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We present three-dimensional simulations of the dynamical bar-mode instability in magnetized and

differentially rotating stars in full general relativity. Our focus is on the effects that magnetic fields have on

the dynamics and the onset of the instability. In particular, we perform ideal-magnetohydrodynamics

simulations of neutron stars that are known to be either stable or unstable against the purely hydro-

dynamical instability, but to which a poloidal magnetic field in the range of 1014–1016 G is superimposed

initially. As expected, the differential rotation is responsible for the shearing of the poloidal field and the

consequent linear growth in time of the toroidal magnetic field. The latter rapidly exceeds in strength the

original poloidal one, leading to a magnetic-field amplification in the stars. Weak initial magnetic fields,

i.e., & 1015 G, have negligible effects on the development of the dynamical bar-mode instability, simply

braking the stellar configuration via magnetic-field shearing. On the other hand, strong magnetic fields,

i.e.,* 1016 G, can suppress the instability completely, with the precise threshold being dependent also on

the amount of rotation. As a result, it is unlikely that very highly magnetized neutron stars can be

considered as sources of gravitational waves via the dynamical bar-mode instability.

DOI: 10.1103/PhysRevD.88.104028 PACS numbers: 04.25.D�, 04.40.Dg, 95.30.Lz, 97.60.Jd

I. INTRODUCTION

Main-sequence stars with masses greater than about
8 M� follow two evolutionary paths: either they form a
degenerate core of O=Ne=Mg, or a degenerate Fe core,
which, after undergoing a type II supernova core collapse,
forms a protoneutron star [1,2]. Neutron stars (NSs) are
also expected to form through the accretion-induced col-
lapse of a white dwarf [3,4]. At birth, NSs are rapidly and
differentially rotating, which makes them subject to vari-
ous types of instabilities. Among these, the dynamical bar-
mode instability and the shear instability are particularly
interesting because of their potential role as sources of
gravitational waves (GWs).

Indeed, a newly born NS may develop a dynamical bar-
mode instability when the rotation parameter � :¼ T=jWj,
with T the rotational kinetic energy andW the gravitational
binding energy, exceeds a critical value �c (see, for in-
stance, [5,6] for some reviews). Under these conditions, the
rapidly rotating NS can become severely deformed, lead-
ing to a strong emission of GWs in the kHz range. Analytic
investigations of the conditions under which these dynami-
cal instabilities develop in self-gravitating rotating stars
can be found in [7,8], but these are inevitably restricted to
Newtonian gravity or to simple shell models. To improve
our understanding of these instabilities also in the non-
linear regimes, and to be able to extract useful physical
information from the potential GWemission, it is clear that
a general-relativistic numerical modeling is necessary.
This has been the focus of a number of recent works,
e.g., [9–12], which have provided important clues about
the threshold for the instability and its survival under

realistic conditions. As an example, for a polytropic rela-
tivistic star with polytropic index � ¼ 2, the calculations
reported in [10] revealed that the critical value is �c �
0:254, and that a simple dependence on the stellar
compactness can be used to track this threshold from the
Newtonian limit over to the fully relativistic one [11].
Furthermore, numerical simulations have also revealed
that the instability is in general short lived and that the
bar-deformation is suppressed over a time scale of a few
revolutions (this was first pointed out in Ref. [10] and later
confirmed in Ref. [13], where it was interpreted as due to a
Faraday resonance).
One aspect of the bar-mode instability that so far has not

received sufficient attention is about the occurrence of the
instability in magnetized stars. This is not an academic
question since NSs at birth are expected to be quite generi-
cally magnetized, with magnetic fields that have strengths
up to ’ 1012 G in ordinary NSs and reaching strengths in
excess of 1015 G in magnetars, if instabilities or dynamos
have taken place in the protoneutron star phase [14,15].
Magnetic fields of this strength can affect both the

structure and the evolution of NSs [16–19], and it is natural
to expect that they will influence also the development of
the instability when compared to the purely hydrodynam-
ical case. A first dynamical study in this direction has been
carried out recently in Ref. [20], where the development of
the dynamical bar-mode instability has been studied for
differentially rotating magnetized stars in Newtonian grav-
ity and in the ideal-magnetohydrodynamics (MHD) limit
(i.e., with a plasma having infinite conductivity). Not
surprisingly, this study found that magnetic fields do
have an effect on the development of the instability, but
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that this is the case only for very strong magnetic fields.
We here consider the same problem, but extend the analy-
sis to a fully general-relativistic framework, assessing the
impact that the results have on high-energy astrophysics
and GW astronomy.

Our investigation of the dynamics of highly magnetized
and rapidly rotating NSs is also part of a wider study of this
type of object to explain the phenomenology associated
with short gamma-ray bursts. These catastrophic phe-
nomena, in fact, are normally thought to be related to the
merger of a binary system of NSs [21–24], which could
then lead to the formation of a long-lived hypermassive NS
(HMNS) [25–28]. If highly magnetized, the HMNS could
then also lead to an intense electromagnetic emission
[29,30]. This scenario has recently been considered in
Refs. [31,32], where numerical simulations of an axisym-
metric differentially rotating HMNS were carried out. The
HMNS had initially a purely poloidal magnetic field,
which eventually led to a magnetically driven outflow
along the rotation axis.

A similar setup has also been considered in a number
of works, either in two-dimensional (2D) [33] or in three-
dimensional (3D) simulations [34], with the goal of deter-
mining whether or not the conditions typical of a HMNS can
lead to the development of the magnetorotational instability
(MRI) [35]. Although this type of simulation in 3D still
stretches the computational resources presently available,
the very high resolutions employed in Ref. [34], and the
careful analysis of the results, provided the first convincing
evidence that the MRI can develop from 3D configurations.
This has of course important consequences on much of
the phenomenology associated with HMNSs, as it shows
that very strong magnetic fields, up to equipartition, will be
produced in the HMNS if this survives long enough for the
MRI to develop.

In the simulations reported here we necessarily adopt
much coarser resolutions and hence we will not be able to
concentrate our attention on the development of the MRI.
Rather, we will here extend our previous work on the
dynamical bar-mode instability [10,11,36] also to the case
of magnetized stars, determining when and how magnetic
fields can limit the development of the dynamical bar-mode
instability. Our initial models correspond to stationary equi-
librium configurations of axisymmetric and rapidly rotating
relativistic stars. More precisely, our initial models are
described by a polytropic equation of state (EOS) with
adiabatic index � ¼ 2 and are members of a sequence
with a constant rest mass of M ’ 1:5 M� and a constant
amount of differential rotation.

Interpreting the results of our simulations can be rather
straightforward. Because we work in the ideal-MHD limit,
the magnetic field lines are ‘‘frozen’’ in the fluid and follow
its dynamics (see [37] for a recent extension of the code to
resistive regime). As a consequence, differential rotation
drives the initial purely poloidal magnetic field into

rotation, winding it up and generating a toroidal compo-
nent. At early times, the toroidal magnetic field grows
linearly with time, tapping the NS’s rotational energy. At
later times, the growth starts deviating from the linear
behavior and the magnetic tension produced by the very
large magnetic-field winding alters the angular velocity
profile of the star. Depending on the models adopted and
the initial magnetic field strength, the magnetic winding
could become the most efficient mechanism for redistrib-
uting angular momentum, with the MRI being the domi-
nant one when the Alfvén time scale becomes comparable
to the magnetic winding time scale.
Overall, we find that if the initial magnetic fields are

&1015 G, then they have a negligible effect on the occur-
rence of the dynamical bar-mode instability, which develops
in close analogy with the purely hydrodynamical case. On
the other hand, if the initial magnetic fields are *1016 G,
they can suppress the instability completely. Note that the
precise threshold marking the stability region depends not
only on the strength of the magnetic field, but also on the
amount of rotation. We trace this threshold by performing a
number of simulations of a number of sequences having the
same parameter � but different magnetizations. An impor-
tant consequence of our results is that because the instability
is suppressed in strongly magnetized NSs, these can no
longer be considered as potential sources of GWs, at least
via the dynamical bar-mode instability.
The organization of the paper is as follows. In Sec. II we

describe the numerical methods and the setup employed in
our simulations, as well as the full set of equations we
solve. In Sec. III we mention briefly the main properties of
the stellar models adopted as initial data, together with the
simplifications and assumptions we make. In Sec. IV we
examine in great detail the effects of the presence of an
initial poloidal magnetic field on differentially rotating
stars covering a wide range in the parameter space. We
further discuss the qualitative and quantitative features of
the evolution of models with the same total rest mass but
different rest-mass density and angular momentum profiles
that are known to be unstable to the purely hydrodynamic
bar-mode instability. Finally, we investigate whether mag-
netic fields affect the stellar evolution even when the bar-
mode instability does not develop. Our conclusions are
drawn in Sec. V and two appendixes discuss the influence
of symmetries on the development of the instability and the
convergence of our results. Unless stated differently, we
adopt geometrized units in which c ¼ 1, G ¼ 1, M� ¼ 1.

