methods are briefly reviewed and basic requirements on the quality of numerical

solutions are discussed. Moreover, a short summary of recent relevant results related to

the topic of this work and an outline of the thesis are presented.

1.1 Overview

The separation and purification of components of a mixture are highly important for several

industries. Examples are related to the production of pharmaceuticals, food, and fine

chemicals. Chromatography is one of the most versatile separation techniques widely used

for analysis and purification of multi-component mixtures that are difficult to separate

by conventional separation processes, such as distillation or extraction. Chromatography

is successfully applied to perform numerous complex separation processes, such as the

separation of enantiomers and the isolation from fermentation broths of proteins. It has

a potential to provide the required purities and offers high yield at reasonable production

rates. Chromatography is in particular effective for difficult separation tasks when high

purity products are demanded. The technology has gained immense industrial popularity

1



2 Chapter 1. Introduction

in the past few decades [30].

Reactive chromatography can be an attractive technique to effectively reduce the number

of units and enhance the performance of processes providing pure reaction products. In

reactive chromatography, chemical reactions and chromatographic separation of the prod-

ucts take place simultaneously in the column. This principle is comparable to reactive

distillation, reactive extraction or reactive absorption [85]. The concept is particularly

advantageous to perform equilibrium limited reversible reactions due to the separation

based shifting of chemical equilibrium allowing to improve conversion, yield and separation

efficiency. The reactive chromatography reduces capital investment, energy and operat-

ing costs, equipment sizes and waste. It improves selectivity, purity, and productivity.

Despite several theoretical investigations of reactive chromatography, accurate databases

and models are still lacking for broader commercialization. There are several reviews

available describing the principle and a few applications of chromatographic reactors, e.g.

[4, 24, 25, 80, 102]. The motivation of most current research works is to provide more

profound insight into all aspects for identifying fields of application and for scaling up the

process to industrial relevant sizes.

Chromatographic separation is based on different adsorptivities of the mixture components

to a specific adsorbent which is fixed in a chromatographic column. The simplest process

is batch chromatography involving a single packed column charged with pulses of feed

solution. The injected mixtures are carried through the column by a continuously flowing

desorbent. The components to be separated now move with different velocities in the

column due to their specific affinities with the solid phase. A low retained component

exits the column earlier than a more retained one and, hence, separation is achieved. The

illustration of the chromatography principle is given in Figure 1.1.

Chromatographic reactors were patented in the early 60’s, see e.g. [18, 26, 55]. A packed

bed chromatographic reactor (FBCR) is defined by Langer [47] as a “chromatographic

column in which a solute or several solutes are intentionally converted, either partially or

totally, to products during their residence in the column. The solute reactant or reactant

mixture is injected into the chromatographic reactor as a pulse. Both conversion to product
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Figure 1.1: A schematic illustration of the principle of non-reactive and reactive liquid
chromatography.

and separation take place in the course of passage through the column; the device is truly

both a reactor and a chromatograph”.

The basic concept of fixed-bed chromatographic reactors can be easily illustrated by con-

sidering a single chromatographic column in which a reversible reaction of the type A ⇆

B+C takes place. In reactive chromatography, rectangular pulses of reactant A are peri-

odically fed into the inert carrier stream instead of injecting mixtures in process used just

for separation. Thus, reactant A is transported through the column packed and reacts to

form the products B and C eventually supported by catalytic effects of the solid phase.

Different affinities of components B and C produce different migration velocities of the

products, which leads to their separation, suppresses the backward reaction and provides

high conversion of reactant A at the column outlet, see Figure 1.1. A very favorable situa-

tion exists for this type of reaction, when A elutes between the products B and C. Complete

conversion of A is possible provided the residence in the column is long enough.
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1.2 Early development of chromatography

Techniques affiliated to chromatography have long been practiced to purify substances, for

instance to purify dyes from plant extracts. The Russian chemist and botanist Michael

Tswett [96, 97] first used the word chromatography to describe the separation of plant

pigments. In his experiment, he used a vertical glass column packed with adsorptive mate-

rials, as alumina or silica. Afterwards, he injected a solution of plant pigments at the upper

end of the column and washed the column with an organic solvent. As a result, a series of

colored pigment bands appeared in the column, separated by regions free from pigments.

Due to these color bands, he named this method chromatography which means color writ-

ing, deduced from the Greek for color-chroma and for write-graphein. His work was largely

ignored until the work of Kuhn et al. [44] on the separation of plant pigments and the

first book published by Zechmeister and Cholnoky [106] on chromatography. The modern

form of chromatography came up in the 1940s and 1950s. A breakthrough in partition

chromatography is due to the work of Martin [57] and related to the subsequent devel-

opment of different chromatography methods such as, paper chromatography, gas-solid

and gas-liquid chromatography and various techniques of column liquid chromatography.

Further advances constantly improved the performance of chromatography and promoted

application for the separation of many complex mixtures.

1.3 Problems and motivation

Mathematical modeling has gained an immense importance in chemical process engineer-

ing. Various mathematical models, defined as an abstraction of the physical world are

developed, considering different levels of complexity to describe the processes. Due to the

exponential increase of computing power in terms of memory size and speed, numerical

simulation has increasingly become a very prominent approach to solve complex practical

problems in engineering and science. Numerical simulation provides an alternative tool

for scientific investigations instead of carrying out expensive, time-consuming or even dan-

gerous experiments in laboratories. The numerical tools are often more valuable than the
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conventional experimental methods in terms of providing more profound insights and com-

plete information that cannot be directly measured or observed [30, 81].

Standard chromatographic models contain systems of convection-diffusion partial differen-

tial equations with dominating convective terms, coupled with some algebraic equations.

Analytical solutions can be obtained in the Laplace domain for linear models. If no ana-

lytical inversion could be performed, the numerical inversion can be used to generate the

corresponding time domain solutions. Moment analysis is an effective strategy for deducing

important information about the retention equilibrium and mass transfer kinetics in the

column. Such a moment analysis approach has been found frequently instructive in the

literature [30, 41, 42, 43, 62, 63, 64, 65, 76, 82, 87]. The Laplace transformation can be

used as a basic tool to obtain moments. The numerical inverse Laplace transformation of

the equations provides complete elution profiles. The retention equilibrium-constant and

parameters of the mass transfer kinetics in the column are related more simply just to the

moments of these profiles available from the Laplace domain solution.

For nonlinear chromatographic models, analytical solutions cannot be derived. For that

reason, numerical simulations are needed to predict the dynamic behavior of chromato-

graphic columns. Therefore, computational efficiency and accuracy of a numerical method

are of large relevance. However, accurate numerical solutions are difficult to obtain due to

the strong nonlinearity introduced typically by the underlying thermodynamic algebraic

functions (adsorption isotherms). Steep concentration fronts and shock layers may occur

due to the convection dominated partial differential equations (PDEs) of chromatographic

models and, hence, efficient numerical methods are required to obtain accurate and phys-

ically realistic solutions. Moreover, the simulation of reactive chromatography is also a

challenging task for a numerical scheme because of stiffness of the reactive source terms.

These stiff terms may produce rapid variations in the solution and can render numeri-

cal methods unstable, unless the time step sizes are sufficiently small. Thus, an efficient

and accurate numerical technique is needed to avoid excessive dissipation, incorrect phase

speeds, spurious oscillations, and to capture sharp discontinuities of the elution profiles.

Thus, much effort has been invested already to develop appropriate numerical schemes for
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producing efficient and accurate solutions [30, 51, 84, 89].

Generally, three well-known classes of discretization methods can be used to simulate pro-

cesses, namely the finite difference methods (FDMs), the finite elements methods (FEMs)

and the finite volume methods (FVMs) [30]. In the method of finite differences, the model

equations are approximated by finite difference formulas and different orders of accuracies

can be achieved. An efficient algorithm named as Godunov-Rouchon [75], employs back-

ward difference for the advective term and forward differences for time evolution to solve

the model equations. This algorithm gives more reliable results for single components with

refined specific meshes than for multi-component systems using averaged meshes. More-

over, implementation of the Godunov-Rouchon algorithm in gradient-elution or in reactive

chromatography is not very convenient. In general, classical FDMs may fail at shock

discontinuities because of non-uniqueness of the solution.

Finite element methods are one of the prominent and highly effective techniques for ob-

taining approximate solutions to a wide variety of complex computational problems. The

term finite element was first coined by Clough in 1960 [8]. The first book on the FEMs

by Zienkiewicz and Chung was published in 1967 [109]. In the early 1960s, FEMs received

widespread glory and have been employed to solve a large variety of transport problems

arising in nearly every scientific and engineering problems e.g. solid mechanics, fluids flow,

heat problems, dynamics and electrostatic problems. These methods, e.g. the orthogonal

collocation finite element method (OCFEM), were already applied in the field of chro-

matography [6, 54]. FEMs are more accurate than the finite difference approach, but they

are computationally expensive, and not necessarily conservative locally. Moreover, such

methods are unable to suppress numerical oscillations in convection dominated problems.

To deal with such problems, stabilization procedures e.g. Galerkin/Least-square (GLS)

and Streamline-Upwind/Petrov-Galerkin (SUPG) can be used to eliminate overshoots and

undershoots produced by the convective term [32, 33].

The finite volume methods are well known in the computational dynamics field [20, 46,

50, 66, 68, 94]. They refer to small volumes surrounding the nodal points in the domain

and are capable of enforcing the integral form of conservation laws on each discretized cell.
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The FVMs were originally developed for nonlinear hyperbolic equations and are natural

candidates to numerically approximate such chromatographic models. The schemes give

high order accuracy on coarse grids, resolve sharp discontinuities, and avoid numerical dis-

persion which may lead to incorrect solutions [50]. FVMs, which preserve such properties,

were already applied to simulate different chromatographic processes [16, 51, 60, 103]. In

this thesis, we applied the finite volume method of Koren to chromatographic models and

validated the results with some existing finite volume schemes in the literature [34].

Discontinuous Galerkin (DG) methods belong to the class of finite element methods (FEMs)

which have several advantages over finite difference methods (FDMs) and finite volume

methods (FVMs). For instance, they inherit geometrical flexibility of FVMs and FEMs,

retain the conservation properties of FVMs, and possess the high-order properties of FEMs.

Therefore, DG-methods are locally conservative, stable, and high order accurate. These

methods satisfy the total variation boundedness (TVB) property that guarantees the pos-

itivity of the schemes [9, 11, 12, 108]. Positivity is the most common and fundamental

mathematical requirement in physical models. In our case, concentrations are non-negative

by their nature and their approximations should be non-negative as well. However, nu-

merical solutions of scientific models often generate negative and thus meaningless values.

This may happen even when the numerical method is stable and highly accurate. In fact,

the tendency to produce negative values may, paradoxically, increase with the order of

accuracy of the numerical discretization. Loss of positivity may cause a computation to

fail or produce meaningless results, especially conservation of mass can not be achieved. In

contrast to high order FDMs and FVMs, DG-methods require a simple treatment of the

boundary conditions in order to achieve high order accuracy uniformly. Moreover, DG-

methods allow discontinuous approximations and produce block-diagonal mass matrices

that can be easily inverted through algorithms of low computational cost. These methods

incorporate the idea of numerical fluxes and slope limiters in a very natural way to avoid

spurious oscillations (wiggles), which usually occur due to shocks, discontinuities or sharp

changes in the solution.

The Discontinuous Galerkin finite element method was initially introduced by Reed and
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Hill [71] for solving neutron transport equations. Afterwards, various DG-methods were

developed and formulated by Cockburn and Shu for nonlinear hyperbolic system in a series

of papers, see for example [9, 11, 12, 13]. DG-methods are being applied in the main stream

of computational fluid dynamic models [1, 2, 3, 7, 14, 31]. The DG-methods are versatile,

flexible, and have intrinsic stability making them suitable for convection dominated prob-

lems. The stability is an intrinsic property of the method to keep the solution bounded, i.e.

numerical errors (roundoff due to finite precision of computers) which are generated during

the solution of discretized equations should not be magnified. The numerical solution itself

should remain uniformly bounded. The DG-methods can be efficiently applied to partial

differential equations (PDEs) of all kinds, including equations whose type changes within

the computational domain. They were not applied to chromatographic models up to now.

In this work, the Runge-Kutta discontinuous Galerkin (RKDG) method is proposed to

solve the chromatographic processes [35].

Apart from the above mentioned numerical methods a commercial software, named gPROMS

(generalized Process Modeling System) based on difference or orthogonal collocation finite

element methods, is quite common in the chromatography community. This software is able

to solve several chemical processes, but coarse mesh points produce physically unrealistic

numerical oscillations near steep adsorption fronts and refined meshes increase the compu-

tational time [50, 61, 95]. Moreover as a black box solver, it is difficult to make changes

according to the problems requirement in the software. Therefore, search for an efficient

and accurate numerical method is imperative for the correct prediction of chromatographic

fronts with reliable accuracy and low computational time.

In this thesis, different numerical schemes are implemented and analyzed for reactive

chromatographic models. Another focus is theoretical modeling and simulation of non-

isothermal reactive liquid chromatography. Thermal effects are widely discussed in the

case of gas phase reactions in solid packings [21, 27, 40, 104, 105]. In reactive liquid

chromatography, thermal effects are typically not considered and modeling of the process

assumes that effects of heats of sorption and reaction are negligible. Only very few con-

tributions considering thermal effects can be found in the literature [77, 78, 79, 90]. The
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purpose of this work is to quantify how temperature gradients can influence conversion

and separation in reactive liquid chromatography. Additionally, the coupling of concentra-

tion and thermal fronts should be illustrated and key parameters influencing the reactor

performance should be identified.

Non-isothermal reactive chromatography can be described by a convection dominated sys-

tem of nonlinear convection-diffusion-reaction type partial differential equations and al-

gebraic equations describing thermodynamic and kinetic phenomena. The corresponding

systems have to be solved numerically because analytical solutions cannot be obtained in

such situations. The simulation of non-isothermal reactive chromatography is a challeng-

ing task for a numerical scheme due to the nonlinearity of the convection-dominated mass

and energy balance equations and because of stiffness of the reactive source terms. Finite

volume schemes were already applied in the chromatographic field [16, 34, 51, 60, 103], but

were never implemented to the complex non-isothermal reactive chromatographic model

considered in this work. This study is an effort to provide more profound insights into

various aspects of non-isothermal reactive chromatography and to contribute to improve

the performance of the process, so that it can be further developed and scaled up.

1.4 Outline of the thesis

The contents of the thesis are arranged in the following manner:

In Chapter 2, the theoretical basis related to chromatography is presented. Moreover,

different chromatographic models with model parameters and adsorption isotherms are

briefly described.

In Chapter 3, a high resolution finite volume scheme is applied for solving chromatographic

models. The third order accuracy of the finite volume scheme is verified by using Taylor

expansion of the solution. To suppress the numerical oscillations and preserve the mono-

tonicity of the scheme a minmod limiter is used. Moreover, the total variation bounded

Runge-Kutta DG-scheme is implemented for the numerical approximation of chromato-

graphic models. The scheme employs a DG-method in the axial-coordinate that converts
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the given PDE to a system of ordinary differential equations (ODEs). The resulting ODE-

system is then solved by using explicit and nonlinearly stable high order Runge-Kutta

method.

In Chapter 4, the equilibrium dispersive and a non-equilibrium adsorption lumped kinetic

model are solved analytically for linear isotherm. For this purpose, the Laplace transfor-

mation is utilized as a basic tool to transform the PDEs of the models for linear isotherms

to ODEs. The corresponding analytical solutions of EDM and LKM are obtained along

with Dirichlet and Robin boundary conditions (BCs). If no analytical inversion could be

performed, the numerical inversion is used to generate the time domain solution for differ-

ent types of boundary conditions. To analyze the considered linear models, the moment

method is employed to get expressions for retention times, band broadenings and front

asymmetries. In this thesis, a method for describing chromatographic peaks by means of

statistical moments is used and the central moments up to third order are calculated and

compared with numerically obtained moments.

Chapter 5 presents several test problems of isothermal non-reactive and reactive chro-

matographic processes under linear and nonlinear conditions. For linear models, analytical

solutions are obtained in Chapter 4, while for nonlinear models, only numerical techniques

provide solutions. Test Problems are numerically approximated by using the proposed

numerical schemes. The performance of the suggested methods is validated against avail-

able analytical solutions and some other flux-limiting schemes given in the literature. The

case studies include single-component elution, two-component elution, and displacement

chromatography on non-movable (fixed) and movable (counter-current) beds. Moreover,

practical examples of reactive chromatography are also discussed.

Chapter 6 is focused on modeling and simulation of non-isothermal reactive liquid chro-

matography [36]. The model is formed by a system of convection-diffusion-reaction partial

differential equations. To solve this problem, a flux-limiting semi-discrete high resolu-

tion finite volume scheme of Koren [39] is proposed for the numerical approximation of

non-isothermal reactive chromatographic models. The scheme discretizes the model in

axial-coordinate only, while keeps the time variable continuous. The suggested scheme
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is found to be second to third order accurate analytically and numerically in our earlier

work of this dissertation on dispersive chromatographic models [34]. Several challenging

case studies are carried out which elucidate the effect of several sources for non-isothermal

behavior. The numerical results were evaluated critically by performing consistency tests

evaluating both mass and energy balances including considerations of limiting cases, which

can be theoretically predicted.

Finally, Chapter 7 is dedicated to the conclusion, remarks and future prospectives of our

research work.

At the end of the thesis we put an appendix. Appendix A presents the derivation of first

three moments for equilibrium dispersive and lumped kinetic models using Dricihlet and

Robin boundary conditions. Appendix B provides a notation for this work.

Most of the content of this thesis is already published in several research journals.

Chapter 3 and 4 consist of

1. Javeed, S., Qamar, S., Ashraf, W., Warnecke, G., Seidel-Morgenstern, A., 2013. Analy-

sis and numerical investigation of two dynamic models of liquid chromatography. Chemical

Engineering Science 90, 17-31.

Chapter 5 summarizes the manuscripts

2. Javeed, S., Qamar, S., Seidel-Morgenstern, A., Warnecke, G., 2011. Efficient and accu-

rate numerical simulation of nonlinear chromatographic processes. Computer & chemical

Engineering 35, 2294-2305.

3. Javeed, S., Qamar, S., Seidel-Morgenstern, A., Warnecke, G., 2011. A discontinuous

Galerkin method to solve chromatographic models. Journal of Chromatography A 1218,

7137-7146.

The results presented in Chapter 6 appeared already in

4. Javeed, S., Qamar, S., Seidel-Morgenstern, A., Warnecke, G., 2012. Parametric study

of thermal effects in reactive liquid chromatography. Chemical Engineering Journal 191,

426-440.

Note that the material for this thesis has been taken from the above mentioned publications

without putting the corresponding text passages in quotation marks.



Chapter 2

Theory of Chromatography

Mathematical models of chromatographic processes are required to predict the migration

behavior of the components in the columns filled with the stationary phases. This chapter

briefly introduces chromatographic standard models describing the process on different

levels of complexity. Moreover, model parameters and adsorption isotherms are introduced.

2.1 Overview

The chromatographic standard models can be mainly divided into three categories, such

as the discrete plate models, continuous models using differential equations and statistical

variants [28].

The plate models equally divide the column length L into a finite number of well mixed

equilibrium stages or theoretical plates, in which the mobile phase is passing through each of

these stages after equilibrium is accomplished. The important examples of plate models are

the continuous plate model proposed by Martin and Synge [57] and the discontinuous plate

model by Craig [15]. In these models, axial dispersion is described by using the number

of theoretical plates and mass transfer effects are typically ignored. The chromatographic

solution profiles of both models are the same for a sufficiently high number of theoretical

plates.

Another prominent modeling approach is the use of continuous models. This approach is

based on differential mass balances of each solute in slices of the column, that leads to a

12
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set of partial differential equations. Afterwards, there is a need to find the mathematical

solution of the set of partial differential equations to describe the chromatographic behavior

in a column. Continuous models are further classified into many categories depending on

different levels of complexity of describing the mass transfer and partition processes. Var-

ious mathematical models are available in the literature for understanding and analyzing

dynamic composition fronts in chromatographic columns. The most important of these

models are the general rate model, the lumped kinetic model, the equilibrium-dispersive

model, and the ideal model of chromatography.

The third approach to modeling is a microscopic statistical method for chromatography.

The corresponding models deal with the probability density function for solute molecules

in time and space. An entire discussion on this topic is beyond the scope of this work. For

more details, the readers are referred to consult [19, 81].

2.2 Model parameters

This section focuses on the parameters entering into the chromatographic model equations

presented in the next section. Firstly, the porosity and the efficiency of a column related

to the apparent dispersion coefficient are explained. Afterwards, the adsorption isotherms

are discussed.

2.2.1 Column porosities

The chromatographic column is packed with porous particles. The volume of a column

vcol can be divided into an interstitial volume of mobile phase vm and a stationary phase

volume vst. The stationary phase volume vst can be further divided into two sub-volumes,

such as the solid volume vs and the intraparticle volume of the pores vpore. Thus, the total

volume of the column becomes

vcol = vm + vs + vpore. (2.1)
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On the basis of these volumes two types of porosities, the interstitial porosity ǫint and the

total porosity ǫ can be formulated as

Interstitial porosity: ǫint =
vm
vcol

, (2.2)

Total porosity: ǫ =
vm + vpore

vcol
. (2.3)

The volume of a column is given as

vcol =
πd2

4
L, (2.4)

where, d is diameter of a column, while L represents the length of a column. The interstitial

porosity ǫint is relevant for large molecules, while for small molecules the total porosity ǫ

can be considered. The total porosity can be estimated from the formula given below

ǫ =
t0V̇

vcol
, (2.5)

where V̇ is the actual volumetric flow rate of the mobile phase. The t0 denotes the dead

time of the column and can be calculated from the ratio of first and zeroth moments of an

elution profile of a non retained component after a pulse injection is

t0 =

∫∞

0
ctdt

∫∞

0
cdt

. (2.6)

In this work, the total porosity, c.f. Eq. (2.5), was taken into account.

The Phase ratio (F): The ratio between the volume fractions of the columns which are

occupied by the stationary vst and the mobile phases vm. Using the total porosity ǫ, it is

defined as

F =
1− ǫ

ǫ
. (2.7)

Linear velocity (u): The linear (or interstitial) velocity u can be calculated from the

subsequent formula, provided the volumetric flow rate V̇ and the total porosity ǫ are

constant.

u =
V̇

ǫπd
2

4

. (2.8)
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2.2.2 Efficiency

The efficiency of a column is related to the number of theoretical plates Nt. This number

is related to the height equivalent to a theoretical plate (HETP) as

HETP =
L

Nt
. (2.9)

The number of theoretical plates or HETP can be measured by the statistical moment

method from measured elution profiles. The n-th moment of the chromatographic band

profile denoted by C(x, t) at the exit of column bed of length x = L is

Mn =

∫ ∞

0

C(x = L, t) tndt. (2.10)

The n-th initial normalized moment is

µn =

∫∞

0
C(x = L, t) tndt

∫∞

0
C(x = L, t)dt

. (2.11)

The second central moment or the variance can be defined as

σ2 = µ
′

2 =

∫∞

0
C(x = L, t) (t− µ1)

2dt
∫∞

0
C(x = L, t)dt

. (2.12)

The number Nt can be obtained by considering the first normalized moment µ1 (c.f. Eq.

