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ABSTRACT
Despite the recent rapid progress in numerical relativity, a convergence order less than the
second has so far plagued codes solving the Einstein–Euler system of equations. We report
simulations of the inspiral of binary neutron stars in quasi-circular orbits computed with a
new code employing high-order, high-resolution shock-capturing, finite-differencing schemes
that, for the first time, go beyond the second-order barrier. In particular, without any tuning or
alignment, we measure a convergence order above three both in the phase and in the amplitude
of the gravitational waves. Because the new code is already able to calculate waveforms with
very small phase errors at modest resolutions, we are able to obtain accurate estimates of tidal
effects in the inspiral that are essentially free from the large numerical viscosity typical of
lower order methods, and even for the challenging large compactness and small-deformability
binary considered here. We find a remarkable agreement between our Richardson-extrapolated
waveform and the one from the tidally corrected post-Newtonian (PN) Taylor-T4 model,
with a de-phasing smaller than 0.4 rad during the seven orbits of the inspiral and up to the
contact point. Because our results can be used reliably to assess the validity of the PN or
other approximations at frequencies significantly larger than those considered so far in the
literature, at these compactnesses, they seem to exclude significant tidal amplifications from
next to next-to-leading-order terms in the PN expansion.

Key words: gravitational waves – stars: neutron.

1 IN T RO D U C T I O N

The inspiral and merger of binary neutron stars (BNS) is one of
the most promising sources of gravitational waves (GWs) for future
ground-based laser interferometer detectors such as LIGO, Virgo or
KAGRA (Sathyaprakash & Schutz 2009). Because they can travel
almost unscattered through matter, GWs carry valuable informa-
tion from the deep core of the neutron stars (NSs) concerning the
equation of state (EOS) of matter at supranuclear densities. Un-
fortunately, they are also extremely hard to detect, so that their
identification and analysis requires the availability of analytical or
semi-analytical GW templates. In turn, the validation and tuning of
these models must be done by matching them with the predictions
of fully non-linear numerical relativity (NR) calculations, which
represent the only means to describe accurately the late inspiral of
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BNS (Baiotti et al. 2010, 2011; Bernuzzi et al. 2012b; Hotokezaka,
Kyutoku & Shibata 2013).

While very high quality NR waveforms of binary black hole
mergers are available, e.g. Aylott et al. (2009), Hinder et al. (2013)
and Mroue & et al. (2013) (but see Zlochower, Ponce & Lousto
2012), BNS simulations have been plagued by low convergence or-
der and large phase uncertainties (Baiotti, Giacomazzo & Rezzolla
2009; Bernuzzi, Thierfelder & Brügmann 2012a). Furthermore,
since NSs have smaller masses, the merger part of the waveform
is out of the frequency band for the next generation GW detectors,
so that EOS-related effects will have to be most probably extracted
from the inspiral signal. In particular, EOS-induced effects will be
encoded in the de-phasing that the GW signal will have with respect
to the one expected for point particles (PP); using a post-Newtonian
(PN) language, this can be seen as due to the dissipation of part of
the orbital angular energy into tidal deformations (see, e.g. Damour,
Nagar & Villain 2012 for a discussion). As a result, the measure
of the EOS-induced effects requires very accurate general relativis-
tic predictions of the inspiral signal, imposing that this part of the
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process is modelled as accurately as possible. Even though accurate
waveforms can be calculated by current codes at very high com-
putational costs (Baiotti et al. 2010, 2011; Bernuzzi et al. 2012b;
Hotokezaka et al. 2013), their analysis is complicated by the low
convergence order of the employed methods. In particular, the anal-
ysis often requires the use of a time rescaling or alignment of the
waves from different resolutions (Baiotti et al. 2011; Hotokezaka
et al. 2013), which is hardly justified from a mathematical point of
view, casting doubts on the robustness of the results. Finally, the
goal of exploring accurately a large space of parameters seems out
of reach for present fully general relativistic codes.

