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1 Introduction and summary

In the theory of the three-dimensional pure Einstein gravity with a negative cosmological

constant, as there is no propagating degree of freedom in the bulk, all asymptotically

AdS solutions are locally diffeomorphic and differ only in their global structures [1–4]. In

Euclidean signature, starting with a thermal AdS3, whose conformal boundary is a torus

with modulus τ , we can obtain an ‘SL(2,Z)’ family of solutions via modular transformations

(τ 7→ aτ+b
cτ+d) on the modulus of the boundary torus [5]. In particular, the S-transformation

τ 7→ − 1
τ maps the AdS3 into a BTZ black hole. The full modular invariant partition

function consists of a sum of all the modular images of the AdS3 partition function: Z[τ ] =∑
ZAdS3 [aτ+b

cτ+d ] [6]. One can then study the phase structure using Z[τ ], and for example

show how Hawking-Page transition [7] occurs when τ moves across the boundary between

different fundamental domains [5, 6, 8].

Vasiliev’s higher-spin theory is a generalization of the gravity theory; besides the gravi-

ton, it contains massless spin-s fields with s ≥ 3; and it lives in spaces with non-zero con-

stant curvatures, i.e. AdS or dS spaces [9–12]. In three dimensions, it can be consistently

truncated to a Chern-Simons subsector after the scalar in the theory is decoupled [13, 14].1

We only consider AdS space in this paper. In AdS3, the gauge algebra of this Chern-Simons

theory is an infinite-dimensional Lie algebra hs[λ] [15, 16], which at λ = N reduces to the

finite-dimensional sl(N) [9, 17]. The 3D Chern-Simons high-spin theory is a straightfor-

ward generalization of the sl(2) Chern-Simons theory (the alternative formulation of the

3D pure gravity with a negative cosmological constant [18, 19]) and share its essential

features: in particular, it does not have any propagating degree of freedom in the bulk of

the three-manifold M; the topology of M and the boundary data on ∂M determine the

dynamics.

In the Chern-Simons higher-spin theory, two types of smooth solutions have been found

and studied: the conical surplus constructed by [20] and the black hole by [21]. They can be

viewed as the higher-spin-charge-carrying generalizations of the AdS3 and BTZ black hole,

respectively. Since the notion of the boundary torus still exists in the higher-spin version

of the Chern-Simons theory, we can ask whether these two solutions, the conical surplus

and the black hole, are related via an S-transformation of the modulus of the boundary

torus.

In some sense, this has to happen since these two solutions reduce to AdS3 and BTZ

when all the higher-spin charges are set to zero. The non-trivial part of the story is this:

the boundary modulus τ can be considered as the thermodynamical conjugate of the spin-2

charge, and in the higher-spin theory, the spin-2 field is coupled with all the higher-spin

fields, therefore a transformation of τ inevitably induces the corresponding transformations

1In 3D, the scalar does not sit in the higher-spin multiplet therefore can be consistently decoupled.
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on the chemical potentials of all the higher-spin charges. The crux in generalizing the

modular properties of the spin-2 theory to a higher-spin theory is in determining this

induced transformations on the higher-spin chemical potentials.

For this purpose, one first needs a consistent description of the thermodynamics of the

given solution. Up till now this is absent for the conical surplus; however for the black hole

an extensive literature on its thermodynamics has already emerged: e.g. a ‘holomorphic’

approach represented by [21–26] and a ‘canonical’ one represented by [27–29].

In this paper we choose the ‘canonical’ formalism because, as we will show later, in

this formalism important quantities and equations are manifestly modular invariant or

covariant. In the ‘canonical’ formalism we generalize the thermodynamics of the black hole

to include all smooth stationary solutions.

Once the thermodynamics of the conical surplus is established, we determine the

required transformation on the higher-spin chemical potential accompanying the S-

transformation on the boundary modulus τ 7→ − 1
τ , and prove that the conical surplus

and the black hole are S-dual. We then show that the black hole and the conical surplus

are related by a coordinate transformation (that changes the modular parameter of the

boundary torus from τ to − 1
τ ).

Then we generalize from the S-transformation to the full modular group: starting with

a higher-spin-charge-carrying conical surplus solution and applying on it the full modular

group, we can generate an ‘SL(2,Z)’ family of smooth stationary solutions. They are all

connected by coordinate transformations that act non-trivially on the homology of the

boundary torus. Their free energies hence their on-shell partition functions are related

via modular transformations. The full modular invariant partition function then involves

summing over all the modular images of the conical surplus.

The paper is organized as follows. In section 2 we briefly review some basics of 3D sl(N)

higher-spin theory, summarize known stationary smooth solutions, and define new smooth

stationary solutions in the ‘SL(2,Z)’ family. In section 3 we formulate a thermodynamics

that is universal to all members of the ‘SL(2,Z)’ family (including conical surplus and

black hole). Then in section 4 we prove that a conical surplus can be mapped into a black

hole via an S-transformation of the modulus of the boundary torus. In section 5 we show

how to generate an ‘SL(2,Z)’ family of smooth solutions. We summarize and discuss open

problems in section 6. In appendix A we present a detailed proof for a statement that is

central to our paper; in appendix B we review the spin-2 story; finally in appendix C we

discuss sl(4) theory as a concrete example.

2 Basics of 3D higher-spin theory

In this section we first review some basics of the three-dimensional sl(N) higher-spin theory

(for more details see the earlier works [20, 21, 30] and the reviews [31, 32]). Then we

summarize known smooth solutions in this theory, i.e. the conical surplus and the black hole,

and meanwhile prepare the readers for our later discussion on general smooth solutions. In

this paper we focus on stationary, axially symmetric, solutions.
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2.1 Action

In three dimensions, the Einstein-Hilbert action with a negative cosmological constant Λ

can be rewritten in terms of an sl(2,R)⊕ sl(2,R) Chern-Simons theory (up to a boundary

term) [18, 19]:

S = SCS[A]− SCS[Ā] with SCS[A] =
k

4π

∫
M

Tr

[
A ∧ dA+

2

3
A ∧A ∧A

]
(2.1)

where M is a locally AdS3 manifold; A and Ā are sl(2,R) gauge fields; the trace ‘Tr’

is on the 2-dimensional representation of sl(2) and the level k =
lAdS3
4GN

. This trick (of

rewriting Einstein-Hilbert action with a negative Λ into a gauge theory) only works in

three dimensions.

On the other hand, the three-dimensional Vasiliev higher-spin theory is also much

more tractable than its higher-dimensional siblings. Besides the gauge fields, the theory

has only one additional scalar field, which can be consistently decoupled since it is not

part of the higher-spin multiplet in 3D. The gauge field subsector can then be written as

a Chern-Simons theory (2.1) with A and Ā ∈ hs[λ], which is an infinite-dimensional Lie

algebra and at λ = N reduces to sl(N) (after quotiented by an infinite ideal). In this paper

we will focus on the 3D sl(N) Chern-Simons theory. The trace ‘Tr’ in the Chern-Simons

action (2.1) is now on the N -dimensional representation of sl(N) and the level becomes

k = `AdS
4GN

1
2 Tr[(L0)2]

.2

Now let us parametrize the base manifold M. Since the theory has a negative cos-

mological constant, we choose the boundary condition to be asymptotically AdS3. A

constant-time slice of an asymptotically AdS3 space M is topologically a disc. Specify

a radial coordinate ρ and an angular coordinate φ, the coordinate is then {ρ, t, φ}. The

asymptotic boundary ∂M is at ρ→∞ and the boundary coordinates are {t, φ}.
In this paper, we focus on Euclidean signature. The Wick rotation into Euclidean

signature is via t 7→ itE and the coordinate becomes {ρ, z, z̄} with

z ≡ φ+ itE . (2.2)

Accordingly, the gauge symmetry becomes sl(N,C). The connection A ∈ sl(N,C); and in

the representation we will choose, Ā is A’s anti-hermitean conjugate:3

Ā = −A† . (2.3)

Therefore, most of the time we only need to write the A’s side of the expression and the

one for Ā can then be inferred using (2.3).

The Chern-Simons action (2.1) has gauge degrees of freedom A ∼ A+dΛ, which allows

us to fix the gauge as:

A(ρ, z, z̄) = b−1 a(z, z̄) b+ b−1 db (2.4)

2This additional normalization factor 1
2 Tr[(L0)2]

is necessary for the spin-2 subsector of sl(N) higher-spin

theory to match the Einstein gravity.
3This is also the convention used by [20, 27, 33].

– 4 –



J
H
E
P
1
2
(
2
0
1
3
)
0
9
4

where b = eρL0 is an SL(N)-valued 0-form, and a is an sl(N)-valued 1-form on the bound-

ary ∂M:

a = azdz + az̄dz̄ . (2.5)

2.2 Asymptotic symmetries

The sl(2) subalgebra corresponds to the spin-2 (i.e. gravity) sector, with generators {L0,±1},
whose commutators are:

[Lm, Ln] = (m− n)Lm+n , m, n = −1, 0, 1 . (2.6)

(We will also sometimes write Ln = W
(2)
n .) From the sl(N) gauge symmetry, we first need

to make a choice as to which sl(2) subalgebra corresponds to the gravity sector, namely we

need to choose how the gravity sl(2) embeds in the full gauge algebra sl(N). The choice

of this embedding then determines the spectrum of the theory. The principal embedding

is particularly simple because the field of each spin appears once and only once. In this

paper we only discuss the principal embedding and a generalization to other embeddings

is straightforward.

Next, one can choose the boundary condition for A and determine the asymptotic

symmetry group. This was done in [30, 34–36]. In the absence of sources, the asymptotic

AdS condition implies

Az̄ = 0 . (2.7)

However this boundary condition (2.7) is too weak and gives rise to a phase space that

is too large (with an affine sl(N) algebra as its asymptotic symmetry). An additional

boundary condition was proposed by [30] to supplement (2.7) (see also [37] for the spin-2

case):

(A−AAdS)|ρ→∞ = O(1) , (2.8)

which reduces the phase space by imposing a first-class constraint on the sl(N) affine alge-

bra and results in a WN algebra as the asymptotic symmetry. This is the bulk realization

of the Drinfeld-Sokolov reduction (the reduction of an affine algebra to a W-algebra) [38].

In the process of the Drinfeld-Sokolov reduction, different gauge choices give different

bases for theW-algebra. A particular convenient choice is the highest-weight gauge, which

gives rise to aW-algebra in which all W (s) are primaries with respect to the lowest spins [30,

36]. Since there is no spin-1 field in the sl(N) Chern-Simons theory, all W (s≥3) fields are

Virasoro primaries:

[Lm,W
(s)
n ] = [(s− 1)m− n]W

(s)
m+n , s = 3, . . . , N , m, n ∈ Z . (2.9)

This is the gauge we will use throughout this paper.4

Recall that in the spin-2 case the bulk isometry sl(2) is given by the ‘wedge’ subalgebra

(generated by L−1,0,1) of Virasoro algebra. Here the (N2 − 1)-dimensional bulk isometry

4Other gauges are possible and might be more suitable for other questions, for details see [36].
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sl(N) is generated by W
(s)
m with s = 2, . . . , N and m = −s + 1, . . . , s − 1. An explicit

representation of (2.9) for m ≤ |N | is [39]:

W (s)
n = (−1)s−n−1 (s+ n− 1)!

(2s− 2)!
(AdjL−1

)s−n−1(L1)s−1 (2.10)

where the adjoint action AdjAB = [A,B]. Lastly, we will choose a convention in which

(Lm)† = (−1)mL−m (2.11)

which together with (2.10) implies (W
(s)
m )† = (−1)mW

(s)
−m for s = 2, . . . , N . In this conven-

tion we have (2.3).

2.3 Smooth solutions

2.3.1 Equations of motion

The equation of motion of the Chern-Simons action is the flatness condition for A: F ≡
dA+A ∧A = 0. In the gauge (2.4), this translates into the flatness of a:

f ≡ da+ a ∧ a = 0 . (2.12)

In this paper we will only consider axially-symmetric, stationary, solutions. For these

solutions, A has only ρ-dependence. In the gauge (2.4) , this means that a is constant,

hence throughout this paper we will refer to them as constant solutions (although they can

rotate). Their equations of motion (2.12) reduce to

[az, az̄] = 0 . (2.13)

Once az is fixed, az̄ can be determined via the equation of motion (2.13), whose solution

is simply az̄ being an arbitrary traceless function of az. By Cayley-Hamilton theorem, an

arbitrary function of a N ×N matrix az (that is generic enough) truncates to a polynomial

of az of degree-(N − 1); therefore az̄ has the expansion [51]:

az̄ =

N∑
s=2

σs

[
(az)

s−1 − Tr(az)
s−1

N
1

]
. (2.14)

Up to now, {σs} are (N − 1) arbitrary complex parameters. Later we will show how they

are fixed in terms of the chemical potentials of the higher-spin charges.

2.3.2 Holonomy condition

In this subsection, we define the condition that characterizes a generic smooth constant

solution. The known solutions, i.e. the conical surplus and the black hole, are the two

special cases.