(2.11)), and the second central moment µ
′

2 or variance (σ2) (c.f. Eq. (2.12)), as

Nt =
µ2
1

σ2
. (2.13)

For uniformly packed columns with incompressible fluid flow and for an analytical peak

with near Gaussian shape, Nt can be estimated easily as

Nt = 5.54

(
tR
w1/2

)2

, (2.14)

where tR is the first initial moment of the component peak or the retention time of the

elution profile. Further, w1/2 is the peak width at half height. A dispersion coefficient Dapp

is related for efficient columns to the number of theoretical plates Nt by

Dapp =
Lu

2Nt
. (2.15)
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The HETP is a function of linear velocity u and can be correlated by the Van Deemter

equation which can be expressed as (e.g. in [98])

HETP = A+
B

u
+ Cu. (2.16)

In the above equation, A is the eddy diffusion term, B is the axial diffusion term and C is

the mass transfer resistance term. The first term A is influenced by packing imperfections

and by the particle size distributions. The second term B represents the axial diffusion of

the molecules, which can be usually ignored provided the velocity is high enough. The last

term represents a linear dependence with interstitial velocity, where C takes into account

mass transfer resistances, which are unavoidable at very high velocities.

2.2.3 Adsorption isotherms

Isotherms provide thermodynamic information for designing a chromatographic separation

processes and are important to accurately predict the development of concentration profiles

in the column. The adsorption isotherm is the equilibrium relationship between the solute

molecules in the mobile phase and the molecules adsorbed on the surface of the stationary

phase at a constant temperature. This functional relationship is essential to describe the

interactions between the components in the mixture to be separated. By evaluating the

shape of the isotherm, one can distinguish between linear chromatography and nonlinear

chromatography.

In linear chromatography, the equilibrium isotherm is defined by a linear equation given as

q∗i = aici , i = 1, 2, · · · , Nc , (2.17)

where the ai are Henry’s coefficients and Nc represent the number of components in the

sample.

In nonlinear chromatography, the equilibrium relationship between the liquid phase and

solid phase concentrations is nonlinear. A nonlinear effect occurs in most applications of

preparative chromatography. Many nonlinear adsorption isotherm models are available in

the literature, namely Langmuir, Bilangmuir, Freudlich, and Flower models [30]. Nonlinear
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Figure 2.1: Left: linear isotherm, right: nonlinear isotherm.

isotherm can have various complex forms. A special case of convex isotherm is the Langmuir

adsorption isotherm, defined for multiple component mixtures as

q∗i =
aici

1 +
Nc∑

j̃=1

bj̃cj̃

, i = 1, 2, · · · , Nc , (2.18)

where, the ai represent again the Henry’s coefficients and the bj̃ quantify the nonlinearity of

the single component isotherms. For demonstration, plots of linear and nonlinear isotherms

for a single component with a = 1 and b = 4 are displayed in Figure 2.1. At very low

concentrations, the isotherm behaves linearly due to the vanishing influence of the second

term in the denominator of Eq. (2.18), while in case of higher concentrations, the influence

of this denominator becomes significant causing the nonlinearity.

2.3 Continuous chromatographic models

This part explains four well established models of chromatographic columns, namely the

ideal model, the equilibrium-dispersive model, the lumped kinetic model, and the general

rate model of chromatography. These models can be used for both linear and nonlinear

chromatography. All considered models were derived exploiting several basic assumptions

which are listed as follows
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1. The chromatographic process is isothermal.

2. The bed is homogeneous and the packing material used in the stationary phase is

made of porous spherical particles of uniform size.

3. Radial concentration gradients in the column can be neglected.

4. Axial dispersion occurs, and causes band broadening.

5. The mobile phase is considered to be incompressible. This holds for liquid chro-

matography.

6. There is no interaction between the solvent (mobile) and the solid (stationary) phase.

2.3.1 The ideal model

The ideal model assumes that the column has an infinite efficiency. It means that the

axial dispersion is negligible i.e., Dapp = 0, and the thermodynamic equilibrium is achieved

instantaneously. The one dimensional mass balance equation for incompressible fluid and

the isotherm are given as

∂ci
∂t

+F
∂q∗i
∂t

+ u
∂ci
∂z

= 0 , i = 1, 2, · · · , Nc , (2.19)

q∗i = f (ci) . (2.20)

In the above equations, Nc represents the number of mixture components in the sample,

ci denotes the i-th liquid phase concentration, q∗i is the i-th solid concentration, c.f. Eq.

(2.18), u is the interstitial velocity, F = (1− ǫ)/ǫ is the phase ratio based on the porosity

ǫ ∈]0, 1[, t is time, and z stands for the axial-coordinate. This model provides a first

estimation of the concentration profiles but cannot predict accurately the elution profiles

for low-efficiency columns. In such situations, the contributions of the mass transfer kinetics

and axial dispersion become eminent.
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2.3.2 The equilibrium dispersive model (EDM)

The equilibrium dispersive model still assumes that the mass transfer is of infinite rate.

Moreover, all contributions due to non-equilibrium and axial dispersion are aggregated into

the corresponding apparent (lumped) dispersion coefficient Dapp. The mass balance equa-

tion of the multi-component equilibrium dispersive model for a fixed bed chromatography

column is written as

∂ci
∂t

+ F
∂q∗i
∂t

+ u
∂ci
∂z

= Dapp,i
∂2ci
∂z2

, i = 1, 2, · · · , Nc . (2.21)

Here, Dapp,i represents the i-th apparent axial dispersion coefficient. The EDM predicts the

chromatographic profiles accurately when the column efficiency is high and small particles

are used as the stationary phase in the column. The mass balance equation of the multi-

component fixed-bed chromatographic reactor (FBCR) model adds a reaction term and is

given as

∂ci
∂t

+ F
∂q∗i
∂t

+ u
∂ci
∂z

= Dapp,i
∂2ci
∂z2

+ Fνir , i = 1, 2, · · · , Nc , (2.22)

where, r is the rate of the reaction, and the νi are the corresponding stoichiometric coef-

ficients of the components. Note that, the stoichiometric coefficients νi are negative for

reactants and positive for products.

For convenience, the source term in Eq. (2.22) can be re-written as

∂ci
∂t

+ F
∂q∗i
∂t

+ u
∂ci
∂z

= Dapp,i
∂2ci
∂z2

+Qi(t, z, c) , i = 1, 2, · · · , Nc . (2.23)

The source term Qi(t, z, c) will be explicitly defined in the test problems discussed in

Chapter 5.

2.3.3 The lumped kinetic model (LKM)

The lumped kinetic model incorporates with the rate of variation of the local concentration

of solute in the stationary phase and local deviation from equilibrium concentrations. The

model lumps the contribution of internal and external mass transport resistances into a
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mass transfer coefficient k. The one-dimensional mass balance laws of a multi-component

LKM are expressed as

∂ci
∂t

+ u
∂ci
∂z

= Di
∂2ci
∂z2

−
ki
ǫ
(q∗i − qi) , (2.24)

∂qi
∂t

=
ki

1− ǫ
(q∗i − qi) , (2.25)

q∗i = f (ci) , i = 1, 2, · · · , Nc . (2.26)

This simple model accounts for the mass transfer kinetics and is more exact than the

equilibrium dispersive model.

2.3.4 The general rate model (GRM)

The GRM considers several contributions of mass transfer kinetics occurring in chromatog-

raphy. As there are several ways to describe these effects, there are many versions of this

model. Usually, axial dispersion, the mass transfer between mobile and stationary phase

and intraparticle the pore diffusion are included in the equations. Also possible limited

rates of adsorption-desorption are often still ignored. The GRM contains two mass balance

equations for the solute, one for inside the particles, and the other for outside the particles.

The mass balance for a fluid percolating through a bed of spherical particles of radius RP

is given as

ǫ
∂ci
∂t

+ u
∂ci
∂z

= ǫDi
∂2ci
∂z2

− (1− ǫ) kexp,iaP × (ci − cP,i(r = RP )) , (2.27)

where, cP,i is the concentration in the particle pores, kexp is the external mass transfer

coefficient, and aP represents the external surface area of the adsorbent particles. The

mass balance inside the particles can be given by

ǫP
∂cP,i
∂t

+ (1− ǫP )
∂q∗i
∂t

= Deff,i
1

r2
∂

∂r

(

r2
∂cP,i
∂r

)

, (2.28)

where, ǫP is the internal porosity of the particles and theDeff ,i are the effective pore diffusion

coefficients. In principle the GRM has the potential to achieve an accurate description of

chromatographic profiles. However, the implementation and the computation of the GRM
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is rather expensive and requires many input parameters. Therefore, simplified versions of

the GRM, namely the LKM and the EDM are usually applied to simulate chromatographic

separation processes. For this reason, in this dissertation, the lumped kinetic and the

equilibrium dispersive models are our main concern.

To solve the related mass balance equations given above, appropriate initial and boundary

conditions have to be specified to close the model formulations.

The Initial conditions:

The initial conditions for the liquid phase concentrations typically assume not preloaded

columns as

ci(0, z) = ciniti = ci,0(z), i = 1, 2, · · · , Nc . (2.29)

The corresponding initial conditions used in LKM for fully regenerated columns are given

as

ci(0, z) = 0, qi(0, z) = 0, i = 1, 2, · · · , Nc . (2.30)

Two types of boundary conditions are applied to solve the above second order PDE models.

Boundary conditions of type I: Dirichlet boundary conditions

The Dirichlet boundary conditions at the column inlet is

ci|z=0 = cini (t, 0) = ci,0, i = 1, 2, · · · , Nc . (2.31a)

One useful and realistic outlet condition is

ci(∞, t) = 0, i = 1, 2, · · · , Nc . (2.31b)

Boundary conditions of type II: Robin type boundary conditions

The following more accurate inlet boundary conditions is typically used for models con-

taining dispersion terms [17, 83]. This Robin type of boundary conditions are known in

chemical engineering as Danckwerts conditions

ci|z=0 = ci,0 +
Di

u

∂c

∂z

∣
∣
∣
∣
z=0

i = 1, 2, 3, · · · , Nc. (2.32a)
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These inlet conditions are usually applied together with the following outlet conditions

∂ci(L, t)

∂z
= 0. (2.32b)

Other boundary conditions can also be used to solve the model equations introduced above.

In this thesis, the lumped kinetic model and the equilibrium dispersive model are used

due to their relative simplicity and their demonstrated strength [37]. The finite volume

method of Koren and the discontinuous Galerkin method, presented in the next chapter,

are proposed to numerically approximate these chromatographic models.



Chapter 3

Numerical Schemes

Several numerical schemes have been used in the literature for the approximation of chro-

matographic models [30, 75]. This chapter presents the derivation of two numerical meth-

ods for solving fixed-bed chromatographic reactive (FBCR) models. In section 1, a high

resolution finite volume scheme introduced by Koren [39] is applied for the numerical ap-

proximation of the reactive chromatographic model. In section 2, a discontinuous Galerkin

method is derived for the numerical simulation of reactive chromatographic model.

3.1 The FVMs formulation for FBCR models

This section contains the derivation of the finite volume method of Koren to solve equilib-

rium dispersive model with reaction. The scheme is second to third order accurate in the

axial-coordinate. The order of the scheme is verified analytically during the derivation of

the scheme. For simplicity, a single component equilibrium dispersive model equation with

reaction term, c.f. Eq. (2.23), is taken into account

∂c

∂t
+ F

∂q∗

∂t
+ u

∂c

∂z
= Dapp

∂2c

∂z2
+Q(t, z, c) . (3.1)

In the Eq. (3.1), Q(t, z, c) denotes the reaction or source term which will be explicitly

defined in the test problems. If the source or reaction term set equal to zero, i.e. Q(t, z, c) =

0, then Eq. (3.1) leads to the equilibrium dispersive model (c.f. Eq. (2.21)).

23
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Let us define w := w(c) = c+ Fq∗(c) and f(c) = uc, the above equation becomes

∂w

∂t
+

∂f(c)

∂z
= Dapp

∂2c

∂z2
+Q(t, z, c) . (3.2)

Before applying the proposed numerical scheme to Eq. (3.2), it is required to discretize

the computational domain. Let N represents the number of discretization points and

(zj− 1
2
)j∈{1,··· ,N+1} are partitions of the given interval [0, L]. For each j = 1, 2, · · · , N , ∆z

is a constant width of each mesh interval, zj denote the cell centers, and zj± 1
2
refer to the

cell boundaries, (c.f. Figure 3.1). We assign,

z1/2 = 0 , zN+1/2 = L , zj+1/2 = j ·∆z , for j = 1, 2, · · ·N . (3.3)

Moreover,

zj = (zj−1/2 + zj+1/2)/2 and ∆z = zj+1/2 − zj−1/2 =
L

N + 1
. (3.4)

zj−1 zj zj+1

zj− 1
2

zj+ 1
2

z

Figure 3.1: Cell centered finite volume grid.

Let Ij :=
[
zj−1/2, zj+1/2

]
for i ≥ 1. The cell averaged initial data w0(z) in each cell is given

as

wj(0) =
1

∆z

∫

Ij

w0(z) dz , for j = 1, 2, · · ·N . (3.5)

By integrating Eq. (3.2) over the interval Ij =
[
zj−1/2, zj+1/2

]
, we obtain

∫

Ij

∂w

∂t
dz = −

(

fj+ 1
2
− fj− 1

2

)

+Dapp

((
∂c

∂z

)

j+1/2

−

(
∂c

∂z

)

j−1/2

)

+

∫

Ij

Q(t, z, c) dz .

(3.6)
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In each Ij , the averaged values of the conservative variable w(t) are given as

wj := wj(t) =
1

∆z

∫

Ij

w(t, z) dz . (3.7)

Therefore, by using Eq. (3.7) in Eq. (3.6), the following semi-discrete scheme is obtained

dwj

dt
= −

fj+ 1
2
− fj− 1

2

∆z
+

Dapp

∆z

((
∂c

∂z

)

j+ 1
2

−

(
∂c

∂z

)

j− 1
2

)

+Qj j = 1, 2, · · ·N . (3.8)

Here, N represents the number of mesh points in the domain of computations and differ-

ential terms in the diffusion part can be approximated as

(
∂c

∂z

)

j± 1
2

= ±

(
cj±1 − ci

∆z

)

. (3.9)

The next step is to approximate the convective fluxes, fj± 1
2
, in Eq. (3.8) and different

approximations give different numerical schemes. Let us exploit the following inequalities

u > 0 and f > 0.

First order scheme: In this case, the fluxes are approximated as

fj+ 1
2
= fj = (uc)j , fj− 1

2
= fj−1 = (uc)j−1 . (3.10)

This approximation gives a first order accurate scheme in the axial-direction.

High resolution schemes: To achieve higher order accuracy, a piecewise interpolation

polynomial can be used, such as

fj+ 1
2
= fj +

1 + κ

4
(fj+1 − fj) +

1− κ

4
(fj − fj−1) , κ ∈ [−1, 1] . (3.11)

Similarly, fj− 1
2
can be written as

fj− 1
2
= fj−1 +

1 + κ

4
(fj − fj−1) +

1− κ

4
(fj−1 − fj−2) , κ ∈ [−1, 1] , (3.12)

where, the parameter κ is selected from the interval [−1, 1]. Here, κ = −1 and κ = 1

give second order central schemes, while other values of κ ∈ (−1, 1) give one sided upwind

schemes. Basically, van Leer [100] is the pioneer of κ interpolation schemes.

Truncation error: The following definition is utilized for evaluating the truncation error.
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Definition: The truncation error in the interval Ωj is a residual that remains after sub-

stituting the exact solution wj into Eq. (3.8) as

τj(t) :=
dwj

dt
+

fj+ 1
2
− fj− 1

2

∆z
−

Dapp

∆z

((
∂c

∂z

)

j+ 1
2

−

(
∂c

∂z

)

j− 1
2

)

−Qj . (3.13)

Let τ (t) := [τ1(t), τ2(t), · · · , τN (t)]
T . The scheme (3.8) is called consistent of order p∗ if,

for ∆z → 0,

‖τ (t)‖ := O(∆zp∗) (3.14)

uniformly for all t. Here, ‖ · ‖ denotes a vector norm in R
N .

Let ct :=
∂c
∂t
, fz :=

∂f
∂z

and similarly the higher order derivatives. The Taylor expansions of

Eqs. (3.11) and (3.12) at point zj give after some manipulations,

f(t, zj+ 1
2
) =f(t, zj) +

∆z

2
(fz)(t, zj) +

κ∆z2

2 · 2!
(fzz)(t, zi)

+
∆z3

2 · 3!
(fzzz)(t, zj) +

κ∆z4

2 · 4!
(fzzzz)(t, zj) +O(∆z5) ,

f(t, zj− 1
2
) =f(t, zi)−

∆z

2
(fz)(t, zj) +

κ∆z2

2 · 2!
(fzz)(t, zj)

+

(

1−
3

2
κ

)
∆z3

3!
(fzzz)(t, zj) +

(

−3 −
7

2
κ

)
∆z4

4!
(fzzzz)(t, zj) +O(∆z5) .

By putting the above expressions in Eq. (3.13), we get after using Eq. (3.2)

τj(t) :=
dw(t, zj)

dt
+
f(t, zj+ 1

2
)− f(t, zj− 1

2
)

∆z
−

Dapp

∆z

((
∂c

∂z

)

j+ 1
2

−

(
∂c

∂z

)

j− 1
2

)

−Qj

=wt(t, zj) + fz(t, zj)−Dappczz(t, zj)−Qj
︸ ︷︷ ︸

=0

+

(
3

2
κ−

1

2

)
∆z2

3!
fzzz(t, zi)

+Dapp
∆z2

12
czzzz(t, zj) +O(∆z3) (3.15)

=

(
3

2
κ−

1

2

)
∆z2

3!
fzzz(t, zj)−Dapp

∆z2

12
czzzz(t, zj) +O(∆z3) .

For κ = 1
3

(

1 +Dapp
czzzz(t,zi)
fzzz(t,zi)

)

, one gets a third order accurate scheme, i.e. ‖τ (t)‖ =

O(∆z3). The disadvantage of this κ value is its comparative computational difficulty in

calculating the term
czzzz(t,zj)

fzzz(t,zj)
, especially in the case of difficult flux functions. One can



3.1. The FVMs formulation for FBCR models 27

avoid this problem by considering a higher influence of the advection term as compared

to the dispersion term and can choose κ = 1
3
. This selection of κ is also suitable for the

approximation of current advection dominated dispersive model. However, this assumption

will affect the accuracy of the scheme when the model is diffusion dominated.

Koren scheme: Here, κ = 1
3
is chosen which is third order accurate when there is no

flux-limiting as shown above. For this choice of κ, Eq. (3.11) becomes

fj+ 1
2
= fj +

1

2

(
1

3
+

2

3

fj+1 − fj
fj − fj−1

)

(fj − fj−1) . (3.16)

However, such approximations of flux terms may give negative solutions due to oscillations

in regions of strong variations. To deal with such problems, Koren [39] has used the

following Sweby-type flux-limiter [88],

fj+ 1
2
= fj +

1

2
φ
(

rj+ 1
2

)

(fj − fj−1) , (3.17)

where, rj+ 1
2
is the ratio of consecutive flux gradients

rj+ 1
2
=

fj+1 − fj + η

fj − fj−1 + η
. (3.18)

Here, η ≈ 10−10 is used to avoid division by zero and the limiting function φ is given as

φ(rj+ 1
2
) = max

(

0,min

(

2rj+ 1
2
,min

(
1

3
+

2

3
rj+ 1

2
, 2

)))

. (3.19)

Due to flux-limiting, the above scheme is second to third order accurate [39]. The scheme

gives third order accuracy for a convection dominated equilibrium dispersive model and

gives second order accuracy for a model with very small dispersion coefficient, i.e. when the

model tends to equilibrium case. The same behavior of the scheme is numerically verified

in a test problem.

Other flux-limiting schemes: Several other flux-limiting schemes are available in the

literature. These schemes are different because they involve different flux-limiting functions

[74, 100]. In these schemes, κ = −1 is used in Eqs. (3.11) and (3.12) to obtain fluxes at

the cell boundaries. For example, a limited flux at the right boundary of cell Ij is given as

fj+ 1
2
= fj +

1

2
ϕ
(

θj+ 1
2

)

(fj+1 − fj) . (3.20)
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Table 3.1: Different flux limiters used in (3.20).
Flux limiter Formula

van Leer ([100]) ϕ(r) = |r|+r
1+|r|

Superbee ([74]) ϕ(r) = max (0,min(2r, 1),min(r, 2))
Minmod ([74]) ϕ(r) = max (0,min(1, r))
MC ([100]) ϕ(r) = max

(
0,min

(
2r, 1

2
(1 + r), 2

))

In similar manner, the left cell-boundary flux can be approximated. Here, θj+ 1
2
is the ratio

of consecutive flux gradients

θj+ 1
2
=

fj − fj−1 + η

fj+1 − fj + η
. (3.21)

A few well known flux limiters are selected in this study which are listed in Table 3.1. The

efficiency and accuracy of the Koren scheme will be analyzed against these schemes for

selected test problems.

Scheme strategy at the boundaries: The approximations (3.17) and (3.20) are not ap-

plicable to the boundary intervals. Let us consider the left boundary with inflow boundary

condition. The position of the interval face z 1
2
and inflow boundary are identical. However,

z0 is not known, therefore Eqs. (3.17) and (3.20) are not applicable at z 3
2
. To overcome

this problem, the first order approximation (3.10) can be practiced at the cell interfaces z 3
2

and zN+ 1
2
. Let f in indicates the injected flux, then

f 1
2
= f in , f 3

2
= f1, fN+ 1

2
= fN . (3.22)

z1 z2 zN−1 zN

z 1
2

z 3
2

zN− 1
2

zN+ 1
2

z z

a. Inflow. b. Outflow.

Figure 3.2: Grids near the boundaries.

The fluxes at other cell interfaces can be computed by using Eqs. (3.17) or (3.20). However,

the use of a first order scheme in the boundary intervals would not effect the global accuracy

of the method.
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At each time step, the liquid concentration c is needed for updating the values of isotherm

q∗(c) and flux f(c) = uc. However, Eq. (3.8) gives the updated values of wj(t) = cj(t) +

Fq∗j (c) in each mesh interval Ωj . Therefore, the chain rule can be used in Eq. (3.8) which

gives for j = 1, 2, · · · , N

dcj
dt

= −

(

1 + F

(
dq∗

dc

)

j

)−1 [
fj+ 1

2
− fj− 1

2

∆z
−

Dapp

∆z

((
∂c

∂z

)

j+ 1
2

−

(
∂c

∂z

)

j− 1
2

)

−Qj

]

.

(3.23)

The resulting system of ODEs can be solved by using any standard ODE-solver. In this

dissertation, the Runge-Kutta 45 method was used to solve the ODE-system, c.f. Eq.

(3.23).