II. MATHEMATICAL AND NUMERICAL SETUP

The simulations have been carried out using the general-
relativistic ideal-MHD (GRMHD) code WhiskyMHD
[24,38,39]. The code provides a 3D numerical solution of
the full set of the GRMHD equations in flux-conservative
form on a dynamical background in Cartesian coordinates.
It is based on the same high-resolution shock-capturing
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(HRSC) techniques on domains with adaptive mesh
refinements (AMRs) [40,41] as discussed in [42] within
the Cactus framework [43,44]. The reconstruction method
adopted is the one discussed in the piecewise parabolic
method [45], while the Harten–Lax–van Leer–Einfeldt
(HLLE) approximate Riemann solver [46] has been em-
ployed in order to compute the fluxes. The divergence of
the magnetic field is enforced to stay within machine preci-
sion by employing the flux-interpolated central difference
approach as implemented in [39], but with the difference
that we adopt as evolution variable the vector potential
instead of the magnetic field. This method ensures the
divergence-free character of the magnetic field since the
magnetic field is computed as the curl of the evolved vector
potential using the same finite-differencing operators as the
ones for computing the divergence of the magnetic field.

Because of the gauge invariance of Maxwell equations, a
choice needs to be made and we have opted for the simplest
one, namely, the algebraic Maxwell gauge. This choice can
introduce some spurious oscillations close to the AMR
boundaries in highly dynamical simulations, but this has
not been the case for the simulations reported here. On the
other hand, it has allowed us to keep the divergence of the
magnetic field essentially nearly at machine precision.
A more advanced prescription has been also introduced
recently in Ref. [47]; this approach requires a certain
amount of tuning for optimal performance and will be
considered in future works. Additional information on
the code can also be found in Refs. [38,39].

Furthermore, to remove spurious postshock oscillations
in the magnetic field we add a fifth-order Kreiss-Oliger
type of dissipation [48] to the vector potential evolution
equation with a dissipation parameter of 0.1. Finally, the
evolution of the gravitational fields is obtained through the
CCATIE code, which provides the solution of the conformal

traceless formulation of the Einstein equations [49]. The
time integration of the evolution equations is achieved
through a third-order accurate Runge-Kutta scheme.
Essentially all of the simulations presented in this paper
use a 3DCartesian grid with four refinement levels andwith
outer boundaries located at a distance �150 km from the
center of the grid.1 The finest resolution is �x ’ 0:550 km
(between 40 and 60 points across the stellar radius, depend-
ing on the model) and the coarsest extends up to about
�150 km, namely more than five times the stellar radius.
Unless stated differently, all of the simulations discussed
hereafter have been performed imposing a bitant symmetry,
i.e., a reflection symmetry across the z ¼ 0 plane.

For convenience we report here the full set of the evo-
lution equations we solve numerically which consists of
the coupled systems of Einstein and MHD equations, i.e.,

R�� � 1

2
g��R ¼ 8�T��; (2.1)

r�T
�� ¼ 0; (2.2)

r�ð�u�Þ ¼ 0; (2.3)

r�
�F

�� ¼ 0; (2.4)

r�F
�� ¼ 4�J �; (2.5)

where R��, g�� and R are the Ricci tensor, the metric

tensor and the Ricci scalar, respectively. On the electro-
magnetic side, F�� is the Maxwell tensor, dual of the

Faraday tensor �F��, and J � is the current four-vector;

and on the matter side � is the rest-mass density, u� is the
four-velocity of the fluid satisfying the normalization con-
dition u�u

� ¼ �1. The total energy-momentum tensor

T�� is the linear combination of the contributions coming
from a perfect fluid, i.e., T��

fl , and from the electromagnetic

fields, i.e., T��
em

T�� ¼ T��
em þ T��

fl ;

where

T
��
fluid

:¼ �hu�u� þ pg��; (2.6)

T��
em :¼ F��F�

� � 1

4
g��F��F

��

¼
�
u�u� þ 1

2
g��

�
b2 � b�b�: (2.7)

In the expressions above we recall that h ¼ 1þ �þ p=�
is the specific enthalpy, � the specific internal energy.
Hence, the energy density in the rest frame of the fluid is
just e ¼ �ð1þ �Þ. At the same time, the four-vector b�

represents the magnetic field as measured in the comoving
frame, so that the Maxwell and Faraday tensors are
expressed as (see [38,39] for details)

F�� ¼ �����u�b� ¼n�E��n�E�þ�����B�n�; (2.8)

�F�� ¼ b�u� � b�u� ¼ n�B� � n�B� � �����E�n�;

(2.9)

where the second equalities introduce the electric and
magnetic fields measured by an observer moving along a

normal direction n�. We further note that the
ffiffiffiffiffiffiffi
4�

p
terms

appearing in Eqs. (2.4) and (2.5) are absorbed in the
definition of the magnetic field.
In the interest of compactness, we will not discuss here

the detailed formulation of the Eqs. (2.1), (2.2), and (2.3)
we use in the numerical solution and refer the interested
reader to the following works where these aspects are
discussed in detail: Ref. [49] for the formulation of the

1Our outer boundaries are too close for an accurate extraction
of gravitational radiation, which we expect to be of the order of
10�5 M� [10]. This is also the precision with which we conserve
the energy in the system.
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Einstein equations and the gauge conditions used,
Refs. [38,39] for the formulation of the MHD equations
and the strategy for enforcing a zero divergence of the
magnetic field, and Refs. [27,50] for the computational
infrastructure and the numerical methods used. What is
however important to remark here is that we employ an
‘‘ideal-fluid’’ (or gamma-law) EOS [50]

p ¼ ��ð�� 1Þ; (2.10)

where � is the adiabatic exponent, which we set to be
� ¼ 2. A more realistic EOS could have been used, as
done for instance in Ref. [51], and this will indeed be the
focus of future work. At this stage, however, and because
this is the first study of this type, the simpler analytic EOS
(2.10) is sufficient to collect the first qualitative aspects of
the development of the instability.

III. INITIAL DATA AND DIAGNOSTICS

The initial data of our simulations are computed as
stationary equilibrium solutions of axisymmetric and rap-
idly rotating relativistic stars in polar coordinates and
without magnetic fields [52]. In generating these equilib-
riummodels we adopt a ‘‘polytropic’’ EOS [50], p ¼ K��,
with K ¼ 100 and � ¼ 2, and assume the line element for
an axisymmetric and stationary relativistic spacetime to
have the form

ds2 ¼ �e�þ�dt2 þ e���r2sin 2	ðd
�!dtÞ2
þ e2�ðdr2 þ r2d	2Þ; (3.1)

where�, �,! and � are space dependent metric functions.
To reach the large angular momentum needed to trigger the
dynamical bar-mode instability, a considerable amount of
differential rotation needs to be introduced and we do so
following the traditional constant specific angular momen-
tum law (‘‘j constant’’) of differential rotation, in which the
angular velocity distribution takes the form [53,54]

�c �� ¼ 1

Â2R2
e

� ð��!Þr2sin 2	e�2�

1� ð��!Þ2r2sin 2	e�2�

�
; (3.2)

where Re is the coordinate equatorial stellar radius and the

coefficient Â is a measure of the degree of differential

rotation, which we set to Â ¼ 1 in analogy with other
works in the literature. Once imported onto the Cartesian
grid and throughout the evolution, we compute the angular
velocity � (and the period P) on the ðx; yÞ plane as

� :¼ u


u0
¼ uy cos
� ux sin


u0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ; P ¼ 2�

�
: (3.3)

Other characteristic quantities of the system, such as the
baryon mass M0, the gravitational mass M, the angular
momentum J, the rotational kinetic energy T, and the
gravitational binding energy W are calculated as in [55]:

M :¼
Z

d3x�
ffiffiffiffi
�

p ½�2ðTflÞ00 þ ðTflÞ���; (3.4)

M0 :¼
Z

d3x
ffiffiffiffi
�

p
D; (3.5)

Eint :¼
Z

d3x
ffiffiffiffi
�

p
D�; (3.6)

J :¼
Z

d3x�
ffiffiffiffi
�

p ðTflÞ0
; (3.7)

T :¼ 1

2

Z
d3x�

ffiffiffiffi
�

p
�ðTflÞ0
; (3.8)

W :¼ T þ Eint þM0 �M; (3.9)

where � is the specific internal energy, D is the conserved
rest-mass density, � is the determinant of the three-metric
and ðTflÞ�� corresponds to the fluid contributions to the
stress-energy tensor. A couple of important caveats need to
be made about the definitions above. First, we note that we
have defined the gravitational mass and angular momen-
tum taking into account only the fluid part of the energy-
momentum tensor and thus neglecting the electromagnetic
contributions. This is strictly speaking incorrect, but toler-
able given that the relative electromagnetic contributions to
the mass and angular momentum are & 10�5. Second, the
definitions above for J, T,W and � are meaningful only in
the case of stationary axisymmetric configurations and
should therefore be treated with care once the rotational
symmetry is lost.
The main properties of all the stellar models we have

used as initial data are reported in Table I, where we have
introduced part of our notation to distinguish the different
models. In particular models indicated as U* and as S*
refer to NSs that are unstable and stable to the purely
dynamical bar-mode instability, respectively (this result
was determined in Refs. [10,11]). Figure 1 shows the initial
profiles of the rest-mass density � (left panel), of the rota-
tional angular velocity � (central panel), and of the z
component of the magnetic field (right panel) for all the
models we have evolved. The profiles for the models that
are unstable in the unmagnetized case are drawn with blue
solid lines, while we use red dot-dashed lines for stable
models. Note that the position of the maximum of the rest-
mass density coincides with the center of the star only for
models with low�; for those with a larger�, the maximum
of the rest-mass density resides, instead, on a circle on the
equatorial plane.
All the equilibrium models are members of a sequence

having a constant rest-massM0 ’ 1:5 M� and are stable to
gravitational collapse on the basis of the results of [56]. An
initial poloidal magnetic field is added as a perturbation to
the initial equilibrium models by introducing a purely
toroidal vector potential A
 given by
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A
 ¼ Abðmax ðp� pcut; 0ÞÞ2; (3.10)

where pcut is 4% of the maximum pressure, while Ab is
chosen in a way to have the chosen value for the maximum
of the initial magnetic field B. The Hamiltonian and mo-
mentum constraint equations are not solved after super-
imposing the magnetic field, but we have verified that for
the magnetic-field strength considered here, this perturba-
tion introduces only negligible additional violations of the
constraints.

The strength of the initial magnetic field can be charac-
terized by the value of the ratio between the total magnetic
energy

Emag :¼
Z

d3x�2 ffiffiffiffi
�

p
T00
em; (3.11)

and the sum of the rotational kinetic energy T and of the
gravitational binding energy W, which we indicate as

�mag :¼ Emag=ðT þ jWjÞ, in analogy with the instability

parameter � :¼ T=jWj. This parameter should not be con-
fused with what is usually defined as the � parameter of a
plasma, i.e., the ratio of the fluid pressure to the magnetic
pressure.
In Table I we also report the values of the coefficient Ab

[see Eq. (3.10)] and the parameter �mag corresponding to

an initial poloidal magnetic field strength equal to 11015 G.
All the initial models are also reported in Fig. 2 according
to the values of their parameters � and �mag. The models

that are known to be stable against the bar-mode instability
in the unmagnetized case are here drawn in blue (S1, S6, S7
and S8), while the unstable ones are drawn in red (U3, U11
and U13). The different symbols used in this figure will be
further discussed in Sec. IV when illustrating the results of
our work; it is sufficient to say for now that squares and
triangles refer to unstable models with unmodified and
modified growth times, respectively. Hereafter we will

FIG. 1 (color online). Initial profiles of the rest-mass density � (left panel), the angular velocity � (center panel) and of the z
component of the magnetic field (right panel) for models S8, S7, S6, S1, U3, U11 and U13. The profiles of the stable models are here
drawn with blue solid lines, and those for the unstable models with red dot-dashed lines.

TABLE I. Main properties of the stellar models evolved in the simulations. In the first column we report the model name, while in
the next three we report the parameters we used to generate the initial models, namely the central rest-mass density �c, the ratio
between the polar and the equatorial coordinate radii rp=re and the parameter Ab of Eq. (3.10) that would generate a magnetic field

whose initial maximum value in the (x; y) plane is 1� 1015 G. In the remaining columns we report, from left to right, the proper
equatorial radius Re, the rest mass M0, the gravitational mass M, the compactness M=Re, the total angular momentum J, J=M2, the
angular velocities at the axis�c ¼ �ðr ¼ 0Þ and at the equator�e ¼ �ðr ¼ ReÞ, the rotational kinetic energy T and the gravitational
binding energyW, their ratio � ¼ T=jWj (instability parameter) and finally the ratio between the total magnetic energy and the sum of
the rotational energy and the gravitational binding energy [�mag ¼ Emag=ðT þ jWjÞ]. Unless explicitly stated, all these quantities are

expressed in geometrized units in which G ¼ c ¼ M� ¼ 1.

Model

�c

(10�4) rp=re Ab

Re

(km)

M0

(M�)
M

(M�) M=Re J J=M2

�c

(rad/s)

�e

(rad/s)

T
(10�2)

W
(10�2) �

�mag

(10�6)

U13 0.599 0.200 1:85� 106 35.9 1.505 1.462 0.0601 3.747 1.753 3647 1607 2.183 7.764 0.2812 5.3

U11 1.092 0.250 1:46� 106 34.4 1.507 1.460 0.0627 3.541 1.661 3997 1747 2.284 8.327 0.2743 4.7

U3 1.672 0.294 8:74� 105 32.4 1.506 1.456 0.0664 3.261 1.538 4434 1916 2.352 9.061 0.2596 3.5

S1 1.860 0.307 6:94� 105 31.6 1.512 1.460 0.0682 3.191 1.497 4593 1976 2.384 9.388 0.2540 3.0

S6 2.261 0.336 4:50� 105 30.0 1.505 1.449 0.0713 2.965 1.412 4901 2093 2.369 9.859 0.2403 2.3

S7 2.754 0.370 2:01� 105 28.1 1.506 1.447 0.0760 2.741 1.309 5284 2234 2.360 10.56 0.2234 1.0

S8 3.815 0.443 5:96� 104 26.7 1.506 1.439 0.0862 2.322 1.121 5995 2482 2.255 11.96 0.1886 0.4
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also extend our notation and denote a particular magnetized
model by marking it by the maximum initial value of the z
component of the magnetic field on the ðx; yÞ plane, i.e.,
Bz
max jt;z¼0, expressed in gauss. As an example, the bar-mode

unstable model with initial Bz
max jt;z¼0 ¼ 1:0� 1015 G will

be indicated as U11-1.0e15.
In order to analyze better the effects of magnetic fields on

the dynamics of the bar-mode instability, we have introduced
additional diagnostic variables to quantify and describe the
evolution of the magnetic field itself. For axisymmetric
configurations one usually decomposes the magnetic field
in toroidal andpoloidal components, studying their dynamics
separately. When axisymmetry is lost, however, this nice
decomposition is no longer available. Nevertheless, there
exists a decomposition that can be defined even if axisym-
metry is not preserved, which is reduced to the usual
poloidal-toroidal one in the axisymmetric stationary case.
The main idea of this decomposition is to separate the
magnetic field in a component in the direction of the fluid
motion and hence parallel to the fluid three-velocity and in a
component that is orthogonal to it. We therefore split the
magnetic field measured by an Eulerian observer as

Bi ¼ Bk
viffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ijv
ivj

q þ Bi
?; (3.12)

where we define the ‘‘perpendicular’’ part of the magnetic
field from the conditionBi

?vi ¼ 0, while the ‘‘parallel’’ part

is a scalar and is trivially defined as Bk :¼ Bjvj=ðviviÞ1=2.
Initially, when the flow is essentially azimuthal, Bi

