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Abstract. Massive black hole binaries (MBHBs) are unavoidable outcomes of the

hierarchical structure formation process, and according to the theory of general

relativity are expected to be the loudest gravitational wave (GW) sources in the

Universe. In this article I provide a broad overview of MBHBs as GW sources. After

reviewing the basics of GW emission from binary systems and of MBHB formation,

evolution and dynamics, I describe in some details the connection between binary

properties and the emitted gravitational waveform. Direct GW observations will

provide an unprecedented wealth of information about the physical nature and the

astrophysical properties of these extreme objects, allowing to reconstruct their cosmic

history, dynamics and coupling with their dense stellar and gas environment. In this

context I describe ongoing and future efforts to make a direct detection with space

based interferometry and pulsar timing arrays, highlighting the invaluable scientific

payouts of such enterprises.

PACS numbers: 04.70.-s – 98.65.Fz – 04.30.-w – 04.30.Db – 04.30.Tv – 04.80.Nn

1. introduction

Today, massive black holes (MBHs) are ubiquitous in the nuclei of nearby galaxies

[1], and we see them shining as quasars along the whole cosmic history up to redshift

z ≈ 7 [2]. In the last decade, MBHs were recognized as fundamental building blocks in

hierarchical models of galaxy formation and evolution, but their origin remains largely

unknown. In fact, our current knowledge of the MBH population is limited to a

small fraction of objects: either those that are active, or those in our neighborhood,

where stellar- and gas-dynamical measurements are possible. According to the current

paradigm, structure formation proceeds in a hierarchical fashion [3], in which massive

galaxies grow by accreting gas through the filaments of the cosmic web and by merging

with other galaxies. As a consequence, the MBHs we see in today’s galaxies are expected

to be the natural end-product of a complex evolutionary path, in which black holes (BHs)

seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of

MBH-MBH mergers and accretion episodes [4, 5]. In this framework, a large number of

MBH binaries naturally form following the frequent galaxy mergers.
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According to Einstein’s theory of General Relativity, accelerating masses cause

modifications of the spacetime that propagate at the speed of light, better known

as gravitational waves (GWs). However, in Einstein’s equations, the matter-metric

coupling constant is of the order of G/c4 (where G is the gravitational constant and c

is the speed of light), which is of the order 10−50! As a matter of fact the spacetime is

extraordinarily stiff, therefore only massive, compact astrophysical object can produce

a sizable strain that would be observable with advanced technology [6]. Two MBHs

orbiting each other in a bound binary (MBHB) system carry a huge time varying

quadrupole momentum and are therefore expected to be the loudest gravitational wave

(GW) sources in the Universe [7]. The frequency spectrum of the emitted radiation

covers several order of magnitudes, from the sub-nano-Hz up to the milli-Hz. The

10−4 − 10−1Hz window is going to be probed by spaceborne interferometers like the

recently proposed European eLISA [8, 9, 10]. At 10−9 − 10−7Hz, joint precision timing

of several ultrastable millisecond pulsars (i.e. a pulsar timing array, PTA) provides a

unique opportunity to get the very first low-frequency detection. The European Pulsar

Timing Array (EPTA) [11], the Parkes Pulsar Timing Array (PPTA) [12] and the North

American Nanohertz Observatory for Gravitational Waves (NANOGrav) [13], joining

together in the International Pulsar Timing Array (IPTA) [14], are constantly improving

their sensitivities, getting closer to their ambitious target.

This focus issue contribution aims at covering all the relevant aspects of MBHBs

intended as GW sources, in the spirit of providing a broad overview. Given the extent

of the topic, we will just skim through its several facets, providing the appropriate

references for in-depth reading. In Section 2 we introduce the concept of GWs at a very

basic level, defining the relevant astrophysical scales implied by MBHBs. A general

overview of MBH formation and evolution (both their masses and spin), together with

a brief description of MBHB dynamics is provided in Section 3. We return on GWs in

Section 4, where we describe in deeper detail the expected signal from MBHBs and its

dependencies on the relevant parameter of the system. There, we also introduce some

basics of parameter estimation theory, showing how the rich astrophysical information

enclosed in individual signals can be recovered. Section 5 is then devoted to the scientific

payouts of GW detection both in the milli-Hz and in the nano-Hz regime. We wrap-up

in Section 6 with some brief conclusion remarks.

2. Gravitational waves: basics

The existence of GWs was one of the first predictions of Einstein’s General Relativity

(GR), since they arise as natural solutions of the linearized Einstein equations in vacuum.

Expanding the metric tensor as

gµν = ηµν + hµν , (1)
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where ηµν represent the Minkowski flat metric and ‖ hµν ‖≪‖ ηµν ‖, and switching to

the appropriate Lorentz gauge, the perturbation hµν satisfies

✷hµν = −16πG

c4
Tµν , (2)

where ✷ is the d’Alambertian operator and the source term Tµν is the stress-energy

tensor. Equation 2 represents a set of wave equations and therefore admits wave

solutions. These solutions are ripples in the fabric of the spacetime propagating at

the speed of light: GWs. GWs are transverse, i.e. they act in a plane perpendicular

to the wave propagation, and (at least in GR) have two distinct polarizations, usually

referred to as h+ and h× (see cartoon in [6] and Section 4.2). By expanding the mass

distribution of the source into multipoles, conservation laws enforce GWs coming from

the mass monopole and mass dipole to be identically zero, so that the first contribution

to GW generation comes from the mass quadrupole moment Q. The GW amplitude

is therefore proportional to the second time derivative (acceleration) of Q. Moreover,

energy conservation enforces the amplitude to decay as the inverse of the distance to

the source, D. A straightforward dimensional analysis shows that the amplitude of a

GW is of the order of [15]

h =
G

c4
1

D

d2Q

dt2
. (3)

In order to generate GWs we therefore need accelerating masses with a time varying

mass-quadrupole moment. The prefactor G/c4 implies that these waves are tiny, so that

the only detectable effect is produced by massive compact astrophysical objects.