Any given az together with the az̄ related by it via (2.14) would solve the equation of

motion (2.13). However, requiring the solution be smooth imposes a much more stringent

constraint. Since in the higher-spin theory, the spin-2 field is coupled with all higher-

spin fields hence the Ricci scalar is no longer a gauge invariant entity, the smoothness

– 6 –
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condition need to be prescribed in terms of other, gauge-invariant, observables. In the 3D

Chern-Simons theory, the natural candidate is the holonomy around a one-cycle C in M:

HolC(A) ≡ Pe
∮
C A . (2.15)

The smoothness condition is then simply that the holonomy around any contractible cycle

(A-cycle) must be trivial, i.e. HolA(A) ∈ center of the gauge group [20, 21].

First let us describe the cycles in this 3D Euclidean spacetime. The asymptotic bound-

ary of the Euclidean AdS3 is a torus. First we fix its homology basis (α, β) with α∩β = 1.

Then we give this torus a complex structure. This allows us to define a holomorphic 1-

form ω; we can choose its basis such that
∮
α ω = 1, then τ ≡

∮
β ω defines the modulus

of the torus. Once the modulus of the boundary torus is fixed, different bulk geometries

correspond to different ways of filling the solid torus. We first fix the primitive contractible

cycle (A-cycle), then the primitive non-contractible cycle (B-cycle) that satisfies A∩B= 1

is uniquely determined up to shifts in the A-cycle. The (A,B) homology basis is related to

the original (α, β) basis via a modular transformation:(
B

A

)
=

(
a b

c d

)(
β

α

)
with

(
a b

c d

)
∈ PSL(2,Z) (2.16)

with

PSL(2,Z) ≡ SL(2,Z)/Z2 , SL(2,Z) ≡ {

(
a b

c d

) ∣∣ a, b, c, d ∈ Z, ad− bc = 1} . (2.17)

Then the torus with (A,B) as the homology basis but with the same holomorphic 1-form

ω has a modular parameter

modular parameter ≡
∫

B ω∫
A ω

=
aτ + b

cτ + d
, (2.18)

which is a modular transformation of the original modulus τ . Throughout this paper, we

use γ to denote an element of the modular group PSL(2,Z) and define γ̂τ to be its action

on τ :5

γ ≡

(
a b

c d

)
∈ PSL(2,Z) : τ 7−→ γ̂τ ≡ aτ + b

cτ + d
. (2.19)

Also note that throughout this paper, by modular parameter we mean the ratio of the

(complex) length of the non-contractible(B) cycle and that of the contractible(A) cycle, as

defined in (2.18); and we reserve the term modulus for τ .

The conical surplus solutions that carry higher-spin charges has a contractible cycle

φ ∼ φ+ 2π, just like the AdS3 [20].

CS: γ =

(
1 0

0 1

)
=⇒

A-cycle: z ∼ z + 2π ,

B-cycle: z ∼ z + 2πτ .
(2.20)

5In PSL(2,Z), γ and −γ are identified, hence we can choose c ≥ 0 without loss of generality.

– 7 –
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Accordingly, the holonomy around this φ-cycle needs to lie in the center of the gauge group:

Holφ(A) = b−1e2πωφb ∈ center of G (2.21)

where ωφ is defined as6

ωφ ≡ az + az̄ . (2.22)

Let’s denote by ‘Λ (ω)’ the vector of eigenvalues of a matrix ω:

U ω U−1 = DiagonalMatrix[λ1, . . . , λN ] =⇒ Λ (ω) ≡ ~λ = (λ1, . . . , λN ) . (2.23)

The center of SL(N,C) is e−2πim
N 1 with m ∈ ZN , which implies that the eigenvalues of ωφ

satisfies [20]:

Λ (ωφ) = i ~n , (2.24)

where the vector ~n = (n1, . . . , nN ) with ni ∈ Z − m
N , ni 6= nj for i 6= j, and

∑N
i ni = 0,

and most importantly ni must come in pairs for the solution to be a conical surplus, i.e. if

we order {ni} into a monotone sequence then

ni + nN+1−i = 0 . (2.25)

This imposes a very strong constraint on m: m = 0 for N odd, and m = 0 or N
2 for N

even. But recall that the center of SL(N,R) is precisely 1 for N odd and ±1 for N even;7

therefore the constraint (2.25) forces the holonomy to lie in the center of the Lorentzian

gauge group SL(N,R) rather than that of the Euclidean one SL(N,C). In summary the

vector ~n obeys

~n = (n1, . . . , nN ) , ni ∈

{
Z N odd

Z or Z + 1
2 N even

, ni 6= nj for i 6= j , ni + nN+1−i = 0,

(2.26)

and can be considered as a ‘topological charge’ of the solution; and we will term it ‘holonomy

vector’. The global AdS3 space corresponds to ~n = ~ρ (the Weyl vector of sl(N), with

ρi = N+1
2 − i), and generic ~n’s satisfying (2.26) give conical surpluses [20]. For discussions

on the conical surplus in hs[λ] Chern-Simons theory see e.g. [40–45]

On the other hand, the (Euclidean) black hole has a contractible cycle z ∼ z + 2πτ .

BH: γ =

(
0 −1

1 0

)
=⇒

A-cycle: z ∼ z + 2πτ ,

B-cycle: z ∼ z − 2π .
(2.27)

Accordingly, the trivial holonomy condition is [21]:

Holt(A) = b−1e2πωtb ∈ center of SL(N,R) , (2.28)

with ωt defined as

ωt ≡ τaz + τ̄ az̄ . (2.29)

6Throughout the paper we will call such ω ‘holonomy matrix’.
7The ±1 for N even arises from the fact that the gauge group is actually (SL(N,R)/Z2) ×

(SL(N,R)/Z2) [20].
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Namely

Λ (ωt) = i ~n , (2.30)

with ~n satisfying the same set of conditions as the conical surplus (2.26). ~n = ~ρ corresponds

to the higher-spin-charge-carrying BTZ black hole first constructed in [21]; and other ~n’s

give more generic higher-spin black holes.

This definition of smooth solution by the holonomy around the contractible cycle can

be easily generalized to include solutions whose modular parameter is a generic γ̂τ (other

than τ or − 1
τ ). For a generic γ =

(
a b

c d

)
∈ PSL(2,Z), the A/B cycles are

Contractible(A)-cycle: z ∼ z + 2π(cτ + d) ,

Non-contractible(B)-cycle: z ∼ z + 2π(aτ + b) .
(2.31)

Accordingly, for a smooth solution, the holonomy around the A-cycle should be trivial

HolA(A) = b−1e2πωAb ∈ center of SL(N,R) , (2.32)

with the holonomy matrix around the A-cycle given by

ωA ≡
1

2π

∮
A
a = (cτ + d)az + (cτ̄ + d)az̄ , (2.33)

namely

Λ (ωA) = i ~n (2.34)

again with ~n given by (2.26). Here we also write down the holonomy matrix around the

B-cycle for comparison and for later use:

ωB ≡
1

2π

∮
B
a = (aτ + b)az + (aτ̄ + b)az̄ . (2.35)

For given ~n and τ , varying γ ∈ PSL(2,Z) then generates a ‘SL(2,Z)’ family of solutions

(a term coined in [5]). Since the T-transformation τ 7→ τ + 1 does not change the A/B

cycle (2.31), we should consider the subgroup of Γ ≡ PSL(2,Z)

Γ∞ ≡ {

(
1 m

0 1

) ∣∣ m ∈ Z}/Z2 ⊂ Γ ≡ PSL(2,Z) . (2.36)

to be the stabilizer; hence the ‘SL(2,Z)’ family is actually the quotient Γ∞\Γ. Since a γ

in Γ∞\Γ is uniquely given by the lower row (c, d) (which always satisfies gcd(c, d) = 1), an

enumeration of all the members in this family is thus [46]:

∀(c, d) with c, d ∈ Z , c ≥ 0 , gcd(c, d) = 1 . (2.37)

Lastly, the holonomy vector for Ā is always related to that of A via

~̄n = ~n (2.38)

in the anti-hermitean basis we choose. We summarize the discussion of this subsection in

the following table:

– 9 –
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EAdS3 and CS black hole Smooth solution γ

A-cycle z ∼ z + 2π z ∼ z + 2πτ z ∼ z + 2π(cτ + d)

B-cycle z ∼ z + 2πτ z ∼ z − 2π z ∼ z + 2π(aτ + b)

modular parameter τ − 1
τ

aτ+b
cτ+d

A-cycle holonomy ωφ = az + az̄ ωt = τaz + τ̄ az̄ ωA = (cτ + d)az + (cτ̄ + d)az̄

Table 1. Summary of A-cycle holonomy for smooth solutions.

3 Thermodynamics

The conical surplus solution constructed in [20] has higher-spin charges but with no chemi-

cal potential turned on, and hence there is no study on its thermodynamics yet. Meanwhile,

the thermodynamics of the black hole in the sl(N) Chern-Simons theory has been exten-

sively studied, and depending on the choice of the spin-2 conserved charge (the zero-mode

of the energy-momentum tensor) there are two main approaches. In the ‘holomorphic’

formalism (initiated in [21] and used in [22–26]), the spin-2 conserved charge (for the left-

mover A) T is holomorphic.8 In the ‘canonical’ formalism, the spin-2 conserved charge T

is obtained either via a canonical approach [28, 29] à la Regge-Teitelboim [50], or via a

direct derivation from the variational principle [27] (for a precursor see [51]) which gives

the same result; in this formalism T is not holomorphic and receives contribution from the

right-mover Ā. The different definitions of (T, T̄ ) in turn leads to different results for the

integrability condition, the entropy, and finally the free energy. For more details see the

discussion in [27]. (For other discussions on the black hole thermodynamics see [52, 53].)

Now we would like to generalize the result of the thermodynamics of the black hole to

the conical surplus and to all smooth constant solutions in the ‘SL(2,Z)’ family. Which

of the two formalism is better suited for this purpose? Usually the modularity (w.r.t.

PSL(2,Z)) requires the holomorphicity of the theory. Therefore naively one would expect

that the ‘holomorphic’ formalism be the choice whereas the modular property be absent

or at least obscured in the ‘canonical’ formalism.

However, the fact that in the ‘canonical’ formalism T lacks holomorphicity therefore

modularity does not pose any problem in a discussion of the modular properties in this

formalism. First of all, although the spin-2 conserved charge T , and hence the entropy,

is not modular covariant, this is to be expected since they are not holomorphic to start

with. Moreover they are only intermediate quantities. As we will show presently, all the

other final quantities — the connection, the holonomy condition, and the free energy — are

modular invariant or covariant. We will derive manifestly modular covariant expressions

for them. We will also show later in section 6 that the crucial consistency condition —

the integrability condition (relating conserved charges of different spins) — is modular

invariant in the ‘canonical’ formalism.

On the other hand, as we will discuss in section 6, in the ‘holomorphic’ formalism,

it is not clear to us how to write down a simple modular transformation such that the

8For the CFT computation in this formalism see [47–49].
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various important relations — the holonomy condition, the integrability condition, etc —

are modular invariant or covariant.

This leads us to choose the ‘canonical’ formalism developed in [27] for our generalization

of thermodynamics of the black hole to all members of the ‘SL(2,Z)’ family. In this section,

we generalize the procedure in [27, 51]

1. Vary the bulk action and identify the source and charge terms in the connection.

2. Write down the suitable boundary action to ensure the variational principle.

3. Identify the conjugate pair of energy and temperature, compute the free energy and

entropy, and check the first law of thermodynamics.

to generic smooth constant solutions (including the conical surplus). In particular, we

compute the on-shell action for generic solutions and write down the modular covariant

expressions for the entropy and free energy.

One clarification: the construction of these general smooth constant solutions will only

be shown later, in section 5. However, since we first need to know the thermodynamics of

the conical surplus solution (in order to consistently turn on its chemical potentials) before

we can discuss its relation with the black hole solution, and since the thermodynamics of

all these smooth solutions can be discussed in an unified way (and with no need to know

the full details of the solutions), we will study all of them at once now, and postpone the

explicit construction of these solutions to section 5.

3.1 Variational principle

In the presence of higher-spin conserved charges Qs with s = 3, . . . , N , the partition func-

tion (evaluated as an Euclidean path-integral) is a function of the boundary modulus τ

and the chemical potential µs conjugate to the higher-spin charge Qs:

Z [τ ; µs] ≡
∫
DADĀ e−I

(E)
(3.1)

The free energy of the system is

− βF [τ ; µs] = lnZ [τ ; µs] . (3.2)

In this paper, we take the saddle point approximation (i.e. only include the classical result):

each classical solution contributes e−I
(E)|on-shell . For each classical solution, its free energy

F (in the saddle point approximation) is given by

− βF = −I(E)|on-shell . (3.3)

In this section, we study the on-shell action of individual solutions; we will discuss the

contributions from all saddle points to the partition function later in section 5.
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3.1.1 Variation of bulk action

For the discussion in this section, it is enough to know that a smooth constant solution

can be defined by the condition that its holonomy around the A-cycle is trivial, i.e. equa-

tion (2.31), (2.32), and (2.34); and it is determined by the PSL(2,Z) element γ.