3.2 The DG method formulation for FBCR models

In this section, the TVB Runge-Kutta DG-scheme of Cockburn [9] and Qiu et al. [70] is

implemented for solving the FBCR model given in Eq. (3.1). Firstly, we suitably rewrite

the original system as a degenerate (transformed) first-order system to obtain the weak

formation for deriving the numerical scheme. Then, the TVB Runge-Kutta DG-scheme is

applied in axial-coordinate that converts the given PDE to an ODE-system. The resulting

ODE-system is approximated by using the TVB Runge-Kutta method. For convenience,

one-component FBCR model is considered and is given as

∂c

∂t
+ F

∂q∗

∂t
+ u

∂c

∂z
= Dapp

∂2c

∂z2
+Q(t, z, c) . (3.24)

Let us re-write the above equation as

∂

∂t
(c+ Fq∗(c)) +

∂

∂z

(

uc−Dapp
∂c

∂z

)

= Q(t, z, c) (3.25)

and define

w(c) := c+ Fq∗(c) , g(c) :=
√

Dapp
∂c

∂z
, f(c, g) := uc−

√

Dappg(c) . (3.26)



30 Chapter 3. Numerical Schemes

Then, Eq. (3.25) changes to the following system of PDEs

∂w

∂t
= −

∂f

∂z
+Q(t, z, c) , (3.27)

g =
√

Dapp
∂c

∂z
. (3.28)

The axial-length variable z is discretized as follows. For j = 1, 2, 3, ....N , let zj+ 1
2
be the

cell partitions, Ij =]zj− 1
2
, zj+ 1

2
[ be the domain of cell j, ∆zj = zj+ 1

2
− zj− 1

2
be the width

of cell j, and I = UIj be the partition of the whole domain. We seek an approximate

solution wh(t, z) to w(t, z) such that for each time t ∈ [0, T ], wh(t, z) belongs to the finite

dimensional space

Vh =
{
v ∈ L1(I) : v|Ij ∈ P p(Ij), j = 1, 2, 3, ....N

}
, (3.29)

where P p(Ij) denotes the set of polynomials of degree up to p defined on the cell Ij . Note

that in Vh, the functions are allowed to have jumps at the cell interface zj+ 1
2
. In order

to determine the approximate solution wh(t, z), a weak formulation is needed. To obtain

weak formulation, Eqs. (3.27) and (3.28) are multiplied by an arbitrary smooth function

v(z) followed by integration by parts over the interval Ij , we get

∫

Ij

∂w(t, z)

∂t
v(z)dz =−

(

f(cj+ 1
2
, gj+ 1

2
)v(zj+ 1

2
)− f(cj− 1

2
, gj− 1

2
)v(zj− 1

2
)
)

+

∫

Ij

(

f(c, g)
∂v(z)

∂z
+Q(t, z, c)v(z)

)

dz, (3.30)

∫

Ij

g(c)v(z)dz =
√

Dapp

(

cj+ 1
2
v(zj+ 1

2
)− cj− 1

2
v(zj− 1

2
)
)

−
√

Dapp

∫

Ij

c(z)
∂v(z)

∂z
dz.

(3.31)

One way to implement (3.29) is to choose Legendre polynomials, Pl(z), of order l as local

basis functions. In this case, the L2-orthogonality property of Legendre polynomials can

be exploited, namely

1∫

−1

Pl(s)Pl′(s) =

(
2

2l + 1

)

δll′ . (3.32)



3.2. The DG method formulation for FBCR models 31

For each z ∈ Ij , the solution wh and gh can be expressed as

wh(t, z) =

p
∑

l=0

w
(l)
j ϕl(z) , gh(ch(t, z)) =

p
∑

l=0

g
(l)
j ϕl(z), (3.33)

where

ϕl(z) = Pl (2(z − zj)/∆zj)) , l = 0, 1, ..., p. (3.34)

If p = 0 the approximate solution wh uses the piecewise constant basis functions, if p = 1

the linear basis functions are used, and so on. In this thesis the linear basis functions were

taken into account, therefore l = 0, 1.

By using Eqs. (3.32)-(3.34), it is easy to verify that

w
(l)
j (t) =

2l + 1

∆zj

∫

Ij

wh(t, z)ϕl(z)dz , g
(l)
j (t) =

2l + 1

∆zj

∫

Ij

gh(ch)ϕl(z)dz . (3.35)

Then, the smooth function v(z) can be replaced by the test function ϕl ∈ Vh and the

exact solutions w and g by the approximate solutions wh and gh. Moreover, the function

f(cj+ 1
2
, gj+ 1

2
) = f(c(t, zj+ 1

2
), g(cj+ 1

2
)) is not defined at the cell interface zj+ 1

2
. Therefore,

it has to be replaced by a numerical flux that depends on two values of ch(t, z), at the

discontinuity, i.e.,

f(cj+ 1
2
, gj+ 1

2
) ≈ hj+ 1

2
= h(c−

j+ 1
2

, c+
j− 1

2

) . (3.36)

As g := g(c), it can be dropped from the arguments of h for simplicity. Here,

c−
j+ 1

2

:= ch(t, z
−
j+ 1

2

) =

p
∑

l=0

c
(l)
j ϕl(zj+ 1

2
) , c+

j− 1
2

:= ch(t, z
+
j− 1

2

) =

p
∑

l=0

c
(l)
j ϕl(zj− 1

2
) . (3.37)

Using the above definitions, the weak formulations (3.30) and (3.31) simplify to

dw
(l)
j (t)

dt
=−

2l + 1

∆zj

(

hj+ 1
2
ϕl(zj+ 1

2
)− hj− 1

2
ϕl(zj− 1

2
)
)

+
2l + 1

∆zj

∫

Ij

(

f(ch, gh)
dϕl(z)

dz
+Q(t, z, c)ϕl(z)

)

dz , (3.38)

g
(l)
j (t) =

2l + 1

∆zj

√

Dapp




cj+ 1

2
ϕl(zj+ 1

2
)− cj− 1

2
ϕl(zj− 1

2
)−

∫

Ij

ch(t, z)
dϕl(z)

dz
dz




 . (3.39)
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At each time step, the liquid concentration c is needed for updating the values of the

isotherm q∗(c) and flux f(c, g(c)). However, Eq. (3.38) gives the updated values of wj =

cj(t) +Fq∗j (c) in each mesh interval Ij. Therefore, the chain rule can be used in Eq. (3.38)

and the system of ordinary differential equations in terms of cj can be obtained. Thus, the

scheme in Eqs. (3.38) and (3.39) takes the following form

dc
(l)
j (t)

dt
= −

(

1 + F

(
dq∗

dc

)(l)

j

)−1
2l + 1

∆zj

[

hj+ 1
2
ϕl(zj+ 1

2
)− hj− 1

2
ϕl(zj− 1

2
)
]

+

(

1 + F

(
dq∗

dc

)(l)

j

)−1
2l + 1

∆zj

∫

Ij

(

f(ch, gh)
dϕl(z)

dz
+Q(t, z, c)ϕl(z)

)

dz ,

(3.40)

g
(l)
j (t) =

2l + 1

∆zj

√

Dapp




cj+ 1

2
ϕl(zj+ 1

2
)− cj− 1

2
ϕl(zj− 1

2
)−

∫

Ij

ch(t, z)
dϕl(z)

dz
dz




 . (3.41)

The initial data for the above system are given as, c.f. Eq. (3.35),

c
(l)
j (0) =

2l + 1

∆zj

∫

Ij

c(0, z)ϕl(z)dz , g
(l)
j (0) = g(c

(l)
j (0)) . (3.42)

It remains to choose the appropriate numerical flux function h. The above equation defines

a monotone scheme if the numerical flux function h(a, b) is consistent, h(c, c) = f(c, g(c)),

and satisfies the Lipschitz continuity condition, i.e. h(a, b) is a non-decreasing function of

its first argument and non-increasing function of its second argument. In other words, a

scheme is called monotone if it preserves the monotonicity of the numerical one-dimensional

solution when passing from one time step to another. The following numerical fluxes are

available in the literature, that satisfy the above mentioned properties [46, 50, 107].

(i) The Godunov flux:

hG(a, b) =

{
mina≤n≤b f(n, g(n)) if a ≤ b,
maxa≥n≥b f(n, g(n)) if a > b.

(3.43)

(ii) The Lax-Friedrichs flux:

hLF (a, b) =
1

2
[f(a, g(a)) + f(b, g(b))− C(b− a)], C = max

inf n0(x)≤s≤supn0(x)
|f ′(s, g(s))| .(3.44)
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(iii) The Local Lax-Friedrichs flux:

hLLF (a, b) =
1

2
[f(a, g(a)) + f(b, g(b))− C(b− a)], (3.45)

C = max
min (a,b)≤s≤max (a,b)

|f ′(s, g(s))| . (3.46)

(iv) The Roe flux with ‘entropy fix’:

hR(a, b) =







f(a, g(a)), if f ′(n, g(n)) ≥ 0 for n ∈ [min(a, b),max(a, b)] ,
f(b, g(b)), if f ′(n, g(n)) ≤ 0 for n ∈ [min(a, b),max(a, b)] ,

hLLF (a, b) otherwise .
(3.47)

In this thesis, we used the Local Lax-Friedrich flux for the investigated models. The Gauss-

Lobatto quadrature rule of order 10 was used to approximate the integral terms appearing

on the right-hand-side of (3.40) and (3.41).

In order to achieve the total variation stability, some limiting procedure has to be intro-

duced. For that purpose, it is needed to modify c±
j+ 1

2

in (3.36) by some local projection.

For more details, readers are referred to see e.g. [9]. To this end, we write (3.37) as

c−
j+ 1

2

= c
(0)
j + c̃j , c+

j− 1
2

= c
(0)
j − ĉj , (3.48)

where

c̃j =

p
∑

l=1

c
(l)
j ϕl(zj+ 1

2
) ĉj = −

p
∑

l=1

c
(l)
j ϕl(zj− 1

2
) . (3.49)

In this study, we consider the linear basis functions, therefore l=0,1. In above equation,

when p = 0, c̃j = ĉj = 0 and when p = 1, c̃j = ĉj = 6c
(1)
j etc.

Next, c̃j and ĉj can be modified as

c̃
(mod)
j = mm

(

c̃j ,∆+c
(0)
j ,∆−c

(0)
j

)

, ĉ
(mod)
j = mm

(

ĉj ,∆+c
(0)
j ,∆−c

(0)
j

)

, (3.50)

where, ∆± := ±(cj±1 − cj) and mm is the usual minmod function defined as

mm(a1, a2, a3) =

{

s · min
1≤i≤3

|ai| if sign(a1) = sign(a2) = sign(a3) = s ,

0 otherwise .
(3.51)

Then, Eq. (3.48) modifies to

c
−(mod)

j+ 1
2

= c
(0)
j + c̃

(mod)
j , c

+(mod)

j− 1
2

= c
(0)
j − ĉ

(mod)
j (3.52)
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and replace (3.36) by

hj+ 1
2
= h(c

−(mod)

j+ 1
2

, c
+(mod)

j− 1
2

) . (3.53)

This local projection limiter does not affect the accuracy in the smooth regions and conver-

gence can be achieved without oscillations near shocks, see e.g. [9]. Finally, a Runge-Kutta

method that maintains the TVB property of the scheme is needed to solve the resulting

ODE-system. Let us rewrite Eqs. (3.40) and (3.41) in a concise form as

dch
dt

= Lh(ch, t) . (3.54)

Then, the r-order TVB Runge-Kutta method can be used to approximate Eq. (3.54)

(ch)
p =

p−1
∑

l=0

[
αpl(ch)

(l) + βpl∆tLh((ch)
(l), ts + dl∆t)

]
, p = 1, 2, · · · , r , (3.55)

where based on Eq. (3.42)

(ch)
(0) = (ch)

s , (ch)
(r) = (ch)

s+1 . (3.56)

where, s is the s-th time step. For second order TVB Runge-Kutta method the coefficient

are given as (e.g. [9])

α10 = β10 = 1 , α20 = α21 = β21 =
1

2
, β20 = 0; d0 = 0 , d1 = 1 . (3.57)

While, for the third order TVB Runge-Kutta method the coefficient are given as

α10 = β10 = 1 , α20 =
3

4
, β20 = 0 , α21 = β21 =

1

4
, α30 =

1

3

β30 = α31 = β31 = 0 , α32 = β32 =
2

3
; d0 = 0 , d1 = 1 , d2 =

1

2
. (3.58)

The CFL condition is given as, [9],

∆t ≤

(
1

2p+ 1

)

min

(

1 + F

(
dq

dc

)(0)

j

)

min

(
∆zj
u

,
∆z2j
2Dapp

)

, (3.59)

where, p = 1, 2 for second and third order schemes, respectively.
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Boundary conditions: Let us put the boundary at z− 1
2
= 0. The left boundary condition

given by Eqs. (2.32a) and (2.32b) can be implemented as

c−
− 1

2

(t) = c
(0)
0 +

D

u

c
(0)
1 − c

(0)
0

∆z
, (3.60)

c̃
(mod)
0 = mm

(

c̃0,∆+c
(0)
0 , 2

(

c
(0)
0 − cin

))

, ĉ
(mod)
0 = mm

(

ĉ0,∆+c
(0)
0

)

. (3.61)

Outflow boundary condition is used on the right end of the column, c
(l)
N+1 = c

(l)
N .

In the following chapters, the above models and corresponding numerical schemes will be

used for the simulation of selected chromatographic processes and operation regimes. Re-

turning to the main chromatographic models considered in this work, namely the EDM

and the LKM, can be further classified into two sub-models, i.e., the isotherm function

q∗i = f (ci), depending on the thermodynamic properties. The first simpler case is related

to linear isotherm, Eq. (2.17). In such situations, there exist the possibility to solve the

equation of the EDM and LKM analytically. This will be demonstrated in Chapter 4.

In this chapter, also reduced models based on the statistical moments will be introduced

and provided analytically. The analytical solution give the opportunity for critical valida-

tion of the numerical predictions using the schemes discussed in the current chapter. The

second, more difficult sub-model corresponds to nonlinear isotherm Eq. (2.18). In case

of nonlinear isotherm, no analytical solution can be acquired. Therefore, a validation of

numerical schemes can be done only by comparing with predictions of the schemes. In

Chapter 5, schemes are applied to numerically approximate multi-component nonlinear

chromatographic model equations. The numerical schemes once validated for single com-

ponent linear adsorption in Chapter 4, are seen as powerful tools to simulate a wide range

of processes, c.f. Chapter 5.



Chapter 4

Analytical Solution and Moment
Analysis for Linear Models

This chapter is concerned with the analytical solution of two established models for sim-

ulating liquid chromatographic processes namely, the equilibrium dispersive and lumped

kinetic models. The models are analyzed using Dirichlet and Robin boundary conditions

for linear isotherms. The Laplace transformation is applied to solve these models analyti-

cally for single component adsorption under linear conditions. Statistical moments of step

responses are calculated and compared with the numerical predictions for both types of

boundary conditions.

4.1 The lumped kinetic model (LKM)

The mass balance law of a single component LKM is expressed as

∂c

∂t
+ u

∂c

∂z
= D

∂2c

∂z2
−

k

ǫ
(q∗ − q) , (4.1)

∂q

∂t
=

k

1− ǫ
(q∗ − q) . (4.2)

The three characteristic times in the model Eqs. (4.1)-(4.2) are defined as

τC =
L

u
, τD =

D

u2
, τMT =

1

k
. (4.3)

The ratios of these characteristic times provide dimensionless quantities as

τ̃1 =
τC
τD

=
Lu

D
, τ̃2 =

τC
τMT

=
Lk

u
. (4.4a)

36
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Here, τ̃1 typically is frequently called the Peclet number Pe

Pe = τ̃1 =
Lu

D
, (4.4b)

where L denotes the length of the column.

For diluted systems or small concentrations, linear isotherms is used and is defined as

q∗ = ac . (4.5)

The equilibrium dispersive model (EDM)-a limiting case of LKM

The basic assumption of EDM is that the kinetics of mass transfer in the chromatographic

column and the kinetics of adsorption-desorption are faster. In Eqs. (4.1) and (4.2), k is

the mass transport coefficient. As the value of k becomes larger, i.e. k → ∞, the model

Eqs. (4.1)-(4.2) change to the equilibrium dispersive model
(
∂q
∂t

= ∂q∗

∂t

)
as given below

∂c

∂t
+ F

∂q∗

∂t
+ u

∂c

∂z
= Dapp

∂2c

∂z2
. (4.6)

Here, F is the phase ratio related to porosity, i.e. F = 1−ǫ
ǫ
, Dapp is the apparent dispersion

coefficient related to the Peclet number by Pe = Lu/Dapp.

4.2 Analytical solutions of EDM and LKM for linear

isotherm

In this section, single component (Nc = 1) linear chromatographic models are considered.

Analytical solutions are derived in a Laplace domain for linear isotherms (Eq. (4.5)) with

Dirichlet (Eq. (2.31a)) and Danckwerts (Eq. (2.32a)) inlet boundary conditions. To simplify

the notations, we consider c(x, t) = c1(x, t).

4.2.1 Analytical solution of EDM

The Laplace transformation is defined as

C(x, s) =

∞∫

0

e−stc(x, t)dt, s > 0. (4.7)
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After normalizing Eq. (4.6) by defining

x = z/L Pe = Lu/Dapp (4.8)

and by applying the Laplace transformation Eq. (4.7) to Eq. (4.6) with Nc = 1 and cinit(t =

0, z) = 0, we obtain
d2C

dx2
− Pe

dC

dx
− sPe

L

u
(1 + aF )C = 0 . (4.9)

The solution of this equation is given as

C(x, s) = A exp(λ1x) +B exp(λ2x), (4.10)

λ1,2 =
Pe

2
∓

1

2

√

Pe2 + 4Pe
L

u
(1 + aF )s . (4.11)

After applying the Dirichlet boundary conditions in Eqs. (2.31a) and (2.31b), the values

of A and B are given as

A =
c0
s
, B = 0. (4.12)

Then, Eq. (4.10) takes the following simple form

C(x, s) =
c0
s
exp

(

Pe

2
−

1

2

√

Pe2 + 4Pe
L

u
(1 + aF )s

)

x. (4.13)

The solution in the time domain c(x, t), can be obtained by using the exact formula for

the back transformation as

c(x, t) =
1

2π i

γ+i∞∫

γ−i∞

etsC(x, s)ds , (4.14)

where, γ is a real constant that exceeds the real part of all singularities of C(x, s). On

applying Eq. (4.14) to Eq. (4.13), we obtain

c(x, t) =
c0
2
erfc





√

Pe

2

L/u(1 + aF )x− t
√

L
u
t(1 + aF )



+
c0
2
exp(xPe)erfc





√

Pe

2

L/u(1 + aF )x+ t
√

L
u
t(1 + aF )



 ,

(4.15)

where, erfc denotes the complementary error function.
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If we consider the second set of boundary conditions given by Eqs. (2.32a) and (2.32b), the

values of A and B take the following forms

A =
c0
s

λ2 exp(λ2)

(1− λ1

Pe
)λ2 exp(λ2)− (1− λ2

Pe
)λ1 exp(λ1)

, (4.16)

B =
−c0
s

λ1 exp(λ1)

(1− λ1

Pe
)λ2 exp(λ2)− (1− λ2

Pe
)λ1 exp(λ1)

. (4.17)

With these values A and B, the back transformation of Eq. (4.10) is not doable analytically.

However, well established numerical inverse Laplace transformation could be used to get

c(x, t). In this work, the Fourier series approximation of Eq. (4.14) is used [73].

4.2.2 Analytical solution of LKM

After applying the Laplace transformation to the single component LKM with Dirichlet

boundary conditions, The Eqs. (4.1) and (4.2) take the forms

d2C

∂x2
− Pe

dC

dx
−

PeL

u
Cs−

L2

ǫD
akC +

L2

ǫD
kQ̃ = 0, (4.18)

sQ̃ =
k

1− ǫ
(aC − Q̃) ⇒ Q̃ =

ka
(1−ǫ)

s+ k
(1−ǫ)

C. (4.19)

On putting the value of Q̃ in Eq. (4.18), we obtain

d2C

∂x2
− Pe

dC

dx
− Pe

L

u
Cs−

L2

ǫD
akC +

L2

ǫD

k2a
(1−ǫ)

s+ k
(1−ǫ)

C = 0 , (4.20)

or

d2C

∂x2
− Pe

dC

dx
−

(

Pe
L

u
s−

L2

ǫD

k2a
(1−ǫ)

s+ k
(1−ǫ)

+
L2

ǫD
ak

)

C = 0. (4.21)

Thus, the Laplace domain solution is given as

C(x, s) = A exp(λ1x) +B exp(λ2x), (4.22)

where

λ1,2 =
Pe

2
∓

√
√
√
√

(
Pe

2

)2

+

(

Pe
L

u
s−

L2

ǫD

k2a
(1−ǫ)

s+ k
(1−ǫ)

+
L2

ǫD
ak

)

. (4.23)
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For the simplified boundary conditions, Eqs. (2.31a) and (2.31b), we have again

A =
co
s
, B = 0. (4.24)

Using these values of A and B in Eq. (4.22), we obtain

C(x, s) =
co
s
exp




Pe

2
−

√
√
√
√

(
Pe

2

)2

+

(

Pe
L

u
s−

L2

ǫD

k2a
(1−ǫ)

s + k
(1−ǫ)

+
L2

ǫD
ak

)

 x , (4.25)

or

C(x, s) =
co
s
exp




Pe

2
−

1

2

√
√
√
√Pe2 + 4Pe

L

u
s

(

1 +
aF

1 + s(1−ǫ)
k

)

 x . (4.26)

For sufficiently large values of k in Eq. (4.26), i.e. when k → ∞, the transformed solution

C(x, s) for LKM becomes the solution of EDM given by Eq. (4.13). Once again, the

numerical inverse Laplace transformation is employed to find the original solution c(x, t)

of Eq. (4.26).

For Danckwerts boundary conditions in Eqs. (2.32a) and (2.32b), the solution in the Laplace

domain takes the same form as given by Eq. (4.22). The values of A and B are provided

by Eqs. (4.16) and (4.17), whereas, λ1,2 can be found in Eq. (4.23). The numerical inverse

Laplace transformation was employed to find the original solution c(x, t).

4.3 Reduced EDM and LKM: Moment models

Moment analysis is an effective strategy for deducing important information about the

retention equilibrium and mass transfer kinetics in the column [30, 43, 64, 65, 76, 82, 86].

The Laplace transformation can be used as a basic tool to obtain moments. The numerical

inverse Laplace transformation of the equations provides the optimum solution, but this

solution is not helpful to study the behavior of chromatographic band in the column. The

retention equilibrium-constant and parameters of the mass transfer kinetics in the column

are related to the moments in the Laplace domain. In this section, a method for describing

chromatographic peaks by means of statistical moments is used and the central moments

up to third order are calculated for two sets of boundary conditions. The moment of an
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elution profile response to pulse inputs at the exit of chromatographic bed of length x = L

is

µn =

∫ ∞

0

C(x = L, t) tndt. (4.27)

The n-th initial normalized moment is

µn =

∫∞

0
C(x = L, t) tndt

∫∞

0
C(x = L, t)dt

. (4.28)

The n-th central moment is

µ
′

n =

∫∞

0
C(x = L, t) (t− µ1)

ndt
∫∞

0
C(x = L, t)dt

. (4.29)

In this study, the first three moments are calculated for the equilibrium dispersive and

lumped kinetic models. The formulas for the finite moments µ0, µ1, µ
′

2, µ
′

3 corresponding

to the EDM and LKM with both sets of boundary conditions are given in Table 4.1.

Complete derivations of these moments for EDM and LKM are presented in Appendix A.

It is well known that the first moment µ1 corresponds to the retention time tR. The value

of the equilibrium constant a can be estimated from the slopes of a straight lines, µ1 = tR

over 1/u for constant column length and porosity. It is shown (c.f. Table 4.1) that effects

of longitudinal diffusion are not significant with respect to retention time or first moment.

