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Abstract
The aim of this paper is to use the existing relation between polarized
electromagnetic Gowdy spacetimes and vacuum Gowdy spacetimes to find
explicit solutions for electromagnetic spikes by a procedure which has been
developed by one of the authors for gravitational spikes. We present new
inhomogeneous solutions which we call the EME and MEM electromagnetic
spike solutions.

PACS numbers: 04.20.−q, 04.20.Jb, 04.40.Nr, 98.80.Jk

(Some figures may appear in colour only in the online journal)

1. Introduction

According to Belinskii, Khalatnikov and Lifshitz (BKL) [1–3], a generic spacelike singularity
is characterized by asymptotic locality. Asymptotically towards the initial singularity each
spatial point evolves independently from its neighbors in an oscillatory manner that is
represented by a sequence of Bianchi type I and II vacuum models. In [4] Berger and Moncrief
studied T 3-Gowdy spacetimes numerically and observed the development of large spatial
derivatives near the singularity, which they called ‘spiky features’. These structures where
found to occur in the neighborhood of isolated spatial surfaces, cf [5]. Further numerical
investigations (see [6] for an overview) seemed to indicate that the BKL conjecture is correct
generically, but certain difficulties arose in simulating these spikes. An important step was
made in [7] where a solution generating technique and Fuchsian methods developed in [8, 9]
where used to produce asymptotic expansion for spikes, which where classified in ‘true’ and
‘false’ spikes, where the latter are only a rotation artifact. Based on these transformations, in
[10] an explicit spike solution was found in terms of elementary functions. The explicit spike
solution suggests a new way to simulate spikes numerically, and in [11] it was confirmed
that the explicit spike solution indeed describes the spiky structures, and does so remarkably
accurately. The numerical results provide very strong evidence that apart from local BKL
behavior, there also exist formation of spatial structures at and in the neighborhood of certain
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spatial surfaces, thus breaking asymptotic locality. Moreover the complete description of a
generic spacelike singularity should involve spike oscillations [12], which are described by
sequences of spike solutions and rotated Kasner solutions.

We are interested in investigating the nature of BKL behavior at spacetime singularities
in the presence of electromagnetic fields. The aim of this paper is to use the known relation
between polarized/diagonal electromagnetic Gowdy spacetimes and Gowdy spacetimes, as
given in [13], to find spike solutions for the electromagnetic case. According to the BKL-
picture a generic spacelike singularity is vacuum dominated. This project thus will help to
clarify whether the introduction of a Maxwell field changes the picture or not.

The sign conventions of [14] are used. In particular, we use metric signature − + ++
and geometrized units. We use the sign convention ε0123 > 0 for the Levi-Civita tensor, but
because we will switch to using a time variable that increases towards the past, the component
ε0123 with respect to that coordinate system will be negative.

2. Basic equations and metric

If (P̄, Q̄, λ̄) is a solution of the vacuum Einstein equations with Gowdy symmetry (or
orthogonally transitive G2 isometry), i.e. with line element

ds2 = −e(λ̄−3τ )/2(dτ 2 + e2τ dx2) + e−τ [eP̄(dy + Q̄ dz)2 + eP̄ dz2], (1)

then (P, χ, λ) with (9)–(10) of [13] [with the following correspondence t = e−τ and
(θ, x, y) = (x, y, z)]:

P = 2P̄ − τ, λ = 4λ̄ + 4P̄ − τ, χ = Q̄, (2)

will be a solution of the Einstein–Maxwell equations with polarized Gowdy symmetry (or
diagonal G2 isometry) with line element:

ds2 = e(λ−3τ )/2(dτ 2 + e2τ dx2) + e−τ (eP dy2 + e−P) dz2, (3)

and a Maxwell field described by the vector potential with only one non-zero component,
namely A3 = χ(x, τ ). We will assume from now on that we are in the second case, i.e.
our metric is described via (3). The Einstein–Maxwell equations with P and χ are given by
(19)–(24) of [15]:

Pττ − e−2τ Pxx = 2
(
χ2

τ eP+τ − χ2
x eP−τ

)
χττ − e−2τ χxx = e−2τ Pxχx − (Pτ + 1)χτ

λτ = −P2
τ − e−2τ P2

x − 4
(
χ2

τ eP+τ + χ2
x eP−τ

)
λx = −2Pτ Px − 8 eP+τ χτχx.