? corre-

sponds to the poloidal component of themagnetic field,while

Bkvi=ðvjvjÞ1=2 to the toroidal component. Hereafter we

will refer loosely to these as the ‘‘poloidal’’ and ‘‘toroidal’’
components, respectively.
Within this decomposition, we can then define the elec-

tromagnetic energy contributions associated to the toroidal
and poloidal magnetic-field components as

Etor
mag :¼

Z
d3x

ffiffiffiffi
�

p 1

2
BkBk; (3.13)

Epol
mag :¼

Z
d3x

ffiffiffiffi
�

p 1

2
�ijB

i
?B

j
?ð1þ �rsv

rvsÞ: (3.14)

Note that the total electromagnetic energy satisfies the

condition Emag ¼ Etor
mag þ E

pol
mag, since the electric field Ei

provides a contribution to the energy, EiEi ¼ ðviviÞ�
ðBiBi � B2

kÞ, that is already included in the definitions

(3.13) and (3.14). Another important set of diagnostic
quantities focuses instead on the detection of a bar defor-
mation, which can be conveniently quantified in terms of
the distortion parameters [57]


þ :¼ Ixx � Iyy

Ixx þ Iyy
; (3.15)


� :¼ 2Ixy

Ixx þ Iyy
; (3.16)


 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ þ 
2�

q
; (3.17)

where the quadrupole moment of the matter distribution
can be computed in terms of the conserved density D as
in [10,58]

Ijk ¼
Z

d3x
ffiffiffiffi
�

p
Dxjxk: (3.18)

Note that all quantities in Eqs. (3.15), (3.16), and (3.17) are
expressed in terms of the coordinate time t and do not
represent therefore invariant measurements at spatial in-
finity. However, for the simulations reported here, the
length scale of variation of the lapse function at any given
time is always larger than twice the stellar radius at that
time, ensuring that the events on the same time slice are
also close in proper time.
In addition, 
þ can be conveniently used to quantify

both the growth time �bar of the instability and the oscil-
lation frequency fbar of the unstable bar once the instability
is fully developed. In practice, we obtain a measurement of
�bar and fbar by performing a nonlinear least-square fit of
the computed distortion 
þðtÞ with the trial function


þðtÞ ¼ 
0e
t=�B cos ð2�fBtþ
0Þ: (3.19)

FIG. 2 (color online). Representation of the initial models in a
ð�;�magÞ plane. Blue and red symbols mark models that are

respectively bar-mode stable and bar-mode unstable at zero
magnetizations, while the vertical red dashed line marks the
stability threshold for zero magnetic fields. The red shaded area
collects as a function of their magnetization models that the
evolutions reveal to be bar-mode unstable; hence, red squares
refer to initial models that develop a bar-mode instability, while
red triangles refer to potentially bar-unstable models that are
stabilized by the strong magnetic fields.
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IV. RESULTS

A. Effects of the magnetic field on unstable models

Westart by discussing indetail the results relative tomodel
U11 when evolved for different values of the initial poloidal
magnetic field. The dynamics of this unstablemodel are very
clear and allow us to show a full qualitative and quantitative
picture of what happens as the bar-mode instability develops.
Wewill therefore focus our attention onmodels U11-1.0e14,
U11-2.0e15, U11-4.0e15 and U11-1.0e16, which, as dis-
cussed before, have initial poloidal magnetic field such
that Bz

max jt;z¼0 is equal to 1:0� 1014, 2:0� 1015, 4� 1015

and 1:0� 1016 G, respectively.
In Fig. 3 we show the evolution of the distortion pa-

rameters 
þ (top panel) and 
 (bottom panel) for these
models. In the least magnetized model (i.e., U11-1.0e14),

þ starts oscillating after about 10 ms of evolution with an
amplitude that almost reaches unity, and it keeps oscillat-
ing for about 20 ms. At the same time, 
 undergoes an
exponential growth, increasing its value by about 3 orders
of magnitude until it reaches a saturation level, which
persists for about 10 ms and then decays. This is exactly
the behavior we expect from a stellar model which is
unstable against the dynamical bar-mode instability, as
model U11 is known to be in the unmagnetized case
(cf., Refs. [10,58]).

However, when the initial poloidal magnetic field is
2 orders of magnitude stronger (i.e., as for model
U11-1.0e16), the dynamics shows a very different behavior.
The amplitude of the oscillations in 
þ is negligible and 


does not grow exponentially, being 2 orders of magnitude
lower than it is for model U11-1.0e14 during the whole
evolution. This indicates that although the model is unstable
in the absence of magnetic fields, no bar-mode deformation
develops in this case over a time scale of �35 ms of
evolution and for this magnetic-field strength.
For intermediate initial poloidal magnetic fields, we find a

significant change in the dynamics by simply varying the
field strength by a factor of 2, which corresponds to a change
of a factor of 4 in the magnetic energy. Moreover, in
model U11-2.0e15 the bar-mode instability still develops,
even though it takes a little longer to grow, while model
U11-4.0e15 is stable and the bar-mode instability is sup-
pressed, since 
 does not show an exponential growth. As a
result, we can bracket the stability threshold for the develop-
ment of the bar-mode instability between these two models
in the presence of strong magnetic fields (cf., Fig. 2).
To better illustrate the different behavior of the matter

evolution for different initial poloidal magnetic field
strengths, in Fig. 4 we show three snapshots of the
evolution of the rest-mass density on the ðx; yÞ plane for
three of the above models (i.e., models U11-1.0e14,
U11-4.0e15 and U11-1.0e16) at times t ¼ 15:0, 22.5,
30.0 ms. In particular, in the top row of Fig. 4 we show
the evolution of model U11-1.0e14, which as discussed
previously is bar-mode unstable as is also its unmagne-
tized counterpart. After 15 ms we can already observe a
small deformation with respect to the initial axisymmetric
configuration, which is then amplified until a bar is fully
formed after about 10 ms of the first oscillations observed
in 
þ. In the central row we show the evolution of model
U11-4.0e15, which as mentioned before is instead stable
against bar-mode deformations due to the presence of the
strong magnetic field. In this case, after 15 ms the density
profile has already changed, turning from an initial toroi-
dal profile (cf., Fig. 1) to an oblate profile with its maxi-
mum residing on the z axis. Later in the evolution, we
observe an increase in the central density and the outer
layers expanding well beyond the borders of the finest
grid. Finally, on the bottom row we show snapshots of
the density for model U11-1.0e16, which refers to the
strongly magnetized case and which is also stable and
shows a similar behavior to the previous model. The only
important difference is the larger increase of the central
rest-mass density and the more significant expansion of
the outer layers of the star. Indeed, after the first 15 ms of
evolution, matter has been shed already beyond the edges
of the finest grid.
A deeper insight into the matter dynamics in the three

different cases discussed above can be gained through
the spacetime diagrams shown in Fig. 5 that are remi-
niscent of similar ones first presented in Ref. [28]. In
particular, the left column of Fig. 5 shows the rest-mass
density profile along the x axis for the three models
U11 using both a color map (see the right edge of the

FIG. 3 (color online). Evolution of the distortion parameters

þ and 
 for model U11 with four different values of the initial
poloidal magnetic field: Bz

max jt;z¼0 ¼ 1:0� 1014, 2:0� 1015,
4:0� 1015, and 1:0� 1016 G.
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different panels) and some representative contour lines;
note that the color code and the color ranges are the
same in the three cases. It is worth mentioning that the
low-magnetic-field model U11-1.0e14 (top panel in left
column) shows the evolution we expect from a bar-mode
unstable model, since the bar deformation is clearly
visible after about 20 ms. The highly magnetized model
U11-4.0e15 (middle panel in left column), on the other
hand, shows no bar deformation and exhibits instead a

transition from a toroidal configuration to an oblate one
as is evident in Fig. 4. In addition, a small amount of
matter is shed on the equatorial plane after about 15 ms
of evolution. Finally, for the very highly magnetized
model U11-1.0e16 (bottom panel in left column), the
expansion of the outer layers is much more rapid and the
stellar material reaches a size of about 100 km (not
shown in the figure), which is almost twice as large as
for model U11-4.0e15. The ejected material creates an

