arXiv:1209.6158v4 [cs.DS] 17 Sep 2013

Simple and Optimal Fault-Tolerant Rumor Spreading

Benjamin Doerr!, 2, Carola Doerr!® Shay Moran', Shlomo Moran*

'Max Planck Institute for Informatics, Saarbriicken, Germany
2LIX, Ecole Polytechnique, Palaiseau, France
3Université Paris Diderot - Paris 7, LIAFA, Paris, France
“Computer Science Dept., Technion - Israel Institute of Technology, Haifa, 32000 Israel.
Part of this work was done while visiting Max Planck Institute for Informatics

January 8, 2014

Abstract

We present rumor spreading protocols for the complete graph topology that are robust
against an arbitrary number of adversarial initial node failures. Our protocols are the first
rumor spreading protocols combining the following three properties: they can tolerate any
number of failures, they distribute the rumor to all nodes using linear number of messages
(actually they use strictly minimal n — 1 messages), and if an arbitrarily small constant
fraction p of nodes (including the initiator of the rumor) are working correctly, our protocols
communicate the rumor to all members in the network in O(log(n)) rounds.

Our protocols are simpler than previous fault-tolerant rumor spreading protocols in this
model, they do not require synchronization (i.e., their correctness is independent on the
relative speeds of the nodes), and they do not require a simultaneous wakeup of all nodes
at time 0.

Keywords: Rumor Spreading; Randomized Algorithms; Robustness; Analysis of Algo-
rithms.

1 Introduction

Disseminating information to all nodes of a network is one of the basic communication primitives.
Basically all collaborative actions in networks imply that some information has to be sent to all
nodes, and surprisingly complex tasks like computing aggregates can be reduced to essentially
solving a dissemination problem [MAS06]. We are interested in disseminating a single piece
of information (the rumor) to all n nodes in a communication network in which all nodes can
exchange information with each other but where individual nodes can initially crash (i.e., they
do not participate in the rumor spreading process). More precisely, we study dissemination
protocols that are robust against adversarial initial node crashes [TKMS89].

1.1 Previous Results

Rumor spreading protocols that are robust against adversarial node failures have been studied,
to the best of our knowledge, mainly in complete communication networks. In such networks,
essentially two types of fault-tolerant rumor spreading protocols have been proposed: (i) whis-
pering protocols, which assume a stricter communication model and achieve smaller message
complexity, but require rather intricate constructions, and (ii) gossip-based protocols which

build on the paradigm that nodes call randomly chosen others. The latter, due to their ran-
domized nature, usually are highly robust against all kinds of faults, typically at the price of a
higher communication effort and non-trivial termination criteria. Usually, both types of these
fault-tolerant protocols require the network to be synchronized.

1.1.1 Whispering Protocols

It is easy to see that there are fault-free protocols disseminating a rumor in [logy(n)| com-
munication rounds using a total of n — 1 messages and that both these measures are strictly
optimal. A simple protocol for n = 2¥ nodes indexed by the numbers from 0 to n — 1 would
be that in round i, each node x having the rumor calls node z XOR 2¢~! and forwards the
message to it. From the sender ID the recipient of a message can infer the round number 1,
and thus decide when to stop forwarding the message. Hence this protocol indeed uses only
n— 1 messages in total. This algorithm (like the other ones mentioned in this subsection, but in
contrast to gossip-based algorithms discussed further below) maintains the whispering property
[GP96,DP00|: in each round, the edges along which the rumor is transferred form a matching.
It has two further advantages, namely (i) it requires no synchronization, in the sense that its
correctness does not assume the existence of a global clock, or any restriction on the relative
speeds of the processors, and (ii) nodes know when to stop forwarding the rumor.

The downside of this simple approach is that it is not at all robust. If a node is not available
(“crashed”), then all other nodes that would be been informed via it will remain uninformed.
This problem was overcome in the preliminary version of |GP96], which presents a protocol
that is strictly optimal if no failures occur; however, when arbitrary f nodes do not participate
in the collaborative process, then—instead of nodes remaining uninformed—only the runtime
increases to at most f + [logy(n — f)]. The number of messages sent in all cases is n— 1. In this
result, as in other fault-tolerant rumor spreading algorithms, it is assumed that a node calling
a crashed node learns that his call was unsuccessful.

The increase of the runtime bound (equal to basically the number of crashed nodes) of the
above protocol is dissatisfactory. Subsequent fault-tolerant whispering protocols reduced this
running time by adding an opening phaseﬂ which precedes the actual spreading of the rumor,
and connects a large portion of the non-faulty processors in an appropriate subnetwork. The
added opening phase comes with a price: (i) it is tailored for a linear lower bound an on the
number of non-faulty processors, which needs to be determined by the user in advance; hence,
when the number of non-faulty processors is smaller than an, these protocols may run into a
deadlock and the rumor is not guaranteed to reach all non-faulty processors; also, the actual
running time and number of messages of these protocols are determined by the an bound rather
than by the actual number of faulty processors; (ii) unlike the fault-free whispering protocols, it
does assume a global clock and requires synchronization; (iii) it requires that all the non-faulty
nodes are simultaneously activated at time O.

[GP96] introduces such an opening phase which runs in O(log?(n)) time. A more intricate
opening phase was later introduced in [DP00|; to the best of our knowledge, [DP00] is the only
published paper which shows that for any fixed constant € there is a protocol which can tolerate
up to en node failures, and whose time and message complexities are both asymptotically
optimal. The opening phase of [DP00| uses an intricate construction, which requires that a
certain, rather complex, virtual expander is stored by the network nodes during the system
setup in a preprocessing phase. This construction is based on the explicit expanders of [LPS8§],
and on the properties of these expanders presented in [Upf94].

'We distinguish between opening phase, which is repeated each time a rumor is spread, and a preprocessing
phase, which is performed only once, when the network is established.

1.1.2 Gossip-based Protocols

Gossip-based communication protocols build on the paradigm that nodes of a network call ran-
dom neighbors and communicate with them. This is also called randomized rumor spreading.
Randomized rumor spreading has been analyzed in various variants for different network topolo-
gies. Despite the very simple approach of talking to random neighbors, these protocols often
achieve a surprisingly good runtime combined with extreme robustness. Their main advantage
over the fault-tolerant whispering protocol of [DP00] is that they avoid the need for an opening
phase and for storing intricate subnetworks in a preprocessing time, but, on the negative side,
they do require asymptotically larger message complexities, and they typically lack a simple
termination criterion (i.e., the nodes do not know when every node is guaranteed to have learned
the rumor so that they can stop spreading the message). In this section, we briefly describe
the results that are relevant for our work on robustness against adversarial failures in complete
graphs.

The first rumor spreading result is due to Frieze and Grimmett |[FG85|, who studied the
simple protocol consisting of each informed node in each round calling a random neighbor
(synchronized push-protocol). Pittel [Pit87] showed that the round complexity of this protocol
is logy(n) + In(n) + h(n), where h(n) is any function tending to infinity. Note that randomized
rumor spreading in this push-model violates the whispering property, but when counting only
messages which carry the rumor (see Section , this violation can be undone by assuming
that nodes accept only one incoming call.

