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Abstract
An astrophysical population of supermassive black hole binaries is thought to
be the strongest source of gravitational waves in the frequency range covered by
pulsar timing arrays (PTAs). A potential cause for concern is that the standard
cross-correlation method used in PTA data analysis assumes that the signals
are isotropically distributed and Gaussian random, while the signals from a
black hole population are likely to be anisotropic and deterministic. Here we
show that while the conventional analysis is not optimal for detecting signals
from black hole binaries, the technique still works as the standard Hellings–
Downs correlation curve turns out to hold for point sources. Moreover, the small
effective number of signal samples blurs the distinction between Gaussian and
deterministic signals. Possible improvements to the standard cross-correlation
analysis that account for the anisotropy of the signal are discussed.

PACS numbers: 95.85.Sz, 04.25.dg, 97.60.Gb

(Some figures may appear in colour only in the online journal)

1. Introduction

The most promising source of signals in the frequency range covered by pulsar timing arrays
(PTAs) is from a population of supermassive black hole (BH) binaries, dominated by systems
with masses in the range 3 × 107M� → 3 × 109M�, and times to merger in the range
103 years → 105 years. It had been assumed that the number density of sources as a function
of frequency, dN/d f , would be sufficiently large that the central limit theorem would come
into play, and that the combined signal would be Gaussian distributed and isotropic. However,
recent studies based on more realistic population synthesis models have shown that the signal
is likely to be dominated by a small number of relatively nearby sources [1–4], and as a result,
will be non-Gaussian and anisotropic [5, 6]. This is a concern since the standard analysis
techniques [7–9] are based on the assumption that the signal is isotropic and Gaussian.
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Here we show that, while the standard approach may not be optimal, it is able to detect
the signals from isolated BHs, and by extension, populations of BHs no matter how sparse.
What makes this possible is the rather surprising result that the Hellings–Downs correlation
curve [7], which was originally derived for un-polarized, isotropic backgrounds, continues to
be valid for polarized point sources! Like many results that are surprising initially, after a little
thought this result starts to make sense (it is basically a reflection of the quadrupole nature of
the signal), and very soon the result becomes obvious, and soon after that, something everyone
knew already.

While the standard cross-correlation analysis technique can be used to detect the signals
from a sparse BH background, it will not be optimal. We consider a variety of alternative
analysis techniques that may be more effective, and suggest a new cross-correlation technique
that accounts for the anisotropy of the signal.

2. Detector response

The timing residuals for a pulsar located in the n̂ → (θp, φp) direction, induced by a plane
gravitational wave from a source in the (θ, φ) direction, can be expressed as

r = 1
2 (R+(cos 2ψF+ − sin 2ψF×) + R×(sin 2ψF+ + cos 2ψF×)), (1)

where ψ is the polarization angle of the wave relative to the frame defined by the basis vectors
û, v̂ that span the plane perpendicular to the propagation direction k̂, where

k̂ = −(sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ),

û = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ, (2)

v̂ = sin φ x̂ − cos φ ŷ.

The antenna beam pattern functions have the form

F+ = (û · n̂)2 − (v̂ · n̂)2

1 + k̂ · n̂

F× = 2(û · n̂)(v̂ · n̂)

1 + k̂ · n̂
. (3)

The terms R+,× are expressed in terms of the anti-derivative, H+,× of the gravitational wave
strain h+,×:

R+,× = H+,×(t) − H+,×(t − L(1 + k̂ · n̂)), (4)

where L is the distance to the pulsar from Earth. The two terms in the above equation are
referred to as the ‘Earth term’ and the ‘pulsar term’, respectively. For nearby sources the plane
wave approximation may need to be augmented by the leading order spherical wavefront
corrections of order L/D, where D is the distance to the source:

R+,× = H+,×(t) − H+,×(t − L(1 + k̂ · n̂) + L2

D
(1 − (k̂ · n̂)2)). (5)

The antenna patterns can be re-written in the alternative, simpler form

F+ = (1 + cos β) cos(2α)