FIG. 4 (color online). Snapshots of the rest-mass density on the ðx; yÞ plane for models U11-1.0e14 (top row), U11-4.0e15 (central
row) and U11-1.0e16 (bottom row) at different times during the evolution, namely, t ¼ 15:0 ms (left column), t ¼ 22:5 ms (central
column) and t ¼ 30 ms (right column). The color code is defined in terms of log 10ð�Þ, where � is in cgs units (gcm�3). Additionally,
isodensity contours are shown for � ¼ 1011, 1012, 5� 1012, 1013, 5� 1013 and 1014 g cm�3.
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extended and flattened envelope of high-density matter,2

with rest-mass densities as high as 1012 g cm�3.
To determine whether the ejected matter is gravitation-

ally bound or not, we look at the time component of the
fluid four-velocity ut (central column of Fig. 5) since the

local condition ut >�1 provides a necessary although not
sufficient condition for a fluid element to be unbound [28].
We recall that this condition is exact only in an axisym-
metric and stationary spacetime. These requirements are
not matched during the matter-unstable phase, but the
conditions can be used nevertheless as a first approxima-
tion to determine whether part of the material actually
escapes to infinity during the evolution. As is evident
from Fig. 5, this condition is fulfilled throughout the whole
evolution for the highly magnetized models U11-1.0e16

FIG. 5 (color online). Spacetime diagrams of the evolution of the rest-mass density � (left column), of the time component of the
fluid four-velocity ut (central column), and of the angular velocity� (right column) along the x axis. The models considered here are
U11-1.0e14 (top row), U11-4.0e15 (central row), and U11-1.0e16 (bottom row). The color code is indicated to the right of each plot.
In addition, all diagrams also report isodensity contours of the rest-mass density � ¼ 106, 1011, 1012, 5� 1012, 1013, 5� 1013

and 1014 g cm�3.

2It is tempting (and sometimes encountered in the literature) to
refer to the envelope as ‘‘disk’’ or ‘‘torus’’; however, we find this is
very misleading as the envelope is not disjoint from the star but
rather an integral part of itwhich should not be discussed separately.
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and U11-4.0e15 not only on the finest refinement level
shown in Fig. 5, but on the whole computational domain.
However, this is not the case for model U11-1.0e14 at the
time the bar-mode instability is fully developed. In fact, in
this case we observe that a little amount of unbound matter
is shed in correspondence with one of the spiral arms of the
bar. The ejection of matter occurs only in a very low-
density region around the star, where � ’ 108 g cm�3 ’
10�6�c. Overall, the total amount of matter (both bound
and unbound) escaping from the outer grid after 20 ms of
evolution is less than 0.2% of the total initial rest mass of
the NSs.

We complete the description of the dynamics of these
three U11 models by reporting in the right column of Fig. 5
the spacetime diagram relative to the angular velocity �
along the x axis. We recall that all models have the maxi-
mum of the � at the stellar center (cf., Fig. 2) and this
remains the case also for the low-magnetic-field and bar-
mode unstable model U11-1.0e14, modulo the variations
brought in by the development of the instability. On the
other hand, for models U11-4.0e15 and U11-1.0e16, the
angular velocity at the stellar center first increases, then
reaches a maximum and later decreases again; at the same
time, the outer layers of the star expand and the maximum
of the angular velocity occurs at larger radii. By the time an
extended flattened envelope has been produced near the
equatorial plane, much of the differential rotation has been
washed out and the NS has acquired a central angular
velocity that is smaller but mostly uniform.

We can summarize the main features described in detail
above for the three magnetized U11 models as follows:

(i) model U11-1.0e14 is still bar-mode unstable and no
effects are evident on the onset and development of
the instability; a very small fraction of the rest mass
is shed at the edges of the bar-deformed object.

(ii) model U11-4.0e15 is bar-mode stable for the time
scales considered here and after about 25 ms of
evolution it settles into a more compact configura-
tion; the new equilibrium structure has an almost
uniform angular velocity and is surrounded by a
differentially and flattened envelope.

(iii) model U11-1.0e16 is also bar-mode stable with a
dynamics that resembles that of model U11-4.0e15;
the main differences are the shorter time scales
required to reach equilibrium and the flattened
envelope with larger mean rest-mass densities
present in model U11-4.0e15.

Altogether, the behavior summarized above is consistent
with what we would expect for highly magnetized and
differentially rotating fluids. Under these conditions, in
fact, magnetic braking transfers angular momentum from
the core to the outer layers, changing the rest-mass density
and the rotation profiles of the star. Because during this
process part of the rotational energy of the star is tapped,
the onset of the instability is inhibited. We should note that

with the exception of the most highly magnetized models,
the� parameter is always above�c at the time at which the
instability develops in the case of zero magnetization. On
the other hand, for the most extreme magnetizations �
decreases very rapidly, going below �c before the time
when the instability develops for zero magnetizations.
We next discuss the dynamics of the magnetic fields,

showing in Fig. 6 some representative snapshots of the total
electromagnetic energy density T00

em (shown with a color
code) as measured in the Eulerian frame and the magnetic
field lines (shown as white solid lines) on a horizontal plane
at z ’ 1:5 km, corresponding to the three magnetized U11
models studied before. Note that all the panels have the
same color ranges but the color map is different for different
initial matter configurations (i.e., in different rows) in order
to better highlight the internal structure of the electromag-
netic field. The three columns refer to different times and
coincide with those already reported in Fig. 4.
As expected under the ideal-MHD approximation, with

the magnetic field being frozen into the fluid, the field lines
are dragged along with the fluid in differential rotation and
rapidly wind on a time scale of very few milliseconds,
leading to a sudden formation and rapid linear growth of
a toroidal magnetic field component. This component is
soon amplified far above the initial poloidal one. The
winding of the field lines and the linear growth of the
toroidal field are present in all three models and are
independent of the initial poloidal magnetic field strength.
The reason is that they only depend on the angular velocity
profile, or equivalently on the differential rotation law,
which is the same for all U11 models in the first part of
the evolution. It is interesting to note in the first row of
the figure (i.e., the unstable model U11-1.0e14), that the
distortion of the magnetic field lines also mimics the bar-
mode deformation as the star undergoes the development
of the instability.
A more quantitative assessment of the influence of the

magnetic fields on the unstable models has been obtained
after performing a number of simulations of models U3,
U11 and U13, with initial poloidal magnetic fields varying
between the two extreme cases presented in Figs. 4–6.
More specifically, we have performed 27 simulations with
initial maximum magnetic fields in the range Bz

max jt;z¼0 ¼
1:0� 1014 and 1:0� 1016 G. The results of this extensive
investigation are collected in Figs. 2 and 7, as well as in
Table II, which reports the measured growth time of the
instability �bar and its frequency fbar. In particular, Fig. 2
reports the initial models within a ð�;�magÞ diagram and

allows one to easily distinguish the ranges of rotational and
magnetic energies that give rise to the development of a
dynamical bar-mode instability. It is, in fact, easy to distin-
guish models that are bar-mode stable (blue symbols) from
those that are unstable (red symbols) at zero magnetizations;
of course, models that are stable at zero magnetizations are
also stable at all magnetizations (this is marked with the
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vertical red dashed line). It is equally simple to distinguish
models that although unstable in the absence of magnetic
fields (red squares), become stable with sufficient magneti-
zation (red triangles). As an example, for models U3 the
threshold between squares and triangles appears for initial
maximum magnetic fields Bz

max jt;z¼0 > 6:0� 1014 G,
while for models U11 and U13 the thresholds are at about
2:0� 1015 and 2:4� 1015 G respectively. As a result,
only the light red shaded area in Fig. 2 collects stellar
models that are bar-mode unstable. Outside this region,
either the rotational energy is insufficient, or the magnetic

tension is too strong to allow for the development of the
instability.
Similarly, Fig. 7 reports the measured growth time of the

bar-mode instability �bar (and the corresponding error bars)
for the three different classes of unstable models (U3, U11
and U13) as a function of the magnetization parameter
�mag. Taking the horizontal dashed lines as references for

the unmagnetized models, it is easy to realize that as the
magnetization increases, so does the growth time for the
instability. This behavior can be physically interpreted as
due to the fact that as the magnetic-field strength increases,

FIG. 6 (color online). Snapshots of the total electromagnetic energy density T00
em, as measured in the Eulerian frame, on a horizontal

plane at z ’ 1:5 km for model U11-1.0e14 (top row), U11-4.0e15 (central row), and U11-1.0e16 (right row), at different times during
the evolution, namely, t ¼ 15:0 ms (left column), t ¼ 22:5 ms (central column), and t ¼ 30 ms (right column). The color code is
defined in terms of log 10ðT00

em=c
2Þ where T00

em=c
2 is in cgs units (g cm�3). Additionally, magnetic field lines are shown with white

solid lines.
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so does the time scale over which the magnetic tension
needs to be overcome to develop a bar deformation.3