The first to analyze rumor spreading as communication protocol (namely in the context
of maintaining the consistency of replicated databases) were Demers et al. [DGH'88|. In ap-
plications like this, where one may assume that updates are to be disseminated frequently,
also a push-pull randomized rumor spreading protocol makes sense. Here all nodes (and not
only those already knowing the rumor) call random neighbors, allowing that uninformed nodes
“pull” information from informed ones. Naturally, for the use of pull operations not to generate
an enormous message overhead, one needs the assumption that sufficiently often rumors are
injected.

A possible weakness of protocols using randomized pull operations is the inherent violation
of the whispering property: Many uninformed nodes may randomly select the same informed
one, thus forcing the selected node to forward the rumor to many neighboring nodes in a single
roundH In models which allow a processor to send at most one message each round, this may
result in a considerable increase in running time.

While always randomized rumor spreading is described as highly robust, not too many
proofs of this statement exist. Elsésser and Sauerwald in [ES09] prove for general graphs that
messages failing independently with probability ¢ < 1 lead to an increase of the runtime of at
most O(1/(1—c¢)). In [DHLO09], this was made more precise for complete network topologies by
showing that the push variant of randomized rumor spreading, with high probability, forwards
a rumor to all nodes in time logy_.(n) + (Inn)/(1 — ¢) + o(logn), when each call independently
fails with probability c. It is not difficult to see that the same bound (for the time needed to
inform the working nodes) holds in complete networks also for an adversarial failure model in
which a fraction of f = cn of arbitrary nodes is crashed initially.

As mentioned above, the robustness of randomized rumor spreading comes at a price not
only of a slightly higher dissemination time when no failures occur, but more importantly at
a relatively large number of messages sent until the rumor is disseminated, and at a large

*Using, e.g., [RS98], it is not hard to see that in a push-pull gossip-based algorithm, in each round in which
the fraction of informed processors is bounded away from 0 and from 1, w.h.p. some informed processor sends

the rumor to Q(log){gogn) uninformed neighbors.

number of additional messages caused by the fact that in the basic protocol the nodes do not
know when to stop sending out messages: In independent randomized rumor spreading in the
push-model, only after ©(nlogn) messages are sent, the rumor is known to all vertices. By
adding suitable dependencies to the random choice of the communication partner, in [DF11a] a
randomized rumor spreading protocol was designed which in (1 + o(1)) logy n rounds and with
nh(n) messages solves the dissemination problem (here again h is an arbitrary function tending
to infinity). This protocol is robust against random node crashes (leading to a time bound of
(140(1))logy_.mnif f = cn nodes are crashed). The protocol has a simple termination criterion,
that is, the bounds on the number of messages not only refer to the messages sent until all nodes
are informed, but in fact to the total number of messages sent in one run of the protocol. The
protocol can be made robust also against adversarial node crashes, however, at the price of
the message complexity increasing to ©(nlogn) when a constant fraction of adversarial node
crashes has to be tolerated.

1.2 Our Results

In this work we present simple and efficient fault-tolerant whispering protocols, which instead
of using expanders add a natural randomization to the elegant (but sub-optimal) whispering
protocol of [GP96|. The resulted protocols:

e Are robust against any number of failures.

e Do not need to construct and store, in a preprocessing time, an intricate network structure.
e Do not need an opening phase, or simultaneous wakeup of all processors at time 0.

e Use only push operations.

e Are asynchronous, in the sense that they do not need a global clock or synchronization.
e Have a very simple termination criterion.

e Maintain always strictly optimal message complexity (i.e., use n — 1 messages to inform
all non-crashed nodes in the network) and achieve w.h.p. an asymptotically optimal
runtimeﬂ The runtime and message complexities are determined by the actual number
of the non-faulty processors in a run, and not by a predetermined lower bound on this
number.

We first show that for random node crashes, the basic protocol of |[GP96|, denoted GP, has a
much better performance than what the worst-case bound in [GP96] states. In particular, when
each node is crashed with constant probability 0 < 1 — p < 1 (independently at random), then
with high probability the algorithm terminates within ©((log(n)) rounds. As a straightforward
probabilistic analysis of the protocol of [GP96] appears tricky, we prove this result by first
introducing an intermediate failure model, the wakeup model, and then coupling the two models
by embedding them in the standard o-algebra of infinite binary sequences. We believe that the
wakeup model itself is of independent interest.

For adversarial node failures, this implies the following randomized solution: The start node
(i.e., the node which the rumor starts at) picks a random permutation of the other nodes and
initiates the GP protocol with node labels permuted according to this permutation. This gives
the same time bounds as for random node failures. The downside is that to make the other

3We did not try hard to optimize the constants in the runtime bounds, but a bound of (6 + o(1))log, n/p,
where pn is the number of non-faulty processors, follows easily from our proofs.

nodes adopt this strategy, sufficient information on the permutation chosen by the initial node
has to be communicated to the other nodes as well. This can be achieved by adding a total of
O(n log? n) bits to all the messages, with at most n bits to some messages. The total overhead is
comparable to the one of fault-tolerant gossip based protocols (which use ©(nlog(n)) messages
of ©(log(n)) bits each), but is asymptotically larger than the overhead of the whispering protocol
of [DPO0O].

When communication is costly, message sizes can be shortened to O(logn) (which is the
messages size in the protocol of [DP00]): We prove that instead of choosing the permutation
randomly from all permutations, it suffices to choose the permutation randomly from a set of
only O(nh(n)/logn) random permutations, where h € w(1) is an arbitrary function tending to
infinity. (The number of permutations can be varied to adjust runtimes and failure probabilities,
see Theorem for the details.) This allows to encode the permutation via only ©(logn) bits
(which is also the overhead of the original GP protocol). This approach can be implemented
by computing, for an arbitrary function h € w(1), O(nh(n)/logn) random permutations and
storing them at all processors, and repeating this procedure whenever processors join or leave
the network. Thus, this protocol is particularly appealing when communication is expensive,
memory is cheap, and processors are not added or removed from the network too often. We
conclude by noting that this preprocessing stage may be eliminated if an appropriate set of
permutations can be found efficiently by a deterministic method.

2 Preliminaries

Before we present a few basics about rumor spreading protocols, let us briefly fix the notation
used throughout this work. Unless stated otherwise, we consider executions of rumor spreading
algorithms by n processors ordered by their names (0, 1,...,n—1), where 0 is the start processor.

We use the following notation: For a sequence s = (s, s2,...), odd(s) = (s1,s3,...) is the
subsequence of the odd indexed elements of s, and even(s) (82,84, ...) is the subsequence of
the even-indexed elements of s. For a binary vector b, |b|o is the number of zeros in b, and |b |
denotes the number of ones in b.

For a rooted tree T, height(T") is the height of 7', i.e., the maximum length of a path from
the root to a leaf.