The second central moment µ2 or the variance of the elution breakthrough curves or peaks

provides significant information related to mass transfer processes in the column. The

quantitative value of µ2 or variance indicates the band broadening or width of breakthrough

curves or peaks and helps to calculate the HETP (height equivalent to theoretical plates).

A zeroth value of third statistical moment µ
′

3 designates symmetric curves. Finally, the

third central moment µ
′

3 was analyzed which evaluates front asymmetries. The second and

the third central moment for the more general Danckwerts BCs reduce to the moments for

the Dirichlet BCs in case Dapp approaches to zero. A comparison of analytical moments

and numerical moments obtained by the proposed numerical scheme is given in the next

section.
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Table 4.1: Analytically determined moments for EDM and LKM for x = 1 and c0 = 1, µ0 = 1 and µ1 =
L
u
(1 + aF ).

models and BC’s µ
′

2 µ
′

3

EDM (Dirichlet) 2LDapp(1+aF )2

u3

12LD2
app

u5 (1 + aF )3

EDM (Danckwerts) 2LDapp

u3 (1 + aF )2
[

1 + Dapp

Lu

(
e−Lu/Dapp − 1

)] 12LD2
app(1+aF )3

u5

[(

1 + 2Dapp

Lu

)

e−Lu/Dapp +
(

1− 2Dapp

Lu

)]

LKM (Dirichlet) 2LD(1+aF )2

u3 + 1
k

(
2LaF (1−ǫ)

u

)
12LD2

u5 (1 + aF )3 + 1
k

(
12LD(1+aF )aF (1−ǫ)

u3

)

+ 1
k2

(
6LaF (1−ǫ)2

u

)

LKM (Danckwerts) 2LD
u3 (1 + aF )2

[
1 + D

Lu

(
e−Lu/D − 1

)]
+ 1

k

(
2LaFǫ

u

) 12LD2(1+aF )3

u5

[(
1 + 2D

Lu

)
e−Lu/D +

(
1− 2D

Lu

)]

+ 1
k

[
12LDaF 2ǫ(1+aF )

u3

(
D
Lu
e−Lu/D + 1− D

Lu

)]

+ 1
k2

(
6LaF 3ǫ2

u

)



4.4. Numerical test problems 43

4.4 Numerical test problems

Single component breakthrough curves for linear isotherms

In this chapter, only single component breakthrough curves with linear isotherms are con-

sidered. To validate the results, several numerical test problems are taken into account.

The DG-method and the finite volume scheme of Koren already discussed in Chapter 3 for

EDM is employed to solve the test problems. The Koren scheme is flux-limiting second to

third order accurate in space coordinate and guarantees the positivity of the solution. In

this study, the suggested DG-scheme uses linear basis functions in each cell, giving a sec-

ond order accurate scheme in axial-coordinate. The ODE-system is solved by a third-order

Runge-Kutta method given in Eq. (3.57). The program is written in the C-language under

a Linux operating system and was compiled on a computer with an Intel(R) Core 2 Duo

processor of speed 2 GHz and memory (RAM) 3.83 GB.

Error analysis for LKM

The purpose of this part is to quantitatively analyze the performance of different numer-

ical schemes for single component linear chromatographic models. Here, a comparison of

different numerical schemes is presented for lumped kinetic model. The parameters of the

problem are given in Table 4.2. The numerical schemes are already presented in Chapter

3 for the EDM and the remaining flux limiters can be found in Table 3.1. The numerical

results at the column outlet are shown in Figure 4.1. In that figure, the concentration

profiles generated by using different numerical schemes on 100 grid points are compared

with the analytical solution obtained from the Laplace transformation. It can be observed

that DG and Koren methods have better accuracy as compared to other flux limiting finite

volume schemes. Further, the zoomed plot of Figure 4.1 shows that the solution of DG-

scheme is closest to the analytical solution. The L1−error in time at the column outlet

was calculated using the formula

L1 − error =

NT∑

n̂=1

|cn̂R − cn̂N |∆t . (4.30)
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The relative error can be defined as

relative error =

NT∑

n̂=1

|cn̂R − cn̂N |

NT∑

n̂=1

|cn̂R|

∆t , (4.31)

where cn̂R denotes the Laplace solution at the column outlet for time tn̂ and cn̂N represents

the corresponding numerical solution. Moreover, NT denotes the total number of time

steps and ∆t represents the time step size. Comparisons of L1−errors, relative errors and

computational times of schemes are given in Tables 4.3 and 4.4 for 50 and 100 grid points,

respectively. It can be observed that the DG-scheme produces small errors compared to

the other schemes for both 50 and 100 grid cells, but efficiency (or CPU time) of the Koren

scheme is better than the other schemes for both numbers of grid points. It can be noticed

that relative errors of the DG and Koren schemes are very low for 100 grid points. For that

reason, to achieve acceptable accuracy, 100 mesh points are chosen for further numerical

simulations discussed in this chapter. On the basis of these results, one can conclude that

the DG and Koren methods are optimal choices to approximate chromatographic models.

Therefore, we are relying on the results of the DG scheme for the remaining problems of

this chapter.

Dispersion and mass transfer effects

In this problem, both the single component EDM and LKM models are considered and

compared. The parameters used to solve the model equations are taken from [53] and

are given in Table 4.2. Figure 4.2 (top: left) depicts the dispersion effects of EDM by

considering different values of Dapp or characteristic times τD. It demonstrates that smaller

values of Dapp produce steeper fronts. Figure 4.2 (top: right), shows similar dispersion

effects by varying D as described by the LKM keeping τC = 10 s and τMT = 0.01 s

(k = 100 1/s, τ̃2 = 103) fixed. The similarity with the corresponding figure for the EDM

is due to the relative large value for k. In Figure 4.2 (bottom: left), different values of the

mass transfer coefficients k for fixed D = 10−5 m2/s (Pe = 104) and τC = 10 s are used for

the LKM. This figure shows that increasing values of k has a similar effects as produced by

decreasing D. In Figure 4.2 (bottom: right), dispersion coefficient D = 10−3 m2/s (Pe =
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Table 4.2: Parameters for Section 4.4.

Parameters values
Column length L = 1.0 m

Porosity ǫ = 0.4
Interstitial velocity u = 0.1 m/s
Characteristic time τC = 10 s

Dispersion coefficient for EDM Dapp = 10−4 m2/s
Peclet no for EDM τ̃1 = Pe = 103

Characteristic time for EDM τD = 0.01 s
Dispersion coefficient for LKM D = 10−5 m2/s

Peclet no for LKM τ̃1 = Pe = 104

Characteristic time for LKM τD = 0.001 s
Mass transfer coefficient k = 100 1/s

Characteristic time τMT = 0.01 s
Dimensionless number τ̃2 = 103

Concentration at inlet c1,0 = 1.0 g/l
Adsorption equilibrium constant a = 0.85

Table 4.3: Errors and CPU times at 50 grid points.

Limiter L1−error Relative error CPU (s)
DG Scheme 0.4011 0.0100 5.86

Koren 0.5155 0.0137 4.90
Van Leer 0.9324 0.0248 8.26
Superbee 1.0732 0.0286 9.34

MC 0.9762 0.0260 8.82

102) is taken into consideration for different values of k. It is evident that even for a large

magnitude of the mass transfer coefficient k, sharp fronts are not possible due to significant

dispersion effects. All trends generated numerically are well-known and realistic for the

adsorption community.

Comparison of analytical and numerical solutions

This part focuses on the comparison of analytical and numerical results from the EDM and

the LKM for both Dirichlet and Danckwerts boundary conditions. In Figure 4.3 (left), the

exact solution obtained for the EDM with Dirichlet boundary conditions is compared with

the numerical Laplace inversion and DG-scheme results. Good agreement of these profiles
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Figure 4.1: Breakthrough curves (BTC) at x = 1. Comparison of different numerical
schemes for LKM (c.f. Eq. (4.14) & Eq. (4.25)) with τC = 10 s, τD = 0.01 s (D =
10−5 m2/s or τ̃1 = Pe = 1000) and τMT = 0.01 s (k = 100 1/s or τ̃2 = 103).

Table 4.4: Errors and CPU times at 100 grid points.

Limiter L1−error Relative error CPU (s)
DG Scheme 0.0139 3.71× 10−4 8.46

Koren 0.0153 4.08× 10−4 7.82
Van Leer 0.2255 0.0060 14.90
Superbee 0.2966 0.0079 17.73

MC 0.2477 0.0066 14.96

verify the accuracy of numerical Laplace inversion and the proposed numerical scheme.

Moreover, the numerical Laplace inversion technique is found to be a reliable method to

solve such model problems and will be used below in the subsequent case studies. In Figure

4.3 (right), the results of the DG method for the LKM and Dirichlet boundary conditions

are compared with the numerical Laplace inversion solution. No analytical back transform

solution was available for the LKM using Dirichlet boundary conditions. Figures 4.4 (left)

and (right) validate the results of numerical Laplace inversion and the DG-scheme for the

EDM and LKM with Danckwerts boundary conditions, respectively. These profiles show

the high precision of the numerical Laplace inversion technique and the suggested numerical

scheme. Thus, it can also be concluded that the considered numerical Laplace inversion

technique is an effective tool for solving these linear models.
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Figure 4.2: BTC at x = 1. Top (left): Dispersion effects as described by EDM keeping
τC = 10 s constant and varying τD (or Dapp), top(right): dispersion effects for LKM
keeping τC = 10 s and τMT = 0.01 s (k = 100 1/s or τ̃2 = 103) constant, and varying τD
(or D), bottom (left): mass transfer effects for LKM taking τC = 10 s, τD = 0.001 s (D =
10−5 m2/s or τ̃1 = Pe = 104) and varying τMT (or k), bottom (right): mass transfer effects
taking τC = 10 s, τD = 0.1 s (D = 10−3 m2/s orPe = 102) and varying τMT (or k).
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Figure 4.3: BTC at x = 1. EDM predictions using Dirichlet boundary conditions (2.31a),
left: comparison of analytical solution (c.f. Eq. (4.15)), Laplace numerical inversion and
DG-method solutions with τC = 10 s, τD = 0.02 s (Dapp = 2 × 10−4 m2/s orPe =
500). LKM predictions using Dirichlet boundary conditions (2.31a), right: comparison
of Laplace numerical inversion and DG-scheme solutions with τC = 10 s, τD = 0.01 s (D =
10−4m2/s orPe = 1000) and τMT = 0.0667 s (k = 15 1/s or τ̃2 = 150).
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Figure 4.4: BTC at x = 1. EDM predictions using Danckwerts boundary conditions
(2.32a), left: comparison of Laplace numerical inversion and DG-method solutions with
τC = 10 s, τD = 0.02 s (Dapp = 2 × 10−4 m2/s orPe = 500). LKM predictions using
Danckwerts boundary conditions (2.32a), right: comparison of Laplace numerical inversion
and DG-scheme solutions with τC = 10 s, τD = 0.01 s (D = 10−4m2/s orPe = 1000) and
τMT = 0.0667 s (k = 15 1/s or τ̃2 = 150).
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Figure 4.5: BTC at x = 1. Effect of boundary conditions for different values of Peclet
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(2.32a), left: EDM with τC = 10 s, and Pe or τD varies, right: LKM with τC = 10 s,
τMT = 0.01 s (k = 100 1/s or τ̃2 = 103) and Pe or τD varies.

Effect of boundary conditions

This part is concerned with analyzing effects of boundary conditions. For the sake of gener-

ality, the Peclet number, c.f. Eq. (4.8), is taken as parameter, while τ̃2 = 103 (τMT = 0.01 s)

and τC = 10 s are assumed to be constant for this problem. The results shown in Fig-

ure 4.5 illustrate the importance of using more accurate Danckwerts boundary conditions

for chromatographic model equations, in the case of relatively small Peclet numbers, e.g.

Pe < 10. For such values, there are visible differences between the results obtained by

using Dirichlet and Danckwerts boundary conditions. On the basis of these results, one

can conclude that the implementation of Dirichlet boundary conditions is not adequate for

large dispersion coefficients. For large values of Peclet number (Pe >> 10) or small axial

dispersion coefficients as typically encountered in chromatographic columns well packed

with small particles, there is no difference between Dirichlet and Danckwerts boundary

conditions. The described behavior was observed in the solutions of both EDM and LKM.

Discussion on analytically and numerically determined moments

In this part, the results regarding the theoretical (analytical) and numerical moments are

discussed. The analytical moments are calculated by the formulas presented in Table 4.1
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and in Appendix A. In this work, only step inputs are taken into account. In contrast

to Eq. (4.29), the formulas given below use derivatives to approximate the moments and

transform the step response to a pulse response which is the requirement for finite results of

numerical integration. The simulated moments are obtained from our proposed numerical

methods by using the following formulas for the first normalized, second central and third

central moments, respectively:

µ1 =

∫∞

0
dC(x=1,t)

dt
tdt

∫∞

0
dC(x=1,t)

dt
dt

, µ
′

2 =

∫∞

0
dC(x=1,t)

dt
(t− µ1)

2dt
∫∞

0
dC(x=1,t)

dt
dt

, µ
′

3 =

∫∞

0
dC(x=1,t)

dt
(t− µ1)

3dt
∫∞

0
dC(x=1,t)

dt
dt

.

(4.32)

The trapezoidal rule is applied to approximate the integrals in Eq. (4.32) using C(x = 1, t)

which are obtained by using the proposed numerical scheme. The quantitative comparison

of first moment or (retention time) over the flow rate u for the EDM, LKM and the

analytical formula (c.f. Table 4.1) can be seen in Figure 4.6 (left). The results are in good

agreement with each other, verify the high precision of our numerical results and reveal

the expected linear trends.

For calculations of second moments µ
′

2 and third moments µ
′

3, the analytical formulas of

Table 4.1 are used.

Matching µ
′

2EDM and µ
′

2LKM for the Dirichlet boundary conditions generates the following

relationship between Dapp, D and k.

Dapp = D +
1

k

(
aF (1− ǫ)u2

(1 + aF )2

)

. (4.33)

For a given u, a, F , the above equation can be used to find possible connections between

the kinetic parameters of two models which should provide very similar elution profiles.

For given values of a, F and ǫ (c.f. Table 4.1), along with provided reference values of

u∗ = 0.35 m/s and Dapp = 10−4 m2/s for EDM, D = 5 × 10−5 m2/s for LKM, we obtain

k = 362 1/s from the formula (4.33). Based on these reference parameters, there is an

infinite number of combinations for k and D. The crossing point mentioned in Figure 4.7

(left) indicates that for this particular value of flow rate u∗, both models produce almost

the same concentration profiles as seen in Figure 4.7 (right). For other than this specific
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value of flow rate keeping Dapp, D and k fixed, the results of equilibrium dispersive and

lumped kinetic models deviate from each other because the values of Dapp, D and k are

calculated by using this specific velocity u∗ = 0.35 m/s. This is clearly depicted in Figure

4.7 (right).

The third moment still do not match for both models, even when the second moments are

equalized via Eq. (4.33). This is illustrated in the plot given in Figure 4.8 (left) showing the

third moments µ′
3 for different flow rates. In Figure 4.8, the parameters Dapp = 10−3 m2/s

for the EDM and D = 5 × 10−4 m2/s for the LKM are considered. The value of k in the

LKM was always determined for the specific value of u using Eq. (4.33). A good agreement

between analytical and numerical moments of our proposed numerical scheme guarantees

the high precision of simulation results one more time. It can be observed that EDM

gives large values of µ′
3 as compared to LKM. Thus, EDM produces more asymmetry in

the concentration profiles which is illustrated in Figure 4.8 (right). The fronting edge is

steeper and the tailing edge is more disperse for the EDM predictions as a clear indication

of larger asymmetry compared to the LKM predictions (c.f. Figure 4.8 (right)). However,

it is evident that the difference in the profiles of both models are still very small. This

justifies the use of the simpler EDM for linear isotherm involving just one parameter Dapp

as compared to the more complicated LKM which involves two parameters D and k.

4.5 Conclusion

This chapter described analytical and numerical investigations of single component lin-

ear equilibrium dispersive and lumped kinetic models. Two sets of boundary conditions,

namely Dirichlet and Danckwerts conditions were considered. The Laplace transformation

was used as a basic tool to transform the single-component linear sub-model to a linear

ordinary differential equation which is then solved analytically in the Laplace domain. The

inverse numerical Laplace formula was employed to get back the time domain solution due

to the unavailability of an exact solution. A moment analysis of both models was carried

out analytically and numerically for linear isotherms. Good agreement up to third mo-
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ments assures the better accuracy of numerical solutions. The close connection between

EDM and LKM was analyzed for linear isotherms. A concordance formula was derived

and the strength of the simpler EDM was illustrated. On the basis of this result, the

EDM is used to predict the chromatographic profiles in the next chapters of this thesis.

For the numerical solution of the models considered, the DG and the Koren schemes were

applied. The Koren scheme is a flux-limiting scheme in which fluxes are limited by us-

ing a nonlinear minmod limiter. This limiting procedure guarantees the positivity of the

scheme and suppresses the numerical oscillations. The proposed DG-scheme satisfies the

TVB property and gives second order accuracy. The method incorporates the ideas of

numerical fluxes and slope limiters in a very natural way to capture the physically relevant

discontinuities without producing spurious oscillations in their vicinity. The accuracy of

proposed schemes were validated against some flux-limiting finite volume schemes and an-

alytical solutions for linear isotherms. The DG-scheme and the Koren method were found

to be suitable methods for the simulation of linear chromatographic processes in terms of

accuracy and efficiency. Moreover, it seems that the DG-scheme resolves the shocks better
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than the Koren scheme. In the subsequent chapter, numerical schemes are analyzed for

more complicated nonlinear and reactive chromatographic models.



Chapter 5

Numerical Solutions of Linear and
Non-Linear Chromatographic Models

In this chapter isothermal non-reactive and reactive liquid chromatographic processes are

numerically investigated. Several test problems are carried out concerning both non-

reactive and reactive liquid chromatographic models under linear and non-linear condi-

tions. For linear models, analytical solution can be derived (c.f. Chapter 4), while for

nonlinear models, only numerical techniques provide solutions. Test Problems are numeri-

cally approximated by using the proposed numerical schemes. The results of the suggested

numerical methods are compared with available analytical solutions and some flux-limiting

finite volume schemes given in the literature. Moreover, the quantitative analysis of se-

lected problems is also presented. The case studies of non-reactive chromatography include

single-component elution, two-component elution, and displacement chromatography on

non-movable (fixed) and movable (counter-current) beds. Afterwards, practical examples

of reactive chromatography are taken into consideration and are compared with the avail-

able analytical as well as experimental results.

The finite volume scheme of Koren [39] and the Runge-Kutta discontinuous Galerkin

method, presented in Chapter 3 for FBCR model, are proposed to numerically approx-

imate the current models. The Koren scheme is a flux-limiting scheme in which fluxes

are limited by using a nonlinear minmod limiter. This limiting procedure guarantees the

positivity of the scheme and hence suppresses the numerical oscillations, usually encoun-

55
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tered in the numerical schemes of second and higher orders. In Chapter 3, the scheme was

shown to be second to third order accurate in space analytically. Therefore, a third order

accurate ordinary differential equation (ODE) solver is needed to make the scheme third

order accurate in space and time.

The Runge-Kutta discontinuous Galerkin method [9, 10, 35] is locally conservative, stable,

and high order accurate. The scheme is second order accurate in the axial coordinate and

satisfy the total variation boundedness (TVB) property. In contrast to high order FDMs

and FVMs, the DG-methods require a simple treatment of the boundary conditions to

achieve high order accuracy uniformly. These methods incorporate the idea of numerical

fluxes and slope limiters in a very natural way to avoid spurious oscillations in the re-

gion of strong variations. The DG-methods can be efficiently applied to partial differential

equations (PDEs) of all kinds, including equations whose type changes within the compu-

tational domain. For the first time, these schemes are applied to chromatographic models

in this dissertation.

Several numerical test problems are carried out. For quantitative analysis and validation,

the results of DG-scheme are compared with some flux-limiting finite volume schemes. In

all numerical test problems, linear basis functions are used in each cell, giving a second

order accurate DG-scheme in the axial-coordinate. The ODEs-system was solved by a

third-order Runge-Kutta method given by Eq. (3.57). Once again, the program is written

in the C-language under a Linux operating system and was compiled on a computer with

an Intel(R) Core 2 Duo processor of speed 2 GHz and memory (RAM) 3.83 GB.

5.1 Numerical test problems

In this section the proposed numerical schemes are applied to simulate different chromato-

graphic elution, such as non-reactive single component elution, non-reactive binary elution,

three component elution and four component reactive elution.
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5.1.1 Non-reactive single-component elution

Here, we give two case studies with linear and nonlinear isotherms, respectively.

Case 1: Linear isotherm: quantitative analysis of the numerical schemes

The purpose of this case study is to quantitatively analyze the performance of the DG-

scheme and different flux-limiting schemes discussed in Chapter 3. For the numerical

simulation, the FBCR model Eq. (3.1) is considered with a linear isotherm q∗ = ac and

the source term Q(t, z, c) is set equal to zero. It is assumed that the column is partially

pre-loaded in the region z = [0.2, 0.4] by a sinusoidal profile. Thus, we assume the following

initial and boundary conditions

c(0, z) =

{
sin(π(z − 0.2)/0.2) , 0.2 ≤ z ≤ 0.4 ,
0, otherwise

(5.1)

with left boundary condition c(0, t) = 0. The analytical solution for this problem is given

as, e.g. [39],

c(t, z) = 0.5 real (iep[erf(α)− erf(β)]) , (5.2)

where, erf represents the error function and

p = −0.5Dappt
( π

0.2

)2

+ i
π

0.2
(0.2− z − 0.5t) , (5.3)

α =
−0.2 + z − 0.5t

2
√
0.5Dappt

− iπ

√
0.5Dappt

0.2
, (5.4)

β =
−0.4 + z − 0.5t

2
√
0.5Dappt

− iπ

√
0.5Dappt

0.2
. (5.5)

The column length L = 1 cm, a = 1, u = 1 cm/min, ǫ = 0.5, and the simulation time is

0.6min. The L1-errors in the axial-coordinate at the last simulation time is calculated by

using the following formula.

L1-error =
N∑

j=1

|cjexact − cjnumeric|∆z , (5.6)

where cjexact denotes the exact solution at the midpoint of each discrete cell and cjnumeric

represents the corresponding numerical solution at the final simulation time. Moreover, N

denotes the number of discretization points and ∆z represents the axial step size.
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Table 5.1 gives a comparison of the L1-errors of different numerical schemes using 100 grid

points and for different values of the dispersion coefficients Dapp. It can be observed that

the DG-scheme gives less errors as compared to the flux-limiting finite volume schemes.