We can next focus on the growth of the magnetic-field
strength in bar-mode unstable models as this also offers the
opportunity for a number of useful considerations. More
specifically, we show in Fig. 8 the evolution of the total
electromagnetic energy Emag normalized to the initial

values for models U11 (left panel), U13 (middle panel)
and U3 (right panel), and for different initial poloidal
magnetic-field strengths. The first obvious thing to notice
in Fig. 8 for all the magnetizations considered for model
U11 is that the growth of the magnetic energy is linear in
time initially. This is not surprising and is indeed the mere
manifestation of the ‘‘frozen-in’’ condition of the magnetic
field within the ideal-MHD approximation. Using the in-
duction equation it is, in fact, straightforward to show that
in a linear regime the differential rotation will generate
toroidal magnetic field at a rate which is linear in time. This

is because as long as the stellar configuration remains
essentially axisymmetric the poloidal magnetic field is
not affected by the newly produced toroidal field, and the
total electromagnetic energy can only grow linearly with
time tapping part of the rotational energy of the star.
As a result of this growth, the toroidal component

becomes rapidly larger than the initial poloidal one and an
amplification of the total electromagnetic energy takes place
for all models that reaches a higher value of about
2 orders of magnitude over a time scale of �10 ms. After
this initial phase, the toroidal field keeps growing at a slower
rate, reaching a saturation with the maximum amplification
being almost independent of the initial poloidal magnetic
field strength and of the rotation of the stellar model.
The only exceptions to this behavior appear in models
with ultrastrong magnetic fields, in which cases the satura-
tion occurs at values that are about 2 orders of magnitude
smaller (cf., blue solid lines in the different panels of Fig. 8).
Interestingly, for models U11 and U13, that is for the

unstable models with small growth rates and far from the
threshold of the dynamical bar-mode instability, the linear
growth of the magnetic field is accompanied also by a
rather short exponential growth of the magnetic field.
While this behavior is very similar to the one seen in
Ref. [34], where it was attributed to the development of
the MRI, a similar conclusion cannot be drawn with con-
fidence here. On the one hand, there are a number of
combined elements that seem to support the suggestion
that the exponential growth is the result of the development
of a MRI: (i) the instability disappears with decreasing

TABLE II. Main properties of the initial part of the instability for
models U11, U13 and U3 for different values of the initial poloidal
magnetic field. Here we report the representative times t1 and t2
between which the maximum values of the distortion parameter 
,
the growth times �bar and the frequencies fbar are computed.

Model �mag

t1
(ms)

t2
(ms) 
max

�bar
(ms)

fbar
(Hz)

U11-0.0E00 0.0 16.2 18.3 0.784 1:10þ0:04
�0:05 490þ1�4

U11-1.0E14 4:7� 10�8 14.7 16.8 0.787 1:09þ0:05
�0:02 491þ3

�5

U11-2.0E14 1:9� 10�7 15.0 17.0 0.778 1:11þ0:02
�0:01 488þ1�1

U11-4.0E14 7:5� 10�7 15.1 17.7 0.773 1:12þ0:03
�0:01 488þ2

�2

U11-8.0E14 3:0� 10�6 14.8 18.2 0.754 1:15þ0:03
�0:04 490þ2

�5

U11-1.0E15 4:7� 10�6 14.2 16.8 0.751 1:17þ0:04
�0:05 491þ2�4

U11-1.4E15 9:2� 10�6 13.9 16.2 0.714 1:22þ0:04
�0:03 491þ1�2

U11-1.6E15 1:2� 10�5 14.5 17.3 0.681 1:32þ0:07
�0:07 489þ2

�1

U11-1.8E15 1:5� 10�5 13.2 16.7 0.639 1:34þ0:08
�0:08 490þ2

�1

U11-2.0E15 1:9� 10�5 14.8 17.3 0.532 1:49þ0:09
�0:11 489þ4�2

U13-0.0E00 0.0 11.6 14.7 0.865 0:94þ0:01
�0:01 449þ1�3

U13-1.0E14 5:3� 10�8 12.2 15.3 0.866 0:94þ0:02
�0:01 450þ2

�2

U13-4.0E14 8:5� 10�7 12.7 15.8 0.851 0:94þ0:02
�0:01 450þ2

�2

U13-8.0E14 3:3� 10�6 12.7 15.8 0.842 0:95þ0:01
�0:01 451þ1�2

U13-1.0E15 5:3� 10�6 14.1 16.7 0.833 0:96þ0:01
�0:02 451þ3

�1

U13-1.6E15 1:3� 10�5 11.6 14.8 0.813 0:98þ0:02
�0:01 456þ1

�2

U13-2.4E15 3:0� 10�5 13.0 15.9 0.734 1:09þ0:04
�0:06 461þ1

�1

U3-0.0E00 0.0 24.8 26.4 0.486 2:55þ0:28
�0:34 540þ2�2

U3-1.0E14 3:5� 10�8 24.9 27.1 0.472 2:38þ0:59
�0:18 537þ5

�10

U3-2.0E14 1:4� 10�7 26.1 28.0 0.456 2:47þ0:21
�0:04 536þ5

�3

U3-4.0E14 5:6� 10�7 24.0 26.3 0.421 2:81þ0:20
�0:13 537þ2

�3

U3-6.0E14 1:2� 10�6 24.2 25.7 0.300 3:12þ0:31
�0:10 535þ5

�6

FIG. 7 (color online). Growth time of the bar-mode instability
for the three unstable models U3 (blue), U11 (red) and U13
(black), shown as a function of the initial magnetization.
The horizontal dashed lines report the growth times in the
absence of magnetic fields, while the dotted lines represent the
corresponding error bars.

3Note that the error bars are larger for model U3 because this is
closer to the stability threshold (cf., Table I).
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resolution (the smallest wavelength needs to be properly
resolved); (ii) the growth rate does not depend on the
initial poloidal magnetic field (in the simplest descrip-
tion the growth rate depends only on the local angular
velocity); (iii) the exponential growth is followed by a
rapid decay possibly caused by reconnection processes
(this behavior was also found in Ref. [34]); and (iv) the
exponential growth disappears for sufficiently strong
magnetic fields (the bar-mode deformation is no longer
the lowest energy state energetically because of the large
magnetic-field contribution). However, our resolutions
here are considerably coarser than those employed in
Ref. [34], and it is therefore difficult to see the appear-
ance of channel-flow structures typical of the MRI and
hence to make robust measurements of the wavelengths
of the fastest-growing modes. One important feature of
models U11 and U13 is that they develop pronounced
bar-mode deformations (they are further away from the
stability threshold in Fig. 2) and it is therefore possible
that these large deviations from axisymmetry act as an
additional trigger, favoring the development of the MRI.4

This could explain why an exponential growth is seen in
these models despite the coarse resolution. Moreover, the
above mentioned exponential growth does not seem to be
present in the dynamics of model U3 for all the different
magnetizations considered (cf., right panel of Fig. 8).
However, the angular frequency of these models is larger
than that of U11 and U13 and hence the time scale for the
development of the MRI �MRI would be correspondingly
shorter (�MRI ���1). The evolutions have been carried
out on sufficiently long time scales to allow for the
potential appearance of the MRI. This behavior is indeed
consistent with the conjecture discussed above, since this

class of models is very close to the threshold for the
development of the bar-mode instability. As a result, these
models experience much smaller bar-mode deformations
and maintain a configuration which is more axisymmetric
than those found in models U11 and U13. Because these
conditions are more similar to those assumed by pertur-
bative MRI analysis, the corresponding predictions are
expected to be more accurate. Hence, it is not surprising
that no MRI is observed in this case simply because no
MRI can be seen for these quasiaxisymmetric objects at
these resolutions.
That being said, an MRI is not the only process that

would lead to an exponential growth of the magnetic field
and, indeed, there are a number of instabilities that can
develop in magnetized differentially rotating fluids [60].
For example, the exponentially growing bar-mode defor-
mation could cause sharp increases in local shear and
hence an exponential amplification in the magnetic energy.
Clearly, additional simulations at much higher resolutions
are required to further clarify this point.