We now specialize to the case of a binary astrophysical source. From now on,

we shall use Geometric units c = G = 1; in such units 1M⊙ = 4.927 × 10−6s and

1pc= 9.7×107s. For sources at cosmological distances (i.e., with non negligible redshift

z), all the following equations are valid if all the masses are replaced by their redshifted

counterparts (e.g., M →Mz =M(1 + z)), the distance D is taken to be the luminosity

distance (i.e., D → DL = D(1+z)) and f is kept to be the observed GW frequency (the

frequency in the source emission restframe is f(1+z)). Keeping this in mind, consider a

binary system of massesM2 < M1, mass ratio q =M2/M1 and total massM =M1+M2,

in circular orbit at a Keplerian frequency fK at a distance D to the observer. A

detailed calculation (in the quadrupole approximation) shows that the system emits

a monochromatic wave at a frequency f = 2fK , with inclination–polarization averaged

GW strain given by [16]:

h(f) =

√

32

5

M5/3(πf)2/3

D
, (4)

where we introduced the chirp mass M = (M1M2)
3/5/(M1 + M2)

1/5. For a pair of

Schwarzschild BHs, the maximum frequency of the wave is emitted at the innermost

stable circular orbit (ISCO) and can be written as:

fISCO = (π63/2M)−1, (5)
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whereM6 =M/106M⊙. GWs carry away energy from the system, with total luminosity

given by:

Lgw =
dEgw

dt
=

32

5
(πMf)10/3. (6)

Equating the energy loss to the shrinking of the binary semimajor axis a,

1

E

dEgw

dt
= −1

a

da

dt
, (7)

and converting a into frequency using Kepler’s law yields

df

dt
= −64

5
π8/3M5/3f 11/3. (8)

The integral of equation (8) from f0 to fISCO defines the remaining lifetime of a binary

emitting at a frequency f0 before its final coalescence.

Putative eccentricity plays an important role in the evolution of the binary and

in the emitted GWs. In this case the luminosity, at a fixed MBHB semimajor axis, is

boosted to Lgw = Lgw,cF (e), where Lgw,c is given by equation (6) and

F (e) = (1− e2)−7/2

(

1 +
73

24
e2 +

37

96
e4
)

. (9)

Accordingly, the evolution of the binary orbit is a factor F (e) faster than in the circular

case. The energy is radiated in form of a rather complicated GW spectrum, covering

the spectral range nfk, where n is an integer index (see Section 4.2 for more details). In

particular, the emission is stronger close to the binary periastron (there, the acceleration

is larger, and so is the derivative of the quadrupole moment of the source), which leads

to efficient circularization according to

de

dt
= −304

15

M1M2M

a4(1− e2)5/2
e

(

1 +
121

304
e2
)

. (10)

Examples of GW driven circularization are illustrated in the MBHB evolutionary paths

shown in panels ’a3’ and ’b3’ of figure 2.

Normalizing equation (4) to typical astrophysical MBHB values gives a strain of

h ≈ 2× 10−18D−1
9 M5/3

6 f
2/3
−4 , (11)

where D9 = D/109pc and f−4 = f/10−4Hz. If we require (somewhat arbitrarily)

a coalescence timescale < T9 = T/109yr, the integral of equation (8), together with

equation (5) implies a relevant frequency range

fmin = 3.54× 10−8T
−3/8
9 M

−5/8
6 Hz < f < fISCO = 4.4× 10−3M−1

6 Hz. (12)

If we now estimate the frequency change in an observation time T as ∆f ≈ ḟT , we find

∆f = 5× 10−4M5/3
6 f

11/3
−4 T0Hz, (13)

where now T0 = T/100yr. Equations (11), (12) and (13) define the properties of typical

MBHB signals. A light 105M⊙ binary spans a frequency range of 10−7 − 10−2Hz, in a

Gyr before the coalescence. For a source at 1Gpc, the strain is h ≈ 2×10−19 at 10−3Hz,

and ∆f ≫ f , implying a chirping signal rapidly sweeping through the frequency band
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during a putative observation. On the other hand, a massive 109M⊙ binary covers a

frequency range of 10−10 − 10−6Hz, in a Gyr before the coalescence. For a source at

1Gpc, the strain is h ≈ 5 × 10−16 at 10−8Hz, and ∆f ≈ 10−13 Hz, implying a non

evolving, monochromatic source. It is likely that many such sources accumulates at

these low frequency, resulting in an incoherent superposition of monochromatic waves.

MBHBs are therefore loud primary GW targets in the nano-Hz–milli-Hz regime, and

they can manifest themselves both as rapidly chirping signals (at milli-Hz frequencies)

as well as incoherent superposition of monochromatic waves (at nano-Hz frequencies).

3. Massive black hole binaries

The mechanism responsible for the formation of the first seed BHs is not well understood.

These primitive objects started to form at the onset of the cosmic dawn, around z ∼ 20,

according to current cosmological models [17]. At an epoch of z ∼ 30− 20, the earliest

stars formed in small, metal-poor protogalactic halos may have had masses exceeding

100M⊙ [18], ending their lives as comparable stellar mass BHs, providing the seeds

that would later grow into MBHs [19]. However, as larger, more massive and metal

enriched galactic discs progressively formed, other paths for BH seed formation became

viable (see [20] for a review). Global gravitational instabilities in gaseous discs may have

led to the formation of quasi-stars of 103 − 106M⊙ that later collapsed into seed BHs

[21]. Alternative scenarios are the collapse of massive stars formed in run-away stellar

collisions in young, dense star clusters [22] or the collapse of unstable self-gravitating

gas clouds in the nuclei of gas-rich galaxy mergers at later epochs [23]. Thus, the

initial mass of the seeds remains one of the largest uncertainties in the present theory

of MBH formation. However, once formed, these seed BHs inevitably took part in the

hierarchical structure formation process, growing along the cosmic history through a

sequence of mergers and accretion episodes [4, 5]. Figure 1 shows examples of expected

MBHB merger rates as a function of redshift for a sample of selected seed BH models.