We will use the non-vanishing β-normalized variables [16],

β = 1
2 e− λ−3τ

4 . (4)

We take this opportunity to clarify the sign confusion in equation (9) of [10]. β and other
kinematic variables are defined with respect to the future-pointing congruence. Therefore a
positive β describes expansion towards the future (and contraction towards the past). We also
take this opportunity to correct the error in the β expression in equation (2) of [11].

These β-normalized variables refer to the β-normalized commutation functions associated
with an orthonormal frame:

�αβ = σαβ

β
, Nαβ = nαβ

β
.
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The electric and magnetic fields are similarly normalized:

Eα = Eα

β
, Bα = Bβ

β
.

The 3-by-3 �αβ and Nαβ matrices in our case are

�αβ =
⎛
⎝−2�+ 0 0

0 �+ + √
3�− 0

0 0 �+ − √
3�−

⎞
⎠ (5)

Nαβ =
⎛
⎝0 0 0

0 0
√

3N×
0

√
3N× 0

⎞
⎠ , (6)

while the non-zero electric and magnetic components are

E = E3

β
, B = B2

β
.

The β-normalized variables Y = (�+, �−, N×, E,B) are related to the partial derivatives of
P, λ and χ as follows.

Y =
(

1

2
+ 1

6
λτ ,− Pτ√

3
,−e−τ Px√

3
, 2χτ e

1
2 (P+τ ),−2χx e

1
2 (P−τ )

)
. (7)

The evolution equations for the β-normalized variables can be derived from the above
Einstein–Maxwell equations and (7):

∂t�− = e−τ ∂x(N×) + 1

2
√

3
(B2 − E2),

∂tN× = e−τ ∂x�− − N×,

∂tE = −e−τ ∂xB + 1

2

√
3N×B + 1

2
(
√

3�− − 1)E,

∂tB = −e−τ ∂xE − 1

2

√
3N×E − 1

2
(
√

3�− + 1)B.

We do not use the evolution equation for �+, instead using the Gauss constraint to find �+:

�+ = 1
2

[
1 − �2

− − N2
× − 1

3 (E2 + B2)
]
.

3. Explicit solutions

We now apply the vacuum-to-electromagnetic transformation (2) to the explicit solutions in
section 4 of [10].

3.1. Homogeneous solutions

3.1.1. Reparameterized Kasner solution. Applying the transformation (2) to the Kasner seed
solution (17) of [10] yields

P = vτ + 2P0, χ = χ0, λ = −v2τ + 4(λ0 + P0), (8)

where v = 2w−1 and P0, χ0 and λ0 are arbitrary constants. The result is trivial—this solution is
just a re-parametrization of the Kasner solution. Nevertheless, we will use this parametrization
of the Kasner solution in figure 3 later.

The β-normalized variables YK have the same form as (18) of [10]:

YK =
(

1

2
− 1

6
v2,− v√

3
, 0, 0, 0

)
. (9)

3
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3.1.2. Electric Rosen solution. Applying (2) to the rotated Kasner solution (22) of [10] with
the simplifying choice P0 + ln χ0 = 0 yields

P = −τ − 2 ln sech wτ + 2 ln 2χ0 (10)

χ = − 1

2χ0
(1 + tanh wτ ) (11)

λ = −(4w2 + 1)τ − 4 ln sech wτ + 4(λ0 + ln 2χ0). (12)

In terms of the β-normalized variables,

YER =
(

1

3
+ 2

3
w(tanh wτ − w),

1√
3
(1 − 2w tanh wτ ), 0,−2w sech wτ, 0

)
. (13)

This describes an electric Bianchi I model. We refer to [17] for a presentation of this solution
in a broader context. Up to the arbitrary constant and choosing χ0 = 1, ξ = e−τ we have
exactly the same χ as described in [17] with a minus sign where now w = α0

2 and γ0 = λ0.
This solution was first found by Gerald Rosen [18] and we will refer to it as the electric Rosen
solution with subscript ER.