In this Letter, we show that, by using high-order numerical meth-
ods, it is indeed possible to obtain waveforms for the late inspiral
of a BNS system of a quality that is almost comparable with the
one obtained for binary black holes (Hinder et al. 2013), i.e. with
clean, higher than second-order convergence in both the phase and
the amplitude.

2 N U M E R I C A L M E T H O D S

The results presented here have been obtained with our new high-
order, high-resolution shock-capturing (HRSC), finite-differencing
code: WHISKYTHC, which represents the extension to general rela-
tivity of the THC code (Radice & Rezzolla 2012). In particular, the
new code makes use of the high-order flux-vector splitting finite-
differencing techniques described in Radice & Rezzolla (2012), but
also benefits from the recent developments in WHISKY in terms of
the recovery of the primitive quantities and of the use of tabulated
EOSs (see Galeazzi et al. 2013 for details); although our results will
refer to an ideal-fluid EOS. More specifically, WHISKYTHC solves
the equations of general relativistic hydrodynamics in conservation
form (Banyuls et al. 1997) using a finite-difference scheme that em-
ploys flux reconstruction in local-characteristic variables using the
Monotonicity Preserving 5 scheme (Suresh & Huynh 1997). This
scheme is formally fifth order in space and in Radice & Rezzolla
(2012) it was shown to lead to a clean fifth-order convergence in a
stringent test involving the propagation of a non-linear wave in a
flat space–time.

The space–time evolution, instead, makes use of the BSSNOK
formulation of the Einstein equations (Nakamura, Oohara & Kojima
1987; Shibata & Nakamura 1995; Baumgarte & Shapiro 1998) and it
is performed using the MCLACHLAN code of the Einstein Toolkit

(Schnetter, Hawley & Hawke 2004; Brown et al. 2009; Löffler et al.
2012) using a fourth-order accurate finite-difference scheme. To
ensure the non-linear stability of the scheme, we add a fifth-order
Kreiss–Oliger type artificial dissipation to the space–time variables
only.

Finally, the coupling between the hydrodynamic and the space–
time solvers is done using the method of lines and a fourth-order
Runge-Kutta time integrator.

We remark that with a formal fourth order of convergence in
time and space, ours is the first higher-than-second-order general
relativistic hydrodynamics code.1

1 Other high-order general relativistic hydrodynamic codes have been devel-
oped, such as WHAM (Tchekhovskoy, McKinney & Narayan 2007) or ECHO

(Del Zanna et al. 2007; Bucciantini & Del Zanna 2011). These codes, how-
ever, either use fixed space–times or approximations to general relativity.

Table 1. Summary of the considered BNS model. We report the total bary-
onic mass Mb, the ADM mass M, the initial separation r, the initial orbital
frequency forb, the gravitational mass of each star at infinite separation, M∞,
the compactness, C = M∞/R∞, where R∞ is the areal radius of the star
when isolated and the tidal Love number, κ2, e.g. Hinderer et al. (2010).

Mb (M�) M (M�) r (km) forb (Hz) M∞ (M�) C κ2

3.8017 3.453 66 60 208.431 1.7428 0.180 02 0.05

3 BINA RY SET-U P

The initial data are computed in the conformally flat approximation
using the LORENE pseudo-spectral code (Gourgoulhon et al. 2001)
and describe two equal-mass NSs in quasi-circular orbit. Its main
properties are summarized in Table 1, and we note that it is computed
using a polytropic EOS with K = 123.56 and � = 2, while the
evolution is performed using the ideal-fluid EOS with the same �.

Binaries with the same compactness, but different EOS, have
also been considered by Hotokezaka et al. (2013), where it was
found that high-compactness binaries are much more challenging
to evolve accurately than low-compactness ones. This is because
numerical viscosity becomes the leading source of de-phasing from
the PP limit, since tidal effects are small. The model chosen here
is even more challenging than that in Hotokezaka et al. (2013), as
our EOS leads to even smaller tidal deformabilities (namely smaller
values for the κ2 Love number).