F× = (1 + cos β) sin(2α), (6)

where β = arccos(−k̂ · n) is the angle between the source and the pulsar, and α =
arctan((v̂ · n̂)/(û · n̂)) is the angle the pulsar direction makes relative to the û, v̂ polarization
frame. The timing residuals then take the form

r = 1
2 (R+ cos(2ψ + 2α) + R× sin(2ψ + 2α))(1 + cos β). (7)
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3. Correlation analysis

The cross-correlation of the timing residuals from two pulsars can be written as

〈rir j〉 = 1
4 (〈R2

+〉 cos(2ψ + 2αi) cos(2ψ + 2α j)

+〈R2
×〉 sin(2ψ + 2αi) sin(2ψ + 2α j))(1 + cos βi)(1 + cos β j), (8)

where the angle brackets denote the inner product

〈h1h2〉 =
∫

dt1

∫
dt2 h1(t1)K(t1, t2)h2(t2). (9)

For stationary signals, the convolution kernel is a function of the lag |t1 − t2|, and the inner
product can be re-written in the Fourier domain in the familiar form

〈h1h2〉 =
∫ ∞

0

2(h̃1( f )h̃∗
2( f ) + h̃∗

1( f )h̃2( f ))

S( f )
d f . (10)

In (8) it has been assumed that 〈R+R×〉 = 0, which holds for cosmological stochastic
backgrounds and binary systems. For isotropic gravitational wave backgrounds it makes sense
to average the cross-correlation over the sky:

1

4π

∫
〈rir j〉 d� = 〈H2〉αi j, (11)

where 〈H2〉 = 〈R2
+ + R2

×〉, and the Hellings–Downs correlation curve αi j = α(θi j) is given as
a function of the angle θi j = μ between the pulsars:

α(μ) = 1 − cos μ

2
ln

(
1 − cos μ

2

)
− 1 − cos μ

12
+ 1

3
(1 + δ(μ)) . (12)

The delta function—defined such that δ(0) = 1, and is otherwise zero—comes from the pulsar
term, which averages to a non-zero value in the auto-correlation.

For anisotropic signals, such as those produced by a single BH binary, sky averaging is
not justified, and the correlation 〈rir j〉 will depend on the sky location of the source (θ, φ),
and the orbital orientation given in terms of the inclination and polarization angles (ι, ψ).
It had been assumed that an astrophysical population of binaries would combine to yield an
isotropic, stochastic background, but this turns out not be the case. Instead the combined signal
is dominated by a handful of nearby, bright sources, and as shown in figure 1, the resulting
background is highly anisotropic. The BH population model used to generate figure 1 was
derived by extracting catalogues of merging massive galaxies from the Bertone et al [10]
semianalytic model built on top of the Millennium Run [11]. Galaxies were then populated
with supermassive BHs correlating with the bulge velocity dispersion as given by Gultekin
et al [12]. The BHs accrete gas prior to final coalescence and all binaries are assumed to
be circular and driven by GW emission only in the frequency band relevant to PTA. All the
steps of the procedure followed to construct the population are given in [2]. The anisotropy
seen in figure 1 is even more pronounced if the signal is broken out by frequency bins,
where a single source often dominates in a particular bin. The question then becomes, what
is the best technique to detect such a signal, given that it is neither isotropic nor Gaussian?
These assumptions underpin the standard analysis techniques in both the frequentist and
Bayesian implementations. The frequentist approach is based on the matched filter detection
statistic [8]

ρ =
∑

i

∑
j �=i

〈rir j〉α(θi j). (13)

3
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(a) Without Pulsar Term (b) With Pulsar Term

Figure 1. The auto-correlated signal power 〈r2(θp, φp)〉 for a single realization of a BH binary
population model. The linear color scale is in arbitrary units. The left panel has the ‘pulsar terms’
turned off, while the right panel shows the full response. The pulsar term adds noise, effectively
multiplying the Earth-term sky map by 2(1 − cos(δ)), where δ is a random phase. Generating the
full response at higher angular resolution and then applying a Gaussian smoothing yields a sky
map nearly identical to the map with the pulsar term turned off. Either way, the anisotropy of the
signal is clear, with pulsars in certain sky directions receiving significantly larger signal power than
others.