3.1.3. Magnetic Rosen solution. Applying (2) to the Taub solution (24)–(26) of [10] yields

P = τ + 2 ln sech wτ − 2 ln 2χ0 (14)

χ = 2χ0wx + χ1 (15)

λ = −(4w2 + 1)τ − 4 ln sech wτ + 4(λ1 − ln 2χ0). (16)

We assume now that χ1 = 0 for simplicity. In terms of the β-normalized variables,

YMR =
(

1

3
+ 2

3
w(tanh wτ − w),

1√
3
(2w tanh wτ − 1), 0, 0,−2w sech wτ

)
. (17)

We will refer to it as the magnetic Rosen solution and use the subscript MR. In particular we will
use in the following the variables (�−)MR = 1√

3
(2w tanh wτ − 1) and BMR = −2w sech wτ .

The solution (17) is sometimes called the pure magnetic or magnetovacuum solution since
later it has been generalized to include, e.g. a perfect fluid. It is not surprising that this solution
appears here instead of the Bianchi II vacuum solution since there is a natural correspondence
between heteroclinic chains consisting of Bianchi type II solutions in the vacuum case and
heteroclinic chains in the case with a magnetic field which include orbits corresponding to both
solutions of the vacuum Einstein equations of Bianchi type II and solutions of the Einstein–
Maxwell equations of Bianchi type I. For recent work on oscillatory singularities in Bianchi
models with magnetic fields we refer to [19].

3.2. Inhomogeneous solutions

We will now proceed to the derivation of the inhomogeneous solutions. It is convenient to
introduce the following definitions:

f = xw eτ sech wτ, s = 2 f

f 2 + 1
, c = f 2 − 1

f 2 + 1
, (18)

where it holds that c2 + s2 = 1.

3.2.1. EME electromagnetic spike solution. Applying (2) to the rotated Taub solution (28)–
(30) of [10]5 we obtain a new, inhomogeneous solution:

5 As pointed out on page 14 of [11], the third minus sign in equation (28) of [10] should be a plus sign, and the factor
4 in equation (34) of [10] should not be there.

4
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P = −3τ − 2 ln sech wτ + 2 ln( f 2 + 1) + 2 ln 2χ0 (19)

χ = − 1

2χ0

f 2

( f 2 + 1)xw
(20)

λ = −(4w2 + 9)τ − 12 ln sech wτ + 4 ln( f 2 + 1) + 4(λ1 + ln 2χ0). (21)

The spike occurs at x = 0, and the electric field is zero there. We will refer to the solution as
the EME spike solution, because (for |w| > 1 cases) worldlines along large x experience a
sequence of three Rosen transitions: electric-magnetic-electric. Its β-normalized variables are
given by

YEME =
[
−1

3
(1 + 2w2 − 2c +

√
3(c − 2)�̄−),

1√
3

+ c�̄−, s
BMR√

3
, s

√
3�̄−, cBMR

]
(22)

where we have denoted �̄− = (�−)MR − 1√
3
, and the subscripts MR and EME refer to the

magnetic Rosen and the EME spike solution.