For n € N (N denotes the positive integers) we abbreviate [n] := {1,2,...,n}. By S, we
denote the set of all permutations of the set [n].

By In we denote the natural logarithm to base e. All other logarithms are to base 2.

2.1 Rumor Spreading Protocols

To ease the comparison of our rumor spreading protocol with previous ones, let us briefly
give a unified description of these. Let the undirected graph G = (V, E) describe the under-
lying communication network, that is, nodes of this graph represent processors and a direct
communication between two processors is possible if and only if there is an edge between the
corresponding nodes. Let n := |V].

A (synchronous) execution of a rumor-spreading algorithm on G consists of rounds
Ri,Rg,.... A round R; is initiated by a set of processors V; C V (the exact nature of V;
depends on the model assumed and/or on the specific algorithm): each processor u € V; sends
a (u,v) communication request (in short “(u,v) request”) to one of its neighbors v; the request
contains a bit informing v whether u holds the rumor already. A (u,v) request is valid if exactly
one of u and v holds the rumor. After receiving all the requests sent to it at Ry, each processor
v may (but does not have to) approve some of the valid requests that it has received. The round

R; is then completed by transferring the rumor along the edges of the approved requestsE] The
execution terminates at time ¢ if V; # () and Vi1 = 0. We call ¢ the time (or round) complexity
of the execution of the rumor spreading algorithm. Note that in some other works, in particular
those on gossip based randomized rumor spreading, only the first time at which all processors
know the rumor is regarded. A rumor spreading protocol is asynchronous if the processors
local programs do not use round numbers (or on any other notion of time). All the protocols
proposed in this work are asynchronous.

Let E; denote the set of edges along which requests are sent in R;, and let F; denote the set of
edges of the approved requests, along which the rumor is transferred at R, (thus |E¢| = |V;| <n
and F; C Ey). A rumor spreading algorithm satisfies the whispering property if F; always forms
a matching, meaning that each processor may either send or receive at most one copy of the
rumor at each round. Some authors actually require any rumor spreading algorithm to satisfy
the whispering property (see, e.g., [GP96,DP00]).

Besides the time complexity, the communication effort and the robustness against faults
are two further important performance measures. There are some variants of the defini-
tion of message complexity of rumor spreading algorithms. The strictest definition counts
all communication requests, ie. »,|FE (e.g. [GP96, DF11b]). A more permissive def-
inition assumes that communication between uninformed processors is given for free due
to frequent injections of other rumors ([KSSVO00, CHHKMI12|), and hence it reduces to
>t {(w,v) : (u,v) € Ey and either u or v holds the rumor }|. As will be noted soon, our al-
gorithms have the minimum possible message complexity by both definitions.

The faults assumed in this paper are initial crash failures: A processor is faulty in a given
execution if it never sends a message during the execution. We consider two types of failure
policies, associated with a success parameter p € (0,1): random failures, in which each process
may fail independently with probability 1 — p, and adversarial failures, in which the adversary
may fail (before the execution of the algorithm starts) any subset of up to (1 — p)n processors,
excluding the start processor. An (4, j) request is failed if j is faulty, and it is successful otherwise.
Note that in our synchronized model, a faulty node j is identified by not responding to an (i,)
request.

2.2 The Algorithm of Gasieniec and Pelc

We use the following variant of the divide-and-conquer algorithm of Gasieniec and Pelc [GP96],
to be denoted GP. Initially the start processor 0 holds a list (1,2,...,n — 1) of all uninformed
processors, and all other processors hold empty lists. At each round, each processor i which
holds a nonempty list (j1,...,jk), sends an (i,71) request and deletes j; from its list. If the
request is successful then i also sends to j; the rumor, appends to it the list even(jo,...,jx) =
(j3,75,---), and sets its own list to odd(ja,...,jx). Thus, in this case, the next round starts
with ¢ holding the list odd(jz, ..., jx) and processor j; holding the list even(jo,...,jx). The
algorithm terminates when all processors hold empty lists.
Implementation note: Observe that each list of the form even(jo,...,jx) generated during
the algorithm is an arithmetic progression whose difference is 2" for some integer m < logn.
Sending such a list can be done by sending the first element js, the length of the list L%J, and
the exponent m. Overall, this requires an addition of less than 3logn bits to the rumor.

Note that this protocol automatically ensures that (i) each node receives at most one com-
munication request per round (hence the whispering property is satisfied), (ii) only requests
from informed nodes to uninformed ones are issued (hence there is no reason not to approve a

4Some models assume that an informed processor u always sends the rumor on the selected edge (u,v), even
if v is already informed.

request), and (iii) the protocol terminates as soon as all processors know the rumor.

The optimality of the message complexity of the GP algorithm (under the different variants
of “message complexity” discussed in Section is implied by the following straightforward
observation.

Lemma 2.1 (|[GP96]). The GP algorithm performs the minimum possible number of commu-
nication requests, namely n — 1 communication requests in each possible execution.

In the presence of f crashed nodes, the time complexity of the GP algorithm is given by the
following lemma.

Lemma 2.2 ([GP96]). For up to f initial node failures the time complexity of the GP algorithm
is at most f + [log(n — f)]. This bound is tight if processors 1,..., f are failed.
2.3 Reminder: Chernoff’s Bounds

We apply several versions of Chernoff’s bound. The following can be found, for example,
in [DP09].

Theorem 2.3 (Chernoff’s bounds). Let X =)" | X; be the sum of n independently distributed
random variables X;, where each variable X; takes values in [0,1]. Then the following statements

hold.

Vt > 0:Pr[X > E[X] +t] < exp(—2t*/n) and (1)
Pr[X < E[X] — t] < exp(—2t?/n).

Ve >0:Pr[X < (1-¢)E[X]] <exp(-e’E[X]/2) and (2)
Pr[X > (1+4¢)E[X]] <exp(—e’E[X]/3)

Vit > 2e E[X] :Pr[X >¢] <27".

Chernoff’s bound applies also to random geometric variables. A proof of the following
theorem can be found, e.g., in [AD11, Theorem 1.14].

Theorem 2.4 (Chernoff’s bound for random geometric variables). Let p € (0,1). Let

X1,..., Xy be independent geometric random wvariables with Pr[X; k] = (1 —p)1p for

alkeN. Let X := " | X,.

Then for all 6 > 0, Pr[X > (14 9) E[X]] < exp (—%) :

3 Random Failure Analysis of the GP Algorithm via a New
Random Wakeup Model

In this section we show that the GP algorithm has a much better performance against random
node failures than the worst case performance given in Lemma [2.2| against adversarial node
failures. We assume that each processor may fail with probability 1 — p independently. It is not
hard to see that the expected runtime is bounded from below by the solution to the recursive
formula F(1) = 0; F(n) = p- F(n/2) + (1 — p) - F(n — 1) + 1, which is log(n)/p + O(1). On
the other hand, we show that every processor is informed after 3.5log(n)/p rounds, with high
probability.