The thermodynamics for the case of γ =

(
0 −1

1 0

)
(the higher-spin black hole with

modular parameter − 1
τ ) was already given in [27]. We now generalize its derivation to

the generic smooth solution with modular parameter γ =

(
a b

c d

)
. The thermodynamical

relation comes out of a direct variational calculation of the Chern-Simons action, which

tells us how to add the boundary term once the choice of source/field is made. In this

variational calculation, the modulus of the boundary torus should actively vary since it

carries the physical information of the inverse temperature (and the twist along the angular

direction) [27, 56]. However, in the coordinate system (z, z̄) which we have been using, the

modular parameter γ̂τ is hidden in the identification of the A/B cycle; to make it appear

explicitly we need to first switch to a coordinate system (w, w̄) that lives on a rigid torus

with fixed modulus τ = i. The coordinate transformation from (z, z̄) to (w, w̄) is

z = (cτ + d)(
1− i γ̂τ

2
w +

1 + i γ̂τ

2
w̄) (3.4)

and similarly for z̄. The A/B cycle is mapped to

A-cycle: z ∼ z + 2π(cτ + d) 7−→ w ∼ w + 2π

B-cycle: z ∼ z + 2π(aτ + b) 7−→ w ∼ w + 2πi
(3.5)

Since in the (w, w̄) coordinate the torus is rigid, the on-shell variation of the Euclidean

Chern-Simons action

I
(E)
bulk[A] =

ik

4π

∫
Tr[A ∧ dA+

2

3
A ∧A ∧A] (3.6)

in this coordinates is simply

δI
(E)
bulk[A]|on-shell = − ik

4π

∫
∂M

Tr[a ∧ δa] = − ik
4π

∫
∂M

dw ∧ dw̄Tr[awδaw̄ − aw̄δaw] (3.7)

and similarly for the Ā term. From now on we will omit the superscript (E) since we will

only discuss the Euclidean signature. Now we translate this back to the (z, z̄) coordinate.

First, the volume element is

idw ∧ dw̄ =
i

τ2
dz ∧ dz̄ (3.8)

which is invariant under the modular transformation τ 7→ γ̂τ . Second, the 1-form a is

invariant under the coordinate transformation (3.4), hence

aw = (cτ + d)(
1− i γ̂τ

2
az) + (cτ̄ + d)(

1− i γ̂τ
2

az̄) (3.9)
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whose variation contains explicitly the δτ and δτ̄ term:

δaw = (cτ + d)(
1− i γ̂τ

2
δaz) + (cτ̄ + d)(

1− i γ̂τ
2

δaz̄) +
c− i a

2
(azδτ + az̄δτ̄) (3.10)

and similarly for aw̄. The integrand in (3.7) is thus

Tr[awδaw̄ − aw̄δaw]
∣∣∣
γ̂τ

= τ2 Tr[azδaz̄ − az̄δaz] +
i

2
Tr[(az + az̄)(azδτ + az̄δτ̄)] (3.11)

with

τ2 ≡ Im τ (3.12)

However this is identical to the corresponding expression for the special case of the modular

parameter being − 1
τ , i.e. the black hole (see eq. (4.16) in [27]). Namely, the variation of

the bulk action only depends on the modulus τ of the boundary torus but not on γ, i.e.

not on the identification of the A/B cycles. This is to be expected: for the theory with

boundary torus of the modular parameter γ̂τ , the inverse temperature β and the angular

velocity θ is still given by the modular τ :

θ + iβ

2π
= τ (3.13)

instead of γ̂τ . Accordingly, the zero modes of the stress tensor (T, T̄ ) should still be

read off from the coefficients of (δτ, δτ̄), instead of (δ(γ̂τ), δ(γ̂τ̄)). The above computation

confirms this.

3.1.2 Charges and chemical potentials

The fact that the variation of the bulk action (3.11) actually does not explicitly depend on

γ means that all the solutions in this ‘SL(2,Z)’ family should have the same identification

of source/charge term inside the connection (a, ā). Since for later proofs we will be using

some of the details on how (a, ā) depends on the charge and the chemical potential, we will

explain them again in detail here, instead of merely referring to the earlier paper [27].

The symmetry algebra sl(N) is (N2 − 1)-dimensional, and can be spanned by the

generators W
(s)
m with s = 2, . . . , N and m = −s + 1, . . . , s − 1. The construction (2.10)

produces an orthogonal basis

Tr[W (s)
m W (t)

n ] = t(s)m δs,t δm+n,0 (3.14)

where t
(s)
m ≡ Tr[W

(s)
m W

(s)
−m] is the normalization factor of W

(s)
m .

The additional boundary conditions (2.8) are first-class constraints, using which we

can bring az into a form where the charge matrix Q sits in the highest-weight direction

W
(s)
−s+1 [54]:

az = L1 + Q Q =
N∑
s=2

Qs

t(s)
W

(s)
−s+1 (3.15)

where Qs is the zero mode of the spin-s field W s and t(s) ≡ ts−s+1. Note that in this basis

Q2 =
1

2
Tr
[
(az)

2
]

Q3 =
1

3
Tr
[
(az)

3
]

(3.16)
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but for spins s ≥ 4, 1
s Tr [(az)

s] is no longer simply Qs, e.g.

1

4
Tr
[
(az)

4
]

= Q4 + r1 Q
2
2

1

5
Tr
[
(az)

5
]

= Q5 + r2 Q2Q3 . . . (3.17)

where ri’s are some N -dependent rational numbers that can be computed using (2.10), e.g.

for N = 5, r1 = 17
50 and r2 = 31

35 , etc. Nevertheless we choose this basis because the modular

transformation of the connection (a, ā) takes very simple form in this basis, as we will show

presently.

az̄ should contain the information of the chemical potentials µs’s. Following [27], we

demand that the lowest weight terms (i.e. W
(s)
s−1 terms) of az̄ are linear in µ, in analogue

to the construction of az in (3.15):

az̄ = M + (terms ∼W (s)
m≤s−2) M =

i

2τ2

N∑
s=3

µsW
(s)
s−1 (3.18)

First note the absence of µ2 in the definition of M: since we are now in Euclidean signature,

the role of µ2 should be replaced by the modulus τ of the boundary torus. The prefactor 1
2τ2

is chosen to normalize the µsQs term in the on-shell action (see (3.26)); and it is common

to all solutions in the ‘SL(2,Z)’ family, as explained in the previous subsection. And the

presence of ‘i’ is from the Wick rotation to the Euclidean signature.

From the definition (3.18) and the orthogonality of the {W (s)
m } basis, we have the

following N − 1 equations:

1

t(s)
Tr[W

(s)
−s+1az̄] =

{
0 s = 2
i

2τ2
µs s = 3, . . . , N

(3.19)

which can uniquely determine the N − 1 {σs} in (2.14) in terms of {µs} for given {Qs}.
Once az̄ is written in terms of µs and Qs we can use the holonomy condition to select the

smooth solutions: e.g. (2.24) for conical surpluses, (2.30) for black holes, and (2.32) for

more generic solutions labeled by γ. In the canonical ensemble, the higher-spin charges are

given and their conjugate chemical potentials are solved in terms of them, the boundary

modulus τ , and the holonomy vector ~n

µt = µt(~n; τ ; Qs≥2) t = 3, . . . , N (3.20)

In the grand canonical ensemble, the chemical potential µs≥3 are given and the charges of

the solution are solved in terms of µs, the boundary modulus τ , and the holonomy vector ~n

Qt = Qt(~n; τ ; µs≥3) t = 2, . . . , N (3.21)

3.1.3 Boundary action

Now that we have made a choice of charge/source terms in (az, az̄), we can solve for the

boundary action which, when added to bulk action, makes sure that the variation of the

full action has the correct form of [charge · δ source].

– 14 –
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In this derivation, a useful identity is

Tr [L1az̄] = Tr [[L0,Q]az̄] =
i

2τ2

N∑
s=3

(s− 1)µsQs (3.22)

where the first ‘=’ can be proven using the definition (3.15), [az, az̄] = 0, [L0, L1] = −L1,

and the cyclic nature of the trace; and the second one is proven by expanding the right

hand side of (3.22) in terms of (3.15) and using [L0,W
(s)
−s+1] = (s − 1)W

(s)
−s+1. And (3.22)

is also equivalent to

Tr[azaz̄] =
i

2τ2

N∑
s=3

sµsQs (3.23)

The appropriate boundary term is

Ibndy = − k

2π

∫
∂M

d2zTr[(az − 2L1)az̄] (3.24)

Combining the variation of this boundary term with that of the bulk one (eq. (3.7)

with (3.11)), one can first read off the spin-2 conserved charges T conjugate to τ

T =
1

2
Tr
[
(az)

2
]

+ Tr [azaz̄]−
1

2
Tr
[
(āz)

2
]

(3.25)

and then write down the variation of the full action (bulk plus boundary):

δI(E)|on-shell = δI
(E)
bulk|on-shell + δI

(E)
bndy|on-shell

=− (2πik)

∫
d2z

4π2τ2

(
Tδτ − T̄ δτ + Tr [(az − L1)δ(−2iτ2az̄)]− Tr [(−āz̄ + L−1)δ(−2iτ2āz)]

)
=− (2πik)

(
T δτ − T̄ δτ̄ +

N∑
s=3

(Qs δµs − Q̄s δµ̄s)

)
(3.26)

where we have restored the Ā terms. We emphasize that equations (3.22) to (3.26) have

already been given in [27] for the black hole case; here we have proved that they are valid

for all solutions in the ‘SL(2,Z)’ family:

3.2 On-shell action, free energy, and entropy

For the black hole solution, the free energy and entropy were computed in [27, 51]. In this

subsection we follow their derivation and determine the entropy and free energy for all the

solutions in the ‘SL(2,Z)’ family, and more importantly, write them into modular covariant

expressions.

As explained earlier, the variation of the action (bulk plus boundary) should take

the same form for all solutions in the ‘SL(2,Z)’ family, given by (3.26). However the

on-shell value of the action depends on how we fill the solid torus therefore is different

for different solutions in the ‘SL(2,Z)’ family. [51] computed the on-shell action of a non-

rotating black hole in this sl(N) higher-spin theory. Now we generalize to a generic smooth

constant solution labeled by γ. The key point is to choose an appropriate foliation of
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the three-manifold M that is regular all the way to the center of M (i.e. the horizon),

thereby avoiding a boundary term at the horizon. In the non-rotating black hole case,

the contractible cycle is tE ∼ tE + 2π, therefore [51] chose a slicing of the three-manifold

M by disks with constant angular parameter φ, and obtained an on-shell bulk action

I
(E)
bulk|on-shell = − ik

4π

∫
∂M dtdφTr [ataφ].

Now for the smooth constant solution labeled by γ, the contractible cycle is z ∼
z + 2π(cτ + d). Go to the coordinate (uA, uB) defined as

uA ≡ i

2τ2
[(aτ̄ + b)z − (aτ + b)z̄] , uB ≡ i

2τ2
[−(cτ̄ + d)z + (cτ + d)z̄] . (3.27)

We see as z 7→ z + 2π(cτ + d),

uA 7−→ uA + 2π and uB 7−→ uB ; (3.28)

i.e. uB comes back to itself around the contractible cycle z ∼ z+ 2π(cτ + d). Therefore we

should foliate M with disks of constant uB and such a foliation remains regular inside the

bulk; thus we only need to compute the boundary term at the ρ→∞.

Expand the connection (a, ā) in the coordinate (uA, uB):

a = azdz + az̄dz̄ = ωAdu
A + ωBdu

B (3.29)

where ωA/ωB is precisely the holonomy matrix around the A/B cycle:

ωA = (cτ + d)az + (cτ̄ + d)az̄ , ωB = (aτ + b)az + (aτ̄ + b)az̄ . (3.30)

Written in term of the coordinate (uA, uB), the connection A is then

A = Aρdρ+ [b−1ωAb]du
A + [b−1ωBb]du

B = Aαdx
α +ABdu

B , (3.31)

where Aαdx
α = Aρdρ + AAdu

A is the projection of A onto the disk (with coordinate

xα = ρ, uA); and b = b(ρ) as defined earlier in (2.4) — not to be confused with the entry b

in the matrix γ. The bulk action is thus sliced into

I
(E)
bulk =

ik

4π

∫
duB

∫
dρduA Tr εαβ [ABFαβ −Aα∂BAβ]− ik

4π

∫
ρ→∞

duAduB Tr [ωAωB] ,

(3.32)

with a bulk integral plus a boundary one.

Now let’s compute the on-shell value of (3.32) for a smooth constant solution labeled by

γ. First, the bulk integral vanishes when taken on-shell, following from the bulk equation

of motion F = 0 and the fact that the solution is constant (i.e. has no (z, z̄)-dependence).

Second, in the boundary integral, since the integrand has no dependence on (z, z̄), the

integration merely produces an overall volume of the boundary torus vol(∂M) = 4π2.9

Therefore restoring the right-movers we conclude that the on-shell (Euclidean) bulk action

for the solution γ is

I
(E)
bulk|on-shell = −(2πik)

1

2
Tr [ωAωB − ω̄Aω̄B] . (3.33)

9The volume element of the boundary torus is duA ∧ duB = i
τ2
dz ∧ dz̄.
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Then as explained earlier, different solutions in the ‘SL(2,Z)’ family share the same

boundary term (3.24). The on-shell value of this boundary action is

I
(E)
bndy|on-shell = (2πik)

1

2

N∑
s=3

(s− 2)(µsQs − µ̄sQ̄s) . (3.34)

Combining (3.33) and (3.34) gives the total on-shell action and hence the free energy:

−βF =− (I
(E)
bulk|on-shell + I

(E)
bndy|on-shell)

=(2πik)

(
1

2
Tr [ωAωB − ω̄Aω̄B]− 1

2

N∑
s=3

(s− 2)(µsQs − µ̄sQ̄s)

)
.