The uncertainty is large, with numbers ranging from ten to several hundreds events

per year. Multiplying by the Hubble time and dividing by the number of galaxies

within our Hubble horizon (≈ 1011), figures imply that each galaxy experienced few to

few hundred mergers in its past life, placing mergers among the crucial mechanisms in

galaxy evolution.

3.1. Mass and spin evolution

Astrophysical BHs are extremely simple objects, described by two quantities only,

namely their mass, MBH, and angular momentum, S‡. The magnitude of the latter

can be expressed by the dimensionless parameter a = S/Smax = cS/GM2
BH§. By

‡ We use boldface to express vectors and standard font to express their magnitude.
§ Not to be confused with the binary semimajor axis, it will be clear case by case when we refer to one

or the other.
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Figure 1. Differential MBHB merger rate as a function of redshift for different seed

formation scenarios. Adapted from [24].

definition 0 ≤ a ≤ 1. Along the cosmic history, MBH mass and spin inevitably evolve

according to three principal evolution mechanisms: (i) merger with other MBHs, (ii)

episodic accretion of compact objects, disrupted stars, or gas clouds, and (iii) prolonged

accretion of large supplies of gas via accretion disks. As shown by [25], coalescences

of MBHs with random spin directions result in a broad remnant spin distribution; in

particular highly spinning MBHs tend to spin-down. Despite the important of MBH-

MBH mergers, The dominant role in the mass and spin evolution of MBHs can be

attribute to accretion. Continuous Eddington limited accretion implies an exponential

mass growth MBH(t) = MBH(0)exp
(

1−ǫ
ǫ

t
tEdd

)

, where tEdd = 0.45Gyr and ǫ is the mass-

radiation conversion efficiency (0.06 < ǫ < 0.4 for 0 < a < 1). If this happens in a

coherent fashion through, e.g., a thin disk [26] , an initially Schwarzschild BH becomes

maximally spinning after accreting an amount of mass of the order of
√
6MBH(0) [27].

However high spins imply ǫ > 0.3, considerably slowing down the mass growth, making

it impossible to produce a MBH of > 109M⊙ at z = 7 (i.e. in < 109yrs). The problem

is avoided if mass is accreted in a series of small incoherent packets (chaotic accretion

[28]). In this case, depending on the angular momentum of the accreted material, the

MBH is spun up or down, performing a random walk in spin magnitude that keep

it close to zero. However this is true only if the angular momentum direction of the

packets is nearly isotropically distributed on the sphere. Real galaxies usually show

large coherent gas structures, and a significant amount of rotation (see, e.g., [29, 30]).

If the spin vectors of the accreting packets have, on average, a preferential direction
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(i.e., they angular momenta do not sum up to zero), then the spin evolution is more

complicated, and high spin values might still be preferred [31], as shown in the left panel

of figure 2. Rapid mass growth is difficult to reconcile with measurements of high spins

(although the latter involve galaxies in the local Universe [32]), and the requirement of

high spins to power energetic relativistic jets in many theoretical models (e.g., [33]), and

a complete joint understanding of the MBH mass and spin evolution is still missing.

3.2. Massive black hole binary dynamics

MBHs become loud sources of GWs when they are in bound, sub–pc binaries. Forming

after galaxy mergers, those binaries sit at the center of the stellar bulge of the remnant,

possibly surrounded by massive gas inflows triggered by dynamical instabilities related to

the strong variations of the gravitational potential during the merger episode [34]. The

interaction with the environment imprints distinctive signatures in the binary orbital

elements and in the individual spins of the holes. We will see later how this information

can be recovered by GW observation, which will therefore allow to directly probe the

complex physics underlying the evolution of these spectacular objects.

3.2.1. Stellar driven binaries. Ignoring technical details related to the ’loss cone

evolution’ (see D. Merritt contribution to this issue), a background of stars scattering

off the binary drives its semimajor axis evolution according to the equation [36]

da

dt
=
a2Gρ

σ
H, (14)

where ρ is the density of the background stars, σ is the stellar velocity dispersion andH is

a numerical coefficient of order 15. The eccentricity evolution in stellar environments has

been tackled by several authors by means of full N-body simulations. In general, equal

mass, circular binaries tend to stay circular or experience a mild eccentricity increase

[37], while binaries that form already eccentric, or with q ≪ 1 (regardless of their initial

eccentricity) tend to grow more eccentric [38, 39], in reasonable agreement with the

prediction of scattering experiments [36, 40]. The interaction with stars is unlikely to

significantly affect the individual spins of the holes. Therefore, star driven binaries are

expected to grow to quite high eccentricities, while the spins of the individual holes are

likely randomly oriented.

3.2.2. Gas driven binaries. In the case of circumbinary disks, the detailed evolution

of the system depends on the complicated and uncertain dissipative physics of the disk

itself. The simple case of a coplanar prograde circumbinary disk admits a selfconsistent,

non stationary solution that was derived by [41]. In this case, the binary semimajor

axis evolution can be approximated as [41, 42]

da

dt
=

2Ṁ

µ
(aa0)

1/2. (15)
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Figure 2. Left panel: spin evolution of a MBH accreting incoherent packets of gas

of mass 105M⊙. In this experiment, a parameter F defines the fraction of events

in the southern hemisphere (defined with respect to the orientation of the MBH

spin). N × (1− F ) accretion events are then isotropically distributed in the northern

hemisphere, and N × F in the southern hemisphere. The upper left, upper right,

lower left, and lower right panels refer to F = 0.5 (isotropic distribution on the

sphere), 0.25, 0.125, and 0, respectively. The black line refers to the mean over 500

realizations. Red and orange shaded areas enclose intervals at 1-σ and 2-σ deviations,

respectively (from [31]). Right panel: examples of MBHB evolutionary tracks in stellar

environments [35]. Shown are the evolution of the eccentricity and binary semimajor

axis in time (’1’ and ’2’ panels) and the evolution of the eccentricity versus the orbital

frequency (’3’ panels). The very high eccentricities achieved in the stellar driven phase

imply non negligible eccentricities in the milli-Hz regime (probed by future space based

interferometers like eLISA, shaded area in panel ’a3’), and potentially extremely high

eccentricities in the nano-Hz regime (targeted by PTAs, shaded area in panel ’b3’).