Moreover, the errors produced by the Koren scheme are also less at low computational

cost. Note that the DG-scheme used in this work has second order accuracy, while the

Koren scheme is second to third order accurate. Table 5.2 displays the L1-errors and the

experimental order of convergence (EOC) of the DG-scheme at different grid points and

for different values of Dapp. The EOC of the DG-method is approximately second order,

see Table 5.2. The DG-scheme is more effective for the convection dominated problems

where the dispersion coefficient is very small, for example Dapp = 2 × 10−5 m2/s. Table

5.3 presents the L1-errors and the EOC of the Koren scheme at different mesh points

for different values of Dapp. The table shows that this flux-limiting scheme is second to

third order accurate. The scheme is third order accurate for the convection dominated

equilibrium dispersive models with influential dispersion coefficient, for example Dapp =

2 × 10−3 m2/s, while the scheme is second order accurate when the dispersion coefficient

tends to zero. In other words, by varying the number of grid points, the transition rate

from second to third order slowdowns as the dispersion coefficient tends to zero, see Table

5.3. The same trends were also observed by Koren [39]. Finally, Tables 5.4 and 5.5 show

the EOC of different numerical schemes for Dapp = 0.002 m2/s and Dapp = 2× 10−5 m2/s,

respectively. It can be observed that the Koren scheme gives a better EOC as compared

to other schemes for Dapp = 0.002 m2/s. The DG-scheme provides a comparatively better

EOC for Dapp = 2 × 10−5 m2/s. In addition, the EOC of other schemes for Dapp =

0.002 m2/s is larger than the DG-method, but the results of the DG-scheme seems to be

slightly closer to the exact solution.

The left plot in Figure 5.1 shows a comparison of different schemes using 50 gird points.

For 50 grid points or less, the Superbee limiter gives the most resolved solution. However,

over-predictions were observed in the solution for grid point numbers above 50. This

limiter applies minimum limiting and maximum steepening. Therefore, it suffers from

excessive sharpening of slopes which results in over-predictions in the solution as depicted
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Table 5.1: Section 5.1.1 (Linear isotherm): L1-errors and CPU times of schemes at 100
mesh points considering different dispersion coefficients Dapp [m2/s]. Parameters are given
in text.

Limiter L1−errors CPU (s)
Dapp 0.002 0.0002 2× 10−5 2× 10−6 0.002

First order 0.04021 0.05303 0.06547 0.05486 0.43
DG 0.0009 0.0018 0.0028 0.0030 0.64

Koren 0.00083 0.00278 0.00405 0.00416 0.56
van Leer 0.00271 0.00574 0.00675 0.00680 0.56
Superbee 0.00336 0.00379 0.00460 0.00475 0.88
Minmod 0.00619 0.01079 0.01175 0.01180 1.45
MC 0.00227 0.00419 0.00499 0.00503 0.62

Table 5.2: Section 5.1.1 (Linear isotherm): L1-errors and EOC of the DG scheme consid-
ering different mesh points N .

N Dapp = 0.002m2/s Dapp = 0.0002m2/s Dapp = 0.00002m2/s
L1-errors EOC L1-errors EOC L1-errors EOC

50 0.0028 0.0062 0.0090
100 9.31× 10−4 1.60 0.0018 1.78 0.0028 1.68
200 3.38× 10−4 1.46 2.69× 10−4 2.73 6.40× 10−4 2.13
400 1.07× 10−4 1.66 6.94× 10−5 1.96 1.34× 10−4 2.26
800 3.05× 10−5 1.81 2.24× 10−5 1.63 2.43× 10−5 2.47

in the right zoomed plot of Figure 5.1. For that reason, more errors were produced by the

Superbee limiter and the convergence rate is very low in Tables 5.1 and 5.5, respectively.

Moreover, the computational cost for the Superbee limiter is higher than the other schemes.

The backward difference method takes the minimum computational time but gives a very

diffusive solution which is far away from the analytical solution. The computational cost

of the van Leer limiter is comparable to the DG and Koren schemes, however its solution

is less resolved. The remaining two limiters have a higher computational cost and lower

accuracy. From the above observations, one can conclude that the DG and Koren schemes

are better choices for solving linear chromatographic models.
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Table 5.3: Section 5.1.1 (Linear isotherm): L1-errors and EOC of the Koren scheme.

N Dapp = 0.002m2/s Dapp = 0.0002m2/s Dapp = 0.00002m2/s
L1-error EOC L1-error EOC L1-error EOC

50 0.0065 0.0107 0.0114
100 8.31× 10−4 2.97 0.0028 1.93 0.004 1.51
200 1.02× 10−4 3.03 5.64× 10−4 2.30 0.0011 1.86
400 1.15× 10−5 3.15 9.76× 10−5 2.53 2.90× 10−4 1.93
800 1.98× 10−6 2.53 1.32× 10−5 2.89 6.21× 10−5 2.20

Table 5.4: Section 5.1.1 (Linear isotherm): EOC of schemes for Dapp = 0.002 m2/s.

Mesh points N Koren DG van Leer Superbee Minmood MC
50
100 2.97 1.60 2.08 0.67 1.81 1.92
200 3.03 1.46 2.06 1.34 1.99 1.93
400 3.15 1.66 2.04 1.86 2.03 1.98
800 2.53 1.81 2.02 1.97 2.02 1.99

Table 5.5: Section 5.1.1 (Linear isotherm): EOC of schemes for Dapp = 2× 10−5 m2/s.

Mesh points N Koren DG van Leer Superbee Minmood MC
50
100 1.51 1.68 1.52 0.69 1.52 1.45
200 1.86 2.13 1.54 1.54 1.14 1.65
400 1.93 2.26 1.67 1.67 1.43 1.49
800 2.20 2.47 1.70 1.13 1.52 1.52
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Figure 5.1: Section 5.1.1 (case 1): A comparison of different schemes for single component
elution with linear isotherm.

Case 2: Single-component model with nonlinear isotherm

The purpose of this case study is to analyze the performance of the DG-method against

other flux-limiting finite volume schemes for nonlinear models. The FBCR model (3.1) is

considered with the single component variant of nonlinear isotherm (c.f. Eq. (2.18)) with

b = 1 is q∗(c) = c/(1+ c) and the source term Q(t, z, c) = 0. A pulse of height cin = 1 g/l is

injected into the column initially equilibrated with the solvent, i.e. cinit = 0 for an injection

time of tin = 0.2min. The column length L is 1 cm. Further, ǫ = 0.5, u = 1 cm/min,

Nt = 250, and the simulation time is 3min. Moreover, a grid of 100 mesh cells was used.

The reference solution was obtained from the same DG-scheme by using 2000 mesh cells.

The numerical results at the column outlet are depicted in Figure 5.2, while a comparison

of L1-errors and computational times of schemes is given in Table 5.6. Figure 5.3 shows

the logarithmic errors of different schemes for different numbers of grid points. It can be

observed that the DG-scheme produces less error in the solution. The L1-error in time

at the column outlet was calculated by using the formula given in Eq. (4.30). It can be

observed that DG and Koren methods give the most resolved solutions with small errors.

The computational time of the DG-scheme is comparable to the Koren scheme and the

finite volume scheme with van-Leer or minmod limiters but it is much lower than with the
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Table 5.6: Section 5.1.1 (Nonlinear isotherm): L1-errors and CPU times of schemes.

Limiter L1−errors CPU (s)
N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

DG Scheme 0.0186 0.0063 0.0040 0.23 0.50 1.93
Koren 0.0497 0.0225 0.0102 0.22 0.42 1.62

van Leer 0.0586 0.0271 0.0124 0.21 0.41 1.54
Superbee 0.0582 0.0281 0.0131 0.34 0.61 2.01

MC 0.0589 0.0276 0.0126 0.26 0.32 1.76
Minmod 0.0645 0.0287 0.0125 0.22 0.48 1.57

First order 0.1146 0.0724 0.0415 0.12 0.14 0.70

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

c 
[g

/l]

 solution at the column outlet

t [min]

 

 

1.4 1.6 1.8 2
0.2

0.3

0.4

0.5

 

 

reference
DG
Koren
van Leer
Superbee
MC
minmod
first order

Figure 5.2: Section 5.1.1 (case 2): A comparison of different schemes for single component
with nonlinear isotherm.

MC and Superbee limiters. The backward difference scheme has minimal computational

time but gives a very diffusive solution which is far away from the reference solution. The

above observations lead us to the conclusion that DG and Koren schemes are better choices

for solving such nonlinear models.
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5.1.2 Non-reactive binary elution

This part focuses on two-component non-reactive problems with linear and nonlinear

isotherms, respectively.

Case 1: Linear isotherm

This case corresponds to the separation of a non-reactive binary mixture of components

A and B. In the simulation the following parameters were considered: column length

L = 0.25m, porosity ǫ = 0.24, Nt = 104 (identical for both components), aA := a1 = 5,

and aB := a2 = 1. Moreover, a mixture of concentrations cin1 = cinA = 0.5mol/l and

cin2 = cinB = 0.5mol/l is injected for time tin = 10min at a velocity u = 1m/min. For the

numerical simulation, the FBCR model (2.23) is considered with linear isotherms q∗i = aici

and the source terms Qi(t, z, c) are taken to be zero. For this particular setup, the eluted

concentration profiles on 100 mesh points are shown in Figure 5.4 and the final simulation

time is taken to be 15min. The solution of the DG-scheme is compared with the analytical

solution of Kumar [45] valid only for linear isotherms and the numerical solution of the



64 Chapter 5. Numerical Solutions of Linear and Non-Linear Chromatographic Models

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

t [min]

c i [m
ol

/l]

 

 

3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

 

 

analytical

DG

Koren

component Acomponent B

Figure 5.4: Section 5.1.2 (case 1): Two-component elution with linear isotherm.

Koren scheme.

In Figure 5.4, it can be observed that the DG-scheme solution is bit closer to the analytical

solution and gives the position of the discontinuity more correctly compared to the Koren

scheme.

Case 2: Nonlinear isotherm

The propagation of a two component mixture through a column is simulated without

considering reaction or source terms. In the example process considered, the column is

at a constant initial state corresponding to a specific initial composition. A new state

corresponding to a specific feed composition is generated by injecting a new composition

into the column inlet starting at time t = 0. This setup corresponds to a Riemann problem.

Three different fronts usually appear, such as a rarefaction (continuous), a shock wave

and a semi-shock wave. Shocks are discontinuities in the concentration profile due to

experimental conditions. Across the shock wave the concentration increases, therefore the

shock is a compression wave. A rarefaction wave is an expansion wave in time and refers to

the reduction of concentration or opposite to the compression. The EDM, c.f. Eq. (2.21),
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with generalized Langmuir adsorption isotherm given in Eq. (2.18) is used for modeling

this process as (e.g. in [58])

q∗i = aici/(1 + p1b1c1 + p2b2c2) , i = 1, 2 . (5.7)

For the less retained component the value of ai is smaller as compared to the more retained

component. In the denominator, the values of p1 and p2 can be ±1. The case of p1 = p2 = 1

represents the standard Langmuir isotherm defined in Eq. (5.7) and the case of p1 = p2 =

−1 refers to be anti-Langmuir isotherm. The other two situations are termed as mixed-

Langmuir isotherms. In this study, exclusively a mixed-Langmuir isotherm with p1 = −1

and p2 = 1, is considered.

Mazzoti [58] has analyzed the equilibrium model where Dapp,i = 0 by using the method

of characteristics. Apart from classical composition fronts, such as rarefaction, shock, and

semi-shock waves, non-classical composition fronts and delta-shocks were observed in the

study. Moreover, the analytical (characteristic) solutions of the equilibrium model were

compared with the numerical solutions of the equilibrium-dispersive model for small values

of the axial dispersion coefficient.

In this work, the results of Mazzotti [58] are numerically verified by solving the equilibrium-

dispersive model with our suggested DG and Koren methods. The test problems show that

these schemes preserve narrow peaks in the concentration profiles and give correct locations

of discontinuities. The proposed schemes are efficient, accurate, and produce low numerical

dissipation and dispersion.

A two-component mixture is considered in which component c1 is less retained as compared

to component c2. Here, c1 illustrates an anti-Langmuir and c2 depicts a Langmuir isotherm.

To non-dimensionalize, Eq. (2.21) can be re-written as

∂(ci +
1−ǫ
ǫ
q∗i )

∂t
+ u

∂ci
∂z

= Dapp,i
∂2ci
∂z2

, i = 1, 2 . (5.8)

By multiplying the above equation with equilibrium constant bi, we obtain

∂(cibi +
1−ǫ
ǫ
biq

∗
i )

∂t
+ u

∂(bici)

∂z
= Dapp,i

∂2(bici)

∂z2
, i = 1, 2 . (5.9)
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Let µi := cibi represents the ith dimensionless component of liquid phase and νi :=
1−ǫ
ǫ
biq

∗
i

denotes the ith dimensionless component of solid phase. The dimensionless time and axial

coordinates are given as τ = tu/L and x = z/L, where L is the length of the column.

Moreover, τ and x represents the dimensionless time and axial coordinates, respectively.

Finally, the dimensionless diffusion term is given as χi = Dapp,i/Lu. By using the above

definitions, Eq. (5.9) changes to the following dimensionless form, e.g. [58],

∂(µi + vi)

∂τ
+

∂µi

∂x
= χi

∂2µi

∂x2
, i = 1, 2 . (5.10)

Here, vi = aiµi/(1 − µ1 + µ2) and the small parameter χi are the reciprocal of already

defined Peclet numbers (c.f. Eq. (4.4b)).

To apply the numerical schemes, Eq. (5.10) can be written as

(

I+
∂v

∂µ

)
∂µ

∂τ
+

∂µ

∂x
= χ

∂2
µ

∂x2
, (5.11)

where, I represents the identity matrix, µ = (µ1, µ2)
T , v = (v1, v2)

T , ∂v/∂µ and χ is

the Jacobian and diagonal matrices, respectively. The above equation is solved by using

current numerical schemes presented in Chapter 3.

To validate the proposed numerical schemes, several numerical test cases are considered.

A typical Riemann problem for Eq. (5.11) consists of an initial state (µF
1 , µ

F
2 ) assigned to

x ≥ 0 and τ = 0 and an inlet state (µE
1 , µ

E
2 ) assigned to x = 0 and τ ≥ 0, both separated

by a jump discontinuity. In all test cases of this part, a1 = 1.5, a2 = 3.0, and the mesh

of 200 cells is selected in the axial direction. The number of theoretical plates is chosen

as Nt = 5000, identical for both components, a typical number provided by commercially

available analytical high performance liquid chromatography (HPLC) columns.

Classical solutions: In this case, we have µF
1 < µE

2 and µE
1 < µF

2 . Such solutions consist

of three states, i.e the inlet state E on the left, the intermediate state I in the middle

defined by the characteristic parameters, and the initial state F on the right, separated

by two transition waves that can be simple waves or shocks. Four test cases, initially

considered in [58], are reproduced with the suggested numerical schemes. Figures 5.7-5.9

show the results. The initial data for these test problems are given in Table 5.7. Figure
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Figure 5.5: Section 5.1.2 (case 2a): Riemann problem leads to the S2 − C1 solution,
a1 = 1.5, a2 = 3.0, inlet state (µE

1 , µ
E
2 ) = (0.1638, 0.1563), initial state (µF

1 , µ
F
2 ) =

(0.0423, 0.1005), and Nt = 5000 (c.f. Eq. (4.4b)).

5.5 gives a S2 − C1 solution, where S2 and C1 represent the left shock wave and the right

simple wave. For validation, the numerical results of the DG-scheme are compared with the

Koren scheme. The Figure 5.6 depicts that the DG-scheme captures sharp discontinuities

better than the Koren scheme. The reference solution was obtained from the DG-scheme

by considering 2000 mesh cells.

In Figure 5.7, the solution has the form C2−S1, where C2 and S1 represent the left simple

wave and right shock wave, respectively. In Figure 5.8, a C2−C1 solution is given. Finally,

Figure 5.9 gives an S2 − S1 solution. It was found that the numerical results of the DG

and Koren schemes agree well with the results published by Mazzoti [58].

Non classical solutions: In this case, the parameter µ2 associated with one state may be

smaller than the parameter µ1 of the other state, and vice versa, see e.g. [58]. The initial

and inlet conditions are given in Table 5.7. Figure 5.10 shows a continuous non-simple

wave transition. This Riemann solution has the form C2 − Ce − C1, where C2, Ce and C1

correspond to a simple left wave, a non-simple wave transition and a right simple wave,

respectively. The results are similar to those presented by [58]. The Riemann problem in

Figure 5.11 leads to the unusual form of a delta shock solution. The existence of a delta

shock has already been realized experimentally [59]. In this case, the concentration shoots



68 Chapter 5. Numerical Solutions of Linear and Non-Linear Chromatographic Models

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
two−component elutions at the column outlet

τ [−]

µ i [−
]

 

 

reference
DG−scheme
Koren

comp. 2

comp.1

Figure 5.6: Section 5.1.2 (case 2a): A comparison of the DG and Koren schemes with
a1 = 1.5, a2 = 3.0, inlet state (µE

1 , µ
E
2 ) = (0.1638, 0.1563), initial state (µF

1 , µ
F
2 ) =

(0.0423, 0.1005), and Nt = 5000 (c.f. Eq. (4.4b)).

x [−]

τ 
[−

]

solution in the physical plane

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

E
C

2

I

S
1

F

0 1 2 3 4 5

0.05

0.1

0.15

0.2

0.25

τ [−]

µ i [−
]

elution profile at the column outlet

EIF

comp. 2

comp. 1

C
2

S
1
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2 ) = (0.0451, 0.0476), initial state (µF

1 , µ
F
2 ) =
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Figure 5.8: Section 5.1.2 (case 2c): Riemann problem leads to the C2 − C1 solution,
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Table 5.7: Section 5.1.2 (case 2): Inlet and initial conditions for classical and non-classical
solutions.

Case Inlet state (µE
1 , µ

E
2 ) Initial state (µF

1 , µ
F
2 )

a (0.1638,0.1563) (0.0423,0.1005)
b (0.0451,0.0476) (0.1818,0.1142)
c (0.20551,0.05598) (0.0423,0.1005)
d (0.1778,0.0667) (0.0338,0.2627)
e (0.0317,0.3016) (0.2051,0.0598)
f (0,0.2) (0.45,0.0)

up at the jump discontinuity and behaves like a δ-distribution. The concentration µi = bici

and 1 − µ1 + µ2 profiles are presented along the column at different simulation times. It

can be observed that spikes are growing as they travel with a constant speed. Figure 5.12

gives the concentration profiles at the column outlet for different number of theoretical

plates Nt. It can be seen that delta-shock gains height with the increase in Nt, i.e., with

the decrease in dispersion coefficient χ or Dapp.
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Figure 5.12: Section 5.1.2 (case 2f): Delta-shocks for different number of theoretical plates
with a1 = 1.5, a2 = 3.0, inlet state (µE

1 , µ
E
2 ) = (0.0, 0.2), initial state (µF

1 , µ
F
2 ) = (0.45, 0.0).



72 Chapter 5. Numerical Solutions of Linear and Non-Linear Chromatographic Models

5.1.3 Three-component elution

This section consists of three different case studies, such as a reaction C ⇆ A+B with

linear isotherms, nonlinear displacement chromatography in a (fixed) bed, and displacement

chromatography using a moving bed in counter-current direction.

Case 1: Reaction of the type C ⇆ A+B with linear adsorption isotherm

In such a reaction, only reactant C is injected to the initially unloaded column, while

components A and B are reaction products. Concentration profiles of A and B are detected

at the column outlet. The FBCR model (2.23) with linear adsorption isotherms q∗i = aici is

considered. Based on conventional laws, the reaction rate can be written by the following

equation [91]

Qi(t, z, c) = νir, where r = khet(q∗C −
q∗Aq

∗
B

Khet
eq

) . (5.12)

Here q∗1 := q∗C , q
∗
2 := q∗A, and q∗3 := q∗B represent the adsorption isotherms of each compo-

nent, and the sign of the stoichiometric coefficient ν1 := νC is negative, while the signs of

ν2 := νA and ν3 := νB are positive. The heterogeneous equilibrium constant Khet
eq cannot be

determined experimentally. For a linear adsorption isotherms, considered here, the chemi-

cal equilibrium constant of the heterogeneously catalyzed reaction Khet
eq can be written in

terms of the solid-phase concentrations and the equilibrium constant of the homogeneous

reaction Khom
eq as

Khet
eq = Khom

eq

aAaB
aC

. (5.13)

Substitution of Eq. (5.13) into Eq. (5.12) gives

r = khetaC(cC −
cAcB
Khom

eq

). (5.14)

In this test problem, the parameters are taken from Tien [92]. Here we take the column

length L = 0.25m, porosity ǫ = 0.25, Nt = 104 (identical for all components), Khom
eq = 0.5,

khet = 5000min−1, aC = 3, aA = 5, and aB = 1. Moreover, concentration of reactant C, i.e.

cinC = 0.5mol/l, is injected for 10 min with fluid velocity u = 1m/min. The corresponding
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concentration profiles of cC , cA and cB are shown in Figure 5.13 (left) at 100 mesh cells.

It can be seen that the DG-scheme resolves the discontinuous profiles better with their

correct position compared to the Koren-scheme. These results are in good agreement

with experimental observations of [92]. Outlet concentration profiles can be conveniently

represented in the so-called hodograph space, see Figure 5.13 (right). Hodograph plots are

very useful especially for illustrating problems of FBCR dynamics [30]. The hodograph plot

often reflects the dynamics of process more clearly than the concentration trajectories. The

following important geometrical condition for total conversion and total separation can be

extracted, “total conversion and total separation in a fixed-bed chromatographic reactor

with pulse injection of the reactant is possible, if the relevant wave solutions through the

origin of the corresponding hodograph plot lie on the pure component axes of the products”

[91]. In this plot the concentrations as dependent variables are plotted against each other.

The vertical thick line P0 − P1 shows the fraction of pure component B, obtained from

the front of the elution profile, whereas the horizontal thick line P0 − P3 represents pure

A, collected from the rear of the elution profile. The other two straight lines P0 − P4

and P0 − P5 refer to Section 5.1.2 (case 1) with linear isotherms. The lines which are

located for the case considered exclusively on the pure component axes (thick lines) prove

the capability to obtain pure components A and B from the rear and front of the elution

profiles, respectively.

Case 2: Non-reactive displacement chromatography with Langmuir isotherm

This case study corresponds to an alternative attractive mode of chromatography, namely

displacement chromatography. Displacement chromatography is a powerful method used

to separate and purify compounds. It can be used to purify metal cations, small organic

molecules, antibiotics, sugars, peptides, proteins, and nucleic acids [23]. This process

follows the idea that one strong component, the displacer, has enough capability to displace

the other components from the stationary phase. In this process a column packed with

a solid material is initially equilibrated with the mobile liquid phase that has no or less

affinity to the solid phase. The sample mixture is then injected into the column occupying

part of the column inlet. Afterwards, a development agent, the so called displacer, is
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Figure 5.13: Section 5.1.3 (case 1): 3-component isothermal-reactive elution with linear
isotherm. Parameters are given in text.

injected into the column. Note that, the displacer should have stronger affinity to the solid

phase as compared to other components in the sample. For a sufficiently long column and

favorably shaped isotherms, the sample components will ultimately transport along the

column to build highly concentrated separated rectangular zones. The series of such zones

is known as displacement train or an isotachic train [23]. The displacement effect reduces

the tailing and simplifies the sample loading. Due to these characteristics, displacement

chromatography could be eventually more attractive compared to elution in preparative

scale chromatography.