We refer to p as the success rate, and to 1 —p as the failure rate. Due to the sequential nature
of the GP protocol, even a very small change in the failure pattern (that is, the set of failed
nodes) may imply a large change in the time complexity. This makes a straightforward analysis

of this model a bit tricky. To ease the analysis, we start by considering a similar protocol in a
simpler model, the random wakeup model, which we believe to be of independent interest. We
then transfer the results to the standard random node failure model by coupling the models in
the standard o-algebra of infinite binary sequences.

3.1 The Random Wakeup Model

We regard the following divide-and-conquer wake-up protocol, which is inspired by the GP
algorithm. The start processor 0 starts with the list (1,2,...,n—1) of nodes to be informed. It
sends in every round a communication (“wakeup”) requests to processor 1, until this processor
is woken up. It then forwards to it the rumor, appended by the list even(2,...,n — 1), thus
keeping for itself the list odd(2,...,m — 1) as its todo-list. It then tries to wake up processor 2
in the next round, and so on. In this model, each wakeup request is successful with probability
p, independently of previous requests. Hence in the implied rumor spreading algorithm, to be
denoted WU, whenever u selects an edge (u,v), it repeatedly sends (u,v) requests until v is
woken up. Informally, the time complexity of the algorithm in this model is larger than in the
standard initial-failures model, since in the standard model only one request is sent to each
processor. A formal proof of this statement is given in Section Note also that like the
GP algorithm, the WU algorithm performs the minimum possible number of communication
requests in each execution: n + f — 1 requests when there are f failed wakeup messages.

The time complexity of the random wakeup model is easier to analyze since the implied
WU algorithm sends communication requests along a fixed set of edges, which is independent of
the specific failure pattern. For analyzing this time complexity we represent the WU algorithm
by a full binary tree 7 with n leaves, in which each vertex x is labeled by a processor name
L(z) € {0,...,n — 1} according to the following scheme (cf. Figure [I). The leaves of T are
labeled by the processor names 0, ...,n — 1, according to some arbitrary but fixed order. The
labeling of an internal vertex z with children y, z is L(z) = min{L(y),L(z)}. Thus L(r) = 0
(where r is the root of the tree), and for each processor k, the vertices of 7 labeled by k form
a directed path, Pathg, ending at a leaf of T.

The algorithm for processor k € {0,...,n — 1} implied by the above labeled tree T is the
following: After receiving the rumor, k moves along the vertices of Pathy. When k steps on
a non-leaf vertex x € Pathy with children y, z, it repeatedly sends communication requests to
j =max{L(y),L(2)} until j wakes up.

Consider now a specific execution Ewy of the above random wakeup algorithm. For each
internal vertex = € 7 with children y, 2z, let k; = L(z) and j; = max{L(y),L(z)}. Denote by
Delay(x) the number of (k;,j.) requests sent by k, in Ewy. Then Delay(x) is a geometric
random variable with probability p, that is Pr[Delay(z) = ¢] = (1 — p)*~'p for all positive
integers ¢, and E(Delay(z)) = 1/p.

For a processor j € [0...n — 1], let P; be the path from the root r of 7 to the (unique) leaf
labeled by j, and let Delay(P;) := > . P, Delay(x). Then the time complexity of Ewy is given
by

time(éwy) = max {Delay(F;)}.
j€[0..n—1]

3.2 The Time Complexity of the Random Wakeup Model

Theorem 3.1. Let ¢ > 1 be a constant and let p € (0,1) be arbitrary (possibly p=1—o0(1)).
With probability at least 1 — nexp (— (C;CI)Q([log(n —-1)] - 1)) , the WU algorithm with suc-

cess rate p has delivered the rumor to all processors after - ([log(n —1)] + 1) rounds.

Figure 1: Illustration of the rumor spreading in the random wakeup model for 5
processors: Each vertex of T is labeled by a processors name. The red bold edges indicate
rumor transfers. Thus Processor 0 always transfers the rumor to processors 3, 2, and 1 (in this
order). The numbers in parentheses beneath internal vertices indicate the number of wakeup
calls in a specific execution. That is, in the depicted execution processor 1 woke up only by the
7th (0, 1) request. The time complexity of this execution is 3+ 2+ 7 = 12.

The success probability in Theorem becomes 1 — o(1) for ¢ with (2061111)2 > 1, e.g., for

¢ > 7/2. The theorem follows essentially from the Chernoff bound for random geometric
variables, cf. Theorem [2.4]

Proof of Theorem [3.1. By construction, for each processor j € [0...n — 1] we have that path
P; has at least [log(n—1)] and at most [log(n —1)] 4+ 1 nodes. Therefore the expected delay of
path P;, E[Delay(P;)], equals (1/p)[log(n — 1)] or (1/p)([log(n — 1)] + 1), respectively. Since
the variables {Delay(x) : € P;} are mutually independent, by Theorem [2.4] we have

Pr[Delay(P;) > (¢/p)([og(n — 1)] + 1)] < Pr[Delay(P;) > (1 + (c — 1)) E[Delay(P;)]

< exp (2 flogn -1 - 1))

A simple union bound over all n paths concludes the proof.]

3.3 Coupling the GP and WU Models

To relate the time complexities of the random wakeup model and the GP algorithm in the
presence of random node failures, we embed the fallure patterns of both models in the probablhty
space consisting of infinite binary vectors {b | b € {0,1}N}, where the entries by,bo,... are
i.i.d. with a Bernoulli distribution parametrized by the success rate p—see, e.g., Chapter 2
of |Bil95]. (Infinite sequences are needed since the number of possible failures in executions

of the WU algorithm is unbounded). This embedding of failure patterns induces distributions
over executions of rumor spreading algorithms, similarly to the way randomized algorithms are
presented in the classical work of Yao [Yao77].

In Section we define the mappings of infinite binary vectors to failure patterns, and
then to execution trees (whose heights represent time complexity of the corresponding execution
of the GP and the WU protocol, respectively). In Section we use this mapping to present
our coupling argument (Lemma [3.3]).

Section [3.3.1] is quite technical. The reader only interested in the main results may want
to skip these details and jump directly to Section considering height(Tgp(n,b)) and
height(Twu(n,b)) defined to be the time complexity of one particular execution of the GP
algorithm and the WU algorithm, respectively.

3.3.1 Failure Patterns and Execution Trees

Any execution of the GP or of the WU algorithm with a single start processor is determined by
the initial system configuration (in short configuration). A configuration is a pair (n, b), where
n is the number of processors to which the rumor has to be delivered, and b = (b1,ba,...) is
an infinite binary vector representing a failure pattern. An entry b; = 0 corresponds to a failed
request and b; = 1 corresponds to a successful request. For each configuration (n, b), Egp(n, b)
denotes the execution of the GP algorithm on (n,b), and Ewy(n,b) denotes the execution of
the WU algorithm on (n,b) (Egp(n,b) is always determined by the first n bits of b, while
Ewu(n,b) is usually determined by a longer prefix of b).