This statistic is often shifted to have zero mean and scaled to have variance 1/Npairs, where
Npairs = N(N − 1)/2 are the number of pulsar pairs. The key idea is that the pairwise
correlations are summed together after being multiplied by the expected correlation function,
which acts like a matched filter. In the Bayesian approach, the correlation function enters into
the definition of the multi-variate Gaussian likelihood function [9, 13, 14],

p = A exp

⎛
⎝−

∑
i, j

∫
(r̃ir̃

∗
j + r̃∗

i r̃ j)C
−1
i j d f − 1

2

∫
ln(detC) d f

⎞
⎠ , (14)

where A is an overall normalization constant and

Ci j( f ) = SH ( f )αi j + Sni ( f )δi j. (15)

Here SH ( f ) is the power spectral density of the signal and Sni ( f ) is the power spectral density
of the noise in the ith pulsar. In the weak-signal limit, Sni 	 SH , the likelihood (14) can
be approximated as p = A′ exp(ρ/2), drawing out the close connection between the two
approaches.

4. Isolated black hole binaries

Before discussing alternative analysis techniques that may be better suited to detecting
anisotropic, non-Gaussian signals, it is interesting to consider how the standard analysis
might perform at detecting the signal from an isolated BH binary. To set the stage, let us
consider the correlations produced in a PTA with 100 randomly distributed pulsars by (i) a
single BH binary; and (ii) an isotropic background. To make the comparison equitable, the
isotropic signal was restricted to a single frequency bin. In figure 2 the correlations are shown
both with and without the pulsar term, and un-binned and binned in the angular separation
between the pulsars. The signal strength in each case was scaled to give unit correlation at
0◦ separation. The results in both cases are very similar. The un-binned correlations show
significant scatter, while the binned correlations follow the Hellings–Downs correlation curve.
At first sight it may seem strange that an isolated BH binary produces a correlation pattern

4
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Figure 2. Simulated noise free correlation curves for (i) an isolated BH binary (ii) an isotropic
background restricted to a single frequency bin. The top panels show the correlations as a function
of the angle between the pulsar pairs without the ‘pulsar term’; the middle panels show the full
correlation; while the lower panels show the full correlations averaged into 5◦ bins. The correlations
have been scaled such that the average of the auto-correlation terms is unity.

that is identical to that produced by an isotropic background, but on reflection the result is not
surprising. The Hellings–Downs curve is simply a consequence of the quadrupolar nature of
gravitational waves. In binning the correlations as a function of the pulsar angular separation
we are replacing the sky average (11) by an average over the pulsar locations, which in the
limit of a large number of pulsar pairs goes over to the integral

γ (μ) = 1

(4π)2

∫
〈rir j〉 δ(cos μ − n̂i · n̂ j) d�i d� j. (16)

The Dirac-delta function can be taken care of by adopting a coordinate system where the
j-pulsar has coordinates

x j = cos φi(cos θi sin μ cos λ + sin θi cos μ) − sin φi sin μ sin λ

y j = sin φi(cos θi sin μ cos λ + sin θi cos μ) + cos φi sin μ sin λ (17)

z j = cos θi cos μ − sin θi sin μ cos λ,

which ensure that n̂i · n̂ j = cos μ. Completing the integration over λ, φi, θi yields

γ (μ) = 〈H2〉α(μ). (18)

Thus, a single BH produces an identical angular correlation pattern as an isotropic stochastic
background. Note that the final result is independent of the BH orientation or sky position.
Again, this is not surprising since we have integrated the pulsar locations over the celestial
sphere, which is equivalent to actively rotating the BH reference frame while holding the
pulsars locations fixed.