For illustration, two solute samples with concentrations cA and cB and a displacer with

concentration cd are considered. The FBCR model (2.23) is used to simulate the process

by taking the source terms Qi(t, z, c) equal to zero. The Langmuir isotherm, c.f. Eq. (2.18),

q∗i =
aici

1 +
3∑

i=1

bici

, i = 1, 2, 3 (5.15)

were used. In simulation, the following parameters were considered: column diameter d =

0.357 cm, L = 100 cm, porosity ǫ = 0.5, aA = a1 = 4, aB = a2 = 5, ad = a3 = 6, b1 = 4 l/g,

b2 = 5 l/g, and bd = 1 l/g. Moreover, Nt = 104 (identical for all components), and the

volumetric flow rate at the column inlet was V̇ = 1ml/min (u = 19.98 cm/min). In the
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first simulation study, a pulse of a mixture containing cinA = cin1 = 1 g/l and cinB = cin2 = 1 g/l

is injected for an injection time tin = 0.1min. Then, a displacer with a concentration

cind = 1 g/l is fed continuously into the column for the rest of the simulation time. As

the displacer pushes the mixture, both components start separating. For a sufficiently

long column in the present study, the sample components will fully separate and build

highly concentrated rectangular zones of individual concentrations. It is to be noted that

component 1 is less retained than component 2 and the displacer is characterized by the

highest adsorbability. The numerical results are shown in Figure 5.15 using 200 mesh

cells. The operating line in Figure 5.14, plotted under equilibrium conditions, verifies

that both components have less affinity as compared to the displacer. Consequently, both

components are resolved into consecutive rectangular zones of pure substances after 50 cm

and at simulation time t = 13min, see Figure 5.15. For the numerical approximation of

displacement chromatographic process, both suggested schemes, namely the DG and Koren

methods produce reliable results. Moreover, Figure 5.16 shows that the DG-scheme gives

a better resolution of the rectangular profiles at the discontinuity compared to the Koren

scheme. Therefore, the DG-scheme will be used to simulate the processes in the next case

studies of this part.

In the second simulation study, the injection concentrations of both components are cin1 =

cin2 = 1 g/l and the displacer has a concentration cind = 0.5 g/l. Figure 5.17 shows the

numerical results at 200 mesh points. Figure 5.14 shows that a line drawn from the origin

intersects the isotherm of the component 2 but not the isotherm of the component 1.

Hence, the component 2 forms an equilibrated rectangular pulse, while the component 1,

which is now moving at higher speed fails to do so. This is depicted in Figure 5.17.

In the third simulation study, we consider cind = 0.1 g/l. For this value of displacer con-

centration the isotherm plots of both components are not intersected by the operating

line. As a result, both components do not form a rectangular isotachic train as shown

in Figure 5.18. The results presented in this section are found in good qualitative agree-

ment with concentration profiles typically attained in experimental studies of displacement

chromatography.
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Figure 5.14: Section 5.1.3 (case 2): Representation of the operating line.

Case 3: Displacement chromatography on movable (counter-current) beds

Moving bed chromatography is a mode in which two phases of the chromatographic system,

the fluid and the solid phases, flow through the column in opposite directions. It is known to

be a versatile technique for separating binary mixtures since the 1960s [5]. This simulated

moving bed concept is now employed in a wide range of applications in the pharmaceutical,

medical as well as cosmetic industries. In this case Eq. (2.21) is replaced by the following

equation

∂ci
∂t

+
1− ǫ

ǫ

∂q∗i
∂t

+ u
∂ci
∂z

− vsF
∂q∗i
∂z

= Dapp,i
∂2ci
∂z2

, i = 1, 2, 3 . (5.16)

Here, vs represents the speed of solid particles forming the diffusion free moving bed. Under

steady state conditions, the solid and liquid concentrations at the column outlet are related

as, c.f. Figure 5.19,

(q∗i,L − q∗i,0)
1− ǫ

ǫ
=

u

vs
(ci,L − ci,0) (5.17)
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Figure 5.15: Section 5.1.3 (case 2): Formation of displacement train, ǫ = 0.5, Nt = 104
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with boundary conditions

ci,0 = cini , q∗i,L = q∗ini ,
dci
dz

∣
∣
∣
∣
z=L

= 0 ,
dq∗i
dz

∣
∣
∣
∣
z=0

= 0 . (5.18)

Here, cini represents the injection concentration of component i at the left boundary z = 0

and q∗ini denotes the corresponding injected solid concentration at z = L. The initial data

are the same as used in the first simulation of fixed-bed displacement chromatography in

the previous part, i.e. the concentrations of both components are cin1 = cin2 = 1 g/l with

the displacer concentration cind = 1 g/l. The numerical results were obtained by using the

DG-scheme using 200 mesh points.

At the start of the process, the solid phase was fixed vs = 0 and a mixture was injected

followed by the displacer. The components along with the displacer started moving in the

column and approached the right end of the column after approximately 5 minutes, see

top plot in Figure 5.20. The isotachic train is not reached yet. This would require more

time and a longer bed. In order to reach this attractive pattern with the given bed length,

a new concept is considered. At time t = 5min, a movement of the solid bed particles was
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activated directed in the opposite direction while the fluid velocity u was set to zero keeping

Dapp unchanged. Consequently, all concentration fronts started moving back. It took about

4 minutes to approach the left end of the column, see the middle plot in Figure 5.20. Finally,

the movement of the solid bed was stopped and the fluid velocity was re-activated. As a

result, the pulses started moving in the forward direction for 4 more minutes, see bottom

plot in Figure 5.20. These back and forth movements ultimately separated the mixture to

build concentrated rectangular zones and form the isotachic train in the total simulation

time of 13 minutes for the given column length. Note that, simulation times are the same

for both fixed-bed and moving-bed processes. However, the moving-bed process allows to

separate the same feed mixture with a relatively shorter column as compared to the fixed-

bed process shown in Figure 5.15. In the bottom plot of Figure 5.20, we have also plotted

the equilibrium profiles of the fixed-bed over the equilibrium profiles of the counter-current

bed in order to verify that both processes give the same results. In that figure symbols

are used for the fixed-bed profiles of Figure 5.15 and lines represent the counter-current

bed profiles of Figure 5.20. Thus, the described moving-bed process can be very useful to

separate mixtures which are difficult to separate and require long chromatographic columns.

Currently, no experimental data or computational results are available for validation of the

simulation results of this case study. However, the results of our numerical study appear

to be useful for further investigation of such processes.

5.1.4 Four-component reactive elution

This part contains two reactive chromatographic case studies with linear and nonlinear

isotherms, respectively.

Case 1: Isothermal reaction with linear isotherms

In this final test problem, a reaction of type A+B ⇆ C+D along with the temperature

influence on the process is investigated. The feed composition and the flow rate of mobile

phase are assumed to be constant. The ester hydrolysis, experimentally studied by Tien

[92] and Mai [56] is considered as a practical example. The general reaction mechanism is

ester+water⇆ alcohol +acid. In such a reaction, only the reactant A (ester) is injected into
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Figure 5.19: A schematic diagram of counter-current adsorption process.

the column initially loaded only with component B (water), while component C (alcohol)

and component D (acid) are reaction products. Concentration profiles of C and D are de-

tected at the column outlet. The parameters of reaction equilibrium, reaction kinetics, and

adsorption isotherms are given in Table 5.8. The flow rate is 0.75ml/min, cinA = 0.5mol/l,

cinB = 0 = cinC = cinD, u = 0.0622m/min, ǫ = 0.24, L = 0.25m. The injection volume is

100µl. Initially, the column is equilibrated with water only, i.e. cinitB = 55.525mol/l and

cinitA = cinitC = cinitD = 0. The FBCR model (2.23) with linear adsorption isotherms, q∗i = aici,

is considered. The reaction rate of the heterogeneously catalyzed ester hydrolysis reactions

is described by

Qi(t, z, c) = νir , where r = khet
for (q

∗
Aq

∗
B −

q∗Cq
∗
D

Khet
eq

). (5.19)

Here, the signs of the stoichiometric coefficients νA and νB are negative, while the signs of

νC and νD are positive. For linear adsorption isotherms, the chemical equilibrium constant

Khet
eq can be written in terms of the solid-phase concentrations constant Khom

eq as

Khet
eq = Khom

eq

aCaD
aAaB

. (5.20)

Substituting of equation (5.20) in (5.19), we get

r = khet
for aAaB(cAcB −

cCcD
Khom

eq

). (5.21)

The eluted concentrations of the reaction products C and D are shown in Figure 5.21 using

200 mesh cells. To further analyze the performance of the chromatographic reactors, the
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Table 5.8: Section 5.4: Temperature dependent reaction and adsorption parameters.

Temperature ai Nt khet
for Khom

eq

A B C D [1/min]
298K 1.110 1 0.723 0.458 783 5.88× 10−3 0.38
308K 1.082 1 0.750 0.452 886 23.5× 10−3 0.48
318K 1.038 1 0.768 0.445 996.5 41.6× 10−3 0.44
328K 0.993 1 0.782 0.425 104 103 0.45

reaction is considered at four different temperatures. The numerical results of the DG-

scheme are also compared with the experimental data of [92]. Except for the porosity,

other model parameters heavily depend on the temperature of the column as given in

Table 5.8. The plots of Figure 5.21 show that component A was converted completely in

all cases, but the separation of products C and D was significantly improved at higher

temperatures. The peak widths are also reduced significantly at higher temperatures. In

agreement with the course of the Henry constants, Table 5.8, the retention times of the

product D have a tendency to decrease with temperature increase, whereas the retention

times of the product C have the opposite tendency. The numerical results were found in

relative good agreement with experimental data from [92].

Case 2: Isothermal reaction with nonlinear isotherm

To extend the previous case study to the nonlinear isotherms of Eq. (2.18), we considered

L = 0.25m, u = 0.1322m/min. The remaining data are given in Table 5.8 at a temperature

of 318K. As Langmuir isotherm parameters were considered as bA = 3 l/mol, bB = 0,

bC = 2 l/mol, bD = 1 l/mol, while the ai are the same as in the linear case. No experimental

data or analytical results are available for this setup. The numerical results of the DG-

scheme shown in Figure 5.22. The typical behavior caused by nonlinear Langmuir isotherms

is observed.
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Figure 5.21: Section 5.1.4 (case 1): 4-component isothermal-reactive elution at different
temperatures with linear isotherms.
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5.2 Conclusion

In this chapter, the discontinuous Galerkin finite element method and the Koren scheme

were implemented for solving isothermal non-reactive and reactive chromatographic mod-

els. The second to third order accuracy of the Koren scheme in axial-coordinate was verified

analytically and numerically. The scheme is a flux-limiting scheme in which fluxes are lim-

ited by using a nonlinear minmod limiter. This limiting procedure guarantees the positivity

of the scheme and suppresses the numerical oscillations. The DG-scheme presented satisfies

the TVB property and gives second order accuracy. The scheme can be easily extended to

higher orders by using high order basis functions and by employing better slope limiters,

for example reconstruction with the WENO limiters [69]. This method incorporates the

ideas of numerical fluxes and slope limiters in a very natural way to capture the physically

relevant discontinuities without producing spurious oscillations in their vicinity. In contrast

to finite volume schemes, the DG-scheme is well suited to handle complicated geometries

and avoids the extension of the mesh stencil that allows the incorporation of boundary

conditions uniformly. The accuracy of the proposed schemes were validated against other

flux-limiting finite volume schemes available in the literature. The numerical test problems

verify that the suggested DG-scheme gives more resolved solutions than the high resolu-

tion scheme of Koren, especially at sharp discontinuities. However, desirable results can

also be obtained by using the Koren scheme and we conclude that both the DG and Ko-

ren schemes are optimal methods for the numerical approximation of linear and nonlinear

chromatographic models. The focus of this chapter was to simulate the dynamic behavior

of isothermal chromatographic processes. In the subsequent chapter, the numerical scheme

is extended to solve the non-isothermal reactive liquid chromatographic model.



Chapter 6

Thermal Effects in Reactive Liquid
Chromatography

This chapter is focused on modeling and simulation of non-isothermal reactive liquid chro-

matography. The purpose of this study is to quantify how temperature gradients can

influence conversion and separation in reactive liquid chromatography. Additionally, the

coupling of concentration and thermal fronts are illustrated and key parameters influencing

the reactor performance are identified.

Thermal effects are discussed widely in case of gas phase reactions in solid packings [21, 27,

40, 104, 105]. In reactive liquid chromatography, thermal effects are typically not considered

and modeling of the process assumes that effects of heats of sorption and reaction are

negligible. Only very few contributions considering thermal effects can be found in the

literature [77, 78, 79, 90].

Non-isothermal reactive chromatography can be described by a convection dominated sys-

tem of non-linear convection-diffusion-reaction type partial differential equations and al-

gebraic equations describing thermodynamic and kinetic phenomena. The corresponding

systems have to be solved numerically because analytical solutions cannot be obtained. The

simulation of non-isothermal reactive chromatography is a challenging task for a numerical

scheme due to the nonlinearity of the convection-dominated mass and energy balance equa-

tions and because of stiffness of the reactive source terms. These stiff terms may produce

rapid variations in the solution and can render the numerical methods unstable, unless the

86
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time step size is sufficiently small. Thus, an efficient and accurate numerical technique is

needed to avoid excessive dissipation, incorrect phase speeds, spurious oscillations, and to

capture sharp discontinuities of the elution profiles. In order to solve the current problem,

a high resolution finite volume scheme, already developed for isothermal chromatography

in this thesis, c.f. Chapter 3, is extended to solve the non-isothermal processes. Finite

volume schemes were already applied in the chromatographic field [16, 34, 51, 60, 103], but

were never implemented for the complex non-isothermal reactive chromatographic model

considered in this work.

In this study, a flux-limiting semi-discrete high resolution finite volume scheme of Koren

[39] is proposed for the numerical approximation of non-isothermal reactive chromato-

graphic models. The scheme discretizes the model in axial-coordinate only, while keeps

the time variable continuous. The suggested scheme was found to be second to third order

accurate analytically and numerically in the previous chapter on equilibrium dispersive

chromatographic models. The scheme gives high order accuracy on coarse grids, resolves

sharp discontinuities, and avoids numerical dispersion [49]. Several challenging case studies

are carried out which elucidate the effect of several sources for non-isothermal behavior.

The numerical results were evaluated critically by performing consistency tests evaluat-

ing both mass and energy balances including considerations of limiting cases, which can

be theoretically predicted. The results prove the accuracy of the numerical scheme and

quantify the relevant thermal effects.

6.1 The non-isothermal chromatographic reactor model

This section focuses on mathematical modeling of non-isothermal chromatographic reac-

tors. Mathematically, the non-isothermal single column chromatographic reactor is similar

to a more frequently studied non-isothermal unsteady-state fixed bed reactor [72, 78]. The

model is based on the following basic assumptions:

1. A permanent equilibrium is assumed between stationary and mobile phases at all

positions of the column.
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2. A single reaction takes place exclusively in the solid phase.

3. There are no radial concentration and temperature gradients in the column and a

one dimensional description is used.

4. Only axial dispersion causes band broadening described by Dapp and λax in the mass

and energy balances, respectively.

5. Compressibility of the mobile phase is negligible.

6. There are no interactions between the solvent (carrier) and the solid phase.

7. There is no heat added or removed from the system except via the inlet and outlet

streams, i.e. adiabatic operation.

The classical mass balance equations of the equilibrium dispersive model for a fixed bed

chromatographic column are given as

(

1 + F
∂q∗i
∂ci

)
∂ci
∂t

+ u
∂ci
∂z

= Dapp,i
∂2ci
∂z2

+ Fνir , i = 1, 2, · · · , Nc , (6.1)

where F is the phase ratio based on the porosity ǫ ∈]0, 1[ and F = 1−ǫ
ǫ
, ci is the concentra-

tion of the i-th component in the fluid phase, q∗i is the solid phase equilibrium concentration

of the i-th component, u represents the constant interstitial velocity of the mobile phase,

Dapp,i represents the axial dispersion coefficient of the i-th component, t is the time, and

z is the axial-coordinate along the column. Moreover, r is the rate of the reaction in the

solid phases, the νi are the corresponding stoichiometric coefficients of components and Nc

represents the total number of components. Note that, the stoichiometric coefficients νi

are negative for reactants and positive for products.

If the enthalpy of mixing is neglected, the energy balance for a differential volume element

in an adiabatic chromatographic reactor becomes

(ρLCL
p + FρSCS

p)
∂T

∂t
+ uρLCL

p

∂T

∂z
= λax

∂2T

∂z2
+ F

Nc∑

i=1

(−∆HA,i)
∂q∗i
∂t

+ F (−∆HR)r . (6.2)
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Here ρ represents the density per unit volume, Cp is the heat capacity, and the superscripts

L and S stands for the liquid and solid phases, respectively. The considered density and heat

capacity are not depending on temperature and composition. Moreover, ∆HA,i denotes the

enthalpy of adsorption for the i-th component and ∆HR represents the enthalpy of reaction.

By using the assumptions of non-dispersive and non-reactive chromatography, the propa-

gation velocities of concentration fronts ui
c and of the thermal front uT can be estimated

from Eqs. (6.1) and (6.2) as:

ui
c
∼=

u

1 + F
∂q∗i
∂ci

, uT
∼=

u

1 + F
ρSCS

p

ρLCL
p

, i = 1, 2, · · · , Nc . (6.3)

The Eq. (6.3) reveals that the propagation velocities ui
c depend on the corresponding local

slopes of the adsorption isotherms and that the propagation velocity uT is influenced by

the ratio of the volumetric density times heat capacities of solid and liquid phases. For

weakly adsorbed components or small slopes of isotherm
∂q∗i
∂ci

and for significantly higher

ratio of
ρSCS

p

ρLCL
p
, the velocities of concentration fronts ui

c are higher than the thermal velocity

uT .

For non-reactive chromatography under non-isothermal conditions, it was shown that the

energy balance can be formulated as the Nc + 1-th equation, analogously to the Nc mass

balance equations [72]. This idea can be extended easily to reactive systems if the heat

of reaction is assumed to be an analogue to the Nc + 1 stoichiometric coefficient, i.e.

νNc+1 = −∆HR. Hereby, the energy balance is formulated in a convenient way with

respect to a reference temperature T ref .

Generally, the computer implementation of dimensionless equations is more convenient to

reduce rounding error. The current system can be transformed into a dimensionless form

by introducing the following dimensionless time and axial coordinates

τ = tu/L , x = z/L (6.4)
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and the new variables

νNc+1 = −∆HR, (6.5a)

cNc+1 = ρLCL
p (T − T ref), (6.5b)

q∗Nc+1 = ρSCS
p (T − T ref) +

Nc∑

i=1

∆HA,iq
∗
i . (6.5c)

By using the chain rule and Eqs. (6.4) and (6.5), the Eqs. (6.1) and (6.2) can be lumped

together as a single system of Nc + 1 equations:

(

1 + F
∂q∗m
∂cm

)
∂cm
∂τ

+ F

Nc+1∑

l=1
l 6=m

∂q∗m
∂cl

∂cl
∂τ

+
∂cm
∂x

=
1

Pe

∂2cm
∂x2

+
Lνm
u

Fr , (6.6)

where m = 1, 2, · · · , Nc + 1. The dimensionless Peclet number Pe is given as

Pem =

{
PeM = Lu

Dapp
if m = 1, 2, · · · , Nc ,

P eE =
LuρLCL

p

λax
if m = Nc + 1,

(6.7)

where L is the column length and PeM is equal to two times of the frequently used number

of theoretical plates Nt and assumed to be the same for all components.

Now it is required to define Nc + 1 initial and 2(Nc + 1) boundary conditions to close

the model (6.6). For an initially uniformly equilibrated column, the initial and boundary

conditions for the Nc dimensionless mass balance equations of Eq. (6.6) are given as:

cm(0, x) = cinitm , cm(τ, 0) = cinm(t) +
L

Pe

∂cm
∂x

∣
∣
∣
∣
x=0

,
∂cm
∂x

∣
∣
∣
∣
x=1

= 0 , m = 1, 2, · · · , Nc ,

(6.8a)

and the conditions for the Nc + 1-th dimensionless energy balance equation are given as

cNc+1(0, x) = 0 , cNc+1(τ, 0) = T in +
L

Pe

∂cNc+1

∂x

∣
∣
∣
∣
x=0

,
∂cNc+1

∂x

∣
∣
∣
∣
x=1

= 0 , (6.8b)

where cinj , T
init and T in represent the inlet concentrations, initial temperature and tempera-

ture at the column inlet, respectively. In this work, T in, T init and the reference temperature

T ref are taken to be identical.

In this study, for illustration a simple reversible reaction A ⇆ B+C is considered and

linear adsorption isotherms are assumed. An inert carrier (solvent), present in excess is
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transporting the three components through the column. The amount of solute adsorbed

depends on temperature as described by a van’t Hoff type relation using the enthalpy of

adsorption. In the case of a linear adsorption isotherms, the phase equilibrium relations

for components can be written as

q∗i = aici , i = 1, 2, 3 , (6.9a)

with ai = arefi exp

(
−∆HA,i

R

(
1

T
−

1

T ref

))

, i = 1, 2, 3 . (6.9b)

To describe the reaction rate the standard expression for a reversible reaction is applied

using the solid phase concentrations to define the driving force

r = kfor(T )

(

q∗A −
q∗Bq

∗
C

K∗
eq(T )

)

. (6.10a)

The effect of temperature on the chemical reaction rate kfor(T ) is an exponential function

of the absolute temperature as described by the Arrhenius equation using the activation

energy EA

kfor(T ) = kfor(T
ref) exp

(
−EA

R

(
1

T
−

1

T ref

))

. (6.10b)

Chemical equilibrium constants K∗
eq(T ) depend on the temperature as given below

d lnK∗
eq

dT
=

∆HR

RT 2
. (6.11a)

After integrating the above equation from T ref to T , we obtain another von’t Hoff expression

K∗
eq(T ) = K∗

eq(T
ref) exp

(
−∆HR

R

(
1

T
−

1

T ref

))

. (6.11b)

This completes the derivation of the model for the non-isothermal chromatographic reactor.

In the next section the flux-limiting finite volume scheme used to solve the model equations

is presented.

6.2 Formulation of numerical scheme

In this section, the high resolution scheme of Koren [39] is described with respect to this

particular problem. It should be noted that Nc = 4 refers to three species A, B and C and
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the fourth pseudo-component which captures the specifics of the energy equation, cf., Eq.