Eap(n,b) is defined by the ezecution tree Tap(n,b) as follows. The vertices of Tgp(n, b) are

configurations. The root of Tgp(n,b) is the configuration (n,b). If b = 0¢ (for some infinite
binary vector ¢) then the first request sent by the execution failed. Hence in the next round
there is still only one informed processor, with n — 1 uninformed processors in its list. Thus the
only child of (n,b) is (n — 1,&). If b = 1 then the first request is successful, and hence (n,b)
has a left child ([251], odd()) and a right child (|25 |, even(c)).
This rule applies to all vertices of the tree: For k > O and binary (infinite) vector &, a vertex
(k,0¢) in Tgp is an internal vertex with one child: (k — 1,¢), and a vertex (k, 1¢) has a left
child ([%451],0dd(¢)) and a right child (| £51], even(&)). Vertices of the form (0, ¢) are leaves.
Figure [2 illustrates the execution tree of the GP Algorithm.

The execution Ewy(n, b) of the WU algorithm with initial configuration (n,b) is described
by an execution graph Twu(n, b) in a similar manner, with one exception: the unique child of
a vertex of the form (k,0¢) for k > 0is (k,¢) (and not (k — 1, &))—reflecting the fact that in a
failed request the number of uninformed processors remains unchanged. Note that Tywuy(n, b)
may not be a tree, since it may contain vertices (configurations) of the form (k,0") which have
one outgoing edge which is a self loop (corresponding to the event of infinite sequence of failed
requests by a processor). It is not hard to see that Twy(n, b) has no other cycles and no other
directed infinite paths. Hence Twu(n, b) is a finite rooted tree or a finite rooted tree with self
loops added to some of its leaves. This latter case correspond to executions in which some
processor has an infinite succession of failures.

The following observation is implied by the definitions of Tgp and Twuy.

Observation 3.2. For each system configuration (n, l;) it holds that:
1. The time complexity of Egp(n,b) is height(Tap(n,b)).

2. If TWU(n,g) contains a self loop, then the time complezity of Ewu(n, b) is infinite. The
time complezity of Ewu(n,b) is height(Twu(n, b)), otherwise.

10

Figure 2: Tgp(4;1001...): This tree describes the execution Egp(4;1001...) of the GP algorithm
for 5 processors and a failure pattern (1001...). Each vertex is a system configuration (k;b),
where k is the number of processors to which the rumor need to be delivered, and b is the
corresponding failure pattern.

3.3.2 Coupling the Models

Here and in the remainder of the paper we abbreviate hgp(n,b) = height(Tgp(n,b)) and
hwu (n,b) = height(Twy(n,b)).

The main coupling argument is the following lemma, whose inductive proof makes use of
the fact that both functions hgp and hyy are monotone increasing in their first argument (i.e.,
the number of processors to be informed).

Lemma 3.3. For each system configuration (n,b) it holds that hap(n,b) < hwuy(n,b).

For proving Lemma we first observe that both hgp and hyy are monotone increasing
in the number of uninformed processors.

Lemma 3.4. Let h € {hgp,hwu}. The function h is monotone increasing in its first argument.

This lemma follows immediately from the observation that for all b and n, Tap(n,b) is
isomorphic to a proper subtree of Tgp(n + 1,b), and TWU(n,g) is isomorphic to a proper
subgraph of Twu(n +1,b).

We are now ready to prove the main coupling argument, Lemma [3.3

Proof of Lemma|[3.5 For n =0 and for all vectors b e {0,1}" we have

hap(0,0) =0 = hyy(0,).

11

For the all-zeros vector b = 0 and for all n > 0 it holds that
hap(n,0) =n < 0o = hyy(n,0).

We proceed by induction on n, assuming b % 0. Let by, be the first non-zero element in b (for
some k > 1). It follows that

hap(n,b) =k + max{hgp ([%5%],0dd(by11,) , hap (| %52, even(byy1, ...)) }

which, by induction hypothesis, can be bounded from above by

k +max{hwy ([%5%],0dd(bit1,) , hwo (|25, even(byi1, -..)) },

which, by Lemma is itself bounded from above by

k +max{hwy ([%5], 0dd(bi1,...)) s hwo ([252], even(bgs1,...)) }
:hWU(n> 5) :

O]

Lemma [3.3|and Observation E 2|show that, for any initial configuration (n, b) the execution
Eap(n, b) of the GP algorithm is at least as fast as the execution Ewuy(n, b) of the WU algorithm.
This implies that for any probability distribution D on {0, 1}, if b is sampled from D then
Prlhgp(n,b) < H] > Prlhwy(n,b) < H]. By letting D be the standard distribution on {0, 1}N
with success probability p, Theorem easily implies the following.

Theorem 3.5. Let ¢ > 1 be a constant. The execution time of the GP algorithm with
success probability p € (0,1) is at most $([log(n — 1)] + 1), with probability at least 1 —

nexp (525 (Nlog(n — 1)] - 1)).

4 Adversarial Failures in the Randomized GP-Protocol

In this section we aim at analyzing adversarial failures. As mentioned in Lemma it has
been proven in |[GP96| that the time complexity of the GP algorithm is at most f + [log(n — f)]
when the number of failures is at most f. This bound is sharp when the first f nodes fail. For
f = w(logn), this bound is not satisfactory.

We give a modification of the GP algorithm which is fault-tolerant in the sense that no
matter which constant fraction of the node fails, every processor receives a contact request
within the first O(logn) rounds, with high probability. This protocol can best be described as
a randomized version of the basic GP algorithm.

Our algorithm works as follows. When the rumor is injected at processor 0, this processor
picks a permutation m € S,_; uniformly at random. In round one it tries to contact processor
m(1). If this processor has a failure, processor 0 sends a communication request to processor
m(2) in round two. Otherwise, i.e., if processor 7(1) is not failed, processor 0 sends to it the
rumor and appends to this rumor the list even(n(2),...,7(n —1)). Processor 0 keeps the list
odd(7(2),...,m(n—1)) as its own todo-list. The protocol continues as described in Section [2.2]
That is, all we have changed in our randomized version of the GP algorithm is to substitute the
list of processor 0—which is (1,...,n—1) in the original GP algorithm—by (7 (1),...,m(n—1)),
where 7 is a random permutation of [n — 1]. We also have to append information on = when
transferring the rumor. It is not difficult to see (see Section below) that this requires a total

12

number of ©(nlog® n) bits that are appended to the rumors (compared to ©(nlogn) in the GP
algorithm). The maximum length of an individual message appendix is n bits.

Here and in the remainder of this section we assume (as in all other parts of this work) that
the processor initially holding the rumor, node 0, does not fail. Recall that in our initial node
failure model, a processor either is a failed one or it does work throughout the execution.

Before we analyze the time complexity of the randomized GP algorithm, let us briefly discuss
its bit complexity; i.e., the number of bits needed to encode the lists that are appended to the
initial rumor.