(3.35)

Now let’s derive the entropy for generic members of the ‘SL(2,Z)’ family. The free-

energy should take the form

−βF = S + 2πik

(
Tτ − T̄ τ̄ +

N∑
s=3

(µsQs − µ̄sQ̄s)

)
. (3.36)

We first write down a useful identity

1

2
Tr [ωφωt − ω̄φω̄t] = Tτ − T̄ τ̄ +

1

2

N∑
s=3

s(µsQs − µ̄sQ̄) , (3.37)

with ωφ and ωt defined earlier in (2.22) and (2.29), respectively. (3.37) can be proven using

(T, T̄ )’s definition (3.25) and the identity (3.23). Using (3.37) we obtain the entropy of a

smooth constant solution labeled by γ:

S = (2πik)
1

2
(Tr [ωAωB − ω̄Aω̄B]− Tr [ωφωt − ω̄φω̄t]) . (3.38)

First, let us prove that the entropy defined by (3.38) is indeed a Legendre transform of

the free energy (3.35). The method is the same as used in [27] to prove the corresponding

statement for the black hole case. Since the holonomy around the contractible cycle is

trivial, the eigenvalue of the holonomy matrix is given by integers hence is rigid, which

means

δωA = [ωA, ε] , (3.39)

where ε is an infinitesimal matrix. This implies Tr [az δωA] = Tr [az̄ δωA] = 0, following

from [az, az̄] = 0 for constant solutions. Then using the above together with δωB =
a
c δωA − 1

c δωφ we get the variation of the entropy (3.38) as:

δS = −(2πik) Tr [ωt δωφ − ω̄t δω̄φ] . (3.40)

Translated back to the thermodynamical variables {T,Qs; τ, µs}, it is

δS = −(2πik)

(
τ δT − τ̄ δT̄ +

N∑
s=3

(µs δQs − µ̄s δQ̄s)

)
, (3.41)
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which confirms that the entropy defined by (3.38) is indeed a Legendre transform of the

free energy (3.35).

Finally let’s check the modular covariant expression for the entropy in the two special

cases, the conical surplus and the black hole. In these two cases, the holonomy matrices

around A/B cycle (3.30) are

CS: ωA = az + az̄ , ωB = τaz + τ̄ az̄ ;

BH: ωA = τaz + τ̄ az̄ , ωB = −az − az̄ .
(3.42)

Since

ωAωB =

{
ωφωt CS

−ωφωt BH
(3.43)

and similarly for ω̄Aω̄B,

S =

0 CS

−(2πik) Tr [ωφωt − ω̄φω̄t] = −(2πik)
[
2(Tτ − T̄ τ̄) +

∑N
s=3 s(µsQs − µ̄sQ̄s)

]
BH

(3.44)

Therefore (3.38) indeed reproduces the known result for black hole in [27] and gives a

reasonable answer for the conical surplus. The free energies for these two special cases

are thus

− βF = (2πik) ·

{
(Tτ − T̄ τ̄) +

∑N
s=3 (µsQs − µ̄sQ̄s) CS

−(Tτ − T̄ τ̄)−
∑N

s=3 (s− 1)(µsQs − µ̄sQ̄s) BH
(3.45)

4 Conical surplus and black hole are S-dual

In this section, we prove that any given conical surplus solution can be mapped into a

black hole under an S-transformation of the modulus τ of the boundary torus. First, let’s

state precisely the full action of this S-transformation. The S-transformation is the special

case of the modular transformation on the boundary torus τ 7→ γ̂τ defined in (2.19):

S: γ =

(
0 −1

1 0

)
: τ 7−→ γ̂τ = −1

τ
. (4.1)

Under this S-transformation, the A/B cycles of the conical surplus solution map to those

of the black hole:

A-cycle: z ∼ z + 2π 7−→ z ∼ z + 2πτ

B-cycle: z ∼ z + 2πτ 7−→ z ∼ z − 2π
(4.2)

This would induce the corresponding transformations on the higher-spin charges Qs and/or

their chemical potentials µs.

Recall that in the grand canonical ensemble, once the chemical potentials {µs≥3} of

a conical surplus are given, the on-shell values of the charges {Qs≥2} are solved in terms
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of µs, the boundary modulus τ , and the holonomy vector ~n around its A-cycle (i.e. the

φ-cycle):

QCS
t = qt [~n; τ ; µs] t = 2, . . . , N (4.3)

via the trivial holonomy condition around its A-cycle. In this section, we will first show

that the S-transformation on the boundary modular parameter (4.1) maps the above conical

surplus to a black hole with the same chemical potential µs, the same holonomy vector ~n

but along the new A-cycle (i.e. the z ∼ z + 2πτ cycle), and with modular parameter − 1
τ .

The on-shell values of the charges of this black hole are given by

QBH
t =

1

τ t
qt

[
~n; −1

τ
;
µs
τ s

]
t = 2, . . . , N (4.4)

We emphasize that the function qt in (4.3) and (4.4) is the same one.

Once (4.4) is proven, we will then show how the black hole and the conical surplus

are related by a coordinate transformation (that changes the modular parameter of the

boundary torus from τ to − 1
τ ). We then prove that the free energy of the conical surplus

and that of the black hole are mapped to each other via the S-transformation (4.1). Finally

we illustrate with the example of the sl(3) theory.

4.1 S-transformation of holonomy condition and on-shell charges

Since the defining difference between a conical surplus and a black hole is in the holonomy

conditions around their respective A-cycles, we will derive the map from (4.3) to (4.4)

using a map from the holonomy condition of the conical surplus (2.24) to that of the black

hole (2.30).

First let us compare the two holonomy conditions in more details. First, from the equa-

tion of motion for constant solutions (2.13), az and az̄ of a constant on-shell configuration

can be simultaneously diagonalized. Therefore, the vector of eigenvalues of the holonomy

matrix (ωφ for the conical surplus and ωt for the black hole) has a decomposition in terms

of vectors of eigenvalues of az and az̄:

CS: Λ (ωφ) = Λ (az + az̄) = Λ (az) + Λ (az̄) ,

BH: Λ (ωt) = Λ (τaz + τ̄ az̄) = τ Λ (az) + τ̄ Λ (az̄) ;
(4.5)

since in computing e.g. Λ (az + az̄) by (2.23) we can choose U to be a unitary matrix

that diagonalizes both az and az̄. Recall that az is the function of charges {Qs} only, as

defined in (3.15); and az̄ is a function of {µs, Qs} and the modulus τ as defined via (2.14)

and (3.19):10

az = az [Qs] , az̄ = az̄ [τ ; µs; Qs] , (4.6)

using which we can write the two holonomy conditions as

CS: i ~n = Λ (ωφ [τ ; µs; Qs]) = Λ (az [Qs]) + Λ (az̄ [τ ; µs; Qs]) ; (4.7)

BH: i ~n = Λ (ωt [τ ; µs; Qs]) = τ Λ (az [Qs]) + τ̄ Λ (az̄ [τ ; µs; Qs]) . (4.8)

10We emphasize that, just like az, az̄ has exactly the same functional form for conical surplus and black

hole. The crucial reason is that what is responsible for the thermodynamics is the modulus τ instead of the

modular parameter aτ+b
cτ+d

in the homology basis of (A-cycle, B-cycle).
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To further compare the two, we now rewrite (4.8) into the form of (4.7). First, let’s

look at the az part. A crucial observation is that, in the highest-weight gauge, for any

κ ∈ C:

κ · κL0 az [Qs] κ
−L0 = az [κsQs] . (4.9)

which follows from az’s definition in the highest-weight gauge (3.15) and the commutating

relation [L0,W
(s)
−s+1] = (s − 1)W

(s)
−s+1. Relevant to the present case, we set κ = τ in (4.9)

and obtain

τ · τL0 az [Qs] τ
−L0 = az [τ sQs] . (4.10)

Taking the vectors of eigenvalues of both sides then immediately gives

τ Λ (az [Qs]) = Λ (az [τ sQs]) . (4.11)

Then we look at the az̄ part. The identity (4.9) does not have an analogue for az̄, but

the special case (4.10) with κ = τ does:

τ̄ · τL0 az̄ [τ ; µs; Qs] τ
−L0 = az̄

[
−1

τ
;
µs
τ s

; τ sQs

]
. (4.12)

Note that from l.h.s. to r.h.s. the variables of az̄ transform as:

τ 7−→ −1

τ
, µs 7−→

µs
τ s
, Qs 7−→ τ sQs . (4.13)

The proof of (4.12) takes two steps.

1. Going back to (2.14) to rewrite az̄ in terms of only σs and Qs (i.e. without the

modulus), and then using (4.10), we have

τ̄ · τL0 az̄ [σs; Qs] τ
−L0 =

N∑
s=2

|τ |2σs
τ s

[
(az [τ sQs])

s−1 − Tr(az [τ sQs])
s−1

N

]
. (4.14)

2. Recall that the relations between {σs≥2} and {τ ;µs≥3} are given by the (N − 1)

equations in (3.19). This implies the following identity, which we will prove in ap-

pendix A:

σs =
i

2τ2

N∑
s′=s

µs′ Hs′−s(Qt) , (4.15)

where Hs′−s(Qt) is a homogenous polynomial (with rational coefficients) of degree-

(s′ − s), with variables Qt having degree-t. Using that τ2 7→ τ2
|τ |2 under τ 7→ − 1

τ , we

see to get the transformation (4.13) of the variables in (4.12), we need the following

transformation of (σs, Qs):

σs 7−→ |τ |2
σs
τ s
, Qs 7−→ τ sQs . (4.16)

Namely, the r.h.s. of (4.14) is preciely az̄
[
− 1
τ ; µs

τs ; τ sQs
]
, which proves (4.12).
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Computing the vectors of eigenvalues of both sides then gives the analogue of (4.11):

τ̄ Λ (az̄ [τ ; µs; Qs]) = Λ

(
az̄

[
−1

τ
;
µs
τ s

; τ sQs

])
. (4.17)

Having proved (4.11) and (4.17), we can now plug them into the holonomy condition for

the black hole (4.8) and recast it into the form of conical surplus’ holonomy condition (4.7)

but with transformed variables:

i ~n = Λ (ωt [τ ; µs; Qs]) = Λ

(
ωφ

[
−1

τ
;
µs
τ s

; τ sQs

])
. (4.18)

Equivalently, if we take the holonomy condition of the conical surplus (4.7) and apply on

it a change of variables defined in (4.13), we arrive at the holonomy condition of the black

hole (4.8).

In the proof above, we have adopted the passive viewpoint of transformation and shown

that the conical surplus and black hole are mapped to each other via a passive change of

variables (4.13). Now we need to translate this into the active viewpoint. To compare

the two solutions, we place them into a common grand canonical ensemble: with common

temperature and chemical potentials, and ask how their conserved charges are mapped into

each other.

In the grand canonical ensemble, once the chemical potentials {µs≥3} are given, the

charges {Qs} are fixed by the holonomy condition around the A-cycle to be a function of

{~n; τ ; µs}. The relation (4.18) between the holonomy condition of the conical surplus and

the black hole then implies the following relation between their charge functions:11

QCS
t = qt [~n; τ ; µs] ⇐⇒ QBH

t =
1

τ t
qt

[
~n; −1

τ
;
µs
τ s

]
t = 2, . . . , N . (4.19)

The function q [~n; τ ; µs] should be considered as defined using the charge function of the

conical surplus solution.

4.2 Coordinate transformation between conical surplus and black hole

From the mapping (4.18) (or equivalently (4.19)) together with (4.10) and (4.12), we see

that the gauge field components (az, az̄) of a conical surplus and those of its S-dual black

hole are related via:

aCS
z

[
~n; −1

τ
;
µs
τ s

]
= τ · τL0 aBH

z [~n; τ ; µs] τ
−L0 ,

aCS
z̄

[
~n; −1

τ
;
µs
τ s

]
= τ̄ · τL0 aBH

z̄ [~n; τ ; µs] τ
−L0 .

(4.20)

11Here we emphasize that the relation (4.19) should not be confused with the last part of the (4.13).

The substitution Qs 7−→ τsQs is part of the passive field redefinition accompanying τ 7→ − 1
τ

; whereas the

relation (4.19) is a bona fide change of the on-shell value of the charges (in the grand canonical ensemble).

The substitution rule (4.13) implies, rather than contradicts, the map (4.19). We will discuss this point

again from the point of view of the boundary CFT, in section 5.2.
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To further compare the two, let us rescale the coordinate of the conical surplus. Changing

the coordinate while fixing the gauge components (az, az̄) gives a different gauge one-form.