Here, Ṁ is the mass accretion rate at the outer edge of the disk, a0 is the semimajor

axis at which the mass of the unperturbed disk equals the mass of the secondary MBH,

and µ is the reduced mass of the binary. In the circumbinary disk scenario, eccentricity

excitation has been seen in several simulations [43, 44]. In particular, the existence of

a limiting eccentricity ecrit ≈ 0.6 − 0.8 has been found in [45], in the case of massive

selfgravitating disks. If the accretion flow is coherent, and Ldisk and the spins Si of

the two MBHs are misaligned, the Bardeen-Petterson effect [46] will act to align Si to

Ldisk in a very short timescale (talign ≪ tacc ∼ 108yr [47, 48]). Therefore, in gaseous rich

environments, mildly eccentric binaries might be the norm, and the MBH individual

spins tend to align with the orbital angular momentum.

Compared to the GW driven case, (da/dt)gw ∝ a−3, equations (14) and (15) have

a very different (milder and positive) a dependence. Therefore, equating equations (14)

and (15) to (da/dt)gw gives the transition frequency between the external environment
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Figure 3. Example of GW signal from two coalescing (circular, non spinning) BHs as a

function of time. The different approximation techniques and their range of validity are

indicated. Wavy lines illustrate the regime close to merger where analytical methods

have to be bridged by NR (courtesy of F. Ohme [49]).

driven and the GW driven regimes. For typical astrophysical systems one gets:

fstar/GW ≈ 1.2× 10−7M
−7/10
6 q−3/10Hz

fgas/GW ≈ 1.6× 10−7M
−37/49
6 q−69/98Hz. (16)

We therefore see that very massive nano-Hz MBHBs might still be influenced by their

environment, and therefore have high eccentricities (e > 0.5, see panel ’b3’ in figure 2).

Even though GW emission efficiently circularizes binaries (see Section 2), systems in

the milli-Hz range can still retain substantial residual eccentricities (e > 0.01, see panel

’a3’ in figure 2).

4. MBHB waveforms

Having introduced the basics of GW emission from a binary system in Section 2, we

turn now in some more detail to the gravitational waveform modeling. In particular we

show how eccentricity and spins affect the detectable GW signal and we describe the

basic theory of information recovery, that enables us to dig out the parameters of the

source from the detected waveform.

4.1. The stages of the binary coalescence

The evolution of MBHBs is customarily divided into three phases: inspiral, merger, and

ring-down [50]. The inspiral is a relatively slow, adiabatic process. Different techniques

have been employed to describe this stage, ranging from classic Post Newtonian (PN)

expansions of the energy–balance equation [51], to non–adiabatic resummed methods in

which the equations of motion are derived from an effective one body (EOB) relativistic

Hamiltonian [52]. A detailed description of such methods is beyond the scope of this

article, and an excellent overview can be found in [53]. The inspiral is followed by

the dynamical coalescence, in which the MBHs plunge and merge together, forming a

highly distorted, perturbed remnant. At this stage, all analytical approximations break
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down, and the system can only be described solving by directly the Einstein equation

using numerical simulations [54, 55, 56]. The distorted remnant settles into a stationary

Kerr BH as it rings down, by emitting gravitational radiation. This latter stage can be,

again, modeled analytically using BH perturbation theory [57]. An example of the full

waveform with the identification of the various stages is given in figure 3.

In recent years there has been a major effort in constructing accurate waveforms

inclusive of all three phases. ”Complete” waveforms can be designed by stitching

together analytical PN waveforms for the early inspiral with a (semi)phenomenologically

described merger and ring-down phase calibrated against available numerical data

(known as PhenomB-PhenomC waveforms, [58]). Alternatively, complete waveforms can

be constructed within the EOB formalism by adding free parameters to be calibrated

against NR simulations and by attaching a series of damped sinusoidals describing

the ringdown (known as EOBNR waveforms [59, 60]). A detailed overview is given

in [49]. What is relevant to our discussion is that the full evolution of MBHBs can

be tackled with a combination of analytical and numerical methods, and accurate

waveforms encoding all the parameters of the system can be computed. In the following

we concentrate on the inspiral signal only, which is the richest in terms of encoded

information.

4.2. The adiabatic inspiral: impact of eccentricity and spin

For circular binaries, the evolution of the adiabatic inspiral is completely determined by

the energy-balance equation that relates the derivative of the energy function E to the

gravitational flux F radiated away ‖
dE(v)
dt

= −F(v) (17)

from which we may derive the binary acceleration and phase evolution as:

dΦ

dt
=

2v3

M
,

dv

dt
= − F(v)

MdE(v)/dv . (18)

For orbital velocities v ≪ c, E and F can be expanded in powers of v2n to a given order

in n. This results in a corresponding expansion for the binary acceleration of the form

[61]:

a = aN + aPN + aSO + a2PN + aSS + aRR, (19)

where aN , aPN , and a2PN are the Newtonian, (post)1-Newtonian, and (post)2-

Newtonian contributions to the equations of motion, aRR is the contribution due to

the radiation-reaction force, and aSO and aSS are the spin-orbit and spin-spin coupling

contributions. This is reflected in the radiated wave, that can be similarly expanded in

the form:

hij =
2µ

D

[

Qij + P 0.5Qij + PQij + PQij
SO + P 1.5Qij + P 1.5Qij

SO + P 2Qij
SS

]

(20)

‖ For eccentric binaries, an angular momentum balance equation must also be imposed to compute the

evolution in eccentricity.
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where Qij is the standard quadrupole moment of the source, i, j = 1, 2, 3 define the

spatial components of the perturbation tensor, and the subscripts have the same meaning

as in equation (19). Choosing the appropriate orthonormal radiation frame, hij can be

written as two independent polarizations only; h+ and h×. To the leading quadrupole

order, in the circular case one obtains the familiar form

h+(t) = 2
M5/3

D
[πf(t)]2/3 (1 + cos2 ι) cosΦ(t)

h×(t) = 2
M5/3

D
[πf(t)]2/3 2 sin2 ι cosΦ(t) (21)

where ι (usually referred as inclination) is the angle defined by the line of sight with

respect to the orbital angular momentum vector, Φ(t) = 2π
∫ t
f(t′)dt′, and f = 2fK as

defined in Section 2.