All of the runs are performed on a grid covering 0 < x,
z ≤ 512 M�, −512 M� ≤ y ≤ 512 M�, where we assume re-
flection symmetry across the (x, y) plane and π symmetry across
the (y, z) plane. The grid employs six fixed refinement levels, with
the finest one covering both stars and we consider three different
resolutions having, in the finest refinement level, a grid spacing of
h/M� = 0.25, 0.20 and 0.14545, respectively. Our gauges are the
standard 1 + log slicing condition (Bona et al. 1995) and the mov-
ing puncture spatial gauge condition (van Meter et al. 2006) with
damping parameter set to 0.3.

Since our focus is mostly on the accuracy of the methods, we
consider the accuracy of the code by mainly looking at the � = 2,
m = 2 mode of the Weyl scalar �4 extracted at the fixed coordinate
radius of r = 450 M� (�130 M). We do not compute the strain
as this involves other uncertainties (Reisswig & Pollney 2011), nor
we extrapolate in radius �4 as we expect this not to be a large
contribution to our error budget. Indeed, for a grid set-up similar
to ours but for a lower compactness and smaller total mass model,
Baiotti et al. (2011) estimated a phase uncertainty of ±0.05 rad,
which is negligible when compared to the uncertainty due to the
eccentricity in the initial data.

4 G R AV I TAT I O NA L WAV E S

The dynamics of the inspiral and merger of BNS has been described
many times and in great detail in the literature, e.g. Baiotti, Gia-
comazzo & Rezzolla 2008; for this reason, we do not give a very
in-depth discussion of it here. We only mention that our stars inspi-
ral for about eight orbits before merger and then rapidly produce a
black hole. For this model, no significant disc is left behind. The
GW signal consists of about 16 cycles up to merger, followed by
the black hole ringdown.

Fig. 1 shows the amplitude of the � = 2, m = 2 mode of �4, as
extracted at radius r = 450 M�, and as a function of the retarded
time t − r∗, where r∗ = r + 2M log (r/2M − 1). The first thing to
note is that the merger time, defined as the time where the curva-
ture GW amplitude |�4| has its maximum, is very close among the
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Figure 1. Amplitude of the � = 2, m = 2 mode of the GW Weyl scalar �4

as extracted at radius r = 450 M� for three different resolutions.

different runs. As we change the resolution by a factor 1.7 from low
to high, the differences in the merger time are only of the order of
�2.5 per cent. In comparison, the results reported by Hotokezaka
et al. (2013) show, for a model with the same compactness, changes
of the order of �20 per cent when changing the resolution by a factor
1.4, despite their highest resolution being about 35 per cent higher
than our highest one (this roughly corresponds to a factor 3 increase
in the computational costs). Having such small differences in the
merger time allows us to perform a much simpler and cleaner anal-
ysis with respect to the one presented in Hotokezaka et al. (2013).
In particular, we do not need to perform any alignment/time scaling
of the numerical waveforms when measuring the convergence order
or when performing their Richardson extrapolation.

A more quantitative analysis is shown in Fig. 2, which reports
the convergence order in the amplitude A (left-hand panel) and in
the phase φ (right-hand panel), which are defined as

�4 ≡ A eiφ . (1)

We find very clean convergence in both quantities with order 3.2
almost up to the NR contact time, which we estimate following

Bernuzzi et al. (2012b), to be t − r∗ = 5000 M� (2M∞ω �
0.11, where ω = dφ/dt). Note that the NR contact happens before
the ‘bare’ contact frequency introduced by Damour et al. (2012),
2M∞ωcont = 2C3/2 � 0.15, which is instead reached at t − r∗ �
5200 M� in the highest resolution run and should really be seen as
an upper limit (Damour et al. 2012).