Under the rescaling of the coordinate (z, z̄)

z 7−→ z′ =
z

τ
z̄ 7−→ z̄′ =

z̄

τ̄
, (4.21)

the gauge one-form a transforms as

a(z,z̄) ≡ azdz + az̄dz̄ 7−→ a(z′,z̄′) ≡ azdz′ + az̄dz̄
′ . (4.22)

The one-form a of the conical surplus in the new coordinate (z′, z̄′) is then related to that

of the black hole in the original coordinate (z, z̄) only by a similarity transformation:

aCS

[
~n; −1

τ
;
µs
τ s

](z′,z̄′)

= τL0 aBH [~n; τ ; µs]
(z,z̄) τ−L0 . (4.23)

Similarly for the right mover:

āCS

[
~n; −1

τ
;
µs
τ s

](z′,z̄′)

= τ̄−L0 aBH [~n; τ ; µs]
(z,z̄) τ̄L0 . (4.24)

Going back to the gauge connection (A, Ā), related to (a, ā) via (2.4), we see that the

similarity transformation in (4.23) and (4.24) can be reabsorbed by a simultaneous shifting

of the radial coordinate ρ accompanying the rescaling of (z, z̄):

ρ 7−→ ρ′ = ρ+ ln |τ | , z 7−→ z′ =
z

τ
, z̄ 7−→ z̄′ =

z̄

τ̄
. (4.25)

Namely, in terms of

A(ρ,z,z̄) ≡ e−ρL0a(z,z̄)eρL0 +L0dρ and A(ρ′,z′,z̄′) ≡ e−ρ′L0a(z′,z̄′)eρ
′L0 +L0dρ

′ (4.26)

(and similarly for Ā) the full gauge one-form (A, Ā) of the black hole with parameter

{~n; τ ; µs} in the original coordinate (ρ, z, z̄) is identical to that of the conical surplus with

parameter {~n; − 1
τ ; µs

τs } in the new coordinate (ρ′, z′, z̄′) up to an overall constant gauge

transformation:

ĥ−1 ·ACS

[
~n; −1

τ
;
µs
τ s

](ρ′,z′,z̄′)

· ĥ = ABH [~n; τ ; µs]
(ρ,z,z̄) ,

ĥ−1 · ĀCS

[
~n; −1

τ
;
µs
τ s

](ρ′,z′,z̄′)

· ĥ = ĀBH [~n; τ ; µs]
(ρ,z,z̄) ,

(4.27)

with ĥ =
(
τ̄
τ

)L0
2 = e−i arg(τ)L0 . This means that the conical surplus and the black hole

differ only in the global structure. This is the analogue of the spin-2 story: in the spin-2

case, the BTZ black hole can be mapped by a coordinate transformation into a thermal

AdS3 with modular parameter − 1
τ (instead of τ). They are both discrete quotients of the

AdS3; thermal AdS3 with parameter τ whereas BTZ with parameter − 1
τ [5, 6].
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4.3 S-transformation of free energies

We have just proved that the S-transformation τ 7→ − 1
τ maps a conical surplus with param-

eter {~n; τ ;µs} (holonomy vector around A-cycle, boundary modulus, chemical potentials)

into a black hole with the same set of parameters {~n; τ ;µs}, and that the on-shell value of

charges Qs is mapped via (4.19).

Now, between this S-dual pair of a conical surplus and a black hole, if we know the

free energy of the conical surplus, as a function of parameters {~n; τ ;µs}:

FCS = F [~n; τ ; µs] , (4.28)

what can we say about the free energy of the black hole? In other words, how does the

free energy of the conical surplus change under the S-transformation?

To answer this question, we first need to compare the free energies of the two solutions.

We have written down a few expressions of the free energy in section 3.2. For instance the

free energies in (3.45) were written in terms of thermodynamics variables {T,Qs; τ, µs}.
However, the most important condition in defining an S-dual pair is that the two share the

same holonomy vector ~n, around their respective A-cycles. Therefore we should instead

start with the general expression (3.35), and then use (3.43) to restrict to the conical

surplus or the black hole, then finally rewrite the expression in terms of {~n; τ ; µs; Qs}.
We now do this separately for the conical surplus and the black hole.

4.3.1 Conical surplus

Now let us first rewrite the free energy of the conical surplus in terms of {~n; τ ; µs; Qs}.
The general expression for the free energy (3.35) plus (3.43) give the free energy of the

conical surplus to be:

−βFCS = (2πik)

(
1

2
Tr [ωφωt − ω̄φω̄t]−

1

2

N∑
s=3

(s− 2)(µsQs − µ̄sQ̄s)

)
, (4.29)

with ωφ and ωt defined in (2.22) and (2.29), respectively.

First, using

Q2 =
1

2
Tr
[
(az)

2
]

and Tr [azaz̄] =
i

2τ2

N∑
s=3

sµsQs , (4.30)

we have

1

2
Tr [ωφωt] = τQ2 + τ1

i

2τ2

N∑
s=3

sµsQs + τ̄
Tr
[
(az̄)

2
]

2
, (4.31)

where τ1 ≡ Reτ . The last term in (4.31) is not immediately defined in terms of the

parameters {~n; τ ;µs;Qs}. However, recall that for the conical surplus, the holonomy matrix

ωφ, with Λ (ωφ) = i ~n labeling different solutions, contains a Tr
[
(az̄)

2
]

term:

−1

2
~n2 =

1

2
Tr
[
(ωφ)2

]
= Q2 +

i

2τ2

N∑
s=3

sµsQs +
Tr
[
(az̄)

2
]

2
. (4.32)
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Therefore (4.31) and (4.32) together give an identity

1

2
Tr [ωφωt]

CS = −~n
2

2
τ̄ + 2iτ2Q2 −

1

2

N∑
s=3

sµsQs , (4.33)

using which (and its right mover counterpart) we can rewrite the free energy (4.29) of the

CS solution in terms of {~n; τ ; µs; Qs}:

− βFCS = 2πik

[
2iτ2(

~n2

2
+Q2 + Q̄2)−

N∑
s=3

(s− 1)(µsQs − µ̄sQ̄s)

]
. (4.34)

The set of parameters {~n; τ ; µs; Qs} transform covariantly under modular transformation.

However, this is not yet the last step. Since the free energy is in the grand canonical

ensemble, we should consider its variables to be {~n; τ ; µs}, and replace Qs by its function

of them. Plugging the charge function for the conical surplus (4.3) into (4.34), we get the

final answer for its free energy

−βFCS =2πik
[

2iτ2

(
~n2

2
+ q2[~n; τ ; µs] + q̄2[~n; τ ; µs]

)
−

N∑
s=3

(s− 1) (µsqs[~n; τ ; µs]− µ̄sq̄s[~n; τ ; µs])
]
≡ −βF [~n; τ ; µs] .

(4.35)

In the last line we have used this result of the free energy of the conical surplus to define a

‘free energy function’ F [~n; τ ; µs], which will be used later to relate to the free energy of

other solutions in the ‘SL(2,Z)’ family.

4.3.2 Black hole

The black hole case is completely parallel. Applying (3.43) to the general expression (3.35)

gives the free energy of the black hole:

−βFBH = (2πik)

(
−1

2
Tr [ωφωt − ω̄φω̄t]−

1

2

N∑
s=3

(s− 2)(µsQs − µ̄sQ̄s)

)
. (4.36)

The first term involving 1
2 Tr [ωφωt − ω̄φω̄t] can still be rewritten using (4.31). But since the

topological charge ~n is given by the holonomy along the t-cycle instead of the φ-cycle, (4.32)

should now be replaced by

−1

2
~n2 =

1

2
Tr
[
(ωt)

2
]

= τ2Q2 +
i|τ |2

2τ2

N∑
s=3

sµsQs + τ̄2 Tr
[
(az̄)

2
]

2
, (4.37)

which gives rise to the identity (the counterpart of (4.33))

1

2
Tr [ωφωt]

BH = −

(
~n2

2

1

τ̄
+

2iτ2

|τ |2
τ2Q2 −

1

2

N∑
s=3

sµsQs

)
. (4.38)
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Using this the free energy of the black hole can be written in terms of modular covariant

quantities {~n; τ ; µs; Qs} as

− βFBH = 2πik

[
2iτ2

|τ |2
(
~n2

2
+ τ2Q2 + τ̄2Q̄2)−

N∑
s=3

(s− 1)(µsQs − µ̄sQ̄s)

]
. (4.39)

Similar to the conical surplus, we should now replace Qs by the charge functions of the

black hole, given in (4.4), and thereby obtain the free energy of the black hole as a function

of {~n; τ ; µs}:

−βFBH =2πik
[ 2iτ2

|τ |2

(
~n2

2
+ q2

[
~n; −1

τ
;
µs
τ s

]
+ q̄2

[
~n; −1

τ̄
;
µ̄s
τ̄ s

])
−

N∑
s=3

(s− 1)

(
µs
τ s
qs

[
~n; −1

τ
;
µs
τ s

]
− µ̄s
τ̄ s
q̄s

[
~n; −1

τ̄
;
µ̄s
τ̄ s

]) ]
.

(4.40)

4.3.3 S-transformation of free energies

Now we have the free energy of the conical surplus (4.35) and that of the black hole (4.40),

each written explicitly in terms of {~n; τ ; µs}. Comparing (4.35) with (4.40), we conclude

that the S-transformation between the free energy of the conical surplus and that of the

black hole is the following

FCS = F [~n; τ ; µs] ⇐⇒ FBH = F
[
~n; −1

τ
;
µs
τ s

]
. (4.41)

Similar to the charge function (4.19), we can consider the function F [~n; τ ; µs] to be

defined by the free energy of the conical surplus. The relations (4.19) and (4.41) show that

the full S-transformation in the grand canonical ensemble (GCE) is:

S-map in GCE: τ 7−→ −1

τ
, µs 7−→

µs
τ s
. (4.42)

4.4 Example-1: N = 3 case

Now let us illustrate what we have proven so far with the simplest example: sl(3) higher-

spin theory.

First, to write down az from (3.15) we need to specify a specific representation of L0,±1.

We will adopt the one used in [20], namely

(L0)mn =
N + 1− 2m

2
δm,n ,

(L1)mn = −
√
|(m− 1)(N + 1−m)| δm,n+1 ,

(L−1)mn = +
√
|(n− 1)(N + 1− n)| δm+1,n .

(4.43)

Once L0,±1 are chosen, we can use (2.10) to write down all the W
(s≥3)
m . In this represen-

tation, az is

az = L1 −
Q2

4
L−1 +

Q3

4
W

(3)
−2 . (4.44)
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Then take (2.14) and solve {σ2, σ3} using (3.19) we get

σ2 = 0 , σ3 =
i

2τ2
µ3 . (4.45)

So az̄ is simply

az̄ =
i

2τ2
µ3

(
(az)

2 −
Tr
[
(az)

2
]

3
1

)
. (4.46)

Note that for N ≥ 4, σs is no longer simply i
2τ2
µs but in general involves a non-trivial (i.e.

6= 1) homogenous polynomial of Qs as given by (4.15). We remind that the expressions

of az and az̄ as given in (4.44) and (4.46) are valid for all members of the ‘SL(2,Z)’

family. However the charges Qs are determined in terms of the chemical potentials via the

holonomy condition (2.34), which is different for different solutions (labeled by γ).

First let’s look at the conical surplus. The holonomy condition along the φ-cycle ((2.24)

and (2.22)) is equivalent to the following two equations

Tr
[
(az + az̄)

2
]

= −2n2 , Tr
[
(az + az̄)

3
]

= 0 , with n ∈ Z (4.47)

where we have used ~n = (n, 0,−n).12 Now let us use (4.47) to solve {Q2, Q3} in terms

of τ and µ3. (4.47) is a pair of coupled algebraic equations, one quadratic and one cubic;

therefore {Q2, Q3} has an algebraic expression in terms of {τ, µ3}. However they are rather

long and not very illuminating so we instead provide (the first few terms of) their power

expansion in terms of µ3, which is enough to show the S-map between this conical surplus

solution and the black hole:

QCS
2 = −n2

[
1− 5

3
α2 +

10

3
α4 − 221

27
α6 +

1802

81
α8 + · · ·

]
≡ q2[~n; τ ; µs] ,

QCS
3 = −n3

[
2

3
α− 40

27
α3 +

34

9
α5 − 848

81
α7 + · · ·

]
≡ q3[~n; τ ; µs] .

(4.48)

with

α ≡ n i

2τ2
µ3 (4.49)

In the last step we defined the function qs using the charge function of the conical surplus.

We could then plug the exact solution into (4.34) to write down the exact free energy.

However, since the expression is too long and not very illuminating, we again content

ourselves with an expansion:

−βFCS =4πk · n2τ2 ·
[
1− 1

3
(α2 + ᾱ2) +

10

27
(α4 + ᾱ4)− 17

27
(α6 + ᾱ6) +

106

81
(α8 + ᾱ8) + · · ·

]
.