The eccentricity e enters directly in the computation of Qij since it affects the

velocity v of the MBHs along the orbit. In fact e affects the computation of hij at

all orders, starting from the simple quadrupole term, by ”splitting” each polarization

amplitude h+(t) and h×(t) into harmonics according to (see, e.g., equations (5-6) in [62]

and references therein):

h+n (t) = A
{

−(1 + cos2 ι)un(e) cos
[n

2
Φ(t) + 2γ(t)

]

−(1 + cos2 ι)vn(e) cos
[n

2
Φ(t)− 2γ(t)

]

+ sin2 ι wn(e) cos
[n

2
Φ(t)

]}

,

h×n (t) = 2A cos ι
{

un(e) sin
[n

2
Φ(t) + 2γ(t)

]

+ vn(e) sin
[n

2
Φ(t)− 2γ(t)

]}

.(22)

The amplitude coefficients un(e), vn(e), and wn(e) are linear combinations of the Bessel

functions of the first kind Jn(ne), Jn±1(ne) and Jn±2(ne), and γ(t) is an additional

precession term to the phase given by e. For e ≪ 1, |un(e)| ≫ |vn(e)| , |wn(e)| and we

recover the circular limit given by equation (21). As GW emission tends to decrease

eccentricity, this is likely to be mostly important at large separations (i.e., fK ≪ fISCO,

see panels ’a3’ and ’b3’ in figure 2). An example of an eccentric waveform is shown in

the upper panel of figure 4.

Turning now to spins, equation (19) shows that spins enter as higher order

corrections in the computation of the acceleration and, consequently, of the waveform.

Therefore they become important only when v/c is substantial, significantly affecting

the signal only for f > 0.01fISCO. Such corrections generate additional small terms in

the phase evolution, but most importantly, cause the orbital angular momentum L to

precess around the total conserved angular momentum J = L+S1+S2 (in which S1 and

S2 the spins of the two MBHs) according to a precession equation, that to the leading

order reads [63]

L̇ =

[

1

a3

(

2 +
3

2
q

)

J

]

× L (23)

(in this case a is the binary separation). The typical precession timescale is given by

Tp =
L

L̇
≈M1/3µ−1

[

2 +
3

2
q

]−1

(πf)5/3 ≈ 2.5×103π5/3M
1/3
6

(

f

fISCO

)−5/3

(24)
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Figure 4. Examples of waveforms from eccentric and spinning binaries. In the top

panel we show a zoom-in of three wave cycles highlighting the peculiar amplitude-phase

relation of a mildly eccentric binary (e = 0.5); h+ is in red and h× is in blue. In the

bottom panel we show the last several thousand cycles of a spinning precessing system,

the amplitude modulation given by the orbital plane precession is evident (courtesy of

A. Petiteau).

where we used J ≈ L, and we assumed equal mass binaries in the last equality. It is

clear that at, say, f = 10−3fISCO, Tp is of the order of several tens of years, making

precession effects negligible. An example of waveform modulated by plane precession in

the late inspiral is shown in the lower panel of figure 4.

The most general detectable signal from a spinning eccentric binary is a function of

17 parameters (some describing the intrinsic properties of the binary and some others

related to the relative binary-detector position and orientation): two combination of the

redshifted masses, M and µ¶; six parameters defining the individual spin vectors, two

magnitudes a1 and a2 and four angles; two parameters related to the eccentricity of the

orbit, initial eccentricity e0 and an additional angle defining the line of nodes; source

inclination with respect to the line of sight, ι; polarization angle, ψ; sky location, two

angle usually labeled θ and φ+; luminosity distance DL; initial orbital phase Φ0; and,

¶ As discussed in Section 2, for sources at cosmological distances, the GW depends on the redshifted

masses, the intrinsic ones can be extracted by measuring DL and then measuring z according to a

cosmological model, or by obtaining an independent measurement of z through, e.g., the identification

of an electromagnetic counterpart to the GW signal.
+ Of particular interest is the source sky localization errorbox ∆Ω, defined, following [64], in terms of

θ and φ as: ∆Ω = 2π
√

(sinθ∆θ∆φ)2 − (sinθcθφ)2 (according to the notation used in Section 4).
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depending on the type of signal, initial frequency f0 or time to coalescence tc (the two are

related, in the quadrupole approximation, by equation (8)). We saw examples of how

some of these parameters are imprinted in the waveform, in the following subsection

we turn to the problem of how accurately they can be extracted given some signal

observation.

4.3. Parameter extraction

We briefly review the basic theory regarding the estimate of the statistical errors that

affect the measurements of the source parameters. For a comprehensive discussion of

this topic we refer the reader to [65]. The data d collected in a detector is given by the

superposition of the noise n and a signal x determined by a vector of parameters ~λ:

d(t) = n(t) + x(t;~λ) . (25)

In the following, we make the usual (simplifying) assumption that n(t) is a zero-mean

Gaussian and stationary random process characterized by the one-sided power spectral

density Sn(f). The inference process in which we are interested is how well one can

infer the actual value of the unknown parameter vector ~λ, based on the data d, and any

prior information on ~λ available before the experiment. Within the Bayesian framework,

one is therefore interested in deriving the posterior probability density function (PDF)

p(~λ|d) of the unknown parameter vector given the data set and the prior information.