Fig. 2 represents the highest convergence order ever shown for
BNS simulations in full general relativity. It is smaller than the nom-
inal one of the scheme (which is fourth since we use fourth-order
finite-differencing for the space–time), but this is to be expected
because HRSC methods typically reach their nominal convergence
order only at very high resolutions (Shu 1997; Radice & Rezzolla
2012). More importantly, and as already mentioned above, this high
order of convergence is obtained without any manipulation of the
waveforms, which is a procedure hardly justified from a mathe-
matical point of view, although used by some of us (Baiotti et al.
2009; Read et al. 2013) and in Hotokezaka et al. (2013). As also ob-
served with other codes (Bernuzzi et al. 2012a), our solution shows
a loss of convergence (superconvergence) after t � 5000 M�, as
this represents the time after which the stars merge. This time is
different for different resolutions and inevitably leads to a loss of
convergence.

5 TI DAL EFFECTS

As a first direct application of our code to explore the validity of
semi-analytic approximation techniques, we perform a comparison
with the predictions from the PN theory using the Taylor-T4 formula
either in the PP approximation (Santamarı́a et al. 2010) or with the
inclusion of tidal effects up to relative 1PN order (Flanagan &
Hinderer 2008; Hinderer et al. 2010; Pannarale et al. 2011; Vines,
Flanagan & Hinderer 2011; Maselli et al. 2012). This is shown in Fig
3. In particular, we take as reference the Richardson-extrapolated
phase evolution, φh=0, computed using the measured convergence
order 3.2, and we plot the de-phasing of the different models with
respect to it. Because the extrapolated waveform is obtained using
the medium and high resolutions, which do not merge up until t − r∗
� 5200 M�, it is reasonable to extend the comparison with the PN
waveforms up to these times in Fig 3.

Figure 2. Amplitude differences (left-hand panel) and accumulated de-phasing (right-hand panel) on the � = 2, m = 2 mode of the Weyl scalar �4 extracted
at r = 450 M�. For both quantities, we show the differences between the low- and the medium-resolution runs (blue lines), between the high- and the
medium-resolution runs (green lines), as well as the rescaled differences between the high- and the medium-resolution runs (red lines) computed assuming a
convergence order of 3.2.
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Figure 3. Accumulated de-phasing with respect to the Richardson-
extrapolated NR waveform assuming a convergence order of 3.2. In par-
ticular, we show the de-phasing accumulated by the three simulations with
increasing resolution (blue, green and red lines, respectively) as well as by
the waveforms predicted by the PN Taylor-T4 approximation in the limit of
PP (light-blue line) and when tidal corrections are included (purple line).

We align the PN waveforms in time and phase to the extrapolated
one using the χ2−minimization procedure proposed by Boyle et al.
(2008), which was also adopted by Baiotti et al. (2010, 2011),
Bernuzzi et al. (2012b) and Hotokezaka et al. (2013). In particular,
we determine τ and �φ to minimize

χ2 =
∫ t2+r∗

t1+r∗
[φNR(t) − φPN(t − τ ) − �φ]2 dt , (2)

where the interval (t1, t2) is taken to be (150, 2000) M� so as to
include two local adjacent maxima of the GW phase in the early
part of the GW signal, following Hotokezaka et al. (2013). These
local extrema are due to the phase modulation induced by the or-
bital eccentricity of the initial data and our choice of the matching
interval allows us to avoid overfitting these modulations with the
least-squares procedure. The results that we present below are not
sensitive with respect to the choice of the window for the fit as
long as it is large enough to avoid overfitting the eccentricity phase
modulation and, at the same time, small enough so as not to include
the last part of the inspiral.

When comparing among numerical solutions we find that
the de-phasing between the highest resolution run and the
Richardson-extrapolated result is of �0.4 rad at NR contact point,
t − r∗ = 5000 M� (which is about 13.5 GW cycles; see red solid
line in Fig. 3), and of �1.4 rad over ∼15 GW cycles at the bare
contact frequency. As a comparison, for a model with the same
compactness, Hotokezaka et al. (2013) found a de-phasing of �5
rad between the highest resolution simulation (which is even 35
per cent higher than ours) and the extrapolated solution over 15
GW cycles at the bare contact frequency. We remark, however, that
the Richardson-extrapolated waveform should be treated with care
after the NR contact, since convergence is lost then.