(4.50)

Now we turn to the black hole. The condition that solves {Q2, Q3} is now the holonomy

condition around the cycle z ∼ z + 2πτ :

Tr
[
(τaz + τ̄ az̄)

2
]

= −2n2 , Tr
[
(τaz + τ̄ az̄)

3
]

= 0 , with n ∈ Z . (4.51)

12The solution with chemical potential turned off (i.e. µ3 = µ̄3 = 0) is the conical surplus defined in [20].
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The case with n = 1 gives the higher-spin black hole first constructed in [21]. Now we

write down the solution {Q2, Q3} for generic n, in a power expansion of µ3:

QBH
2 = −n

2

τ2

[
1− 5

3
β2 +

10

3
β4 − 221

27
β6 +

1802

81
β8 + · · ·

]
,

QBH
3 = −n

3

τ3

[
2

3
β − 40

27
β3 +

34

9
β5 − 848

81
β7 + · · ·

]
.

(4.52)

with

β ≡ ni|τ |
2

2τ2

µ3

τ3
. (4.53)

Comparing (4.48) and (4.52) together with (4.49) and (4.53) thus immediately shows

QBH
s = 1

τs qs
[
~n; − 1

τ ; µs
τs

]
hence confirms the relation (4.19) that we have proven earlier.

Finally we compute the free energy of the black hole and write down its power expan-

sion here

− βFBH (4.54)

=4πk · n2 τ2

|τ |2
·
[
1− 1

3
(β2 + β̄2) +

10

27
(β4 + β̄4)− 17

27
(β6 + β̄6) +

106

81
(β8 + β̄8) + · · ·

]
.

This is exactly the S-transformation (4.42) of (4.50).

5 SL(2,Z) family of smooth solutions

In this section we will show how to generate an “SL(2,Z) family” of smooth solutions

with higher-spin charges. The construction is a generalization of the spin-2 case, which we

briefly review in appendix B.

5.1 Solution

In the spin-2 case (i.e. pure Einstein gravity with a negative cosmological constant), all

BTZ black holes can be obtained from the AdS3 space via modular transformations of the

modulus of the boundary torus (which induces a large coordinate transformation) plus a

local coordinate transformation. In the sl(N) higher-spin gravity, let us start with a conical

surplus solution and apply the full modular group PSL(2,Z).

Under a modular transformation on the boundary torus

γ =

(
a b

c d

)
∈ PSL(2,Z) : τ 7−→ γ̂τ =

aτ + b

cτ + d
(5.1)

the A/B cycles of the conical surplus solution map to:

A-cycle: z ∼ z + 2π 7−→ z ∼ z + 2π(cτ + d)

B-cycle: z ∼ z + 2πτ 7−→ z ∼ z + 2π(aτ + b)
(5.2)

The holonomy matrix around the contractible cycle should now be

ωA = (cτ + d) az + (cτ̄ + b) az̄ (5.3)
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which for a smooth solution should be:

Λ (ωA) = i ~n (5.4)

with ~n satisfying (2.26). Let us label this new solution by γ.

Now, if we start with a given conical surplus with parameter {~n; τ ;µs} (holonomy

vector around φ-cycle, boundary modulus, chemical potentials), and whose charge function

is known to be given by (4.3), what can we say about this new smooth solution labeled

by γ? Again, since in this theory a solution is defined by the trivial holonomy condition

around its A-cycle, the answer must lie in a comparison between the holonomy condition

of the conical surplus and that of the solution γ. Therefore we follow the strategy used

earlier (in section 4.1) in proving the S-duality between the conical surplus and the black

hole: we first recast the holonomy condition of the solution γ into the form of that of the

conical surplus to facilitate the comparison, then we infer the transformation rules from

this comparison.

The conical surplus with parameter {~n; τ ;µs} is defined by the equation (4.7), but we

now write it again for the ease of comparison:

CS: i ~n = Λ (ωφ [τ ; µs; Qs]) = Λ (az [Qs]) + Λ (az̄ [τ ; µs; Qs]) , (5.5)

whereas the new smooth constant solution with the same set of parameters {~n; τ ;µs} and

labeled by γ is defined by

γ: i ~n = Λ (ωA [τ ; µs; Qs]) = (cτ + d)Λ (az [Qs]) + (cτ̄ + d)Λ (az̄ [τ ; µs; Qs]) . (5.6)

(We remind that in both cases, Qs can be solved in terms of {~n; τ ;µs}, using (5.5) and (5.6),

respectively.) To cast (5.6) into the form of (5.5), let us rerun the argument in section 4.1.

First, the pair (4.10) and (4.12) now generalize to

(cτ + d) · (cτ + d)L0 az [Qs] (cτ + d)−L0 = az [(cτ + d)sQs] ,

(cτ̄ + d) · (cτ + d)L0 az̄ [τ ; µs; Qs] (cτ + d)−L0 = az̄

[
γ̂τ ;

µs
(cτ + d)s

; (cτ + d)sQs

]
.

(5.7)

The first identity in (5.7) comes from setting κ = cτ + d in (4.10). To prove the second

identity, we again repeat the argument of the S-transformation. First, (4.14) should now

be generalized into

(cτ̄ + d) · (cτ + d)L0 az̄ [σs; Qs] (cτ + d)−L0

=
N∑
s=2

|(cτ + d)|2σs
(cτ + d)s

[
(az [(cτ + d)sQs])

s−1 − Tr(az [(cτ + d)sQs])
s−1

N

]
.

(5.8)

Second, (4.15) still applies (note the presence of τ2 instead of the imaginary part of the

modular parameter aτ+b
cτ+d). The only difference is that, now from l.h.s. to the r.h.s. the

variables undergo the following transformation:

τ 7−→ γ̂τ =
aτ + b

cτ + d
, µs 7−→

µs
(cτ + d)s

, Qs 7−→ (cτ + d)sQs , (5.9)
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of which (4.13) is merely a special case with γ =

(
0 −1

1 0

)
. Accordingly, the transformation

in terms of (σs, Qs) analogous to (4.16) should be

σs 7−→ |cτ + d|2 σs
(cτ + d)s

, Qs 7−→ (cτ + d)sQs . (5.10)

(We have used τ2 7→ τ2
|cτ+d|2 under τ 7→ aτ+b

cτ+d .) Namely, the r.h.s. of (5.8) is preciely

az̄

[
γ̂τ ; µs

(cτ+d)s ; (cτ + d)sQs

]
, which proves the second identity of (5.7).

With (5.7) proven, evaluating the vectors of eigenvalues of both sides of (5.7) then

gives the generalization to the pair (4.11) and (4.17):

(cτ + d) Λ (az [Qs]) = Λ (az [(cτ + d)sQs]) ,

(cτ̄ + d) Λ (az̄ [τ ; µs; Qs]) = Λ

(
az̄

[
γ̂τ ;

µs
(cτ + d)s

; (cτ + d)sQs

])
.

(5.11)

Having proved the pair (5.11), we can now use them to rewrite the holonomy condition

of the solution γ into the form of the conical surplus:

i ~n = Λ (ωA [τ ; µs; Qs]) = Λ

(
ωφ

[
γ̂τ ;

µs
(cτ + d)s

; (cτ + d)sQs

])
. (5.12)

Namely, the solution γ can be generated by a passive change of variables (5.9) on the

conical surplus.

In order to sum over the contributions from all members of the ‘SL(2,Z)’ family to

the full partition function, we need to place all the solutions in a common grand canonical

ensemble, with common temperature and chemical potentials. This requires us to switch

to the active viewpoint of the transformation, i.e. we hold {~n; τ ; µs} fixed and ask how the

conserved charges Qs transform. Comparing (5.12) with the holonomy condition (5.5) of

the conical surplus we conclude that for given {~n; τ ; µs} the on-shell value of the charges

Qs of this new solution γ is related to that of the conical surplus via:

QCS
t = qt [~n; τ ; µs] ⇐⇒ Qγt =

1

(cτ + d)t
qt

[
~n; γ̂τ ;

µs
(cτ + d)s

]
t = 2, . . . , N

(5.13)

To summarize, we have proved that starting with a conical surplus with parameters

{~n; τ ;µs} (holonomy vector around φ-cycle, boundary modulus, chemical potentials), the

transformation (5.1) maps it into another smooth constant solution with the same chemical

potentials {µs}, whose holonomy around the new A-cycle z ∼ z + 2π(cτ + d) is trivial and

is given by the same vector ~n, and whose on-shell values of charges are given by

solution γ: Qγt =
1

(cτ + d)t
qt

[
~n; γ̂τ ;

µs
(cτ + d)s

]
t = 2, . . . , N . (5.14)

where qt is the function defined by the charge function of the conical surplus as in (4.3).

Then as γ runs through Γ∞\Γ, we obtain a ‘SL(2,Z)’ family of smooth constant

solutions with a common set of {~n; τ ; µs}; their only difference is in the choices of their
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A/B cycles which in turn give different on-shell values for the charges as given by (5.14).

Within each such ‘SL(2,Z)’ family (labeled by {~n; τ ;µs}), all except for the one with

γ =

(
1 0

0 1

)
(i.e. the conical surplus) are higher-spin black holes (since their A-cycles all

have t-direction), in complete parallel to the spin-2 case.

5.2 Reasoning from dual CFT

Let us see this from the dual CFT side, borrowing the argument from [55]. In the CFT

side, switching on the chemical potentials µs of the higher-spin charges can be accounted

for perturbatively by adding an irrelevant perturbation to the action

SCFT → SCFT +

N∑
s≥3

∫
d2z

4πτ2

(
µsW

(s)(z)− c.c.
)
. (5.15)

Correspondingly, the partition function (3.1) is equal to the torus amplitude in the

CFT side:

ZCFT[τ ; µs] ≡ 〈e
2πi
(∑N

s=3 µs
∫

d2z
2πτ2

W (s)(z)−c.c.
)
〉 (5.16)

The volume element d2z
2πτ2

should be invariant under a modular transformation; there-

fore the modular transformation (2.19) induces a transformation of the coordinates:

τ 7−→ γ̂τ =
aτ + b

cτ + d
=⇒ z 7−→ z′ =

z

cτ + d
. (5.17)

In the highest-weight gauge we are using, the spin-s field W (s)(z) is a Virasoro primary of

weight-s, therefore under (5.17)

W (s)(z) 7−→W (s)′(z′) = (cτ + d)sW (s)(z) . (5.18)

Namely W (s)(z) has weight-s under both conformal and modular transformations [55].

First this means that Qs =
∫

d2z
2πτ2

W (s)(z) also transforms as

Qs 7−→ Q′s = (cτ + d)sQs . (5.19)

Second the invariance of the integrand implies that the chemical potential µs transforms as

µs 7−→ µ′s =
1

(cτ + d)s
µs . (5.20)

The maps (5.17), (5.19), and (5.20) together are precisely what we have shown earlier

in (5.9) to be the required change of variables (in the passive viewpoint of the transforma-

tion) to map the conical surplus to the solution γ.

Finally we make a comparison between the transformations in the passive viewpoint

and the active one. In the passive viewpoint, one applies the following change of variables:

passive: ~n fixed , τ 7−→ γ̂τ =
aτ + b

cτ + d
, µs 7−→

µs
(cτ + d)s

, Qs 7−→ (cτ + d)sQs .

(5.21)
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We have adopted the passive viewpoint in the proof of the mapping between different

members of solutions under the modular transformation. Once the mapping is established,

we switch to the active viewpoint in order to place all solutions in the ‘SL(2,Z)’ family in

one grand canonical ensemble:

active: {~n; τ ; µs} fixed ,

Qs = qs [~n; τ ; µr] 7−→ Qγs =
1

(cτ + d)s
qs

[
~n; γ̂τ ;

µr
(cτ + d)r

]
.

(5.22)

5.3 Coordinate transformations between members of ‘SL(2,Z)’ family

In section 4.2 we proved that a black hole with parameter {~n; τ ; µs} can be mapped to a

conical surplus with parameter {~n; − 1
τ ; µs

τs } via a coordinate transformation (see (4.27)).

The generalization to the full ‘SL(2,Z)’ family is immediate.

First, the gauge field components (az, az̄) of a conical surplus and those of solution γ

are related via:

aCS
z

[
~n; γ̂τ ;

µs
(cτ + d)s

]
= (cτ + d) · (cτ + d)L0 aγz [~n; τ ; µs] (cτ + d)−L0 ,

aCS
z̄

[
~n; γ̂τ ;

µs
(cτ + d)s

]
= (cτ̄ + d) · (cτ + d)L0 aγz̄ [~n; τ ; µs] (cτ + d)−L0 .

(5.23)

Similar to the S-dual case, we apply a coordinate transformation to the conical surplus:

ρ 7−→ ργ = ρ+ ln |cτ + d| , z 7−→ zγ =
z

cτ + d
, z̄ 7−→ z̄γ =

z̄

cτ̄ + d
. (5.24)

With the gauge component (az, az̄) kept fixed, the one-form a and A in this new coordi-

nate are

a(z,z̄)γ ≡ azdzγ + az̄dz̄
γ , A(ρ,z,z̄)γ ≡ e−ργL0a(z,z̄)γeρ

γL0 + L0dρ
γ ; (5.25)

and similarly for ā and Ā. The gauge one-form {a, ā} of the solution γ with parameter

{~n; τ ; µs} in the original coordinate (ρ, z, z̄) is related to that of the conical surplus with

parameter {~n; γ̂τ ; µs
(cτ+d)s } but in the new coordinate (ρ, z, z̄)γ via:

aCS

[
~n; γ̂τ ;

µs
(cτ + d)s

](z,z̄)γ

= (cτ + d)L0aγ [~n; τ ; µs]
(z,z̄) (cτ + d)−L0 ,

āCS

[
~n; γ̂τ ;

µs
(cτ + d)s

](z,z̄)γ

= (cτ̄ + d)−L0 āγ [~n; τ ; µs]
(z,z̄) (cτ̄ + d)L0 .