Bayes’ theorem yields

p(~λ|d) = p(~λ) p(d|~λ)
p(d)

, (26)

where p(d|~λ) is the likelihood function, p(~λ) is the prior probability density of ~λ, and

p(d) is the marginal likelihood or evidence. Under the assumption of Gaussian noise

p(d|~λ) ≡ p[n = d− x(~λ)] ∝ exp

[

−1

2
(d− x(~λ)|d− x(~λ))

]

(27)

where the inner product between two functions (g|h) is defined as the integral

(g|h) = 2

∫ ∞

0

g̃∗(f)h̃(f) + g̃(f)h̃∗(f)

Sn(f)
df , (28)

applied to the Fourier Transform of the functions, e.g.,

g̃(f) =

∫ +∞

−∞

g(t)e−2πift. (29)

In the neighborhood of the maximum-likelihood estimate value ~̂λ, the likelihood function

can be approximated as a multi-variate Gaussian distribution,

p(~λ|d) ∝ p(~λ) exp

[

−1

2
Γab∆λa∆λb

]

, (30)

where ∆λa = λ̂a − λa and the matrix Γab is the Fisher information matrix (FIM). Here

a, b = 1, . . . , N label the components of ~λ (i.e., the parameters defining the shape
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of the signal), and we have used Einstein’s summation convention (and we do not

distinguish between covariant and contravariant indices). The FIM is simply related

to the derivatives of the GW signal with respect to the unknown parameters integrated

over the observation:

Γab =

(

∂x(t;~λ)

∂λa

∣

∣

∣

∣

∂x(t;~λ)

∂λb

)

. (31)

In terms of the inner product (.|.) the maximal signal-to-noise ratio (SNR) at which a

signal can be observed is obtained by matched filtering of the data against a template

equal to the waveform signal, x(~λ). The optimal matched filtering SNR achievable in

this way is (x|x). In the limit of large SNR, ~̂λ tends to ~λ, and the inverse of the FIM

provides a lower limit to the error covariance of unbiased estimators of ~λ, the so-called

Cramer-Rao bound. The variance-covariance matrix is simply the inverse of the FIM,

and its elements are

σ2
a =

(

Γ−1
)

aa
, cab =

(Γ−1)ab
√

σ2
aσ

2
b

, (32)

where −1 ≤ cab ≤ +1 (∀a, b) are the correlation coefficients. We can therefore interpret

σ2
a as a way to quantify the expected uncertainties on the measurements of the source

parameters. We refer the reader to [66] and references therein for an in-depth discussion

of the interpretation of the inverse of the FIM in the context of assessing the prospect

of the estimation of the source parameters for GW observations. When combining

α = 1, ..., N different pieces of independent (i.e., having uncorrelated noise) information

(for example, by observing several pulsars, or by combining the inspiral and the ringdown

portion of a signal), the FIM that characterizes the joint observations in equation (30)

is simply given by the sum of the matrices of all the individual pieces

Γab =
∑

α

Γ
(α)
ab , (33)

and all the theory follows unchanged.

5. The gravitational wave landscape: observations and scientific payouts

As shown in Section 2, GW emission from MBHBs covers several decades in frequency,

ranging from sub-nano-Hz to milli-Hz. As shown in figure 5, this range is (or it will

be) covered by multiple probes. The ground-based network of advanced interferometric

detectors (three LIGO detectors, VIRGO [67], and the Kamioka Gravitational wave

Detector, KAGRA [68]) and possibly the third-generation Einstein Telescope (ET, [69])

will observe inspiralling binaries up to around few×100M⊙. The milli-Hz regime will

be the hunting territory of spaced based detectors such as eLISA, whereas PTAs are

already probing the nano-Hz portion of the frequency band. In particular, space based

interferometers and PTAs will provide a complementary, complete census of the MBHB

population throughout the Universe. In this section we focus on the prospects of GW

observation in these two bands and on the related scientific payouts.
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Figure 5. The GW landscape; total mass of the binary system versus frequency of

the GWs. The left side shows the frequency bands of different probes: ground based

detectors, eLISA, and PTAs. The gray shaded region at the top is inaccessible because

no system of a given mass can radiate at such high frequencies. The shaded region at

the bottom contains detectable sources for which the chirp mass cannot be measured

in an observation lasting less than 10 years. Sloping dotted lines show the three-

year, one-day, and one-minute time-to-merger lines. Sloping dashed lines are relevant

dynamical frequencies: last stable orbit and the frequencies of ringdown modes of the

merged BH. Vertical lines indicate evolutionary tracks of systems of various masses as

their orbits shrink and they move to higher frequencies: a binary neutron star (BNS),

an intermediate-mass binary BH (IMBBH), and a super massive binary BH (SMBBH)

(from [10]).

5.1. The milli-Hz regime: science with space based interferometry

Space based interferometry will open a revolutionary new window on the Universe. In

the following we refer to the eLISA design presented in [10] to describe the extraordinary

scientific payouts of milli-Hz GW observations. Figure 6 highlights the exquisite

capabilities of eLISA in covering almost all the mass-redshift parameter space relevant

to MBH astrophysics. GW observations will catch sources with M ∼ 104M⊙ at early

cosmological times, prior to reionization. A binary with 104 . M . 107M⊙ can be

detected out to z ∼ 20 with a SNR ≥ 10, making an extensive census of the MBH

population in the Universe possible.