(6.5b). The Eq. (6.6) can be re-written as

J
∂c

∂τ
+ u

∂c

∂x
= P

∂2c

∂x2
+Q , (6.12a)

where, J, c, P and Q are given as

J =








1 + F
∂q∗1
∂c1

F
∂q∗1
∂c2

F
∂q∗1
∂c3

F
∂q∗1
∂c4

F
∂q∗2
∂c1

1 + F
∂q∗2
∂c2

F
∂q∗2
∂c3

F
∂q∗2
∂c4

F
∂q∗3
∂c1

F
∂q∗3
∂c2

1 + F
∂q∗3
∂c3

F
∂q∗3
∂c4

F
∂q∗4
∂c1

F
∂q∗4
∂c2

F
∂q∗4
∂c3

1 + F
∂q∗4
∂c4








, c =







c1
c2
c3
c4







, (6.12b)

P =







1
PeM

0 0 0

0 1
PeM

0 0

0 0 1
PeM

0

0 0 0 1
PeE







, Q = Fr







Lν1
u

Lν2
u

Lν3
u

Lν4
u







. (6.12c)

Before applying the proposed numerical scheme to Eq. (6.12), it is required to discretize the

computational domain. Let N represents the number of discretization points and the points

(xj− 1
2
), j ∈ {1, · · · , N + 1} be partitions of the interval [0, 1]. For each j = 1, 2, · · · , N , ∆x

is a constant width of each mesh interval. The xj denote the cell centers, and xj± 1
2
refer

to the cell boundaries. We assign

x1/2 = 0 , xN+1/2 = 1 , xj+1/2 = j ·∆x , for j = 1, 2, · · ·N . (6.13)

Moreover, we have

xj = (xj−1/2 + xj+1/2)/2 and ∆x = xj+1/2 − xj−1/2 =
1

N + 1
. (6.14)

Let Ωj :=
[
xj−1/2, xj+1/2

]
for j ≥ 1. The cell averaged initial data in each cell are given as

cj(0) =
1

∆x

∫

Ωj

cinit(x) dx , for j = 1, 2, · · ·N . (6.15)

By integrating Eq. (6.12a) over the interval Ωj =
[
xj−1/2, xj+1/2

]
, we obtain

∫

Ωi

J
∂c

∂τ
dx = −u

(

cj+ 1
2
− cj− 1

2

)

+Pj

[(
∂c

∂x

)

j+1/2

−

(
∂c

∂x

)

j−1/2

]

+

∫

Ωj

Q dx . (6.16)
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In each Ωj , the averaged values of the conservative variables c(t) are given as

cj(t) =
1

∆x

∫

Ωj

c(t, x) dx . (6.17)

In Eq. (6.17), cj are cell averaged vectors of concentration components, while in Eq. (6.16),

cj± 1
2
are the vectors at the respective cell boundaries. Similarly, the cell-averaged value

of source term Q can be defined. Moreover, the Jacobian matrix J is calculated at the

cell centroid xj . Therefore, by using Eq. (6.17) in Eq. (6.16), the following semi-discrete

scheme is obtained, for each, j = 1, 2, · · · , N ,

Jj
dcj
dτ

= −u
(

cj+ 1
2
− cj− 1

2

)

+Pj

[(
∂c

∂x

)

j+1/2

−

(
∂c

∂x

)

j−1/2

]

+Qj . (6.18)

The differential terms of the diffusion part can be approximated as

(
∂c

∂x

)

j± 1
2

= ±

(
cj±1 − cj

∆x

)

. (6.19)

The next step is to approximate the values for the convective variables at the cell interfaces

cj± 1
2
, in Eq. (6.18). Hereby, different approximations give different numerical schemes.

First order scheme: In this case, the fluxes are approximated as

cj+ 1
2
= cj , cj− 1

2
= cj−1 . (6.20)

This approximation gives a first order accurate scheme in the axial-direction.

High resolution schemes: To achieve higher order accuracy, a piecewise interpolation

polynomial can be used, such as

cj+ 1
2
= cj +

1 + κ

4
(cj+1 − cj) +

1− κ

4
(cj − cj−1) , κ ∈ [−1, 1] . (6.21)

Similarly, cj− 1
2
can be written as

cj− 1
2
= cj−1 +

1 + κ

4
(cj − cj−1) +

1− κ

4
(cj−1 − cj−2) , κ ∈ [−1, 1] , (6.22)

where the parameter κ is selected from the interval [−1, 1]. For κ = −1, one gets the second

order accurate fully one-sided upwind scheme, and for κ = 1, the standard second order
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accurate central scheme centered around cj . For all other values of κ ∈ (−1, 1), a weighted

blend is obtained between the central scheme and the fully one-sided upwind scheme.

Koren scheme: Here κ = 1
3
is chosen which is third order accurate when there is no

flux-limiting. For this choice of κ, Eq. (6.21) becomes in componentwise form

(cm)j+ 1
2
= (cm)j +

1

2

(
1

3
+

2

3

(cm)j+1 − (cm)j
(cm)j − (cm)j−1

)

((cm)j − (cm)j−1) , m = 1, 2, 3, 4 . (6.23)

However such approximations of flux terms may give negative solutions due to oscillations

in the regions of strong variations. To deal with such problems, the Sweby-type flux-limiter,

e.g. in [88] is used and Eq. (6.23) takes the form

(cm)j+ 1
2
= (cm)j +

1

2
φ
(

(rm)j+ 1
2

)

((cm)j − (cm)j−1) . (6.24)

where rj+ 1
2
is the ratio of consecutive flux gradients

(rm)j+ 1
2
=

(cm)j+1 − (cm)j + η

(cm)j − (cm)j−1 + η
. (6.25)

Here η ≈ 10−10 is used to avoid division by zero and the limiting function φ is given as

φ((rm)j+ 1
2
) = max

(

0,min

(

2(rm)j+ 1
2
,min

(
1

3
+

2

3
(rm)j+ 1

2
, 2

)))

. (6.26)

Due to flux-limiting, the above scheme is a second to third order accurate [34, 39].

The approximations (6.23) and (6.24) are not applicable to the boundary intervals. Let

us specifically consider the left boundary related to the inflow boundary condition. The

position of the interval face x 1
2
and inflow boundary are identical. However, x0 is not known,

therefore Eqs. (6.23) and (6.24) are not applicable at x 3
2
. To overcome this problem, the

first order approximation (6.20) can be used at the cell interfaces x 3
2
and xN+ 1

2
. Let (cm)

in

represent the concentrations of m-th injected pulse, then

(cm) 1
2
= (cm)in , (cm) 3

2
= (cm)1, (cj)N+ 1

2
= (cm)N , m = 1, 2, 3, 4. (6.27)

The above equation shows that outflow boundary conditions are used at the outlet of the

column. The fluxes at other cell interfaces can be computed using Eqs. (6.23) and (6.24).

However, the use of a first order scheme in the boundary intervals does not affect the
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global accuracy of the method due to shrinking cell sizes with increasing node numbers.

The efficiency and accuracy of the scheme were thoroughly analyzed in the previous chapter

on isothermal dispersive liquid chromatography.

The above described semi-discrete scheme was programmed in Matlab 7.9.1 software and

the resulting ODE-system was solved by using the built-in Matlab routine ode15s.

6.3 Consistency tests for validation

Currently, not many experimental results are available to quantify non-isothermal reactive

chromatographic processes. Thus, integral consistency tests for mass and energy balance

equations are useful tools to validate numerical results and also the correctness of the

model formulation. Based on such tests, the accuracy of the numerical scheme and the

conservativity of mass and energy balances were evaluated for the considered reversible

chemical reaction A ⇆ B+C.

6.3.1 Identity of integrated extents of reaction

In a chemical reaction, the changes in mole numbers of the components ni are connected

by the stoichiometry of the reaction. For the considered reversible chemical reaction A ⇆

B+C, the integrated extent of reaction ξ should be independent on component and should

follow the subsequent equation

ξ = nin
A − nout

A = nout
B = nout

C . (6.28)

The single variable ξ describes all the changes in the mole numbers due to the chemical

reaction and nin
i = cini V

in represents injected moles into the column. In this study, the

inlet concentrations of the products i.e., cinB and cinC were taken to be zero. The symbol V in

denotes the volume injected at the column inlet during the injection time tin.

After solving the PDEs the mole numbers can be calculated at the outlet using the following

equation

nout
i = V̇

∫ t∗

0

ci(t, x = L)dt , i = A,B,C, (6.29)
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where V̇ represents the volumetric flow rate related to u. The above integrals were evalu-

ated for each component using the trapezoidal rule. The integration of the PDEs solution

should be carried sufficiently long to return to the initial state (time t∗).

A standard deviation is calculated for the three values of ξi as

σξ,i[%] = 100×

√
∑Nc

i=1(ξi − ξ̄)2

3
, i = A,B,C. (6.30)

Here ξ̄ is the average of ξA, ξB, ξC . This standard deviation should tend to zero if the mass

balances respect stoichiometry.

6.3.2 Integrated energy balance considering the extent of reac-

tion

An energetic evaluation of the process can be made by comparing the enthalpies entering,

∆H in, and leaving, ∆Hout, the system. These enthalpies are

∆H in = ρLcLp V̇

∫ t∗

0

(T in − T ref)dt , ∆Hout = ρLcLp V̇

∫ t∗

0

(T (t, x = L)− T ref) dt . (6.31)

For T in = T ref holds ∆H in = 0. In case of a complete adsorption and desorption cycle (t∗

sufficiently long), there will be no overall sorption effect and the following balance equation

can be derived using exclusively the effect of reaction quantified by ∆HR and ξ, e.g. Eq.

(6.30)

∆Hout + (∆HR)ξ̄ = 0 . (6.32)

The fulfillment of Eq. (6.32) is required as a proof of accurate numerical simulations. There

are several sources of numerical errors, such as discretization errors, round off errors, and

errors in the numerical integrations of the outlet profiles, etc. Due to these errors, the right

hand side of Eq. (6.32), called here ∆Herr, might not be exactly zero

∆Herr = ∆Hout + (∆HR)ξ̄ . (6.33)

The smaller the ∆Herr the better is the fulfillment of the joint integral mass and energy

balances. One can expect larger errors in ∆Herr compared to errors in ξ due to the accu-

mulation of all possible errors in this more critical consistency check. A relative percentage
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error in this energy can be given as

EH[%] = 100×

∣
∣
∣
∣

∆Herr

∆HRξ̄

∣
∣
∣
∣
. (6.34)

6.4 Demonstrations of thermal effects

The purpose of this section is to evaluate effects of parameters that influence conversion

and separation in non-isothermal reactive liquid chromatography. Numerical test problems

will explain the coupling between the concentration and thermal fronts in the reactor.

We consider, the reversible reaction A⇆B+C, and linear isotherm with Henry constants

arefA = 1.0, arefB = 0.7 and arefC = 1.3 at reference temperature T ref = 300 K. This means

that the feed component A elutes between the two products B and C. Moreover, a reaction

rate constant kfor(T
ref) = 10−4 1/s, a reaction equilibrium constant K∗

eq = 2 mol/l, an

activation energy EA = 60 kJ/mol and density times heat capacities for liquid and solid

phases ρLCL
p = ρSCS

p = 4.0 kJ/lK are used for numerical simulations. Further, the column

length is L = 27 cm, the interstitial velocity is u = 0.6240 cm/min, the volumetric flow

rate is V̇ = 0.4980 cm3/min. The phase ratio F = 1.5 corresponds to the external porosity

ǫ = 0.4. A pulse of height cinA = 3 mol/l is injected into the column initially equilibrated

with the solvent, i.e. ciniti = 0 for an injection time tin of 16.68 min corresponding to

a dimensionless injection time τ in of 0.385. In most of the cases, based on preliminary

calculations a final simulation time 174 min is taken into account to assure complete

regeneration. In all test problems, the dimensionless model, Eq. (6.6), is used and the

Koren scheme mostly with 400 mesh cells in axial direction is employed for numerical

simulations. The values for the reaction enthalpy and the adsorption enthalpies were

varied in typical ranges, i.e. ∆HR = [−50, 50] kJ/mol, and ∆HA,i = [−20, 0] kJ/mol.

6.4.1 Trivial limiting cases

At first, some trivial limiting studies are considered for validation.

Case 1: There is no reaction, kfor = 0, and enthalpies of adsorption are negligible, ∆HA,i =

0, in the model Eq. (6.6). Moreover, dispersion effects are ignored by considering both
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Peclet numbers of mass PeM and energy PeE approach to ∞. As a result, reactants would

be not able to convert into the products. The reactant is only transported through the

column and the product components B and C are not formed. The correctly obtained

solution for this particular case is shown in Figure 6.1.

If the enthalpy of reaction is taken to be zero, i.e., ∆HR = 0, then ∆Hout = 0, and no

temperature change can occur as depicted in Figure 6.1 (right).

Case 2: Adiabatic temperature rise

This part evaluates the adiabatic temperature rise. The reactant A is continuously fed with

three different injection concentrations cinA = 3 mol/l, cinA = 6 mol/l and cinA = 12 mol/l

for sufficiently long injection and residence times along with a set of parameters namely,

∆HA,i = 0, ∆HR = −10 kJ/mol, and PeM and PeE approach to∞. The formula describing

the adiabatic temperature rise based on Eqs. (6.1) and (6.2) is

∆Tadabatic =
−∆HRc

in
A

ρLcLp
. (6.35)

For the considered injection concentrations, this formula give the values of ∆Tadabatic as

7.5 K, 15 K and 30 K, respectively. The corresponding temperature profiles together

with selected concentration profiles are shown in Figure 6.2. The figure verifies, that after

complete conversion of the reactant, the predicted temperature profiles indeed attain the

steady maxima and the values of ∆Tadabatic in the figure agree with those obtained from Eq.

(6.35). The slight overshoots in Figure 6.2 are produced by the numerical scheme which

have no physical reason. This completes the discussion of trivial cases.

6.4.2 Non-trivial test problems

Problem 1: Isothermal case:

The purpose of this first study is to analyze the isothermal behavior as well as to quan-

titatively investigate the errors of extent of reaction ξ and conversion. To simulate the

isothermal case, the enthalpies of adsorption, ∆HA,i, and the enthalpy of reaction, ∆HR,

are set equal to zero. Additionally, dispersion effects are neglected by considering both

PeM and PeE approaching ∞. In order to analyze the effect of the adsorption isotherms,
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Figure 6.1: Trivial limiting cases: case 1: ∆HA,i = 0 for i=A,B,C, kfor(T
ref) = 0.
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ref) = 10−4 s−1, left: temperature transients at the column outlet
for three inlet concentrations, right: the corresponding concentration transients for cinA =
6 mol/l.
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Table 6.1: Problem 1: Isothermal case. Here XA[%] = 100×
nin
A
−nout

A

nin
A

.

parameters ξA ξB ξC σξ,i XA ∆Hout

[mol] [mol] [mol] [%] [%] [kJ]
ai = 0 -0.0001 −5.7e−27 −1.0675e−10 ≈ 0 -0.0040 0
arefi 6= 0 0.0079 0.0080 0.0080 0.0058 31 0

at first the Henry constants ai are put equal to zero for all components, i.e. aA = 0, aB = 0,

and aC = 0. Due to Eq. (6.10a) the reaction rate would also be zero and the reactant A

would not be converted into products and would be just transported along the column.

This behavior can be seen in Figure 6.3 (top). Then we considered the reference Henry

constants in Eq. (6.9) as arefA = 1.0, arefB = 0.7, and arefB = 1.3. The obtained concentration

profiles on 400 mesh points are shown in the Figure 6.3 (middle). They reveal the appear-

ance of components B and C. Furthermore, as expected there is no change in temperature.

Table 6.1, shows the parameters required for the consistency tests described in the previ-

ous section. As required the extents of reactions are independent of the components. The

results for the reference Henry constants reveal significant but incomplete conversion and

separation.

Figure 6.3 (bottom) shows the comparison of results at different mesh points for isothermal

case study, while keeping the other parameters unchanged. The results obtained by consid-

ering 400 and 1000 mesh points are almost same, while the resolution of 100 mesh points

is diffusive. For that reason, 400 mesh points are chosen in the numerical simulations of

this chapter to achieve acceptable accuracy.

Problem 2: Influence of the enthalpy of reaction

This part evaluates the role of the heat of reaction that can be released or consumed when

the chemical reaction takes place. Firstly, an exothermal reaction, ∆HR = −10 kJ/mol,

together with zero adsorption enthalpies, ∆HA,i = 0, are taken into account. It was further

assumed that both Peclet numbers, PeM and PeE are approaching to ∞. The numerical

results using 400 grid cells are shown in Figure 6.4 (top). The results depict the expected

rise in the temperature profile, that improved the conversion slightly to 32 % compared
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Figure 6.3: Problem 1: Isothermal case, ∆HA,i = 0, ∆HR = 0, Henry constants top:
ai = 0, for i=A,B,C, middle: arefA = 1.0, arefB = 0.7, arefC = 1.3, bottom: comparison of
different mesh points.
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Table 6.2: Problem 2: ∆HA,i = 0, EA = 60 kJ/mol. Here XA[%] = 100×
nin
A
−nout

A

nin
A

.

parameters ξA ξB ξC σξ,i XA ∆Hout ∆Herr EH

[kJ/mol] [mol] [mol] [mol] [%] [%] [kJ] [kJ] [%]
∆HR = −10 0.0079 0.0080 0.0080 0.0058 32 0.0801 0.0004 0.49
∆HR = −40 0.0119 0.0120 0.0120 0.0058 48 0.4790 0.0015 0.32
∆HR = +10 0.0073 0.0074 0.0074 0.0058 29 -0.074 -0.0004 0.53

to the isothermal study 31 %, see Tables 6.1 and 6.2. For a larger enthalpy of reaction,

∆HR = −40 kJ/mol, the simulated results are shown in Figure 6.4 (middle). Due to larger

rise of the temperature profile, conversion of component A further increases to 48 % and

more products B and C can be collected as shown in Figure 6.4 (middle). This trend can

be seen also in Table 6.2. It is straightforward to conclude that increase in magnitude of

the heat of reaction leads to the significant thermal effects. The rise in temperature also

starts to influence the absorptivity of the components, but this is hard to see in Figure 6.4

(middle).

To analyze the influence of an endothermic reaction, the enthalpy of reaction ∆HR =

10 kJ/mol is considered, while keeping other parameters unchanged. The simulated results

are shown in Figure 6.4 (bottom). The corresponding quantitative results can be found in

Table 6.2. The endothermic reaction absorbs heat causing a decline in temperature and

reduction of conversion to 29 %. These calculations allowed to evaluate the consistency

test describes in Section 6.3. The joint error of the integral mass and energy balances,

expressed by the error EH (Eq. (6.34)), is less than 1 %. This again demonstrates the high

precision of the obtained numerical solutions.

Problem 3: Influence of enthalpy of adsorption

This case study refers to the enthalpies of adsorption ∆HA,i for negligible enthalpies of

reaction ∆HR. The chromatographic separation of the products is based on differences in

adsorption strength, that depends on temperature through the enthalpies of adsorption,

∆HA,i. The adsorption equilibrium may change with temperature, depending on the rela-

tive magnitudes of the individual adsorption enthalpies. Note that, enthalpies of adsorption
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Figure 6.4: Problem 2: Influence of the enthalpy of reaction, ∆HA,i = 0, for i=A,B,C, top:
∆HR = −10 kJ/mol, middle: ∆HR = −40 kJ/mol, bottom: ∆HR = 10 kJ/mol.
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Table 6.3: Problem 3: ∆HR = 0. Here XA[%] = 100×
nin
A
−nout

A

nin
A

.

parameters ξA ξB ξC σξ,i XA ∆Hout

[kJ/mol] [mol] [mol] [mol] [%] [%] [kJ]
∆HA,i = −20 0.0098 0.0099 0.0099 0.0058 39 -0.0011
∆HA,i = −40 0.0091 0.0092 0.0093 0.0082 37 -0.0015
∆HA,i = −60 0.0079 0.0081 0.0079 0.0058 31 0.0011

are generally negative. We considered, ∆HA,i = −20 kJ/mol for all components A, B and

C, ∆HR = 0 and, both PeM and PeE approach to ∞. The corresponding results are

presented in Figure 6.5 (top). The behavior of concentration and temperature profiles are

totally different from the isothermal and the other previously considered cases. The figures

show the direct coupling of thermal and concentration waves and cause self-sharpening

fronts although the adsorption isotherms are linear with respect to concentrations. It

is worthwhile to mention that the adsorption and desorption “peaks” of temperature are

identical in size because the enthalpy of reaction is zero. In order to extend the inves-

tigation of the effect of adsorption enthalpies, we considered also rather larger values of

∆HA,i = −40 kJ/mol and ∆HA,i = −60 kJ/mol, again with ∆HR = 0. The correspond-

ing simulation results can be seen in Figure 6.5 (middle) and (bottom), respectively. The

increase in the magnitude of ∆HA,i, strongly effects the adsorptivity of the components.

The change in adsorptivity causes the differences in the retention times of the components

that lead to significant reductions in conversion and separation, see Figure 6.5 and Table

6.3. The quantitative data presented in Table 6.3 demonstrate one more time the precision

of the numerical calculations.

Problem 4a: Influence of both enthalpies of reaction and adsorption

For the complete description of the non-isothermal chromatographic processes, the ef-

fects of both enthalpies of adsorption and reaction are evaluated. For all three com-

ponents, enthalpies of adsorption ∆HA,i = −20 kJ/mol and the enthalpy of reaction

∆HR = −10 kJ/mol are considered. Furthermore, it is assumed again that the Peclet

numbers PeM and PeE both approach to ∞. The numerical calculations were made again
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Figure 6.5: Problem 3: Influence of enthalpies of adsorption, ∆HR = 0, top: ∆HA,i =
−20 kJ/mol, middle: ∆HA,i = −40 kJ/mol, bottom: ∆HA,i = −60 kJ/mol, i=A,B,C.
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using 400 mesh points. The results are shown in Figure 6.6 (top). As an exothermic reac-

tion is taken into account, in total heat is released. Consequently, conversion is improved

as expected. Figure 6.6 (top), shows very different concentration profiles compared to the

isothermal study (Figure 6.3 middle). The temperature profile in Figure 6.6 (top) has

similar temperature excursions as observed in Figure 2 of [78]. Then we considered an en-

dothermic reaction, ∆HR = 10 kJ/mol, while keeping other parameters unchanged. The

results can be seen in Figure 6.6 (bottom). Visibly, the concentration and thermal wave fol-

low the same trends, but the conversion of reactant A is less for the endothermic reaction.

Corresponding simulated results for an exothermic reaction with ∆HR = −50 kJ/mol are

presented in Figure 6.7 (top). The figure depicts again the typical non-linear behavior both

in concentration and temperature profiles. The increase in magnitude of the exothermic

reaction, leads to increase in maximum temperature. Thus, the forward reaction is en-

hanced and the reactant is further converted. The results for an endothermic reaction with

∆HR = 50 kJ/mol are shown in Figure 6.7 (middle). An immense difference can be seen

in the shape of the product peaks in comparison to the corresponding exothermic reaction

of the same magnitude, see Figure 6.7.

Another important parameter that can influence the performance of the chromatographic

reactor is the activation energy, EA. Above exclusively the reference value EA = 60 kJ/mol

was applied. For illustration, we changed this reference value to EA = 100 kJ/mol with

∆HR = −10 kJ/mol and plotted the eluted concentration profiles in Figure 6.7 (bottom)

to compare with the results in Figure 6.6 (top). The simulated results show that more

reactant is converted into products for the higher value of the activation energy and a

higher maximum temperature is reached. The larger value of activation energy leads to a

more pronounced enhancement of the reaction rate due to an increase of the temperature.

The corresponding quantitative values in Table 6.4 elucidating the discussion above.