(5.26)

The full gauge one-forms (A, Ā) of the solution γ with parameter {~n; τ ; µs} in the orig-

inal coordinate (ρ, z, z̄) is then identical to that of the conical surplus with parameter

{~n; γ̂τ ; µs
(cτ+d)s } but in the new coordinate (ρ, z, z̄)γ up to an overall constant gauge trans-

formation:

ĥ−1
γ ·ACS

[
~n; γ̂τ ;

µs
(cτ + d)s

](ρ,z,z̄)γ

· ĥγ = Aγ [~n; τ ; µs]
(ρ,z,z̄) ,

ĥ−1
γ · ĀCS

[
~n; γ̂τ ;

µs
(cτ + d)s

](ρ,z,z̄)γ

· ĥγ = Āγ [~n; τ ; µs]
(ρ,z,z̄) ,

(5.27)
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with

ĥγ =

(
cτ̄ + d

cτ + d

)L0
2

. (5.28)

This means that all constant solutions in the SL(2,Z) family are locally identical: they are

all discrete quotients of the SL(N,R) ⊗ SL(N,R). Explicitly, for constant solutions, the

connection A in the gauge (2.4) can be written as A = g−1dg with g ≡ ezaz+z̄az̄b ∈ SL(N,R)

and b = eρL0 [59]. Since for the solution γ, the space has a B-cycle (z, z̄) ∼ (z + 2π(aτ +

b), z̄ + 2π(aτ̄ + b)), gγ satisfies

gγ ∼
(
bHolB(Aγ) b−1

)
· gγ , (5.29)

where HolB(Aγ) is the holonomy of Aγ around the B-cycle:

HolB(Aγ) = b−1e2πωγBb (5.30)

with

ωγB = (cτ + d)−L0 ·
(
γ̂τ aCS

z

[
~n; γ̂τ ;

µs
(cτ + d)s

]
+ γ̂τ̄ aCS

z̄

[
~n; γ̂τ ;

µs
(cτ + d)s

])
· (cτ + d)L0 .

(5.31)

using the definition (2.35) and the relation (5.23), and similarly for the Ā sector. Namely,

the solution γ is the quotient of SL(N,R) by a matrix that is given by the holonomy of Aγ

around the B-cycle conjugated by b.13 For fixed {τ, µs}, the matrix (bHolB(Aγ)b−1) is a

representation of a point in Γ∞\Γ.

This is the analogue of the spin-2 story: in the spin-2 case, a solution γ in the ‘SL(2,Z)’

family can be mapped by a coordinate transformation into an AdS3 with modular param-

eter aτ+b
cτ+d (instead of τ). All these solutions are discrete quotients of the AdS3 space by

elements of SL(2,Z) [5, 6].

5.4 Mapping of the free energy

Recall that the free energy of a conical surplus and that of its S-dual black hole are related

by (4.41). Now we generalize this mapping to the entire ‘SL(2,Z)’ family. Different mem-

bers of the ‘SL(2,Z)’ family share the same holonomy vector ~n, around their respective

A-cycles. Therefore although we have a number of different expressions for the free energy,

the one we should use to study the mapping under a modular transformation is the one

written explicitly in terms of the holonomy matrices, and in a form universal across the

‘SL(2,Z)’ family — the expression (3.35) is ideal for this purpose.

Within a ‘SL(2,Z)’ family, all members share the same {~n; τ ; µs} but differ in their

modular parameters γ and hence their charges Qγs , as given in (5.14). To obtain the

mapping between the free energies of different members, we first need to rewrite (3.35) in

terms of only {~n; τ ; µs} and γ. Since we already know that the charges Qγs for different

γ are related via (5.14), we will first rewrite (3.35) in terms of {~n; τ ; µs; Q
γ
s} and γ.

13Note that although the holonomy HolB(Aγ) has an explicit ρ-dependence, its eigenvalues do not.

In (5.29), the conjugation by b serves to remove the ρ-dependence and extract the information on the

eigenvalues of HolB(Aγ).
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Using

1

2
Tr [ωAωB] =(aτ + b)(cτ + d)Qγ2 +

iRe[(aτ + b)(cτ̄ + d)]

2τ2

N∑
s=3

sµsQ
γ
s

+ (aτ̄ + b)(cτ̄ + d)
Tr
[
(az̄)

2
]

2
,

(5.32)

and

− 1

2
~n2 =

1

2
Tr
[
(ωA)2

]
= (cτ+d)2Qγ2 +

i|cτ + d|2

2τ2

N∑
s=3

sµsQ
γ
s +

(cτ̄ + d)2

2
Tr
[
(az̄)

2
]
, (5.33)

we arrive at an identity

1

2
Tr [ωAωB] = −~n

2

2
γ̂τ̄ +

2iτ2

|cτ + d|2
(cτ + d)2Qγ2 −

N∑
s=3

s

2
µsQ

γ
s , (5.34)

which immediately allows us to rewrite the free energy (3.35) in terms of {~n; τ ; µs; Q
γ
s}

and γ:

−βF γ = 2πik
( 2iτ2

|cτ + d|2

[
~n2

2
+ (cτ + d)2Qγ2 + (cτ̄ + d)2Q̄γ2

]
−

N∑
s=3

(s− 1)(µsQ
γ
s − µ̄sQ̄γs )

)
.

(5.35)

Then recall that Qγs depends on {~n; τ ; µs} and γ via (5.14), we obtain the expression of

the free energy in terms of {~n; τ ; µs} only:

− βF γ = 2πik
[ 2iτ2

|cτ + d|2

(
~n2

2
+ q2

[
~n; γ̂τ ;

µs
(cτ + d)s

]
+ q̄2

[
~n; γ̂τ̄ ;

µ̄s
(cτ̄ + d)s

])
−

N∑
s=3

(s− 1)

(
µs

(cτ + d)s
qs

[
~n; γ̂τ ;

µs
(cτ + d)s

]
− µ̄s

(cτ̄ + d)s
q̄s

[
~n; γ̂τ̄ ;

µ̄s
(cτ̄ + d)s

]) ]
.

(5.36)

Comparing this with (4.35), we obtain the map between the free energy of the conical

surplus and that of the solution γ;

FCS [~n; τ ; µs] = F [~n; τ ; µs] ⇐⇒ F γ [~n; τ ; µs] = F
[
~n; γ̂τ ;

µs
(cτ + d)s

]
.

(5.37)

This proves that different solutions γ in the ‘SL(2,Z)’ family share the same form for their

free energies, and they can all be obtained by applying the following transformation

modular transformation in GCE: τ 7−→ γ̂τ =
aτ + b

cτ + d
µs 7−→

µs
(cτ + d)s

, (5.38)

on the free energy of the conical surplus.

Recall that in the spin-2 case, the metric of the solution labeled by γ in the ‘SL(2,Z)’

family can be brought into the metric of the AdS3 with modular parameter γ̂τ = aτ+b
cτ+d

(instead of τ) via a coordinate transformation. Since the on-shell action should be invariant
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under the coordinate transformation, the free energies of the solution γ and the AdS3 is

necessarily related by the modular transformation: F γ [τ ] = FAdS3 [aτ+b
cτ+d ], and in particular

FBTZ[τ ] = FAdS3 [− 1
τ ].

The non-trivial part of the story is in the construction of the full action (includ-

ing boundary terms) whose Euclidean on-shell action (hence the free energy) is invariant

under coordinate transformations. Now we have seen a complete parallel in the sl(N)

Chern-Simons theory. As shown in section 5.3, different members of the ‘SL(2,Z)’ family

are related by the coordinate transformation (5.27), therefore the mapping between their

free energies (5.37) not only confirms the mapping between different solutions via (5.22)

and (5.27), more importantly, it provides strong evidence that the thermodynamics that

we derived in section 3 is consistent and applies to all members in the ‘SL(2,Z)’ family.

We regard this as a much more non-trivial result than the mapping of different members

at the level of solution.

5.5 Modular invariant full partition function

The full partition function should include contributions from all saddle points. Let us

first classify all classical solutions known to us. First, for each holonomy vector ~n satisfy-

ing (2.26) there is a ‘SL(2,Z)’ family of solutions constructed earlier in this section. Using

Z = e−βF and (5.37), we see that the contribution from each member γ is an image of the

modular transformation (5.38) of the contribution from the conical surplus:

Zγ~n [τ ; µs] = ZCS
~n

[
γ̂τ ;

µs
(cτ + d)s

]
. (5.39)

For given ~n, we should first sum over all members within this ‘SL(2,Z)’ family, which

consists of all the modular images of the conical surplus:

Z~n [τ ; µs] =
∑

γ∈Γ∞\Γ

Zγ~n [τ ; µs] =
∑

γ∈Γ∞\Γ

ZCS
~n

[
γ̂τ ;

µs
(cτ + d)s

]
. (5.40)

So far this is in complete parallel to the spin-2 case studied in [8, 57]. Now comes the

major difference: we should also sum over all distinct ~n satisfying (2.26):

Z [τ ; µs] =
∑
~n

Z~n [τ ; µs] . (5.41)

This expression is manifestly modular invariant. After the appropriate regularization, one

can then use it to extract the phase structure of the full theory. For instance, the (infinite)

sum over ~n might smear out the Hawking-Page transition, as argued in [58]. We leave this

to future work.

6 Discussion

The goal of this paper is simple: in the three-dimensional asymptotically AdS3 space, we

want to generalize the construction of the ‘SL(2,Z)’ family of solutions from the spin-2

gravity to the higher-spin gravity. We achieved this in the sl(N) Chern-Simons theory.
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The main results have already been summarized in section 1, now we end with a discussion

on the main difference of the higher-spin theory from the spin-2 one.

In the spin-2 theory one usually works with the metric, and under a modular trans-

formation of the boundary torus the mapping between different solutions can be written

in terms of the coordinate transformations of the bulk metric. In the higher-spin theory,

the metric (more precisely the line element ds2) is no longer a gauge invariant concept

therefore would not be suitable for a discussion on the modular property. However, as we

have seen, the gauge connection in the Chern-Simon higher-spin theory is actually more

convenient for the study of the modular properties than the metric in the spin-2 gravity.

First of all, the defining equation of a smooth solution (the trivial holonomy condition

around its A-cycle) is manifestly modular covariant, i.e. a passive change of variables (5.9)

directly maps it into the defining equation of another smooth solution, as shown in (5.12).

Moreover, the free energy also has an expression (3.35) that is universal for all solutions

and using which one can arrive at a modular-covariant expression (5.36). For the entropy,

we have also derived an expression (3.38) that applies to all members of ‘SL(2,Z)’ family.

Finally, we finish with a proof of the modular invariance of the integrability condition

of the theory, and with it a discussion on an important difference between the ‘canonical’

formalism and the ‘holomorphic’ one.

6.1 Modular invariance of integrability condition

The existence of the free energy formula (3.36) guarantees the following integrability con-

dition
∂Qs
∂µt

=
∂Qt
∂µs

,
∂T

∂µs
=
∂Qs
∂τ

, s, t = 3, . . . , N , (6.1)

for all members of the ‘SL(2,Z)’ family, i.e. the relations (6.1) should be modular invariant.

However, it is instructive to see how it works in detail. This not only serves as a non-trivial

consistency check for our construction of the ‘SL(2,Z)’ family of solutions; it will also be

used later when we compare with other discussions of the thermodynamics in this theory.

To show that (6.1) is modular invariant, we compare the relation (6.1) for a conical

surplus with that of a generic solution labeled by γ, and show that the latter can be

obtained by a modular transformation (5.38) of the former. First, let’s start with the first

condition of (6.1). When the solution is a conical surplus, we plug (4.3) into (6.1) and

obtain
∂qs
∂µt

[τ, µr] =
∂qt
∂µs

[τ, µr] . (6.2)

(In this proof we omit ~n since it stays invariant under modular transformations.) Then for

a generic solution labeled by γ, plugging in (5.14) and using14

∂Qγs
∂µt

=
1

(cτ + d)s+t
∂qs
∂µt

[γ̂τ ;
µr

(cτ + d)r
] , (6.3)

14A clarification of notation: the derivative always takes place before the change of variables, e.g.
∂qs
∂µt

[γ̂τ ; µr
(cτ+d)r

] ≡ ∂qs
∂µt

[τ ; µr]|τ 7→γ̂τ ; µr 7→ µr
(cτ+d)r

.
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we get the integrability condition to be

∂qs
∂µt

[γ̂τ ;
µr

(cτ + d)r
] =

∂qt
∂µs

[γ̂τ ;
µr

(cτ + d)r
] , (6.4)

which is precisely the modular transformation (5.38) of the integrability condition of the

conical surplus (6.2).