4.1 The Bit Complexity of the Randomized GP Algorithm

In a naive implementation of the randomized GP algorithm, every processor passes to its neigh-
bor the list of nodes to be informed by that processor. As described above, in such an imple-
mentation, node 0 would pass to node 7(1) the list even(w(2),...,m(n — 1)) of length smaller
than n/2. This requires O(nlogn) bits to be appended to the initial rumor. Since the length
of the list halves with each successful communication request, in every level of the execution
tree the total number of bits that need to be communicated is O(nlogn): We say that a pro-
cessor state is on the tth level if on its unique path to the root exactly ¢ successful calls have
happened. For t < log(n — 1), in the tth level, there are at most 2! informed processors, all
of which send the rumor to their descendants. Each such processor needs to append a list of
length at most n/2!"!. This makes a total number of O(nlogn) additional bits that need to be
communicated on the tth level. Since there are O(logn) levels in total, the total bit complexity
of this implementation is O(nlog?n).

Another implementation of the randomized GP algorithm with the same (asymptotic) bit
complexity but a smaller mazimal appendix is the following. If a processor needs to commu-
nicate to its neighbor a list L = (j1,...,jx) of length k& > n/logn, it appends to the rumor
the incidence list of L; i.e. a 0/1 vector x of length n — 1 with z; = 1if ¢ € {j1,...,jx} and
x; = 0 otherwise. If a processor has received such a rumor with appended task list x, it creates
a random permutation 7, of the indices {i | z; = 1}. It then proceeds as usual, trying to
spread the rumor to processor 7, (1) in the next round. If less than n/logn indices need to be
communicated, it is cheaper to pass the list itself. It is easily verified, using similar arguments
as above, that this implementation yields a total bit complexity of O(n log? n). However, the
length of the longest appendix is just linear in n.

In Section [5| we describe an alternative algorithm in which the maximal size of a message
appendix is in the order of logn bits.

4.2 The Time Complexity of the Randomized GP Algorithm

For bounding the time complexity of the randomized GP algorithm we first show that hgp(n, b),
the time complexity of this algorithm for given n and b , is monotone decreasing in the failure
pattern b , according to the following natural partial order on binary sequences: (by,ba,...) <
(c1,c2,...) if and only if for all i € N we have b; < ¢;.

Lemma 4.1. The function hgp(-,-) : Ng x {0,1}N — R is monotone decreasing in its second
argument. That is, for any failure pattern b, replacing failed processors by non-faulty ones
cannot increase the time complexity.

The proof of Lemma [4.1| uses the following statement, which—informally—says that for
each possible failure pattern b, splitting the rumor spreading at the very beginning between
two processors cannot increase the time complexity of the execution.

13

Lemma 4.2. For alln € Ny and all b € {0,1}N 4t holds that

hap(n,b) > max{hgp([2], odd(b)), hap(| 2], even(b))} . (4)

Proof of Lemma[{.2. The proof is by 1nduct10n on n. The lemma clearly holds for n = 0 and
n=1. So let n > 2. Assume first that b = 0Z. Then by the definition of Tgp,

hap(n,0¢) =1+ hgp(n —1,7).
Using the identities [4] — 1= [£5!] and | %] = [£51], we also have

hap([2],0dd(00)) = 1+ hap(| %5t], even(c)) and
hap(l5], even(0C)) = hgp(("T_lLodd(E)),

which implies by induction.
The case b = 1¢ follows along the same lines. To simplify the notations for this case, define
ni = [%51],ns = [%52],d = 0dd(¢), and € = even(¢). Then by the definition of T¢p,

hap(n, 1) = 1 4+ max{hgp(n1,d), hap(ng, &)}

And the inductive step follows from the inequalities

hap([5],0dd(1¢)) = 1 + max{hgp([%],0dd(€)), har(| "], even(€))}
<1+ hgp(ne,€) (by induction hypothesis),

and hgp(l5],even(1c)) = hap(ny,d).

(I

o

Proof of Lemmal[4.1l The proof is by induction on n. For n = 0 we have that hGP(O b)
for all b and the lemma tr1v1ally holds For the induction step, let n > 0 and let b ¢ be two
vectors such that b < ¢. Then b = b1d and ¢ = ¢1€, where b; < ¢1 and d <e. If b1 =c1 =0
then b = 0d. ,€ = 0€ and the induction step holds by

hap(n+1,00) = 1+ hap(n,d) > 1+ hgp(n, &) = hap(n +1,08),

where the inequality follows from the induction hypothesis. The case by = ¢; = 1 is similar and
omitted. So we are left with the case b = 0d,c = 1€ with d < €. In this case we have

hap(n+1,0d) = 1+ hgp(n,d)
> 1+ max{hgp([5],0dd(d)), hagp(|5], even(d))}
> 1+ max{hgp([5],0dd(€)), hap(| 5], even(e))}
- hG’P(n + 17 15)7 P
where the first inequality folloxvs from Lemma and the latter inequality follows from the
induction hypothesis on odd(d),odd(¢€) and on even(d), even(¢). O

Note: A similar but slightly more involved argument shows that Lemma [£.1] holds also for
the function hwy (-,).

Theorem 4.3. Letn € N\ {1}. Let e = ln” Let f<(n—1)(1—¢) and let F C [n—1] of
size |[F|=f. Let p=1— L Let ¢ > 1 be a constant.

The probability that the mndomzzed version of the GP algorithm has time complexity T <
55z ([log(n—1)] +1) is at least 1 — 5=
in F fail.

(‘ (652)2 ([log(n —1)] — 1)) , even if all processors

14

As we mentioned after Theorem the probability bound is 1 — o(1) for ¢ satisfying

2(21;()2) > 1. The proof of Theorem ghis via a reduction to the random failure model analyzed in
Section[3.1] It makes use of several Chernoff bounds and the monotonicity proven in Lemma[4.1]
We basically show that the runtime of the randomized protocol is not worse than that of the
basic deterministic GP algorithm under the presence of independent random failures. In the
latter, we chose the failure probability to be slightly larger than the “fair” ratio f/(n — 1), so
that, with probability at least 1 — n~2, more than f nodes are crashed. Combining this with

the resulting runtime bound from Theorem proves Theorem

Proof of Theorem [{.3. It is easy to verify that the randomized GP algorithm with f adversarial
failures has the same performance as the original GP algorithm when a random subset of node
failures, R C [n — 1] with R = f, is selected uniformly. We analyze the latter.

Let p' :=p—e and T := ([log(n — 1)] +1). Let b € {0,1}"! with |b|o = f be chosen
uniformly at random. We need to show that

. n3 c—1)2
Plhp(n,) > 71 < o (<5 (logtn - 11 - 1)

Let ¢ € {0,1}"~! be such that Pr[¢; = 1] = p’ independently for all i € [n — 1]. That is, the
probability that ¢; =0 is % + ¢, for every i € [n — 1]. We show

Prliclo > f] > 1—n"2, (5)

which can be easily verified by Chernoff’s bound: The expected value of |¢|g is f + e(n — 1).
By Chernoff’s bound, cf. Theorem equation , we have

Pr|clo < f] = Pr|¢lo < E[|€]o] — (n — 1)] < exp (—2(e(n —1))*/(n — 1))
= exp (—2¢%(n — 1)) = exp(—2Inn) = n"2.