Problem 4b: Influence of enthalpy of adsorption (componentwise)

In above test problems, the same values of enthalpy of adsorption ∆HA,i were used for all

components. In practice, the enthalpy of adsorption can vary with respect to the compo-

nents. The following cases are investigated to analyze the impact of specific enthalpies of
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Table 6.4: Problem 4a: ∆HA,i = −20 kJ/mol. Here XA[%] = 100×
nin
A
−nout

A

nin
A

.

parameters ξA ξB ξC σξ,i XA ∆Hout ∆Herr EH

[kJ/mol] [mol] [mol] [mol] [%] [%] [kJ] [kJ] [%]
∆HR = −10, EA = 60 0.0101 0.0102 0.0102 0.0058 40 0.1005 -0.0010 0.98
∆HR = +10, EA = 60 0.0096 0.0097 0.0097 0.0058 38 -0.0983 -0.0019 1.98
∆HR = −50, EA = 60 0.0112 0.0113 0.0113 0.0058 45 0.5643 6.51e-04 0.12
∆HR = +50, EA = 60 0.0086 0.0087 0.0088 0.0082 35 -0.4389 -0.0036 0.82
∆HR = −10, EA = 100 0.0124 0.0125 0.0125 0.0058 50 0.1234 -0.0010 0.80

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

dimensionless time, τ

co
nc

en
tr

at
io

n 
[m

ol
/l]

 

 

A (reactant)
B (product)
C (product)

1 1.5 2 2.5 3 3.5 4
285

290

295

300

305

310

315

320

325

dimensionless time, τ

te
m

pe
ra

tu
re

 [K
]

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

dimensionless time, τ

co
nc

en
tr

at
io

n 
[m

ol
/l]

 

 

A (reactant)
B (product)
C (product)

1 1.5 2 2.5 3 3.5 4
285

290

295

300

305

310

315

320

325

dimensionless time, τ

te
m

pe
ra

tu
re

 [K
]

Figure 6.6: Problem 4a: Influence of both enthalpies of reaction and adsorption, ∆HA,i =
−20 kJ/mol, i=A,B,C, top: EA = 60 kJ/mol, ∆HR = −10 kJ/mol, bottom: EA =
60 kJ/mol, ∆HR = +10 kJ/mol.
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Figure 6.7: Problem 4a: Influence of both enthalpies of reaction and adsorption, ∆HA,i =
−20 kJ/mol, i=A,B,C, top: EA = 60 kJ/mol, ∆HR = −50 kJ/mol, middle: EA =
60 kJ/mol, ∆HR = +50 kJ/mol, bottom: EA = 100 kJ/mol, ∆HR = −10 kJ/mol.
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adsorption on the course of the effluent concentration and temperature profiles.

case 1 : ∆HA,A = 0,∆HA,B = −20,∆HA,C = −20 , (6.36a)

case 2 : ∆HA,A = −20,∆HA,B = 0,∆HA,C = −20 , (6.36b)

case 3 : ∆HA,A = −20,∆HA,B = −20,∆HA,C = 0 , (6.36c)

case 4 : ∆HA,A = −30,∆HA,B = −20,∆HA,C = −10 . (6.36d)

In all cases, the reaction enthalpies ∆HR = −10 kJ/mol and the activation energy EA =

60 kJ/mol were considered. The results are shown in Figure 6.8 and are compared with

the reference case where same value of ∆HA,i = 20 kJ/mol was taken into account. The

adsorption equilibrium constants are decreasing with increasing temperature, depending

on the individual adsorption enthalpies. If ∆HA,i = 0, these equilibrium constant are not

effected by temperature. The predicted profiles for all cases in Figure 6.8 together with

Figure 6.6 (top), show the importance of knowing the correct adsorption enthalpies in order

to predict properly concentration and temperature profiles.

Problem 5: Influence of dispersion terms

The last case refers to study the effects of dispersion terms in the model given by Eq.

(6.6). For this, we took ∆HA,i = −20 kJ/mol (i= A,B,C), ∆HR = −10 kJ/mol, and

EA = 60 kJ/mol. We considered the following four cases for different values of Peclet

numbers of PeM and PeE (c.f. Eq. (6.7))

case 1 : PeM = 104, P eE = 104 , (6.37a)

case 2 : PeM = 200, P eE = 0 , (6.37b)

case 3 : PeM = 0, P eE = 200 , (6.37c)

case 4 : PeM = 200, P eE = 200 . (6.37d)

For these particular scenarios, the corresponding results are shown in Figure 6.9. The

larger the PeM numbers the steeper are the profiles. The difference between PeM = 104

and PeE = 200 are still almost negligible. A reduction of PeE appears to be faster causing

band broadening compared to a reduction of PeM, but this effect can be hardly seen in

Figure 6.9 for cases 2 and 3.
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Figure 6.8: Problem 4b: Enthalpy of adsorption (componentwise): ∆HR = −10 kJ/mol,
EA = 60 kJ/mol, row 1 (case 1): ∆HA,A = 0,∆HA,B = −20,∆HA,C = −20, row 2 (case
2): ∆HA,A = −20,∆HA,B = 0,∆HA,C = −20, row 3 (case 3): ∆HA,A = −20,∆HA,B =
−20,∆HA,C = 0, row 4 (case 4): ∆HA,A = −30,∆HA,B = −20,∆HA,C = −10.
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Figure 6.9: Problem 5: Influence of dispersion terms. ∆HA,i = −20 kJ/mol, i=A,B,C,
∆HR = −10 kJ/mol, EA = 60 kJ/mol, row 1 (case 1): PeM = 104, P eE = 104 row 2
(case 2): PeM = 200, P eE = 0 row 3 (case 3): PeM = 0, P eE = 200, row 4 (case 4):
PeM = 200, P eE = 200.
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6.5 Conclusion

In this chapter, reactive liquid chromatography was investigated theoretically considering

thermal effects that originate from heats of reaction and adsorption enthalpies. The sys-

tematic parametric studies carried out demonstrate that the related temperature gradients

can significantly influence the achievable conversion and separation. A high resolution finite

volume method was applied to numerically solve the mass and energy balances describing

this non-isothermal process. The scheme is robust, gives high order accuracy on coarse

grids and resolves sharp discontinuities. In order to verify the numerical results, several

consistency tests related to the mass and energy conservations, and evaluations of trivial

studies are carried out. The results prove the accuracy of the numerical scheme and agree

well with theoretical predictions for limiting cases. The key parameters that influence the

reactor performance were systematically investigated. It was found that the heats of reac-

tion and the enthalpies are the reason for complex concentration and temperature profiles.

It is important to mention, that higher conversion can be achieved under non-isothermal

conditions as compared to isothermal chromatographic reactor operation. It was observed,

that in particular an exothermic heat of reaction can be source for the development of a

positive thermal waves leading to significant improvements in conversion and separation.

The simulation results acquired in this study emphasize the necessity to account in more

detail for thermal effects in reactive liquid chromatography. Further research is required,

to further optimize internal temperature profiles.



Chapter 7

Summary and Conclusions

In this thesis models developed to describe, non-reactive and reactive liquid chromato-

graphic processes under isothermal and non-isothermal conditions were theoretically stud-

ied. Both analytical and numerical investigations were the focus of this work. The equi-

librium dispersive model and the lumped kinetic model were analyzed using Dirichlet and

Robin boundary conditions. These models constitute of systems of convection-diffusion-

reaction partial differential equations with dominating convective terms that are coupled

with differential or algebraic equations.

For linear adsorption isotherms, the Laplace transformation was used to solve analytically

the special case of single-component movements in chromatographic columns. The Laplace

transformation technique has already been used to solve linear chromatographic models

[42, 43]. In this work, statistical moments up to the third order were derived and calculated

for both types of models and boundary conditions.

For nonlinear adsorption isotherms, numerical techniques are the only tool to obtain solu-

tions of the models. However, the strong nonlinearities of realistic thermodynamic func-

tions (isotherms) and the stiffness of reaction terms pose major difficulties for the numerical

schemes. For this reason, computational efficiency and accuracy of numerical methods are

of large relevance. They were a focus of this dissertation. The high resolution finite volume

scheme of Koren [39] and the discontinuous Galerkin finite element method were imple-

mented to solve isothermal non-reactive and reactive chromatographic models. The second

to third order accurate Koren scheme is a flux-limiting finite volume scheme in which fluxes

113
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are limited by using a nonlinear minmod limiter. This limiting procedure guarantees the

positivity of the scheme by suppressing numerical oscillations, usually encountered in the

numerical schemes of second and higher orders. The suggested DG-scheme satisfies the

TVB property and gives second order accuracy. The scheme can be easily extended to

higher orders by using high order basis functions and by employing better slope limiters,

for example reconstruction with the WENO limiters [69]. This method incorporates the

ideas of numerical fluxes and slope limiters in a very natural way to capture the physically

relevant discontinuities without producing spurious oscillations in their vicinity. In contrast

to the finite volume schemes, the DG-scheme is well suited to handle complicated geome-

tries and avoids the extension of mesh stencil that allows the incorporation of boundary

conditions uniformly.

Analytical solutions obtained in the Laplace domain were used to validate the numeri-

cal predictions generated by using proposed schemes. Analytical solutions were obtained

for the single component linear equilibrium dispersive and lumped kinetic models using

Dirichlet and Robin boundary conditions. Statistical moments of step responses were cal-

culated and compared with numerical predictions for both types of models and boundary

conditions. Good agreements up to the third moment were observed which assured the

accuracy of suggested numerical solution techniques. A close connection between equilib-

rium dispersive and lumped kinetic models was pointed out and the strength of the simpler

equilibrium dispersive model for linear isotherm was illustrated.

Available experimental results were also utilized to validate the numerical results. Due to

unavailability of exact nonlinear models solutions, the accuracy of the proposed schemes

were validated against some other flux-limiting finite volume schemes available in the liter-

ature. Both schemes were found to be robust, give a high order accuracy on coarse grids,

and resolve sharp discontinuities. The numerical test problems showed that the suggested

DG-scheme produced slightly more resolved solutions than the high resolution scheme of

Koren, especially at sharp discontinuities. However, desirable results can also be achieved

by using the Koren scheme. On the basis of these results, one can conclude that both DG

and Koren schemes are highly recommendable methods for the numerical approximation
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of linear and nonlinear chromatographic models. The suggested methods are efficient, ac-

curate, and suited to carry out simulations of dynamic of chromatographic processes in

packed columns.

Another important focus of this dissertation was to analyze thermal effects on reactive

liquid chromatographic process that originate from reaction and adsorption enthalpies.

Through systematic parametric studies, it was shown that temperature gradients can sig-

nificantly influence the achievable conversion and separation. A high resolution finite vol-

ume method was implemented to numerically approximate the coupled mass and energy

balances describing the non-isothermal process. In order to verify the numerical results,

several consistency tests related to mass and energy conservations, and evaluations of triv-

ial studies were carried out. The results proved the accuracy of applied numerical scheme,

the correctness of the model formulation and agreed well with theoretical predictions for

limiting cases. The key parameters that influence the reactor performance were systemati-

cally investigated. It was found that the heats of reaction and the adsorption enthalpies are

the reason for complex concentration and temperature profiles. It is important to mention,

that higher conversion can be achieved in certain cases under non-isothermal conditions

as compared to isothermal chromatographic reactor operation. The simulation results ac-

quired in this study emphasize the necessity to account in more detail for thermal effects

in reactive liquid chromatography. Further work is required, to optimize the reactor by

controlling internal temperature profiles.

The present contribution was based on the numerical approximation of chromatographic

processes occuring in a single column. However, the suggested numerical schemes can

also be used to deal with the non-linearity of more complicated processes, such as multi-

column moving-bed processes and periodic operations. Especially, to develop an efficient

and accurate numerical scheme for the simulated moving bed chromatography process will

be the main focus of our future research work. Being a continuous purification process,

simulated moving bed chromatography has higher outputs and requires less solvent than

conventional batch chromatography.

In this dissertation, the equilibrium dispersive and lumped kinetic models were studied.
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Future research tasks include the extension of our work to more complicated models, such as

the general rate model. The simulation of such more detailed models are quite complicated.

Therefore, further work is required to investigate the model and to search for efficient

and accurate numerical schemes. In addition, the operating conditions for preparative

chromatography, as for any industrial process, must be optimized. Such optimization is

based on thorough understanding of process variables and economics. We will optimize

the non-isothermal process to improve yield, productivity and, ultimately, to reduce the

operational cost. Optimization of this complex process is a challenging task due to the

nonlinearity of chromatographic models and the large number of operating variables. It is

therefore, necessary to use effective mathematical tools as developed in this work to solve

the nonlinear problems.

Finally, it can be concluded that accurate numerical tools are essential to understand and

illustrate complex front propagation phenomena taking place in chromatographic columns.



Appendix A

Mathematical Derivations

Here, we present the complete derivations of the first three moments for both equilibrium

dispersive and lumped kinetic models with Dirichlet and Danckwerts boundary conditions.

Equilibrium dispersive model with Dirichlet boundary conditions

In this part, the moments of equilibrium dispersive model with Dirichlet boundary condi-

tions are derived. By taking x = 1 and c0 = 1, the Eq. (4.13) can be written as

C(x = 1, s) =
1

s
exp

(

Pe

2
−

1

2

√

Pe2 + 4Pe
L

u
(1 + aF )s

)

. (A.1)

With

Pe =
Lu

Dapp
. (A.2)

We further define

b1 = Pe(1 + aF )
L

u
. (A.3)

The moment generating property of the Laplace transform is used exploiting (e.g. [99])

µn = (−1)n lim
s→0

dn(sC)

dsn
, n = 0, 1, 2, 3, · · · (A.4)

Thus, the zeroth moment is given as

µ0 = lim
s→0

sC(x = 1, s) = lim
s→0

exp

(
Pe

2
−

1

2

√

Pe2 + 4b1s

)

= 1. (A.5)

The first initial moment can be obtained from Eq. (A.4) as

µ1 = (−1) lim
s→0

d(sC)

ds
= lim

s→0

exp
(

Pe
2
− 1

2

√

Pe2 + 4b1s
)

√

Pe2 + 4b1s
. (A.6)
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Thus,

µ1 =
b1
Pe

=
L

u
(1 + aF ). (A.7)

The second initial moment can be derived from the relation given in Eq. (A.4) as

µ2 = (−1)2 lim
s→0

d2(sC)

ds2
, (A.8)

where

d2(sC)

ds2
=

2b1
2 exp

(
Pe
2
− 1

2

√

Pe2 + 4b1s
)

(
Pe2 + 4a1s

)3/2
+

b21 exp
(

Pe
2
− 1

2

√

Pe2 + 4b1s
)

Pe2 + 4a1s
. (A.9)

Thus, the second initial moment is given as

µ2 =
b1

2(2 + Pe)

Pe3
=

2L

u3
Dapp(1 + aF )2 +

L2

u2
(1 + aF )2. (A.10)

The second central moment or the variance is given by the following expression

µ
′

2 = µ2 − µ1
2 =

b1
2

Pe3
=

2L

u3
Dapp(1 + aF )2. (A.11)

Finally, the third initial moment is again obtained using Eq. (A.4)

µ3 = (−1)3 lim
s→0

d3(sC)

ds3
=

b1
3

Pe5
(6Pe+ 12 + Pe2), (A.12)

or

µ3 =
L3

u3
(1 + aF )3

(
6Dapp

Lu
+

12D2
app

L2u2
+ 1

)

. (A.13)

The third central moment can be calculated from the moments given above using the

subsequent formula

µ
′

3 = µ3 − 3µ1µ2 + 2µ1
3 . (A.14)

Thus

µ
′

3 =
12LD2

app

u5
(1 + aF )3. (A.15)
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Equilibrium dispersive model with Danckwerts boundary conditions

Here, the moments of the equilibrium dispersive model with Danckwerts boundary condi-

tions are presented.

The zeroth moment is given as

µ0 = lim
s→0

A exp(λ1x) +B exp(λ2x) = 1. (A.16)

The first initial moment is obtained as

µ1 =
b1
Pe

=
L

u
(1 + aF ). (A.17)

The second initial moment is calculated as

µ2 =
2b1

2

Pe4

(

−1 + Pe+
Pe2

2
+ e−Pe

)

, (A.18)

or

µ2 =
2D2

app(1 + Fa)2

u4

(

−1 +
Lu

Dapp
+

L2u2

2D2
app

+ e−Lu/Dapp

)

. (A.19)

The second central moment is given as

µ
′

2 =
2b1

2e−Pe

Pe4
(
−ePe + ePePe+ 1

)

=
2L

u3
Dapp(1 + aF )2

(

1 +
Dapp

Lu

(
e−Lu/Dapp − 1

)
)

. (A.20)

Lastly, the third initial moment is provided as

µ3 =
b1

3

Pe6
(
−24 + 6Pe+ 6Pe2 + Pe3 + 24e−Pe + 18e−PePe

)
. (A.21)

The third central moment formula based on (A.14) is given below

µ
′

3 =
12LD2

app(1 + aF )3

u5

[(

1 +
2Dapp

Lu

)

e−Lu/Dapp +

(

1−
2Dapp

Lu

)]

. (A.22)

Lumped kinetic model with Dirichlet boundary conditions:

This part presents the moments for the lumped kinetic model with Dirichlet boundary

conditions. For x = 1 and c0 = 1, Eq. (4.25) can be rewritten as

C(x = 1, s) =
1

s
exp

(

b

2
−

1

2

√

b2 + 4a1s−
4a2

s+ a3
+ 4a4

)

. (A.23)
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With

b = Pe =
Lu

D
, a1 = Pe

L

u
, a2 =

L2

ǫD

k2a

(1− ǫ)
, a3 =

k

(1− ǫ)
, a4 =

L2ak

ǫD
. (A.24)

The zeroth moment is given as

µ0 = lim
s→0

exp

(

b

2
−

1

2

√

b2 + 4a1s−
4a2

s+ a3
+ 4a4

)

= 1. (A.25)

The first initial moment is calculated as

µ1 = lim
s→0

4
(

a1 +
a2

(s+a3)2

)

exp
(

b
2
− 1

2

√

b2 + 4a1s−
4a2
s+a3

+ 4a4

)

4
√

b2 + 4a1s−
4a2
s+a3

+ 4a4
, (A.26)

or

µ1 =
a1a3

2 + a2
a32b

=
L

u
(1 + aF ). (A.27)

The second initial moment is again derived using Eq. (A.8) with

d2(sC)

ds2
=

4
(

a1 +
a2

(s+a3)2

)

exp
(

b
2
− 1

2

√

b2 + 4a1s−
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+ 4a4

)

8
(

b2 + 4a1s−
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+ 4a4
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+
2 a2 exp
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− 1
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√
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)

(
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s+a3

+ 4a4

)1/2

(s+ a3)3
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4
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a2

(s+a3)2

)

exp
(
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2
− 1

2

√

b2 + 4a1s−
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+ 4a4

)

16
(

b2 + 4a1s−
4a2
s+a3

+ 4a4

) . (A.28)

Then

µ2 =
1

a34b3
(
2a1

2a3
4 + 4a1a3

2a2 + 2a2
2 + 2a2a3b

2 + ba1
2a3

4 + 2ba1a3
2a2 + ba2

2
)
, (A.29)

or

µ2 =
2LD(1 + aF )2

u3
+

1

k

(
2LaF (1− ǫ)

u

)

+
L2

u2
(1 + aF )2. (A.30)
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Exploiting Eq. (A.11), the second central moment is defined as

µ
′

2 =
2

a34b3
(
a1

2a3
4 + 2a1a3

2a2 + a2
2 + a2a3b

2
)
=

2LD(1 + a1−ǫ
ǫ
)2

u3
+

1

k

(

2La (1−ǫ)2

ǫ

u

)

,

(A.31)

or

µ
′

2 =
2LD(1 + aF )2

u3
+

1

k

(
2LaF (1− ǫ)

u

)

. (A.32)

The third initial moment is obtained using again Eq. (A.12) with

−
d3(sC)

ds3
=

3
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(s+a3)2

)3
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√
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(
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Then

µ3 =
1

a36b5
(
12a1

3a3
6 + 36a1
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4a2 + 36a1a3

2a2
2 + 12a2
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)
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or

µ3 =
L3

u3
(1 + aF )3

(
6D

Lu
+

12D2

L2u2
+ 1

)

+
6L2(1 + aF )a(1− ǫ)

u3k

(
2D

L
+

(1− ǫ)u2

Lk(1 + aF )
+ u

)

.

(A.35)

Using (A.14), the third central moment is given as

µ
′

3 =
12LD2

u5
(1 + aF )3 +

6L2(1 + aF )aF (1− ǫ)

ku3

(
2D

L
+

(1− ǫ)u2

Lk(1 + aF )

)

. (A.36)

or

µ
′

3 =
12LD2

u5
(1 + aF )3 +

1

k

(
12LD(1 + aF )aF (1− ǫ)

u3

)

+
1

k2

(
6LaF (1− ǫ)2

u

)

. (A.37)

Lumped kinetic model with Danckwerts boundary conditions

This part discusses the derivation of moments for lumped kinetic model with Danckwerts

boundary conditions.

The zeroth moment is again given as

µ0 = 1. (A.38)

The first initial moment corresponding again to Eq. (A.7)

µ1 =
a1a3

2 + a2
a32b

=
L

u
(1 + aF ). (A.39)

The second initial moment is given as

µ2 =
e−b

a34b4
(
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2a3
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2
)
. (A.40)

The second central moment is defined as, c.f. (A.11),

µ
′
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2L

u3
D(1 + aF )2

(

1 +
D

Lu

(
e−Lu/D − 1

)
)

+
1
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(
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u

)

. (A.41)
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The third initial moment is given as
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The third central moment is using again (A.14) as
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Nomenclature
ai Henry constants of component i, [-]
b nonlinearity parameter in Eq. (2.18), [l/mol]
ci liquid phase concentration of component i, [mol/l]
cp concentration in the pores of particles i, [mol/l]
Cp heat capacity, [kJ/gK]
d column diameter, [m]
Dapp apparent dispersion coefficient in EDM [m2/s]
D dispersion coefficient in LKM [m2/s]
EA activation energy, [kJ/mol]
EH a relative percentage error in energy balance, [-]
Eξ a relative percentage error in molar concentration ξ, [-]
F phase ratio, [-]
∆HA enthalpy of adsorption, [kJ/mol]
∆HR enthalpy of reaction, [kJ/mol]
∆Hout temperature at the column outlet, [kJ ]
Ij jth mesh interval, [-]
k mass transfer coefficient, [1/s]
kfor forward reaction rate constant, [1/s]
Keq reaction equilibrium constant, [-]
K∗

eq reaction equilibrium constant, [mol/l]
L column length, [m]
ni molar amount of component i, [mol]
Nc number of components, [-]
Nt number of theoretical plates, [-]
N number of grid cells, [-]
Pl Legendre polynomial of order l (−)
PeM Peclet number of mass balance, [-]
PeE Peclet number of energy balance, [-]
q∗i solid phase concentration of component i, [mol/l]
r rate of chemical reaction, [mol/ls]
R gas constant, 8.314×10−3, [kJ/molK]
t time, [s]
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Nomenclature (continued)

T pure thermal wave
u interstitial velocity, [m/s]
V volume, [l]

V̇ volumetric flow rate, [l/s]
XA conversion of reactant A, [-]
z spatial coordinate, [m]
Greek symbols

νi stoichiometric coefficient of component i
λ conductivity coefficient, [m2kJ/slK]
η very small number
∆xj width of mesh interval Ij
∆t time step
ǫ external porosity
ξ extent of reaction, [mol]
x dimensionless distance, x = z

L

τ dimensionless time, τ = tu
L

ρ density, [g/l]
φl local basis function of order l
µn n-th initial normalized moment
µ

′

n n-th central moment
Superscripts

in inlet value
init initial value
out outlet profile
L liquid phase
p∗ p* is order of numerical scheme
S solid phase
Subscripts

E energy
i i is the number of Nc components
j j is the number of discretized cells
m m is the number of Nc + 1 pseudo-components
M mass
Abbreviations

BCs boundary conditions
DG discontinuous Galerkin
EDM equilibrium dispersive model
FBCR fixed-bed chromatographic reactor
FDMs finite difference methods
FEMs finite element methods
FVMs finite volume methods
LKM lumped kinetic model
ODEs ordinary differential equations
PDEs partial differential equations
TVB total variation boundedness
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