The second condition of (6.1) is slightly harder since it involves T , which is not modular

covariant in itself: for a generic solution labeled by γ, T is

T =
1

(cτ + d)2

[
~n2

2
+ q2 + q̄2

]
+

i

2τ2

N∑
s=3

s

[
µsqs

(cτ + d)s
− cτ̄ + d

cτ + d

µ̄sq̄s
(cτ̄ + d)s

]
, (6.5)

where the variables inside the function qt is (γ̂τ ; µr
(cτ+d)r ). However as we will now show,

the integrability condition involving T is nevertheless modular invariant. First, for the

conical surplus
∂T

∂µs
=
∂q2

∂µs
[τ, µr] +

i

2τ2
Gs[τ, µr] , (6.6)

with Gs defined as

Gs[τ, µr] ≡ sqs[τ, µr] +

N∑
t=3

t µt
∂qt
∂µs

[τ, µr] , (6.7)

and the integrability condition is(
∂q2

∂µs
[τ, µr] +

i

2τ2
Gs[τ, µr]

)
− ∂qs
∂τ

[τ, µr] = 0 . (6.8)

Now for a generic solution, ∂T
∂µs

becomes

∂T

∂µs
=

1

(cτ + d)2+s

(
∂q2

∂µs
[γ̂τ ;

µr
(cτ + d)r

] +
i(cτ + d)2

2τ2
Gs[γ̂τ ;

µr
(cτ + d)r

]

)
. (6.9)

Comparing (6.9) with (6.6) shows that ∂T
∂µs

is almost covariant, but not quite: the factor

in front of Gs is i(cτ+d)2

2τ2
instead of i|cτ+d|2

2τ2
. On the other hand, ∂Qγs

∂τ becomes

∂Qγs
∂τ

=
1

(cτ + d)2+s

(
∂qs
∂τ

[γ̂τ ;
µr

(cτ + d)r
]− c(cτ + d)Gs[γ̂τ ;

µr
(cτ + d)r

]

)
. (6.10)

In general the derivative (w.r.t. τ) of a modular form is not a modular form. We see

something similar happens here as well: although Qs transforms covariantly under the

modular transformation, the last terms of the above equation (6.10) says that ∂Qγs
∂τ does

not. These two oddities cancel each other out when we subtract (6.10) from (6.9) to write

down the integrability condition for the solution γ:

0 =
∂q2

∂µs
[γ̂τ ;

µr
(cτ + d)r

] +
i|cτ + d|2

2τ2
Gs[γ̂τ ;

µr
(cτ + d)r

]− ∂qs
∂τ

[γ̂τ ;
µr

(cτ + d)r
] , (6.11)

which is precisely the modular transformation (5.38) of the integrability condition of the

conical surplus (6.8).
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6.2 Canonical vs. holomorphic

Now we would like to compare the ‘holomorphic’ formalism with the ‘canonical’ one (which

we used throughout this paper). The main difference between these two approaches is in

the identification of the spin-2 conserved charges: Q2 in the ‘holomorphic’ approach and

T (as defined in (3.25)) in the ‘canonical’ one. This difference in turn leads to different

results for the entropy and the free energy. Now relevant to this paper we will focus on the

difference in the modular properties of these two formalisms.

The first tell-tale sign that the modular transformation (5.38) would not be applicable

in the ‘holomorphic’ formalism is from the integrability condition. It suffices to look at

the sl(3) theory considered in [21]. For the black hole in this theory, the spin-2 conserved

charge is the holomorphic Q2, which satisfies the integrality condition [21]

∂Q2

∂µ3
=
∂Q3

∂τ
. (6.12)

However, if Qs was to transform under the modular transformation (5.38) in the same way

as what we proposed:

Qs = qs[τ ; µr] 7−→ Qγs =
1

(cτ + d)s
qs[γ̂τ ;

µr
(cτ + d)r

] (6.13)

then (6.12) would not be modular invariant — the l.h.s. of (6.12) is modular covariant as

shown in (6.3) whereas the r.h.s. is not, as explained in (6.10) and the lines below. This

suggests that if we are to extend the result of [21] into a full ‘SL(2,Z)’ family, the modular

transformation would not be the same as given in the present paper. It would be interesting

to work out the appropriate modular transformation in the ‘holomorphic’ formalism, for

which the translation between the two formalisms discussed in [27] would be helpful.15
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A Solving σs in terms of µs

An identity that is central to the proof of this paper is eq. (4.15). To prove it, we can

equivalently prove its inverse:

i

2τ2
µs =

N∑
s′=s

σs′ H̃s′−s(Qt) (A.1)

where H̃s′−s(Qt) is another homogenous polynomial of degree-(s′ − s) with variables Qt
having degree-t.

15Note added: the authors in [60] proposed another canonical formalism in which the charges sit in aφ
and the chemical potentials in ωt. It would be interesting to try and construct a modular family in this

formalism.
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First recall that the N − 1 equations (3.19) with az̄ given in (2.14) determine σs in

terms of µs. Plugging (2.14) into (3.19), and using Tr[W
(s)
m ] = 0 and az = L1 +Q, we have

1

t(s)

N∑
s′=2

σs′ Tr
[
W

(s)
−s+1 (L1 + Q)s

′−1
]

=
i

2τ2
µs s = 2, . . . , N (A.2)

where µ2 ≡ 0. Then plugging in Q =
∑N

s=2
Qs
t(s)
W

(s)
−s+1 into above and using the fact the

trace only picks up the zero modes, namely

Tr
[
W

(s)
−s+1 (L1 + Q)s

′−1
]

=
s′−1∑
m=0

cs′,s · (
m∏
j=1

Qsj ) · δ−s+1+(s′−1−m)+
∑m
j=1(−sj+1), 0 (A.3)

where cs,s′ are some rational numbers which can be computed from (2.10) but whose explicit

values do not concern us here. Therefore the trace in (A.2) contains only terms
∏r
m=1Qsj

with
∑m

j=1 sj = s′ − s, i.e. it is a homogenous polynomial of degree-(s′ − s) with variables

Qt having degree-t. Thus we have proved (A.1), which in turns gives (4.15).

B SL(2,Z) family in spin-2 case

Now we review how all BTZ black holes in spin-2 gravity can be obtained from modular

transformations of the AdS3 space. Below mostly follows the exposition of [6].

The thermal AdS3 is a solid torus, with metric

ds2 = dρ2 + du2 + dū2 + 2dudū cosh ρ (B.1)

where u = i
2(φ+ itE) with φ the angular coordinate and tE the Euclidean time. In terms

of u the contractible and non-contractible cycles are

Contractible(A)-cycle: 2u ∼ 2u+ 2πi (B.2)

Non-contractible(B)-cycle: 2u ∼ 2u+ 2πis (B.3)

where s = s1 + is2 (with s2 = 2πβ ≥ 0) is the modulus of the boundary torus in this

homology basis (contractible cycle, non-contractible cycle).

Starting with the thermal AdS3 solution, all asymptotically AdSs solutions (including

AdS3 and all BTZ black holes) can be obtained via modular transformations. The easiest

way to see this is the following. Since all asymptotically AdSs solutions are locally diffeo-

morphic, they share the same metric (B.1) but with different maps of u to z ≡ φ + itE .

Since s can be mapped to a unique point τ in the fundamental domain via

s =
aτ + b

cτ + d

(
a b

c d

)
∈ PSL(2,Z) (B.4)

we can uniquely define

2u =
i

cτ + d
z z = φ+ itE (B.5)
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First, the A/B cycle in terms of u translate into the A/B cycle in terms of z:

Contractible(A)-cycle: z ∼ z + 2π(cτ + d)

Non-contractible(B)-cycle: z ∼ z + 2π(aτ + b)
(B.6)

Namely, the map plus the designation of A/B-cycles (2.31) determines which space-time

cycle is non-contractible (φ, or t, or a combination of the two), thus tell us whether the

geometry is a thermal AdS3 or a BTZ black hole.

This can be confirmed by directly computing the metric. The metric in terms of

(ρ, tE , φ), obtained by plugging (B.5) into (B.1), can be brought into the BTZ form via

another local coordinate transformation (see [6] for details):

ds2 = N2(r)dt2E +
dr2

N2(r)
+ r2(dφ+Nφ(r)dtE)2 (B.7)

N2(r) =
(r2 − r2

2)(r2 + r2
1)

r2
, Nφ(r) =

r1r2

r2
, with r1 + ir2 = ± 1

cτ + d

where (c, d) = (0, 1) corresponds to the thermal AdS3 and (c, d) = (1, 0) to the BTZ black

hole with z ∼ z + 2π(− 1
τ ); and other (c, d) with gcd(c, d) = 1 gives the whole “SL(2,Z)”

family of AdS3 and BTZ black holes.

Once we write down the AdS3 solution, we can generate the entire family via modular

transformation. The full partition function is the sum over all modular images:

Z =
∑

Γ∞\Γ

ZAdS3(
aτ + b

cτ + d
) (B.8)

The resulting partition function is divergent and need to be regularized. We refer this issue

to [6, 61].

C Example-2: N = 4

Now let’s check the next simplest example: the N = 4 case. The computation is essentially

the same as the previous N = 3 case, only with longer expressions. First, az is

az = L1 −
Q2

10
L−1 +

Q3

24
W

(3)
−2 −

Q4

36
W

(4)
−3 , (C.1)

And az̄ is solved via (3.19):

az̄ =
i

2τ2

[
− 41

50
µ4Q2 az + µ3(a2

z −
Tr
[
(az)

2
]

4
1) + µ4(a3

z −
Tr
[
(az)

3
]

4
1)
]
, (C.2)

Note the appearance of linear term of az, which is absent in the az̄ for N = 3 case (4.46).

Now let’s repeat the procedure for N = 3 case. First the holonomy vector is now

~n = (n2, n1,−n1,−n2) with ni ∈ N , n2 > n1 . (C.3)

– 39 –



J
H
E
P
1
2
(
2
0
1
3
)
0
9
4

For the conical surplus, the holonomy condition along the φ-cycle ((2.24) and (2.22)) is

equivalent to the following three equations

Tr
[
(az + az̄)

2
]

= −2

2∑
i=1

n2
i , Tr

[
(az + az̄)

3
]

= 0 , Tr
[
(az + az̄)

4
]

= 2

2∑
i=1

n4
i (C.4)

which determines the charges {Q2, Q3, Q4} in terms of {µ3, µ4} and τ . We will omit the

rather long expressions for this result but simply plug them into the free energy (4.34) to

get the final answer for the free energy (in terms of a power expansion of {µ3, µ4}):

−βFCS = 4πk · τ2 ·
[
(n2

1 + n2
2)− (n2

1 − n2
2)2

2
(α2

3 + ᾱ2
3) + (n2

1 − n2
2)2(n2

1 + n2
2) (α4

3 + ᾱ4
3)

+
(9n4

1 − 82n2
1n

2
2 + 9n4

2)

100
(α4 − ᾱ4)− 7 (n2

1 − n2
2)2(n2

1 + n2
2)

10
(α2

3 α4 − ᾱ3
2 ᾱ4)

+
(n2

1 + n2
2)(81n4

1 + 862n2
1n

2
2 + 81n4

2)

2500
(α2

4 + ᾱ2
4)

− (n2
1 − n2

2)2(89n4
1 − 2n2

1n
2
2 + 89n4

2)

100
(α2

3α
2
4 + ᾱ2

3ᾱ
2
4) + · · ·

]
.

(C.5)

with

α3 ≡
i

2τ2
µ3 α4 ≡

i

2τ2
µ4 (C.6)

Now we turn to the black hole. The conditions that solves {Q2, Q3} is now the holon-

omy condition around the cycle z ∼ z + 2πτ :

Tr
[
(τaz + τ̄ az̄)

2
]

= −2

2∑
i=1

n2
i , Tr

[
(τaz + τ̄ az̄)

3
]

= 0 , Tr
[
(τaz + τ̄ az̄)

4
]

= 2

2∑
i=1

n4
i

(C.7)

Again we will only write the final answer of the free energy:

−βFBH = 4πk · τ2

|τ |2
·
[
(n2

1 + n2
2)− (n2

1 − n2
2)2

2
(β2

3 + β̄2
3) + (n2

1 − n2
2)2(n2

1 + n2
2) (β4

3 + β̄4
3)

+
(9n4

1 − 82n2
1n

2
2 + 9n4

2)

100
(β4 − β̄4)− 7 (n2

1 − n2
2)2(n2

1 + n2
2)

10
(β2

3 β4 − β̄3
2
β̄4)

+
(n2

1 + n2
2)(81n4

1 + 862n2
1n

2
2 + 81n4

2)

2500
(β2

4 + β̄2
4)

− (n2
1 − n2

2)2(89n4
1 − 2n2

1n
2
2 + 89n4

2)

100
(β2

3β
2
4 + β̄2

3 β̄
2
4) + · · ·

]
.

(C.8)

with

β3 ≡
i|τ |2

2τ2

µ3

τ3
β4 ≡

i|τ |2

2τ2

µ4

τ4
(C.9)

We see the free energy of the black hole is exactly the S-transformation

τ 7−→ −1

τ
, µ3 7−→

µ3

τ3
, µ4 7−→

µ4

τ4
. (C.10)

of the conical surplus answer (C.10).
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