On the other hand, when comparing with semi-analytical predic-
tions we find that the de-phasing between the PP PN waveform and
the extrapolated one at t − r∗ = 5000 M� is only of �0.65 rad
(light-blue solid line). With the inclusion of tidal effects, the de-
phasing is further reduced to only �0.35 rad, i.e. to the point that it
is almost comparable to the uncertainty due to the eccentricity of the
initial data, which we estimated to be ±0.1 rad (see inset in Fig. 3).

Indeed, the tidally corrected PN waveform appears to be very close
to the Richardson-extrapolated data up to the NR contact point,
t − r∗ = 5000 M�, with the accumulated de-phasing at the bare
contact frequency being now of only �0.9 rad. This result clearly
rules out, at least for this model, the importance of any significant
tidal contributions from next-to-next-to-leading-order terms in the
PN expansion.

When comparing our results with those published recently, we
note that Bernuzzi et al. (2012b) reached conclusions similar to ours,
namely that semi-analytic approximations, such as the effective one
body (EOB) and the tidally corrected Taylor-T4 PN expansion, are
able to describe accurately the phasing of the binaries essentially up
to contact. Their results, however, were based on more deformable
stellar models, for which the tidal de-phasing is intrinsically larger.
On the other hand, for stellar models with smaller deformability,
which is comparable but still larger than the one considered here,
Hotokezaka et al. (2013) found that all the available analytic mod-
els underestimate the tidal deformability in the very last phase of
the inspiral. It is thus possible that the conclusions reached by Ho-
tokezaka et al. (2013) may have been influenced by larger numerical
viscosity, as the one in the early calculations of Baiotti et al. (2011).
A direct comparison using the same stellar models could help clarify
this point.

Since we are considering Richardson-extrapolated results, our es-
timates of the de-phasing need to be reported with a certain degree of
error. We can follow Hotokezaka et al. (2013) and estimate the error
assuming a variance of ±0.2 in the convergence order used in the
extrapolation. If we do, and because of our high convergence order,
we find an error bar that is only ±0.05 rad at t − r∗ = 5000 M�. In
practice, however, this uncertainty is below a larger and systematic
error coming from the initial eccentricity of the binary.

6 C O N C L U S I O N S

We have presented the first higher-than-second-order, multidimen-
sional, general relativistic hydrodynamics code: WHISKYTHC – a re-
sult of the combination of the WHISKY (Baiotti et al. 2005; Galeazzi
et al. 2013) and THC (Radice & Rezzolla 2012) codes. We have ap-
plied it to the simulation of the late inspiral and merger of two NSs in
quasi-circular orbits. We showed that our code is able to accurately
estimate the small tidal effects present in the inspiral of binaries with
realistic compactness, C = 0.18, and small tidal number κ2 = 0.05,
at a much lower resolution and at a fraction of the cost used so far in
the literature (e.g. Baiotti et al. 2010, 2011; Bernuzzi et al. 2012b;
Hotokezaka et al. 2013). In particular, we found a convergence or-
der of 3.2 in both the amplitude and the phase of the GWs up to
the contact point in the numerical simulations. When comparing
the numerical Richardson-extrapolated waveform with the analytic
PN predictions, we found remarkable agreement, especially when
tidal corrections are included. At least for the case considered here,
our results indicate that the tidally corrected Taylor-T4 waveform
agrees very well with the NR waveform up to contact, i.e. up to
frequencies of the order of �1 kHz, which are significantly higher
than 450 Hz conservatively estimated by Hinderer et al. (2010) as a
validity limit for the PN expansion considered here. For this reason,
we can exclude significant contributions from: (1) � = 2 linear tidal
terms higher than 1PN order, (2) � > 2 tidal terms, (3) non-linear
tidal terms.

Having developed a very accurate and high-order code, we are
now ready to exploit its efficiency to explore systematically the role
of tidal effects in BNS mergers with simple and realistic EOSs.
In addition, we will use it to test and improve semi-analytical
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descriptions, e.g. PN and the EOB (Baiotti et al. 2010), and to
quantify the detectability of tidal effects by advanced GW detec-
tors, following the spirit of Read et al. (2013).
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