The simulations in figure 2 used 100 pulsars so that the correlation pattern would be
obvious by eye after binning, however, the correlation is detectable with far fewer pulsars.
Figure 3 shows Bayes factors (betting odds) for the correlations following the Hellings–Downs
curve versus there being no correlation (aside from the auto-correlation of a pulsar with itself).
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Figure 3. Bayes factors for the detectability of the Hellings–Downs correlation as a function of
the number of pulsars in the array for two realizations of simulated data. In each panel the solid
(red) line is for an isotropic background restricted to a single frequency bin, while the dotted (blue)
line is for an isolated BH binary. The pulsar term was set to zero. There are fluctuations between
realizations, but on average, the correlations induced by a single BH are just as detectable as for
an isotropic background.

The correlation pattern becomes detectable with ∼8 or more pulsars. This is true both for an
isotropic background and for a single BH binary. Note that the Bayes factors do not change if
we rescale the correlation data by an overall constant.

5. Astrophysical black hole populations

In [6] the applicability of the standard analysis techniques based on (13) and (14) for detecting
the signals from an astrophysical population of BHs was discussed. There the focus was on
the non-Gaussianity of the signal, rather than the anisotropy. It was noted that the correlations
between pulsars followed the Hellings–Downs correlation curve upon averaging over ∼100
realizations (unsurprising given that the averaging restores isotropy), but this result has little
practical relevance given that we only get to see a single realization. On the other hand, the
fact that a single BH binary yields the Hellings–Downs curve means that the standard analysis
techniques will be effective (though not necessarily optimal) at detecting the signal from a
population of BHs. And while it is possible to theoretically establish the non-Gaussianity
of the signal using hundreds of realizations of the population catalogs, it will be difficult to
establish in practice with the handful of frequency bins available for the analysis. Indeed, the
departure from Gaussianity will likely be established by the detection of one or more of the
brightest signals using single source analysis techniques [15, 16]. The importance of there
being few effective samples in the data is illustrated in figure 4, where correlation curves for
various simulated signals are shown based on a ten year observation period. Noise was not
added to the signals in figure 4 so as not to obscure the intrinsic scatter from the pulsar term,
but a noise spectrum was used when computing the inner products in the pulsar correlations
coefficients

Ri j =
∫

(r̃ir̃∗
j + r̃∗

i r̃ j)

Sn( f )
d f . (19)

The pulsar timing noise was assumed to have a white spectrum above ∼6 nHz, and a red
spectrum at lower frequencies [17]:

Sn( f ) = const.(1 + ( f /6 nHz)−2). (20)

6
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Figure 4. Simulated noise free correlation curves for (i) an isotropic, white Gaussian background
using 100 frequency bins (ii) an isotropic red Gaussian background with the spectrum predicted for
a BH population (iii) a BH population model. The upper panels are raw scatter plots as a function
of the angle between the pulsars, while the lower panels average the correlations into 5◦ bins. The
correlations have been scaled such that the average of the auto-correlation terms is unity.
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Figure 5. Histograms of the scatter in the correlation about the Hellings–Downs model for an
isotropic, red Gaussian background (red, solid line), and for an astrophysical population of BH
binaries (blue, dashed line).

This noise weighting in the inner product means that for the signals with very red spectra,
such as those shown in the second two panels of figure 4, the correlations are dominated by
the data in the first few frequency bins. The constant in (20) is irrelevant since we scale the
correlations such that the average autocorrelation equals unity: 〈Rii〉 = 1.

The first panel in figure 4 shows the correlation curve for an isotropic stochastic
background with a white spectrum that covers 100 frequency bins. The second panel shows
the correlation curve for an isotropic stochastic background with a red spectrum where the
slope was chosen to match that from a population of BH binaries (SH ( f ) ∼ f −13/3). The
third panel shows the correlation curve for a realization of the BH population model used to
generate figure 1. Remarkably, the scatter from the BH population is less than for an Gaussian
stochastic background, as can be seen in the histograms of Ri j − 3