B. Effects of the magnetic field on stable models

After having discussed in detail the properties of the
dynamics of bar-mode unstable models, we now turn to
illustrating how magnetic fields affect the dynamics of
bar-mode stablemodels. Although these are comparatively
simpler configurations, they provide a number of interest-
ing considerations, as we will see.
We recall that using the same EOS adopted here,

Ref. [10] has determined the threshold for the development
of a dynamical bar-mode instability to be � ’ 0:255 (cf.,
Fig. 2). We have therefore considered a number of stable
models, namely S1, S6, S7 and S8, that are increasingly
more distant from the threshold. For each of these classes
we have then added two different magnetic-field strengths,
namely, Bz

max jt;z¼0 ¼ 1:0� 1015 G and Bz
max jt;z¼0 ¼

1:0� 1016 G, and performed simulations to record

FIG. 8 (color online). Left panel: Evolution of the total magnetic energy Emag, normalized to its initial value, for models U11 and
different values of the initial poloidal magnetic field. The black solid line refers to the less magnetized case, the blue solid line for the
most magnetized case, and a red solid line for the last unstable model, before excessive magnetic tension suppresses the instability.
Middle and right panels: The same as in the left panel, but for model U13 and model U3, respectively.

4We recall that the assumption of axisymmetry is a fundamental
one in all perturbative calculations on theMRI and that it is exactly
the absence of axisymmetry that allows for the development of
dynamos against the limitations of the Cowling theorem [59].
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the different impacts of the magnetic fields on the
dynamics.

Of course, since these models are already stable in the
absence of magnetic fields, they will remain stable also with
the additional magnetic tension. However, while models
with Bz

max jt;z¼0 ¼ 1:0� 1015 G do not show in their dy-

namics any significant deviation from a purely hydrodynam-
ical evolution, models with Bz

max jt;z¼0 ¼ 1:0� 1016 G do

quite the opposite. This is shown in the top panel of Fig. 9,
which reports the evolution of the rotation parameter � for
all these stable models. Solid lines of different color refer to
the different models but all have an initial magnetic field
Bz
max jt;z¼0 ¼ 1:0� 1015 G. On the other hand, dot-dashed

lines of different color refer to models with Bz
max jt;z¼0 ¼

1:0� 1016 G. Note that for comparatively ‘‘low’’ magnetic
fields, the rotation parameter does not show any significant
variation from the initial value over a time scale of around
25 ms, with changes that are & 0:4% for model S1 and
&1:0% for model S8. On the other hand, for magnetic fields
that are 1 order of magnitude larger, the rotation parameter
changes significantly, decaying almost linearly with time.
This is obviously due to the combined action of the differ-
ential rotation and of the magnetic winding, which increases
the magnetic tension and drives the NS towards a configu-
ration that is uniformly rotating. This is also very clearly
shown in the bottom panel of Fig. 9, which reports the
evolution of the normalized magnetic energy. It is then
rather clear that while the energy increases (linearly) with

time in the case of comparatively small magnetic fields
(solid lines), it stops growing and saturates in the case of
large magnetic fields (dot-dashed lines). Over the time
scale of the simulations, �25 ms, the magnetic energy has
increased by almost 3 orders of magnitude in the former
case and by only 1 in the latter case.
We note that in principle the linear decay of the rotation

parameter �ðtÞ can be used to estimate the time at which
the stellar rotational energy is tapped by the generation of a
toroidal magnetic field and hence � ! 0. This time would
represent an upper limit to the ‘‘braking time scale,’’ that is,
the time needed for the star to achieve uniform rotation,
and can be of great use in the study of the magnetized
core-collapse supernovae. Determining this braking time
as a function of the initial magnetizations is beyond the
scope of this paper, but will be the subject of future study.
Much of what is discussed above can also be deduced

when analyzing the structural changes in the NSs. These are
shown in Fig. 10, where we report the initial (i.e., at
t ¼ 0 ms with black lines) and the final (i.e., at t ¼ 25 ms
with red lines) normalized profiles along the x direction of
the angular velocity (solid lines; cf., left y axis of the figure)
and of the rest-mass density (dashed lines; cf., right y axis of
the figure) for model S1 and the two different values of the
magnetic field (Bz

max jt;z¼0 ¼ 1:0� 1015 G in the top panel

and Bz
max jt;z¼0 ¼ 1:0� 1016 G in the bottom one).

Modulo of course the fact that the star will have
shed some matter and produced a more extended, very

FIG. 9 (color online). Evolution of the rotation parameter
� :¼ T=jWj (top panel) and of the total magnetic energy nor-
malized to its initial value (bottom panel) for models S1, S6, S7
and S8 which are stable against the bar-mode deformation in the
unmagnetized case. In both panels the solid lines refer to models
with Bz

max jt;z¼0 ¼ 1015 G, and the dash-dotted lines to models

with Bz
max jt;z¼0 ¼ 1016 G.

FIG. 10 (color online). Initial (i.e., shown with black lines at
t ¼ 0 ms) and final (i.e., shown with red lines at t ¼ 25 ms)
normalized profiles along the x direction of the angular velocity
(solid lines) and of the rest-mass density (dashed lines) for model
S1 and the two different values of the magnetic field, i.e., 1015 G
(top panel) and 1016 G (bottom panel).
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low-density outer mantle, it is clear from the top panel of
Fig. 10 that the angular velocity and rest-mass density in
the stellar core hardly change. This is to be contrasted with
what is shown in the bottom panel, which clearly shows a
very large increase of the rest-mass density in the inner
regions of the star and a corresponding decrease in the
outer ones. At the same time, the angular velocity profile
has flattened considerably and indeed the star is essentially
axisymmetric and in uniform rotation within a coordinate
radius of ’ 15 km.

V. CONCLUSIONS

We have presented a study of the dynamical bar-mode
instability in differentially rotating and magnetized NSs in
full general relativity and investigated how the presence of
magnetic fields affects the onset and the development of
the instability. In order to do that, we have performed 3D
ideal-MHD simulations of a large number of stellar models
that were already studied in the absence of magnetic fields
[10,11,36], by adding an initial purely poloidal magnetic
field with strengths between 1014 and 1016 G. In this way,
we were able to explore quite extensively the parameter
space ð�;�magÞ from � ¼ 0:1886 to 0.2812, determining a

threshold for the onset of the instability both in terms of the
rotation parameter � ¼ T=jWj and of the magnetization
parameter �mag ¼ Emag=ðT þ jWjÞ. In all cases consid-

ered, the differential rotation shears the poloidal magnetic
field, generating a toroidal component that grows linearly
in time, and which soon provides the largest contribution to
the total electromagnetic energy.

When considering initial stellar models that are bar-
mode unstable in the absence of magnetic fields, we found
that no effects are present on the dynamics of the bar-mode
deformation for initial poloidal magnetic fields that are
&1015 G, with the exact threshold depending on the rota-
tional properties of the initial model and being higher for
slower rotating models. This is not particularly surprising
given that in these cases the magnetic energy, even the
one produced via magnetic-field shearing, is only a small
contribution to the total energy of the system. For initial
magnetic fields that are instead * 1016 G or larger, the
corrections introduced by the magnetic tension become
quite large. In particular, below a critical �mag, the devel-

opment of the instability is modified, showing growth rates
and bar-mode distortions that become smaller with increas-
ing magnetic fields, and possibly exhibiting an exponential
growth of the toroidal component at later times. Above a
critical �mag, on the other hand, the instability is totally

suppressed as the enormous magnetic tension cannot be
overcome by the differential rotation. Under these condi-
tions, the star sheds its outer layers leading to an extended,
axisymmetric object with a high, uniform-density core and
a low-density, slowly rotating envelope.