As detailed in Section 4, detected waveforms carry information on all the relevant

source parameters, including redshifted masses and spins of the individual BHs prior to

coalescence, the distance to the source and its sky location. The left panel of figure 7

shows error distributions in the source parameter estimation, for events collected in a

meta-catalog of ∼ 1500 sources, based on state of the art MBH evolution models (see

[8] for details). Here circular precessing spinning binary were considered (i.e. waveforms



16

Figure 6. Constant-contour levels of the sky and polarization angle averaged SNR

for eLISA, for equal mass non-spinning binaries as a function of their total rest frame

mass,M , and cosmological redshift, z. The tracks represent the mass-redshift evolution

of selected supermassive BHs: two possible evolutionary paths for a BH powering a

z ≈ 6 quasar (starting from a massive seed, blue curve, or from a Pop III seed from a

collapsed metal-free star, yellow curve); a typical 109M⊙ BH in a giant elliptical galaxy

(red curve); and a Milky Way-like BH (green curve). Circles mark BH-BH mergers

occurring along the way [70]. The gray transparent area in the bottom right corner

roughly identifies the parameter space for which MBHs might power phenomena that

will likely be observable by future electromagnetic probes.

determined by 15 parameters), and ”hybrid” waveforms of the PhenomC family were

used to evaluate uncertainties based on the FIM approximation, as outlined in the

previous section. Individual redshifted masses can be measured with unprecedented

precision, i.e. with an error of 0.1%−1%, on both components. The spin of the primary

hole can be measured with an exquisite accuracy, to a 0.01-0.1 absolute uncertainty. This

precision mirrors the big imprint left by the primary MBH spin in the waveform. The

measurement is more problematic for a2 that can be either determined to an accuracy

of 0.1, or remain completely undetermined, depending on the source mass ratio and spin

amplitude. The source luminosity distance error has a wide spread, usually ranging from

being undetermined (but see [71] for possible shortcomings of the FIM approximation in

these cases) to a stunning few percent accuracy (note that this is a direct measurement

of DL) GW detectors are full sky monitors, and the localisation of the source in the sky

is also encoded in the waveform pattern. Sky location accuracy is typically estimated
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Figure 7. Left panel: eLISA parameter estimation accuracy; meta-catalog of MBHBs

described in [8]. Top panels show errors on the redshifted masses (left) and spins

(right). Red solid lines are for the primary and blue dashed lines are for the

secondary MBH. The bottom panels show the error distribution on the luminosity

distance DL (left), and the sky location accuracy ∆Ω (in deg2, right). Right panel:

eLISA capabilities of selecting among different MBH formation routes as a function

of observation time. Plotted is the fraction of realizations in which one of the four

investigated models (SE) is chosen over each of the other three models [LE (solid

green), LC (long-dashed blue) and SC (short-dashed red)] at 95% confidence level, as

a function of observation time.

in the range 10-1000 square degrees∗.
While measurements of individual systems are extremely interesting and very

useful for making, e.g., strong-field tests of GR, it is the properties of the whole

set of MBHB mergers that are observed which will carry the most information for

astrophysics. GW observations of multiple MBHBs may be used together to learn about

their formation and evolution through cosmic history, as demonstrated by [72, 73]. We

briefly provide here an illustrative example from [8]. As argued above, in the general

picture of MBH cosmic evolution, the population is shaped by the seeding process

and the accretion history. [8] therefore consider a set of 4 models with distinctive

properties: (i) small seeds and extended (coherent) accretion (SE), (ii) light seeds and

chaotic accretion (SC); (iii) large seeds and extended accretion (LE), (iv) large seeds

and chaotic accretion (LC). Each model predicts a theoretical distribution of coalescing

MBHBs. A given dataset D of observed events can be compared to a given model A

by computing the likelihood p(D|A) that the observed dataset D is a realization of

model A. When testing a dataset D against a pair of models A and B, one assigns

∗ These numbers assume a ’single Michelson’ (four laser links) configuration for eLISA, the full

triangular ’two Michelsons’ (six laser links) configuration results in a significant improvement of the

estimation of all parameters, in particular luminosity distance and sky location (by 1-2 orders of

magnitude).
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Without spins

SE SC LE LC

SE × 0.48 0.99 0.99

SC 0.53 × 1.00 1.00

LE 0.01 0.01 × 0.79

LC 0.02 0.02 0.22 ×

With spins

SE SC LE LC

SE × 0.96 0.99 0.99

SC 0.13 × 1.00 1.00

LE 0.01 0.01 × 0.97

LC 0.02 0.02 0.06 ×

Table 1. Summary of all possible comparisons of the MBH evolution models. Results

are for one year of observation with eLISA. We take a fixed confidence level of p = 0.95.

The numbers in the upper-right half of each table show the fraction of realizations in

which the row model is chosen at more than this confidence level when the row model is

true. The numbers in the lower-left half of each table show the fraction of realizations

in which the row model cannot be ruled out at that confidence level when the column

model is true. In the left table we consider the trivariate M , q, and z distribution of

observed events; in the right table we also include the observed distribution of remnant

spins, ar.

probability pA = p(D|A)/(p(D|A) + p(D|B)) to model A, and probability pB = 1− pA
to model B. The probabilities pA and pB are a measure of the relative confidence one

has in model A and B, given an observation D. Setting a confidence threshold of 0.95

one can count what fraction of the 1000 realizations of model A yield a confidence

pA > 0.95 when compared to an alternative model B. Results are shown in the left-

hand panel of table 1 for all pairs of models, assuming one year observation and circular

non-spinning waveforms (i.e., for an extremely conservative waveform model). The

vast majority of the pair comparisons yield a 95% confidence in the true model for

almost all the realizations, with the exception of comparisons LE to LC and SE to

SC, i.e., comparisons among models differing by accretion mode only. This is because

the accretion mode (efficient versus chaotic) particularly affects the spin distribution of

the coalescing systems, which is not considered in the circular non-spinning waveform

model. It is sufficient to add a measurement of the remnant spin parameter ar to make

those pairs easily distinguishable (Right-hand panel of table 1). The right panel of

figure 7 shows the evolution of the fraction of correctly identified models as a function

of observation time (no spin information included). Small versus large seed scenarios

(SE vs LE and SE vs LC) can be easily discriminated after only 1 year of observation.

5.2. The nano-Hz regime: science with pulsar timing arrays

PTAs are sensitive at much lower frequencies (10−9−10−7Hz), where the expected signal

is given by a superposition of a large number of massive (M > 108M⊙), relatively nearby

(z < 1) sources overlapping in frequency. As argued in Section 3, at such low frequencies

the properties of the MBHBs are likely to be severely affected by their coupling with their

stellar and gaseous environment. In particular binaries can be highly eccentric, which

might suppress the low frequency portion of the spectrum, crucial to PTA detection
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Figure 8. Left panel: simulated pulsar residuals R. The overall data, containing

white noise with rms labeled in figure plus a Montecarlo realization of the GW signal,

is represented in green; the GW signal only is given by the underlying thick red line.