3.2.2. MEM electromagnetic spike solution. Applying (2) to the spike solution (33)–(35) of
[10] yields

P = 3τ + 2 ln sech wτ − 2 ln( f 2 + 1) − 2 ln 2χ0 (23)

χ = −χ0w[e−2τ + 2(w tanh wτ − 1)x2] + χ2 (24)

λ = −(4w2 + 9)τ − 12 ln sech wτ + 4 ln( f 2 + 1) + 4(λ2 − ln 2χ0). (25)

We will refer to it as the MEM spike solution and use the subscript MEM. Its β-normalized
variables are given by

YMEM =
[
−1

3
(1 + 2w2 − 2c +

√
3(c − 2)�̄−),− 1√

3
− c�̄−,−s

BMR√
3

, cBMR, s
√

3�̄−

]
.

(26)

This completes the transformation of the explicit solutions in section 4 of [10]. These spike
solutions are new. The solutions above can also be generated by starting with the Kasner
solution (8) above and applying the transformations in the subsection 3.2.4 successively.

3.2.3. Properties of the spike. Both electromagnetic spike solutions have non-trivial electric
and magnetic fields, and the names ‘EME’ and ‘MEM’ indicate what Rosen transitions occur
at large x for |w| > 1. Note that the spatial dependence of the different variables lies, as in
the vacuum case, in c and s, which depends on x in a spiky way. The electromagnetic spike
solutions have the same radius as the vacuum spike solution. For more discussions on c and s,
and on the radius of the spike, see sections 4.5 and 4.6 of [10].

In the vacuum case there is a distinction between the false spike solution and true spike
solution, with the false spike solution being a rotated Taub solution. There is no such distinction
here because the frame rotation transformation is absent in polarized/diagonal case. Both the
EME and MEM spike solutions are two different spiky solutions.

3.2.4. Alternative derivation. The solution-generating transformations in polarized
electromagnetic Gowdy spacetimes are

5



Class. Quantum Grav. 30 (2013) 235020 E Nungesser and W C Lim

e−P̂/2 = e−P/2

χ2 + e−(P+τ )
, χ̂ = − χ

χ2 + e−(P+τ )
, (27)

and

P̂ = −P, χ̂τ = −eP−τ χx, χ̂x = −eP+τ χτ . (28)

These transformations correspond to transformations (6) and (7) in [10], but curiously the
role of solution-generating transformation has switched. Transformation (6) in [10] is merely
a frame rotation, but here transformation (27) is a solution-generating transformation. On
the other hand, transformation (7) in [10] is a solution-generating transformation, but here
transformation (28) is merely a 90-degree duality rotation for the electromagnetic field (see
e.g. [20] about duality rotation) followed by a switch of the coordinates y and z. Transformation
(28), like transformation (7) in [10], is also very simple when expressed in β-normalized
variables:

(�̂−, N̂×, Ê, B̂) = (−�−,−N×,B, E ). (29)

Thus here we do not have ‘false’ spikes, since both spikes represent real inhomogeneous
solutions, although quite similar.

Transformation (27) maps the Kasner solution (8) to the electric Rosen solution (10)–(11);
transformation (28) then maps it to the magnetic Rosen solution (14)–(15); (27) then maps it
to the EME spike solution (19)–(20); and (28) maps it to the MEM spike solution (23)–(24).
At each step, λ is obtained by quadrature.

4. Visualization

We have already seen that the vacuum transformations have a different interpretation in the
electromagnetic case. Now we proceed to visualize the dynamics of the different solutions
and we compare the dynamics of the solutions found here corresponding to polarized Gowdy
spacetimes with a electromagnetic field with the ones found in [10] corresponding to Gowdy
spacetimes. For this purpose we use Hubble-normalized variables [21, 22], denoted with a
superscript H. For the spatially homogeneous background dynamics, it is best to use the
Hubble-normalized variables which are related to the β-normalized ones via

(�+, �−, N×, E,B)H = 1

1 − �+
(�+, �−, N×, E,B), (30)

and satisfy

�H
+

2 + �H
−

2 + NH
×

2 + 1
3 (EH 2 + BH 2) = 1. (31)

The Hubble-normalized energy density � of the electromagnetic field is given by

� = 1
3 (EH 2 + BH 2), (32)

while the Hubble-normalized spatial curvature �k is given by

�k = NH
×

2. (33)

The dynamics of the electric and magnetic Rosen solutions can be described by their orbits
in the state space. When projected on the (�+, �−)H plane, these orbits form straight lines
emanating from one corner of a triangle superscribing the Kasner circle (see figure 1). The two
transition sets combine to describe the dynamics during an electromagnetic equivalence of a
Kasner era, which consists of long Kasner epochs (described by the Kasner equilibrium points),
punctuated by brief periods of transitions. Either the electric or the magnetic component
becomes significant during these periods of transitions. Compare with figure 5 of [10].