2α(θi j) shown in figure 5.
Having established that the standard correlation analysis is capable of detecting the

anisotropic, deterministic signal from an astrophysical population of BH binaries, it is worth
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considering how the analysis can be improved. What we are seeking is an analysis technique
that has an optimal balance between fidelity in the signal model and parsimony in terms of
dimensionality. High dimensional models can achieve high fidelity, but at the cost of a larger
trials factor (in a frequentist setting) or Occam factor (in a Bayesian setting). One high fidelity
approach would be to abandon a correlation analysis in favor of a direct waveform template-
based search for individual systems [15, 16], along the lines of what has been proposed for
detecting galactic binaries with a space based gravitational wave detector [18]. The advantage
of such an approach is that the signal model would accurately reflect the signals in the data, but
the downside is that it greatly increases the size of the parameter space to be explored. We may
find ourselves in a regime where each individual source lies below the detection threshold,
while the combined signal may be detectable by some other less direct approach. A correlation
analysis using a variant of (8), evaluated for several bright binaries with particular orientations
and sky location, and with the frequency domain inner products restricted to sub-bands where
one or two signals dominate, may be effective, but such an analysis introduces almost as many
parameters as a multi-signal template-based approach. One model that may find the sweet spot
in the balance between fidelity and complexity introduces just a single orientation parameter
for each bright source, which helps account for the anisotropy of the underlying signal. The
orientation parameter is the angle ζ between the unknown source direction (θ, φ) and the
‘filter direction’ (θT , φT ). In practice it is simplest to parameterize the search using the filter
parameters (θT , φT ), but the physical parameter space remains one dimensional since each
value of ζ corresponds to a circle on the (θT , φT ) search sphere. An analysis parameterized
by the angles (θT , φT ) favors circles with large ζ , and if a uniform prior on ζ is desired a
Jacobian factor of 1/ sin ζ has to be included in the posterior density. To see how this model
is derived, consider the filtered correlation function

κi j(θ, φ, θT , φT ) = 〈rir j〉(θ, φ) βi j(θT , φT ), (21)

with

βi j(θT , φT ) = F+
i (θT , φT )F+

j (θT , φT ) + F×
i (θT , φT )F×

j (θT , φT ). (22)

The filter βi j(θT , φT ) is the polarization averaged correlation function for a point source at
sky location (θT , φT ). Note that sky average of this quantity is the standard Hellings–Downs
correlation curve:

1

4π

∫
βi j(θT , φT ) d�T = α(θi j). (23)

Averaging κi j over pulsar pairs separated by angle μ yields
1

(4π)2

∫
κi j(θ, φ, θT , φT ) δ(cos μ − n̂i · n̂ j) d�i d� j = 〈H2〉 γ (μ, ζ ). (24)

In the continuum limit, the standard ρ statistic is recovered by integrating the above
expression over the pulsar separation angles μ and the orientation parameter ζ : ρ =∫ 〈H2〉 γ (μ, ζ ) d cos μ d cos ζ . The function γ (μ, ζ ) is plotted in figure 6. Note that the
matched filter γ (μ, 0) produces the largest correlation, and that using the sky averaged version
of the filter (i.e. the average over ζ ) will degrade the sensitivity.

For a BH population the analysis could target the brightest BHs in each frequency band.
For example, in the Bayesian formulation the correlation function to be used in the likelihood
(14) could be generalized to

Ci j( f ) =
∑

k

Sk
H ( f )βi j

(
θ k

T , φk
T

) + Sni ( f )δi j, (25)

where the Sk
H ( f ) are localized to a particular frequency band. The optimal number of bands

and their placement could be determined from the data using transdimensional Markov chain
Monte Carlo techniques.

8
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Figure 6. The directional correlation function γ (μ, ζ ).

6. Conclusions

We have shown that the standard cross-correlation analysis that was originally developed for
isotropic, Gaussian backgrounds is capable of detecting the signals from individual black hole
binaries, and by extension, the combined signal generated by an astrophysical population of
binaries. We have also argued that the standard analysis will be sub-optimal in this case since
the assumptions it makes about the signal are not valid, and we have suggested a number of
approaches that may be more sensitive. We are currently exploring the relative performance
of the various methods using simulated data from a variety of population synthesis models,
and the results will be presented in a forthcoming publication.
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