Next we argue that
Pr{hgp(n,5) > T] < Prlhap(n,@) > T | |0 > f]. (6)

To verify @, assume |Clg > f. Sample k := |¢|p — f indices i1,...,i; from the 0-positions
{i € [n—1] | ¢&; = 0} of & uniformly at random. Create d from & by replacing the zeros in
positions 4y, ..., ix by ones. Then d is uniform in the set {b € {0,1}"! | \b|0 = f}, as is
b. Inequality follows from the latter and the monotonicity of hgp(n, b) in b, as stated in
Lemma 11

Using this inequality we bound

Prlhgp(n,b) > T] - Pr(|élo > f] < Prlhgp(n,@) > T||Elo > f]- Pl > f]
< Prlhgp(n,c¢) > T [|clo = f]- Pr[|clo = f]
+ Prlhgp(n,é) > T | |Clo < f] - Pr[|¢]o < f]
= Pr[hgp(n,c) > T].

The latter quantity can be bounded by Theorem It shows that the time complexity of the
GP algorithm with success rate p’ satisfies

Prihgp(n,¢) > T] < nexp (—(C_2cl)(ﬂog(n —-1)] - 1)) .

Together with inequality , this concludes the proof. O

15

5 Reducing the Message Size

Building on the results from the previous sections, we now describe an alternative version of the
GP algorithm that has a message overhead of only O(logn) bits per rumor transfer, but that is
still robust against adversarial failures. This is achieved at the price of adding a preprocessing
phase and extra storage space to each of the processors.

More precisely, we show that for t € O(nh(n)/logn), h € w(1) being an arbitrary function
tending to infinity, there are ¢ permutations such that, no matter which constant fraction of
the processors fail, the probability that a permutation chosen uniformly at random out of the
t yields a runtime that is greater than clogn is o(1) (both the constant ¢ and the o(1) failure
probability will be made precise below). The algorithm is based on storing these ¢ permutations
at each of the processors.

Let {7!,..., 7'} C S,,_1 be the stored permutations. Upon receiving a rumor, processor 0
chooses at random an index r € [t]. The algorithm now is the following minor modification of the
original GP algorithm: At each round, a processor i which holds a nonempty list (j1,...,jk)
sends a communication request to processor 7" (j1), and deletes j; from its list. If #"(j1) is
non-faulty, then i sends it the rumor appended with (a) the index r, (b) the value js, (c) the
length Lkglj of the list to be informed by processor 7"(j1), and (d) the exponent m of the
arithmetic progression even(ja,...,jx). Processor n"(j1) starts the next round with the list
even(jo, ..., jx), and processor i starts it with the list odd(jo,.. ., jk).

To pass information (b)—(d), 3([logn| + 1) bits suffice. To pass information (a), [logt¢] + 1
bits are needed. Thus, for t € O(n?) for a constant d, the overall number of bits that need to
be appended to the rumor is O(logn).

As mentioned above, the main goal of this section is to show (Theorem that for t €
w(n/logn) and suitably chosen permutations 7!, ..., 7! this protocol, with high probability, is
robust against adversarial failures.

Definition 5.1. We call the GP(r!, ... 7) algorithm described above (f,r,T)-safe if, for each
possible failure pattern F' C [n — 1] with |F| = f, it holds that with probability at least r the
runtime of the protocol GP(n', ... wt) with failure pattern F is at most TE|

Interestingly, for any constant d < 1 and for t € w(n/logn), t randomly chosen permutations
ml,... @t are (dn,1 — o(1),O(log n))-safe, with high probability.

Theorem 5.2. Let t € w(n/logn). Let ' ... 7 be taken from S,_1 independently and
uniformly at random. Let ¢ := \/lnn/(n—1), f<(n—1)(1—¢), andp:=1— %

There are ¢ = c¢(n) <64 o(1) and 6 = 6(n) with lim,_,~ 6(n) = 0, such that the probability
that GP(7Y, ..., 7t) is (f,1 — 8, - ([log(n — 1)] + 1))-safe is 1 — o(n™1).

) p_a
The proof of Theorem is based on Theorem By that theorem we know that, for
a fixed failure set F' and a random permutation 7, the probability that the randomized GP
algorithm along permutation 7 and failure set F' exceeds the desired runtime 7' is less than
n~¢ Based on this, we show that the fraction of w(n/logn) randomly chosen permutations
that exceed runtime T is less than §, with probability exponentially small in n. A union bound
over all possible failure patterns F' concludes the proof.

Proof of Theorem[5.3 By the assumption on ¢ we have a function § = §(n) satisfying 6 - ¢ >
2n/log(n) and lim,, o, 6(n) = 0. Select such § satisfying also §(n) > e/n .

5The probability statement in this definition is with respect to the random choice of the permutation index
i€ t].

16

We now define ¢ = ¢(n) > 1. Fix—for the moment—some failure set F' C [n — 1] of
size |F| = f. For given ©!... 7!, let T® be the time complexity of the GP algorithm along
permutation 7* if all processors in F fail. Since the index i is chosen uniformly, the probability
that the runtime of the GP algorithm with failure set F' exceeds

T := - ([log(n — 1)1 + 1)

is the fraction of indices i € [t] with T > T. By Theorem we know that, for a random
permutation o of [n—1], the probability that the runtime of the GP algorithm along permutation
o and failure set F' exceeds T is at most

n

e (—“_”2<nog<n ~1)]- 1)) — - exp (—

1 2c

(c—1)?
2c

q:=

logn(1+ 0(1))) .

n
We select ¢ = ¢(n) such that ¢ < n~2. Using the fact that logn = In(n)/In(2) ~ 1.441n(n), it
can be easily verified that ¢ can be chosen such that ¢ < 6 + o(1) as claimed.

We now show that for this value of ¢, the probability that the fraction of indices ¢ with
T > T is larger than 6, is exponentially small. To obtain the statement of the theorem, we will
then do a union bound over all possible choices of F'.

The probability that for the fixed F' and randomly chosen permutations o

to of them yield a runtime exceeding T is at most
etq J
(“1). @
where the right inequality is by Stirling approximation for j!.

We now set to := [dt], which, by definition of ¢ is at least 2n/log(n). By the definition of §
and ¢, the sum above is dominated by the sum of the geometric progression (a®, a®o*!, ... a') for
a > eqt/ty =~ eqd. Since § > e/n, the value of a can be chosen to be less than 1/n, for sufficiently
large n. Thus, the first element in this progression, a', is smaller than n~—27/108(n) —= 9-2n
Hence, the sum in (7)) is smaller than 2 - 272",

We now do a union bound over all possible choices of F'. There are at most (’}) < 2™ different

choices. Therefore, the probability that for ¢t randomly chosen permutations there exits a choice
of F such that the corresponding runtime is larger than T, is smaller than 27.2-272" = 2.27". [

L ..., ot at least

> <;>qj(1 7<) ;]!qj <y

Jj=to Jj=to Jj=to

Note that the definition of § in the above proof implies that if t(n) > 2n?/logn then § in
Theorem can be set to d(n) = e/n.
Remark: The preprocessing phase, and the extra storage space, needed to generate and store
the random permutations, can be eliminated if there is an efficient construction of a set S of
O(n¥) permutations (for some small k) which, for any p < 1, and for any choice of pn failures,
the runtime of GP on a random permutation from S is w.h.p. O(logn/p). This is particularly
appealing in environments where processors may be added or removed from the networks. The
existence of such a construction remains an interesting open problem.