On the basis of the phenomenology discussed above, and
after carrying out a large number of simulations, we were

able to locate in the ð�;�magÞ diagram the regions in which

the values of the rotational and magnetic energies are
sufficient to give rise to the development of a dynamical
bar-mode instability. In this sense, our study confirms the
Newtonian results of [20] and extends them to a general-
relativistic framework and to a more generic range of
initial conditions.
We have complemented our investigation by considering

also initial stellar models that are bar-mode stable in the
absence of magnetic fields. While these are comparatively
simpler configurations, also in this case the magnetic fields
can provide structural changes if sufficiently strong. More
specifically, for magnetic fields *1016 G, the stellar mod-
els are braked considerably in their rotation and evolve into
configurations that have uniformly rotating extended cores
with large rest-mass densities when compared to the initial
values.
As a final remark we note that although we have re-

stricted our attention to a simplified EOS, our results also
point out that it is unlikely that very highly magnetized
NSs can develop the dynamical bar-mode instability and
hence be considered as strong sources of GWs.
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APPENDIX A: THE ROLE OF SYMMETRIES

As discussed in Sec. II, all of the results presented here
were achieved with a spatial resolution �x ¼ 0:375 M� ’
0:550 km on the finest grid and exploiting a ‘‘bitant sym-
metry,’’ i.e., a reflection symmetry with respect to the ðx; yÞ
plane. While this choice obviously reduces the computa-
tional costs by a factor of 2, it is important to verify that it
does not introduce systematic effects and that all the results
would be unchanged if this symmetry were suppressed.
Although theWhyskyMHD code employed here has been

tested in a number of different scenarios and its accuracy has
already been explicitly reported in various works [24,38,39],
nevertheless, we have performed additional tests to check
that the specific settings used are sufficient to capture the
main properties of the evolved systems. To this scope we
have evolved the bar-mode unstable model U11 when
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threaded by an initially moderate magnetic field, i.e., model
U11-1.0e15, both when imposing the bitant symmetry
and when evolving the equations in the full domain.
Furthermore, we have varied the resolution by more than a
factor of 2, that is, with the finest grid having resolutions
between �x ¼ 0:370 km and 0.920 km.

For all these runs we computed the growth rate, �bar, and
the frequency, fbar, of the bar-mode instability. The results
of this extensive series of tests are reported in Table III) and
show that these quantities do not depend on resolution
within the accuracy of our estimate. Hence, we conclude
that all of the results have been achieved at sufficient
resolution to extract physically significant information.

In addition, we have also verified that no systematic
effects have been introduced by the use of a bitant
symmetry and this is shown in Fig. 11, where we report
the evolution of the distortion parameters 
þ (top panel)
and 
 (bottom panel) for model U11-1.0e15. The simu-
lations have been performed at the reference resolution of
�x ¼ 0:550 km on the finest grid, and the figure offers a
comparison between a simulation using the bitant sym-
metry (red dot-dashed line) and one using the full domain
(black solid line). Clearly, no significant differences can
be observed between the two simulations during the first
25 ms of evolution. The same conclusion holds for all
quantities related to the magnetic field and they have been
also monitored.

APPENDIX B: THE ROLE OF RESOLUTION
AND CONVERGENCE

Determining the convergence properties of our simula-
tions is of course an essential validation of the results
presented and a considerable effort has been put into
performing these measures within the numerical setup
used here. Lacking an analytic solution that describes the
fully nonlinear development of the bar, we can only per-
form self-convergence tests at this stage. The results will
be discussed below.
However, there is a regime in our calculations in which

we can exploit the knowledge of an analytic solution and
this refers to the initial shearing of the poloidal magnetic
field by the differentially rotating star. It is in fact not
difficult to show that within an ideal-MHD framework
the induction equation predicts a growth of the toroidal
magnetic field which is linear in time (see, for instance,
[61] for a pedagogic presentation of the perturbed induc-
tion equation). To explore this regime we have performed a
large number of simulations of model U11-1.0e15 with
varying resolution and monitored the growth of the square
root of the toroidal magnetic energy Etor

mag [cf., Eq. (3.13)];

we recall that the poloidal magnetic field is not expected to
grow during this stage (cf., Sec. IVA).
Figure 12 reports the results of these simulations relative

to the first�7 ms, with different curves referring to differ-
ent resolutions. It is then evident that the curves are getting
closer and closer to straight lines as the resolution in-
creases. To measure whether a linear-in-time growth is
actually reached we have actually computed the growth
rate ‘‘�’’ by fitting the square root of the magnetic energy
with a trial function which is a power law in time with
undetermined growth rate, i.e., withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Etor
magðtÞ

q
¼ yðtÞ ¼ y0 þmt�; (B1)

where the time interval has been selected to be between 0.2
and 5 ms.
Also reported in the inset of Fig. 12 are the values

of � (colored symbols) as a function of the resolution

TABLE III. Main properties of the bar-mode instability for
model U11-1.0e15 at different resolutions. Here we report the
resolution in terms of solar masses and kilometers, the symmetry
we imposed to the computational domain, the maximum value
of the distortion parameter 
, the growth times �bar and the
frequencies fbar of the bar-mode deformation.

�x (M�) �x (km) Symmetry 
max �bar (ms) fbar (Hz)

0.250 0.370 Bitant 0.743 1:15þ0:01
�0:01 491þ1�1

0.350 0.445 Bitant 0.746 1:16þ0:03
�0:03 492þ1

�1

0.375 0.520 Bitant 0.751 1:17þ0:04
�0:05 491þ2

�4

0.375 0.520 Full 0.753 1:14þ0:01
�0:01 490þ3

�2

0.450 0.665 Bitant 0.745 1:18þ0:03
�0:05 489þ2�2

0.540 0.800 Bitant 0.754 1:19þ0:05
�0:05 487þ3

�5

0.625 0.920 Bitant 0.743 1:20þ0:11
�0:05 484þ2�7

FIG. 11 (color online). Evolution of the distortion parameters

þ (top panel) and 
 (bottom panel) for model U11-1.0e15
when imposing a bitant symmetry (black solid line) or when
using the full domain (red dot-dashed line).

FRANCI et al. PHYSICAL REVIEW D 88, 104028 (2013)

104028-16



�x, as well as a fit for �ð�xÞ (dashed line) when
assuming a second-order convergence with resolution,
i.e., assuming �ð�xÞ ¼ �j�x¼0 þ k�x2 (the point for
�x ¼ 0:920 km has been excluded from the fit).
Having made this assumption, we do find that the
growth rate is in very good agreement with the one
expected in this linear regime, with �j�x¼0 ¼
1� 0:005. Of course this result does not prove directly
that we have second-order convergence over this period
of time. However, what it does prove is that if a second-
order convergence is assumed, then our solution
matches the expected perturbative one.

Next we consider a more general calculation of the
convergence order by performing again simulations of
model U11-1.0e15 for a range of resolutions. This time
our results for the convergence are obtained by taking into
account the data corresponding to the whole time scale of
the simulations, i.e.,�25 ms. Also in this case we monitor
the growth of the toroidal magnetic energy Etor

mag and report

in the top panel of Fig. 13 its evolution for three runs at
resolutions: �x ¼ 0:370, 0.550, and 0.665 km, respec-
tively. The bottom panel of the same figure reports instead

the convergence order �c, computed via a self-convergence
test [50], when shown as a function of time.
In this case it is then possible to recognize that the code

does indeed converge at around second order during the
linear growth stage (i.e., for t & 5 ms), in agreement with
the results found in purely hydrodynamical simulations
[62], or with the new resistive code [37]. However, as the
bar-mode instability develops, the second-order conver-
gence is lost and the convergence order reduces to 1.
This is not surprising as the development of the bar also
leads to the formation of shocks, which necessarily de-
grade our solution to a first-order convergence. We also
note that the large variations in the convergence order
shown in the gray shaded area of Fig. 13 (i.e., for
t * 18 ms) are simply the consequence of the fact that
the instability starts growing at different times for different
resolutions and this inevitably leads to large excursions in
�c. Because all the major considerations made about the
onset and development of the bar deformation, as well as
the estimates for the growth rates and frequencies, are
obtained after looking at the first 20 ms of the evolution,
we conclude that all of our results have been achieved with
solutions converging at the expected rates.

FIG. 13 (color online). Top panel: Evolution of the toroidal
component of the magnetic energy Etor

mag for three different

resolutions. Bottom panel: Order of the self-convergence test,
�c, shown as a function of time. Note that a convergence order
around 2 is measured before the bar-mode instability develops
and shocks are produced (gray shaded area).

FIG. 12 (color online). Initial growth of the square root of
the toroidal component of the magnetic energy Etor

mag [Eq. (3.13)]

for different resolutions of the finest grid. The reference resolu-
tion, �x ’ 0:550 km, is shown with a black solid line. The inset
shows instead the growth rate � as a function of the resolution
and its fit with a quadratic function (dashed line). Note that
the expected value � ¼ 1 is approached in the limit of
�x ! 0.
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