6
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Figure 1. The electric and magnetic Rosen orbits projected on the (�+, �−)H plane.

The coincidence of the projected Rosen orbits with the projected Taub orbits compels one
to compare the Rosen solutions with the Taub solution. Consider the Taub solution (24)–(26)
of [10] with a particular value for w (call it wT) and the corresponding magnetic Rosen solution
whose orbit starts and ends at the same Kasner points as this Taub orbit. Then one finds that
the w-parameter for the magnetic Rosen solution takes the value wMR = wT/2. Consequently
the rate of change for the magnetic Rosen transition from one Kasner point to the next is only
one half of that for the Taub transition.

The implication of this is that in more general models where both modes are present,
gravitationally-driven Taub transitions would dominate electromagnetically-driven Rosen
transitions towards the singularity, and that the Hubble-normalized energy density of the
electromagnetic field would tend to zero towards the singularity, with the caveat that this
occurs almost everywhere, except possibly at some ‘spiky’ worldlines where the Taub mode
has a local zero. Along these spiky worldlines, whether (vacuum) spike transitions would
dominate Rosen transitions is unknown. In figure 2 we visualize the orbits of the MEM spike
solution (23)–(25) along various worldlines x = const, projected on the (�+, �−)H plane.
The projected orbits of the EME spike solution (19)–(21) differ only in the sign of �−. Along
worldlines far away from the spike worldline, the orbits approximate the electric and magnetic
Rosen orbits. Along the spike worldline, the projected orbit is a straight line. For the case
|w| � 1, all these orbits end at the same Kasner points. For the case 0 < |w| < 1, the orbit
along the spike worldline ends at a different Kasner point from all others. Compare with
figure 6 of [10]. In figure 3 we visualize two families of the solutions (one with w = 0.75 and
the other with w = 1.25). Note that the Kasner solution plotted here uses the parametrization
in (8). Compare with figure 9 of [10].

We now compare the orbits of MEM spike solution with the orbits of vacuum spike
solution. Call the corresponding parameters wMEM and wS. We set wS = 2wMEM + 1 so that
both solutions start at the same Kasner point. But the solutions will not end at the same Kasner
points. See figure 4.

5. Discussion and outlook

In this paper we have presented new solutions to the Einstein–Maxwell solutions with polarized
Gowdy symmetry which generalize the known magnetic and electric Rosen solutions which
are spatially homogeneous to the inhomogeneous case. These solutions represent spikes
in the electromagnetic field as well as the gravitational field, and are building blocks of
oscillatory behavior. In contrast to the vacuum case there are no false and true electromagnetic

7
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w=0.2 w=0.5 w=1

w=1.5 w=2 w=3

Figure 2. Orbits of the MEM spike solution projected on the (�+, �−)H plane. Orbits are colored
red along the spike worldline x = 0, blue along x = 1000, and magenta along small values of x.
w = 0.2, 0.5, 1, 1.5, 2, 3 respectively.

w=0.75 w=1.25

Figure 3. Two families of orbits with w = 0.75 and 1.25. The Kasner seed is indicated by a black *,
the electric Rosen orbit in dashed light blue, the magnetic Rosen orbit in dark blue, orbits of the
EME spike solution in dashed magenta, and orbits of the MEM spike solution in red.