6 Conclusions and Future Work

We have studied fault-tolerant rumor spreading algorithms in the initial failures model, where,
for arbitrary p € (0, 1), an arbitrary set of pn processors may fail. The algorithms are based on
introducing randomization to the elegant whispering algorithm of [GP96]. They have minimal

17

message complexity and asymptotically optimal time complexity, do not require synchronization
or activation of uninformed processors, do not need to assume an a priori bound on the number
of faulty processors, and do not need an opening phase.

We proved that the time complexity of the GP algorithm in the presence of random ini-
tial failures is asymptotically optimal, i.e., O(logn). The analysis is based on a new random
wakeup model and a novel coupling technique, which could be of independent interest. To deal
with adversarial failures, we have proposed a randomized version of the GP algorithm. While
the randomized GP algorithm achieves best possible message complexity and asymptotically
optimal time complexity, it has an overhead of a total number of O(nlog2 n) bits that need to
be communicated. We have shown that, using a preprocessing step for storing O(nh(n)/logn)
random permutations at the processors (h € w(1) being an arbitrary function tending to infin-
ity), we can decrease this overhead to O(nlogn) bits. In this protocol, the maximum number
of bits that need to be appended to any message is in the order of logn. The preprocessing
phase of this protocol could be eliminated if a set S of a polynomial number of permutations
was constructed by an efficient deterministic algorithm such that for any p < 1 and for any set
F of (1 — p)n faulty processors, with probability 1 — o(1), the runtime of the GP protocol on a
random permutation from S is O(log(n)).

Acknowledgments

Carola Doerr is supported by a Feodor Lynen postdoctoral research fellowship of the Alexander
von Humboldt Foundation and by the Agence Nationale de la Recherche under the project
ANR-09-JCJC-0067-01.

Shlomo Moran is supported by the Bernard Elkin Chair in Computer Science.

References

[AD11] Anne Auger and Benjamin Doerr, Theory of randomized search heuristics, World
Scientific, 2011.

[Bil95] Patrick Billingsley, Probability and measure, Wiley Series in Probability and Math-
ematical Statistics, John Wiley & Sons, Inc., New York, 1995.

[CHHKM12] Keren Censor-Hillel, Bernhard Haeupler, Jonathan A. Kelner, and Petar May-
mounkov, Global computation in a poorly connected world: fast rumor spreading

with no dependence on conductance, Proc. of the ACM Symposium on Theory of
Computing (STOC), ACM, 2012, pp. 961-970.

[DF11a] Benjamin Doerr and Mahmoud Fouz, Asymptotically optimal rumor spreading,
Proc. of the International Colloquium on Automata, Languages, and Program-
ming (ICALP), Springer, 2011, pp. 502-513.

[DF11Db] Benjamin Doerr and Mahmoud Fouz, Quasi-random rumor spreading: Reducing
randomness can be costly, Information Processing Letters 111 (2011), no. 5, 227—
230.

[DGH'88] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry, Epidemic
algorithms for replicated database maintenance, Operating Systems Review 22
(1988), no. 1, 8-32.

18

[DHL09)

[DP00]

[DPOY]

[ES09]

[FG85]

[GPY6]

[KSSVO0]

[LPS88]

[MASO06]

[Pit87]

[RS98]

[TKM89]

[Upf94]

[YaoT77]

Benjamin Doerr, Anna Huber, and Ariel Levavi, Strong robustness of randomized
rumor spreading protocols, Proc. of the International Symposium on Algorithms
and Computation (ISAAC), Springer, 2009, pp. 812-821.

Krzysztof Diks and Andrzej Pelc, Optimal adaptive broadcasting with a bounded
fraction of faulty nodes, Algorithmica 28 (2000), no. 1, 37-50.

Devdatt P. Dubhashi and Alessandro Panconesi, Concentration of measure for the
analysis of randomised algorithms, Cambridge University Press, 2009.

Robert Elsédsser and Thomas Sauerwald, On the runtime and robustness of ran-
domized broadcasting, Theoretical Computer Science 410 (2009), no. 36, 3414—
3427.

Alan M. Frieze and Geoffrey R. Grimmett, The shortest-path problem for graphs
with random arc-lengths, Discrete Applied Mathematics 10 (1985), 57-77.

Leszek Gasieniec and Andrzej Pelc, Adaptive broadcasting with faulty nodes,
Parallel Computing 22 (1996), no. 6, 903-912, preliminary version in
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.3838.

Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vocking,
Randomized rumor spreading, Proc. of the IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE, 2000, pp. 565-574.

A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8
(1988), no. 3, 261-277 (English).

Damon Mosk-Aoyama and Devavrat Shah, Computing separable functions via gos-
sip, Proc. of the ACM-SIGOPT Principles of Distributed Computing (PODC),
ACM, 2006, pp. 113-122.

Boris Pittel, On spreading a rumor, SIAM Journal on Applied Mathematics 47
(1987), no. 1, 213-223.

Martin Raab and Angelika Steger, “Balls into bins” - a simple and tight analy-
sis, Proc. of the International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM), Springer, 1998, pp. 159-170.

Gadi Taubenfeld, Shmuel Katz, and Shlomo Moran, Initial failures in distributed
computations, International Journal of Parallel Programming 18 (1989), no. 4,
255-276.

E. Upfal, Tolerating a linear number of faults in networks of bounded degree,
Information and Computation 115 (1994), no. 2, 312 — 320.

Andrew Chi-Chih Yao, Probabilistic computations: Toward a unified measure of
complexity (extended abstract), Proc. of the IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE, 1977, pp. 222-227.

19

	1 Introduction
	1.1 Previous Results
	1.1.1 Whispering Protocols
	1.1.2 Gossip-based Protocols

	1.2 Our Results

	2 Preliminaries
	2.1 Rumor Spreading Protocols
	2.2 The Algorithm of Gasieniec and Pelc
	2.3 Reminder: Chernoff's Bounds

	3 Random Failure Analysis of the GP Algorithm via a New Random Wakeup Model
	3.1 The Random Wakeup Model
	3.2 The Time Complexity of the Random Wakeup Model
	3.3 Coupling the GP and WU Models
	3.3.1 Failure Patterns and Execution Trees
	3.3.2 Coupling the Models

	4 Adversarial Failures in the Randomized GP-Protocol
	4.1 The Bit Complexity of the Randomized GP Algorithm
	4.2 The Time Complexity of the Randomized GP Algorithm

	5 Reducing the Message Size
	6 Conclusions and Future Work