Right panel: Montecarlo realization of the GW signal expected in the PTA band;

characteristic amplitude vs. frequency. Each cyan point represents an individual

binary, and the overall signal is given by the green line. Blue triangles are potentially

resolvable sources, and the red line is the level of the signal once the latter are

subtracted: the unresolved background. The black solid line is the expected analytical

f−2/3 power law, and the black dashed lines represent different timing residual levels.

[74]. Here we consider circular GW driven binaries for simplicity. The overall expected

characteristic strain hc of the GW signal can be written as [75]

h2c(f) =

∫ ∞

0

dz

∫ ∞

0

dM d3N

dzdMdlnf
h2(f), (34)

where d3N/dzdMdlnf , is the comoving number of binaries emitting in a given

logarithmic frequency interval with chirp mass and redshift in the range [M,M+ dM]

and [z, z + dz], respectively; and h(f) is the inclination–polarization averaged strain

given by equation (4).

The GW spectrum has a characteristic shape hc = A(f/1yr−1)−2/3, where A is

the signal normalization at f = 1yr−1, which depends on the details of the MBH

binary population only. A Montecarlo realization of the signal is shown in figure 8

for a selected MBHB population model. In the timing residual of each individual

pulsar, the signal appears as a structured red noise (left panel), but a representation

of the characteristic strain in the Fourier domain reveals the complexity of its nature

(right panel). Although several millions of sources contribute to it, the bulk of the

strain comes from few hundred sources only. Therefore, the signal is far from being a

Gaussian isotropic background [80]; a handful of sources dominates the strain budget,

and some of them might be individually identified. Detection techniques have been

developed for stochastic signals [81, 82, 83, 84] and individual sources [85, 86, 87], and
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Figure 9. Left panel Characteristic amplitude of the GW signal. Shaded areas

represent the 68%, 95% and 99.7% confidence levels given by [76]. In each panel,

the black asterisk marks the best current limit from [77]. Shaded areas in the upper

left panel refer to the 95% confidence level given by [78] (red) and the uncertainty

range estimated by [75]. Right panel: Median expected statistical error on the source

parameters. Each point (asterisk or square) is obtained by averaging over a large

Monte Carlo sample of MBHBs. In each panel, solid lines (squares) represent the

median statistical error as a function of the total coherent SNR, assuming 100 randomly

distributed pulsars in the sky; the thick dashed lines (asterisks) represent the median

statistical error as a function of the number of pulsars for a fixed total SNR= 10. In

this latter case, thin dashed lines label the 25th and the 75th percentile of the error

distributions (from [79]).

more sophisticated schemes accounting for signal anisotropy have recently been proposed

[88, 89, 90]. In terms of level of the stochastic signal, recent works [80, 78, 76] set a

plausible range 3×10−16 < A < 4×10−15, the upper limit being already in tension with

current PTA measurement [77, 91]. This is shown in the left panel of figure 9, where

observations are compared to theoretically predictions. Here, the difference between the

top-left and the top-right panel is given by the recent upgrades in the MBH mass-host

relation [92, 93] to include the overmassive black holes measured in brightest cluster

galaxies (BCGs) [94], that boosts the range of expected signal by a factor of two. In

the lower panels instead, we consider two subset of the models featuring these upgraded

relations: (i) those in which accretion does not occur prior to binary coalescence, and (ii)

those in which accretion precedes the formation of the binary, and is more prominent

on the secondary MBH [95]. In the latter case, binaries observed by PTA are much

more massive (and with a larger q) implying a much larger (by almost a factor of three)

signal.

An handful of sources might be bright enough to be individually resolved, and

in this case some of their parameters can be determined according to the scheme

described in Section 4. A pioneering investigation was performed by [79] assuming
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circular, non spinning monochromatic systems. In this case the waveform is function

of 7 parameters only: the amplitude R♯, sky location θ, φ, polarization ψ, inclination

ι, frequency f and phase Φ0, defining the parameter vector ~λ = {R, θ, φ, ψ, ι, f,Φ0}.
Results about typical parameter estimation accuracy are shown in the right panel of

figure 9. For SNR= 10 The source amplitude is determined to a 20% accuracy, whereas

φ, ψ, ι are only determined within a fraction of a radian. For bright enough sources

(SNR≈ 10) sky location within few tens to few deg2 is possible (see also [85, 87]),

and even sub deg2 determination, under some specific conditions [96]. Even though

this is a large chunk of the sky, these systems are extremely massive and at relatively

low redshift (z < 0.5), making any putative electromagnetic signature of their presence

(e.g., emission periodicity related to the binary orbital period, peculiar emission spectra,

peculiar Kα line profiles, etc.) detectable [76, 97].

6. Conclusions

We provided a general overview of massive black hole binaries as gravitational wave

sources. MBHs are today ubiquitous in massive galaxies, and power luminous quasars

up to z > 7. Although they are believed to play a central role in the process of structure

formation, their origin and early growth is largely unknown. According to our current

understanding, MBHBs must form in large numbers along the cosmic history, providing

the loudest sources of GWs in the Universe in a wide range of frequencies spanning

from the sub-nano-Hz up to the milli-Hz. GWs carry precise information about the

parameters of the emitting systems. We showed how those parameters are imprinted

in the phase (and amplitude) modulation of the wave, and can therefore be efficiently

extracted and determined to high accuracy with ongoing and future GW probes. From

those we will learn about MBH formation and evolution through cosmic history, about

the nature of the first BH seeds, their subsequent accretion history, and, more generally,

about the early hierarchical structure formation at high redshift. We will also learn

about the complex interplay of physical processes, including stellar and gas dynamics

and GW emission, that leads to the dynamical formation and evolution of MBHBs.

Direct GW detection will open a new era in MBH and MBHB astrophysics.
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