spikes, however the solutions are now linked via a duality rotation. From the analysis one
can see that it is the gravitational solutions which dominate the electromagnetic solutions.
Therefore we conjecture that the (vacuum) gravitational spike solution plays a larger role than
the electromagnetic spike solutions in the oscillatory regime. The analysis represents also
additional support to the analysis carried out in [23], where an inhomogeneous generalization
of Bianchi VI0 with a pure magnetic field was considered. In fact, the latter solution can be

8
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w=1.5 w=4 together

Figure 4. Comparison of orbits for the MEM spike solution with wMEM = 1.5 and orbits for the
vacuum spike solution with wS = 4. Both sets of orbits start at the same Kasner point but end at
two different Kasner points.

seen as coming from an electromagnetic field which does not come from a vector potential,
cf [24]. In [24] an inhomogeneous generalization of Bianchi VII0 was also presented. Both
these inhomogeneous generalizations are called of local or twisted Gowdy symmetry. It is
of interest to investigate further these cases as a pre-step to the analysis of the Einstein–
Maxwell system with full Gowdy symmetry which is considerably more complicated. It
remains unclear whether pure magnetic spike solutions exist. In [25] numerical and analytical
evidence was presented that (gravitational) spikes can generate matter perturbations and it was
argued that this phenomenon might explain the formation of structure in the early Universe.
Electromagnetic spikes should have a similar effect on matter as well. It remains to be seen
how gravitational spikes interact with electromagnetic spikes, and whether such interactions
amplify or suppress the electromagnetic field.
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Appendix

The equations in this section are taken from from [15] where −λ instead of λ was used. Note
also that we have put ω = 0 and we have used a different sign convention for εαβγ δ .

The basic quantity in electromagnetism is the electromagnetic field tensor Fαβ which is
antisymmetric. The Maxwell equations in absence of charged matter are

∇αFαβ = 0

∇αFβγ + ∇γ Fαβ + ∇βFγα = 0.

The second Maxwell equation can be solved by introducing a four potential such that

Fμν = ∇μAν − ∇νAμ. (A.1)

9
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In the Lorentz gauge, where by definition

∇αAα = 0

holds, the Maxwell equations in curved space time can be written as:

∇α∇αAβ − Rγ
βAγ = 0. (A.2)

The energy-momentum tensor for an electromagnetic field is

Tαβ = 1

4π

(
Fαγ Fβ

γ − 1

4
gαβFδεFδε

)
, (A.3)

which is trace-free. The dual electromagnetic field tensor is
∗Fγ δ = 1

2εαβγ δFαβ, (A.4)

where

εαβγ δ = (− det g)−
1
2 ηαβγ δ,

where det g is the determinant of the matrix gαβ . Let nα be a unit future-pointing vector
orthogonal to a spacelike hypersurface. Then we can define the electric and the magnetic fields
as follows:

Eα = Fαβnβ, (A.5)

Bα = ∗Fαβnβ. (A.6)

The symmetry assumptions imply that vector potential has only the following
components:

A3 = χ(τ, x).

A2 is periodic of period 2π with respect to x. Using (A.1) one can compute that the
electromagnetic field tensor has the following non-trivial components:

F03 = χτ ,

F13 = χx.

The dual electromagnetic field tensor has according to (A.4) the following non-trivial
components:

∗F02 = −χx e
3τ−λ

2 ,

∗F12 = χτ e
3τ−λ

2 .

Choosing

nα = (
√−g00, 0, 0, 0)

as the unit future-pointing vector we compute the non-vanishing components of the electric
and the magnetic field with (A.5) and (A.6):

E3 = χτ e
−λ+7τ+4P

4 ,

B2 = χx e
−λ+3τ

4 .

E and B are β-normalized orthonormal frame components of the electric and magnetic fields.

E = e3
3E3

β
= 2χτ e

1
2 (P+τ )

B = e2
2B2

β
= −2χx e

1
2 (P−τ ),

where e3
3 = e(−P−τ )/2 and e2

2 = e(P−τ )/2 are the frame coefficients.

10
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